JP4630005B2 - Internal grooved tube and manufacturing method thereof - Google Patents

Internal grooved tube and manufacturing method thereof Download PDF

Info

Publication number
JP4630005B2
JP4630005B2 JP2004171802A JP2004171802A JP4630005B2 JP 4630005 B2 JP4630005 B2 JP 4630005B2 JP 2004171802 A JP2004171802 A JP 2004171802A JP 2004171802 A JP2004171802 A JP 2004171802A JP 4630005 B2 JP4630005 B2 JP 4630005B2
Authority
JP
Japan
Prior art keywords
fin
tunnel
fins
groove
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004171802A
Other languages
Japanese (ja)
Other versions
JP2005351531A (en
Inventor
康敏 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004171802A priority Critical patent/JP4630005B2/en
Publication of JP2005351531A publication Critical patent/JP2005351531A/en
Application granted granted Critical
Publication of JP4630005B2 publication Critical patent/JP4630005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Description

本発明は、伝熱管やヒートパイプとして使用される内面溝付管及びその製造方法に関するものであり、特に非共沸冷媒を用いたときの凝縮促進型の内面溝付管及びその製造方法に関する。   The present invention relates to an internally grooved tube used as a heat transfer tube or a heat pipe, and a method for manufacturing the internally grooved tube, and more particularly to a condensation-promoting internal grooved tube and a method for manufacturing the same when using a non-azeotropic refrigerant.

ルームエアコン等の空調機用の伝熱管には、内面に多数のフィン(フィン相互の間は溝)を螺旋状に加工したものが使用されている。内面に、より高く(深く)かつ螺旋角度が大きいフィン(溝)をできるだけ密に加工すると、伝熱管の管内伝熱性能が向上することは周知である。しかしながら、フィン高さ及び螺旋角度(リード角)の大きいフィンを内面に加工すると、伝熱性能は向上するが管内の圧力損失が増大し、コンプレッサの負荷増大によりエネルギー効率を低下させるという問題がある。   2. Description of the Related Art Heat transfer tubes for air conditioners such as room air conditioners are used in which a large number of fins (grooves between fins) are spirally processed on the inner surface. It is well known that heat transfer performance of a heat transfer tube is improved when fins (grooves) having a higher (deeper) and larger helix angle are processed as densely as possible on the inner surface. However, if a fin having a large fin height and spiral angle (lead angle) is processed on the inner surface, the heat transfer performance is improved, but the pressure loss in the pipe increases, and the energy efficiency is lowered due to an increase in the load on the compressor. .

前述の問題を解決するため、頂部に狭い開口部を有するあり溝状の空洞部を所定間隔に有する螺旋状の多数のフィンを管内面に加工し、前記空洞部により圧力損失を抑制することが提案されている(空洞部深さはフィン高さの0.25〜1.0倍である。後記特許文献1参照)。
この内面溝付管は、それぞれ素管内に各溝付プラグを回転自在に挿入し、当該素管を引き抜くことにより、管内面に断面が矩形状の多数の一次溝を加工し、次いで、一次溝と交差しかつ螺旋状となるように断面が三角形状の多数の二次溝を加工することにより製造される。すなわち、管内面に二次溝が加工される際に、一次溝によるフィンが潰れて二次溝相互の間にフィンが形成され、一次溝の部分が加圧変形されて二次溝間のフィンに前述のようなあり溝状の空洞部が形成される。
特開平7−12482号
In order to solve the above-mentioned problem, a large number of spiral fins having narrow openings at the top and groove-like cavities at predetermined intervals are processed on the inner surface of the pipe, and pressure loss can be suppressed by the cavities. It has been proposed (the cavity depth is 0.25 to 1.0 times the fin height. See Patent Document 1 below).
The inner surface grooved pipes each have a plurality of grooved plugs rotatably inserted into the raw pipes, and by pulling out the raw pipes, a large number of primary grooves having a rectangular cross section are formed on the inner surface of the pipe. Is manufactured by processing a large number of secondary grooves having a triangular cross section so as to intersect and spiral. That is, when the secondary groove is processed on the inner surface of the pipe, the fin by the primary groove is crushed to form a fin between the secondary grooves, and the primary groove portion is pressure-deformed and the fin between the secondary grooves As described above, the dovetail cavity is formed.
JP 7-12482 A

しかしながら、内面溝付管内の冷媒は、凝縮時にフィン頂部で最終的に凝縮するが、前記の内面溝付管のように螺旋状に形成されフィンの空洞部があり溝状であって、各フィンの頂部に一次溝の位置に途切れ部(開口部)が形成され、この途切れ部では冷媒が凝縮しないため凝縮性能がその分低下する。ルームエアコン等には混合冷媒(共沸冷媒、非共沸冷媒)が使用されるが、前記の凝縮性能低下の傾向は、非共沸冷媒を使用した場合に特に顕著になる。
また前記製造方法では、一次溝の溝底と二次溝の溝底とを一致(空洞部深さ=フィン高さ)させ難く、通常は二次溝加工時に一次溝を完全に潰すこととなり、空洞部の底レベルは二次溝の底レベルより高くなる(空洞部底と二次溝底との間に段差を生じる)ので、圧力損失抑制の効果が小さい。
However, the refrigerant in the inner grooved tube finally condenses at the top of the fins when condensing. However, like the inner grooved tube, the refrigerant is formed in a spiral shape and has a fin cavity, and each fin has a groove shape. A discontinuity (opening) is formed at the position of the primary groove at the top of the tube, and the refrigerant does not condense at this discontinuity, so the condensing performance is reduced accordingly. Mixed refrigerants (azeotropic refrigerants, non-azeotropic refrigerants) are used for room air conditioners and the like, but the tendency of the above-mentioned reduction in condensation performance becomes particularly noticeable when non-azeotropic refrigerants are used.
In the manufacturing method, it is difficult to match the groove bottom of the primary groove and the groove bottom of the secondary groove (cavity depth = fin height), and usually the primary groove is completely crushed during the secondary groove processing, Since the bottom level of the cavity is higher than the bottom level of the secondary groove (a step is generated between the bottom of the cavity and the secondary groove), the effect of suppressing the pressure loss is small.

本発明の解決課題は、凝縮性能がより高くかつ圧力損失の抑制効果がより大きい内面溝付管とその製造方法を提供することである。   The problem to be solved by the present invention is to provide an internally grooved tube having higher condensation performance and greater pressure loss suppression effect, and a method for producing the same.

本発明に係る内面溝付管は、前記課題を解決するため、第1に内面に長さ方向に対して所定のリード角βを有する断面が三角形ないし三角形類似の多数のフィンを所定間隔に有し、前記各フィンは当該フィン交差する状態に所定の間隔にトンネル状部を有しかつ該トンネル状部及びフィンの頂部は途切れないでフィンの頂部は上記トンネル状部頂部の継目を介して連続するとともに、前記フィン間の溝の底面とトンネル状部の底面は連続する同一レベルの面とすることを特徴としている。
第2に、前記トンネル状部は管の長さ方向に沿って形成され、前記リード角βは40〜70°であり、前記トンネル状部の底幅はフィン高さhの0.4〜1倍であることを特徴としている。
In order to solve the above-mentioned problems, the internally grooved tube according to the present invention has firstly a plurality of fins having a predetermined lead angle β in the length direction on the inner surface and having a triangle or a triangle-like fin at a predetermined interval. Each fin has a tunnel-like portion at a predetermined interval so as to intersect with the fin , and the tunnel-like portion and the top of the fin are not interrupted, and the top of the fin passes through the joint of the top of the tunnel-like portion. with continuous, bottom and bottom surface of the tunnel portion in the groove between the fins is the feature that the surface of the same level to be continuous.
Second, the tunnel portion is formed along the length of the tube, the lead angle β is 40 to 70 °, and the bottom width of the tunnel portion is 0.4 to 1 of the fin height h. It is characterized by being doubled.

本発明に係る内面溝付管の製造方法は、金属条を一定方向へ繰出しながら、当該金属条の一面に長さ方向に対して所定角度β1を有する断面が矩形ないし矩形に近い台形であって所定の間隔で交差方向の溝状の途切れ部を介して断続する一次フィンを所定の間隔で多数加工する工程と、前記各一次フィンを、その断面が三角形ないし三角形類似の形状を呈する状態に、かつ、各途切れ部とその前後のフィン頂部相互が継目を介して連続するとともに、前記途切れ部をフィンを交差方向に貫通するトンネル状部に形成し、前記フィン間の溝の底面とトンネル状部の底面を連続する同一レベルの面とする状態に加圧変形させて整形されたフィンに加工する工程と、当該金属条をフィン加工面を内面として管状に成形しつつ両側の突合せ部を溶接して造管する工程とを含むことを特徴としている。 The method of manufacturing an internally grooved tube according to the present invention is a trapezoid having a rectangular or nearly rectangular cross section having a predetermined angle β1 with respect to the length direction on one surface of the metal strip while feeding the metal strip in a certain direction. A step of processing a number of primary fins that are interrupted at predetermined intervals through groove-shaped breaks in the crossing direction, and a state in which each of the primary fins has a triangular or triangular-like shape in cross section. and, together with the top one another before and after the fins of each discontinuity and its is continuous through the seam, the discontinuity is formed like a tunnel extending through the fins in the cross direction, the bottom surface and the tunnel of the grooves between the fins Forming the fins shaped by pressurizing and deforming into a state where the bottom surface of the shaped part is a continuous surface of the same level, and forming the metal strip into a tubular shape with the fin processed surface as the inner surface, welding It is characterized by a step of forming tube Te.

本発明に係る内面溝付管によれば、管内面に螺旋状に形成された多数のフィンは所定間隔にトンネル状部を有するので、フィンの螺旋のリード角θを大きくして伝熱面積をより拡大した場合でも、冷媒が前記トンネル状部を通じて下流方向ヘ円滑に流れる。したがって、非共沸冷媒を使用した場合圧力損失を十分に抑制することができる。
また、管内ではフィンに沿って流れる冷媒と各トンネル状部を通じて下流方向に流れる冷媒の二つの冷媒流れを生じ、効率よく乱流効果を発揮して伝熱性能が向上するほか、フィン頂部は途切れないで連続しているので凝縮性能を低下させない。
本発明に係る内面溝付管の製造方法によれば、前記本発明に係る内面溝付管を円滑に製造することができる。
According to the internally grooved tube according to the present invention, a large number of fins spirally formed on the tube inner surface have tunnel-shaped portions at a predetermined interval. Therefore, the lead angle θ of the fin spiral is increased to reduce the heat transfer area. Even when it is further enlarged, the refrigerant smoothly flows in the downstream direction through the tunnel-like portion. Therefore, pressure loss can be sufficiently suppressed when a non-azeotropic refrigerant is used.
In addition, in the pipe, two refrigerant flows, one flowing along the fins and the other flowing in the downstream direction through each tunnel-like part, are created, effectively exhibiting the turbulence effect and improving the heat transfer performance, and the top of the fin is interrupted Condensation performance is not deteriorated because it is continuous.
According to the method for manufacturing an internally grooved tube according to the present invention, the internally grooved tube according to the present invention can be manufactured smoothly.

図1は本発明の一実施形態に係る内面溝付管を展開した状態の部分拡大斜視図であり、金属の管内面には、長さ方向に対して所定のリード角βを有する断面が三角形ないし三角形類似の多数のフィン1が所定間隔に形成されており、フィン1相互の間はほぼ逆台形状を呈した溝2を形成している。
各フィン1には、当該フィンを交差しかつ管の長さ方向に貫通するトンネル状部10が所定間隔に形成されている。10はトンネル状部であるから、その底面は溝2の底とほぼ連続する面であり、フィン1の頂部は継ぎ目を介して連続している。
管の材質には、銅又は銅合金,アルミニウム合金、鋼材その他の熱伝導性に優れた材料を用いることができるが、無酸素銅,リン脱酸銅やタフピッチ銅を用いるのが好ましい。
FIG. 1 is a partially enlarged perspective view showing a state in which an internally grooved tube according to an embodiment of the present invention is developed. A cross section having a predetermined lead angle β with respect to the length direction is triangular on the inner surface of a metal tube. Moreover, a large number of fins 1 similar to triangles are formed at predetermined intervals, and grooves 2 having a substantially inverted trapezoidal shape are formed between the fins 1.
Each fin 1 is formed with a tunnel-like portion 10 that crosses the fin and penetrates in the length direction of the tube at a predetermined interval. Since 10 is a tunnel-like portion, its bottom surface is a surface that is substantially continuous with the bottom of the groove 2, and the top portion of the fin 1 is continuous through a seam.
The material of the tube can be copper, a copper alloy, an aluminum alloy, a steel material, or other materials having excellent thermal conductivity, but oxygen-free copper, phosphorus deoxidized copper, or tough pitch copper is preferably used.

前記実施形態の内面溝付管によれば、管内面に螺旋状に形成された多数のフィン1は所定間隔にトンネル状部10を有するので、伝熱面積を拡大するためフィン1の螺旋のリード角θを大きくしても、凝縮冷媒が前記トンネル状部10を通じて下流方向ヘ円滑に流れる。したがって、非共沸冷媒を使用した場合圧力損失を十分に抑制することができる。
また、管内ではフィン1に沿って流れる冷媒と各トンネル状部10を通じて下流方向に流れる冷媒の二つの流れを生じ、効率よく乱流効果を発揮して伝熱性能が向上するほか、フィン1の頂部は途切れないで連続しており、凝縮時の最終には冷媒がフィン1の頂部の各部で凝縮するので凝縮性能が低下することはない。
According to the inner surface grooved tube of the above embodiment, the numerous fins 1 formed in a spiral shape on the inner surface of the tube have the tunnel-shaped portions 10 at a predetermined interval, so that the spiral lead of the fin 1 is increased in order to increase the heat transfer area. Even if the angle θ is increased, the condensed refrigerant smoothly flows in the downstream direction through the tunnel-like portion 10. Therefore, pressure loss can be sufficiently suppressed when a non-azeotropic refrigerant is used.
Further, in the pipe, two flows of the refrigerant flowing along the fin 1 and the refrigerant flowing in the downstream direction through the respective tunnel-shaped portions 10 are generated, and the heat transfer performance is improved by efficiently exhibiting the turbulent flow effect. The top is continuous without interruption, and at the end of the condensation, the refrigerant condenses at each part of the top of the fin 1 so that the condensation performance does not deteriorate.

図2〜図5を参照しながら、前記の実施形態に係る内面溝付管の製造方法を以下説明する。
図2は一次フィンを加工した金属条の部分拡大斜視図、図3の(a)図は第一次の加工ロールの概略平面図、同(b)図は第二次の加工ロールの概略平面図、図4は金属条に一次フィンを加工している状態の部分拡大断面(フィンと直交する断面)図、図5は金属条の一次フィンを完成したフィンに整形加工している状態の部分拡大断面(フィンと直交する断面)図である。
The manufacturing method of the internally grooved tube according to the above embodiment will be described below with reference to FIGS.
2 is a partially enlarged perspective view of a metal strip processed with a primary fin, FIG. 3A is a schematic plan view of a primary processing roll, and FIG. 2B is a schematic plan view of a secondary processing roll. 4 and 4 are partially enlarged cross-sectional views (cross-sections perpendicular to the fins) in the state where the primary fin is processed on the metal strip, and FIG. 5 is a portion where the primary fin of the metal strip is formed into a finished fin. It is an expanded section (cross section orthogonal to a fin) figure.

図3の(a)図及び図4で示すように、第一次の加工ロール3は、金属条1aの上面に一次フィンを加工する一次ワークロール3aと、一次ワークロール3aが所定の圧下力で上部に平行して接触する外周面が平滑な一次平滑ロール3b(図4)とを備えている。
一次ワークロール3aは、外周面に所定のリード角β1を有する多数の一次溝30aを所定の間隔に形成した溝付ロール部(溝付ロールピース)30と、外径が溝付ロール部30の溝底外径と同じ外径で外周面が平滑な幅の狭い(厚みが小さい)平滑ロール部(平滑ロールピース)31とを、交互に密接させて同軸状に組み合わせたものである。
一次溝30aは断面が矩形であるが、矩形に近い台形であっても差し支えない。
As shown in FIG. 3A and FIG. 4, the primary processing roll 3 includes a primary work roll 3 a that processes primary fins on the upper surface of the metal strip 1 a, and the primary work roll 3 a has a predetermined rolling force. And a primary smoothing roll 3b (FIG. 4) having a smooth outer peripheral surface in parallel with the upper part.
The primary work roll 3a includes a grooved roll portion (grooved roll piece) 30 in which a large number of primary grooves 30a having a predetermined lead angle β1 are formed on the outer peripheral surface at predetermined intervals, and an outer diameter of the grooved roll portion 30. A smooth roll portion (smooth roll piece) 31 having the same outer diameter as the groove bottom outer diameter and a smooth outer peripheral surface and a small width (thickness) is combined in a coaxial manner in close contact with each other.
The primary groove 30a has a rectangular cross section, but may have a trapezoidal shape close to a rectangle.

図3の(b)図及び図5で示すように、第二次の加工ロールは、金属条1a上に形成された一次フィンを加圧して整形するための二次ワークロール4aと、二次ワークロール4aが所定の圧下力で上部に平行して接触する外周面が平滑な二次平滑ロール4bとを備えている。
二次ワークロール4aの外周面には、一次ワークロール3aのリード角β1と同じリード角β1の二次溝40が多数形成されている。
二次溝40の断面形状は三角形ないし三角形類似の形状であり、その溝底幅w2は前記一次溝30aの溝底幅w2と同じであるが、溝深さdは一次溝30aの溝深さd1よりも必要量深くなっている。すなわち、二次溝40の深さdは、二次溝40の断面積が一次溝30aの断面積よりも若干小さいか両者同じになるような大きさに設計する。一次溝30aと二次溝40の溝ピッチp(隣接する溝の中心から中心までの距離)は同じである。
二次溝40の溝底幅w2は、一次溝30aの溝底幅w2よりも僅かに大きくても差し支えない。
As shown in FIG. 3 (b) and FIG. 5, the secondary work roll includes a secondary work roll 4a for pressing and shaping the primary fin formed on the metal strip 1a, and a secondary work roll. A secondary smoothing roll 4b having a smooth outer peripheral surface with which the work roll 4a comes into contact with the upper part in parallel with a predetermined rolling force is provided.
A large number of secondary grooves 40 having the same lead angle β1 as the lead angle β1 of the primary work roll 3a are formed on the outer peripheral surface of the secondary work roll 4a.
The cross-sectional shape of the secondary groove 40 is triangular or similar to a triangle, and the groove bottom width w2 is the same as the groove bottom width w2 of the primary groove 30a, but the groove depth d is the groove depth of the primary groove 30a. The required amount is deeper than d1. That is, the depth d of the secondary groove 40 is designed such that the cross-sectional area of the secondary groove 40 is slightly smaller than or equal to the cross-sectional area of the primary groove 30a. The groove pitch p (the distance from the center of the adjacent groove to the center) of the primary groove 30a and the secondary groove 40 is the same.
The groove bottom width w2 of the secondary groove 40 may be slightly larger than the groove bottom width w2 of the primary groove 30a.

図3で示すように、所定幅の金属条1aを繰り出しながらその繰出し方向に沿って回転する第一次の加工ロール3の上下のロール3a,3b間に挟み込み、金属条1aを圧延すると、当該金属条1aの上面には図3(a)図及び図4のように、一次ワークロール3aの一次溝30aと同形状同サイズの一次フィン11が転写加工される。このとき各1次フィン11には、図3のように一次ワークロール3aの平滑ロール部31の厚みに対応して、金属条1aの長さ方向に沿い所定の間隔で一次フィン11相互間の溝底と同じレベルの底面を有する途切れ部12が加工される。すなわち、金属条1aの上面には、図2のように条の長さ方向に対して所定のリード角βを有し、断面が矩形であって平滑ロール部31の厚みと同じ長さL1(平滑ロール部31の厚み)を有する途切れ部12を介して断続する多数の一次フィン11が形成される。   As shown in FIG. 3, when the metal strip 1a is rolled, the metal strip 1a is rolled between the upper and lower rolls 3a, 3b of the primary processing roll 3 that rotates along the feeding direction while feeding the metal strip 1a of a predetermined width. The primary fin 11 having the same shape and size as the primary groove 30a of the primary work roll 3a is transferred and processed on the upper surface of the metal strip 1a as shown in FIGS. At this time, each primary fin 11 has a predetermined interval along the length direction of the metal strip 1a corresponding to the thickness of the smooth roll portion 31 of the primary work roll 3a as shown in FIG. The break 12 having a bottom surface at the same level as the groove bottom is processed. That is, the upper surface of the metal strip 1a has a predetermined lead angle β with respect to the length direction of the strip as shown in FIG. 2, has a rectangular cross section, and has the same length L1 as the thickness of the smooth roll portion 31 ( A large number of primary fins 11 are formed which are interrupted via the discontinuous portion 12 having a thickness of the smooth roll portion 31.

第一次の加工ロール3の繰出し方向の下流には、図3のように繰出し方向に沿って回転する第二次の加工ロール4が設置されており、一次フィン11が加工された金属条1aを
二次ワークロール4aと二次平滑ロール4bとに挟ませて圧延する。このとき、一次フィン11と二次ワークロール4aの二次溝40が一致するように第二次の加工ロール4を配置しておく。また、ロール4a,4bの回転により各一次フィン11が対応する各二次溝40に入り込むように金属条1aをセットし、金属条1aの圧延を再開する。
第二次の加工ロール4のロール4a,4bで金属条1aを圧延すると、図5で示すように各一次フィン11は、対応する二次溝40によって、当該部分の材料が二次溝40内に充満するように移動し、かつ一次フィン11の頂部分における材料一部は各途切れ部12の方向に移動してフィン頂部相互が連続する状態に加圧変形される。この加圧変形による整形により、図1のように所定の間隔でトンネル状部10を有する連続したフィン1が加工される。
A secondary processing roll 4 that rotates along the feeding direction as shown in FIG. 3 is installed downstream of the first processing roll 3 in the feeding direction, and the metal strip 1a on which the primary fins 11 are processed. Is rolled between the secondary work roll 4a and the secondary smooth roll 4b. At this time, the secondary processing roll 4 is arranged so that the secondary fins 40 of the primary fin 11 and the secondary work roll 4a coincide. Further, the metal strip 1a is set so that each primary fin 11 enters the corresponding secondary groove 40 by the rotation of the rolls 4a and 4b, and the rolling of the metal strip 1a is resumed.
When the metal strip 1a is rolled by the rolls 4a and 4b of the secondary processing roll 4, each primary fin 11 has a corresponding secondary groove 40 as shown in FIG. And a part of the material at the top portion of the primary fin 11 moves in the direction of each discontinuous portion 12 and is pressed and deformed so that the fin top portions are continuous with each other. By the shaping by the pressure deformation, the continuous fins 1 having the tunnel-like portions 10 are processed at predetermined intervals as shown in FIG.

第二の加工ロール4の繰出し方向下流には、図示しないフォーミングロール群とスクイズロール及び誘導加熱コイルが順に設置されており、整形されたフィン1が加工された金属条1aは前記フォーミングロール群によりフィン形成面が内面となるように順次管状に成形された後、スクイズロールにより両側縁相互が順次突き合わされ、当該突合せ部分が誘導加熱コイルにより順次溶接されることにより造管される。
造管後は溶接ビードを切削した後、管を空引き整形して仕上げる。
以上のように製造された内面溝付管において、トンネル状部10の底幅w1は一次フィン11における途切れ部12の長さL1とほぼ同じである。
A forming roll group (not shown), a squeeze roll, and an induction heating coil are sequentially installed downstream of the second processing roll 4 in the feeding direction, and the metal strip 1a on which the shaped fins 1 are processed is formed by the forming roll group. After sequentially forming into a tubular shape so that the fin forming surface becomes the inner surface, both side edges are sequentially abutted by a squeeze roll, and the abutted portion is sequentially welded by an induction heating coil to produce a pipe.
After pipe making, the weld bead is cut and then the pipe is blanked and finished.
In the internally grooved tube manufactured as described above, the bottom width w1 of the tunnel-like portion 10 is substantially the same as the length L1 of the discontinuous portion 12 in the primary fin 11.

管サイズは用途によって異なるが、一般的には外径3〜15mm,溝底肉厚0.2〜1.0mm程度である。
フィン1のリード角βの大きさに比例して伝熱面積が増大するほか、溝内の冷媒液膜が十分に攪拌されて非共沸冷媒の気液界面での濃度差が低減し、拡散抵抗や熱抵抗が減じて凝縮熱伝達率が向上する。リード角βが40°未満では伝熱面積の十分な増大が図れず、冷媒膜の攪拌低下により凝縮熱伝達率が不十分である。他方70°を超えると、圧力損失が増大してコンプレッサ等のエネルギー効率が低下する。したがって、フィン1のリード角βは40〜70°であるのが好ましく、45〜55°の範囲内であるのがさらに好ましい。
The tube size varies depending on the application, but is generally about 3 to 15 mm in outer diameter and about 0.2 to 1.0 mm in groove bottom thickness.
In addition to increasing the heat transfer area in proportion to the size of the lead angle β of the fin 1, the refrigerant liquid film in the groove is sufficiently agitated to reduce the concentration difference at the gas-liquid interface of the non-azeotropic refrigerant and diffuse Condensation heat transfer coefficient is improved by reducing resistance and thermal resistance. If the lead angle β is less than 40 °, the heat transfer area cannot be increased sufficiently, and the condensation heat transfer coefficient is insufficient due to the lower stirring of the refrigerant liquid film. On the other hand, if it exceeds 70 °, the pressure loss increases and the energy efficiency of the compressor or the like decreases. Therefore, the lead angle β of the fin 1 is preferably 40 to 70 °, more preferably 45 to 55 °.

管サイズにもよるが、フィン高さhが0.10mm未満では十分な伝熱性能が得られず、0.35mmを超えると、空調機内に組み込むため拡管するときにフィン割れが発生し易い。したがって、フィン高さhは0.10〜0.35の範囲内であるのが好ましく、0.15〜0.30mmであるのがさらに好ましい。
フィン幅wは0.05mm未満ではフィン強度が不足して圧延時にフィン割れが生じ、0.20mmを超えると整形時にトンネル状部10が加工できない場合がある。したがって、フィン幅wは0.05〜0.20mmであるのが好ましく、0.10〜0.15mmの範囲内であるのがさらに好ましい。
Although depending on the tube size, if the fin height h is less than 0.10 mm, sufficient heat transfer performance cannot be obtained, and if it exceeds 0.35 mm, fin cracking is likely to occur when the tube is expanded for incorporation into the air conditioner. Therefore, the fin height h is preferably in the range of 0.10 to 0.35, and more preferably 0.15 to 0.30 mm.
If the fin width w is less than 0.05 mm, the fin strength is insufficient and fin cracking occurs during rolling. If the fin width w exceeds 0.20 mm, the tunnel-shaped portion 10 may not be processed during shaping. Accordingly, the fin width w is preferably 0.05 to 0.20 mm, and more preferably in the range of 0.10 to 0.15 mm.

次の構成の第一次の加工ロールと第二次の加工ロールを使用して、アルミニウム合金の一定幅の金属条1aに底幅w1が異なるトンネル状部10を有する多数のフィン1を加工し、各金属条1aを管状に成形して溶接により造管した実施例の供試管を製造した。
・第一次の加工ロールの一次ワークロール
溝付ロール部×5
溝リード角β1=40°
溝深さd1=0.20mm
溝底幅w2=0.13
溝形状=断面矩形
溝ピッチ=一定
平滑ロール部×4
厚みL1(トンネル状部10の底幅w1)=0.05〜0.30mmの範囲で0.05mm刻みで変化
・第二次の加工ロールの二次ワークロール
溝リード角β1=40°
溝深さd=0.25mm
溝底幅w2=0.13
溝形状=断面三角形
溝ピッチ=一次ワークロールと同じ
他方、次のワークロールを平滑ロールと組み合わせた加工ロールを使用して、実施例と同じ幅で同材質の金属条にトンネル状部有しない多数のフィンを加工し、当該金属条を管状に成形して溶接により造管した比較サンプルの内面溝付供試管を製造した。
溝リード角β1=40°
溝深さd1=0.25mm
溝底幅w2=0.13
溝形状=断面三角形
溝ピッチ=一次ワークロールと同じ
Using the primary processing roll and the secondary processing roll having the following configuration, a number of fins 1 having tunnel-shaped portions 10 having different bottom widths w1 are processed on a metal strip 1a having a constant width of an aluminum alloy. Each sample strip 1a was formed into a tubular shape, and a test tube according to an example in which the tube was formed by welding was manufactured.
・ Primary work roll of primary processing roll Groove roll part × 5
Groove lead angle β1 = 40 °
Groove depth d1 = 0.20mm
Groove bottom width w2 = 0.13
Groove shape = rectangular cross section Groove pitch = constant Smooth roll part x 4
Thickness L1 (bottom width w1 of tunnel-shaped portion 10) = change in 0.05 mm increments in the range of 0.05 to 0.30 mm. Secondary work roll of secondary processing roll Groove lead angle β1 = 40 °
Groove depth d = 0.25mm
Groove bottom width w2 = 0.13
Groove shape = Triangular section Groove pitch = Same as primary work roll On the other hand, using a processing roll in which the next work roll is combined with a smooth roll, a large number of metal strips of the same material with the same width and no tunnel-like part A sample tube with an inner groove was manufactured as a comparative sample in which the fin was processed, the metal strip was formed into a tubular shape, and the tube was formed by welding.
Groove lead angle β1 = 40 °
Groove depth d1 = 0.25 mm
Groove bottom width w2 = 0.13
Groove shape = Triangular section Groove pitch = Same as primary work roll

上記のように製造した7種の供試管について、冷媒流速300kg/m2sにおける熱伝達率と圧力損失を測定し、比較サンプルの供試管の熱伝達率と圧力損失をそれぞれ100とした場合の熱伝達率比と圧力損失比を表1に示した。 The heat transfer coefficient and pressure loss at a refrigerant flow rate of 300 kg / m 2 s were measured for the seven types of test tubes manufactured as described above, and the heat transfer coefficient and pressure loss of the test tube of the comparative sample were 100 respectively. Table 1 shows the heat transfer rate ratio and the pressure loss ratio.

Figure 0004630005
Figure 0004630005

表1で示すように、トンネル状部10の底幅w1が0.10mm未満では、熱伝達率比と圧力損失比は比較サンプルの供試管と大差がなく、底幅w1が0.25mmを超えると熱伝達率が低下する傾向を示した。
したがって、トンネル状部10の底幅w1は、フィン高さhの0.4〜1倍(2/5h≦w1≧1h)の範囲であるのが好ましい。
As shown in Table 1, when the bottom width w1 of the tunnel-shaped portion 10 is less than 0.10 mm, the heat transfer coefficient ratio and the pressure loss ratio are not significantly different from the test tube of the comparative sample, and the bottom width w1 exceeds 0.25 mm. And the heat transfer coefficient tended to decrease.
Therefore, the bottom width w1 of the tunnel-like portion 10 is preferably in the range of 0.4 to 1 times the fin height h (2 / 5h ≦ w1 ≧ 1h).

前記実施形態では、本発明に係る内面溝付管をルームエアコン等の熱交換器用の伝熱管として使用することを前提に説明したが、本発明に係る内面溝付管はヒートパイプとしても使用することができる。   In the said embodiment, although demonstrated on the assumption that the inner surface grooved tube which concerns on this invention was used as a heat exchanger tube for heat exchangers, such as a room air conditioner, the inner surface grooved tube which concerns on this invention is also used as a heat pipe. be able to.

本発明に係る内面溝付管の一実施形態を示す部分拡大展開斜視図である。It is a partial expansion expansion perspective view showing one embodiment of an internally grooved pipe concerning the present invention. 一次溝加工後の金属条を例示した部分拡大斜視図である。It is the partial expansion perspective view which illustrated the metal strip after primary groove processing. 本発明に係る内面溝付管を製造するための加工ロールの概略を示すもので、(a)図は第一次の加工ロールを示す概略平面図、(b)図は第二次の加工ロールを示す概略平面図である。BRIEF DESCRIPTION OF THE DRAWINGS The outline of the processing roll for manufacturing the inner surface grooved pipe | tube which concerns on this invention is shown, (a) A figure is a schematic plan view which shows a primary processing roll, (b) A figure is a secondary processing roll. It is a schematic plan view which shows. 第一次の加工ロールにより金属条に一次フィンを加工している状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the state which is processing the primary fin to the metal strip with the primary processing roll. 第二の加工ロールにより、金属条の一次フィンを加圧整形している状態を示す部分拡大断面図である。It is a partial expanded sectional view which shows the state which pressure-shapes the primary fin of a metal strip with the 2nd process roll.

符号の説明Explanation of symbols

1 フィン
10 トンネル状部
11 一次フィン
12 途切れ部
1a 金属条
2 溝
3 第一次の加工ロール
3a 一次ワークロール
3b 一次平滑ロール
30 溝付ロール部
31 平滑ロール部
30a 一次溝
4 第二次の加工ロール
4a 二次ワークロール
4b 二次平滑ロール
40 二次溝
DESCRIPTION OF SYMBOLS 1 Fin 10 Tunnel-shaped part 11 Primary fin 12 Discontinuous part 1a Metal strip 2 Groove 3 Primary processing roll 3a Primary work roll 3b Primary smooth roll 30 Grooved roll part 31 Smooth roll part 30a Primary groove 4 Secondary process Roll 4a Secondary work roll 4b Secondary smooth roll 40 Secondary groove

Claims (3)

内面に長さ方向に対して所定のリード角βを有する断面が三角形ないし三角形類似の多数のフィンを所定間隔に有し、前記各フィンは当該フィン交差する状態に所定の間隔にトンネル状部を有しかつ該トンネル状部及びフィンの頂部は途切れないでフィンの頂部は上記トンネル状部頂部の継目を介して連続するとともに、前記フィン間の溝の底面とトンネル状部の底面は連続する同一レベルの面とすることを特徴とする内面溝付管。 Section with a predetermined lead angle β to the longitudinal direction on the inner surface has a plurality of fins of triangular or triangle similar to the predetermined distance, wherein each fin tunnel portion at predetermined intervals in a state that intersects with the fin the not interrupted chromatic vital the tunnel-like portion and the top of the fin top of fins with continuous through seam of the tunnel-like portion top, bottom and bottom surface of the tunnel portion in the groove between the fin is continuous An internally grooved tube characterized by having the same level surface . 前記トンネル状部は管の長さ方向に沿って形成され、前記リード角βは40〜70°であり、前記トンネル状部の底幅はフィン高さhの0.4〜1倍である、請求項1に記載の内面溝付管。 The tunnel-like portion is formed along the length direction of the tube, the lead angle β is 40 to 70 °, and the bottom width of the tunnel-like portion is 0.4 to 1 times the fin height h. The internally grooved tube according to claim 1. 金属条を一定方向へ繰出しながら、当該金属条の一面に長さ方向に対して所定角度β1を有する断面が矩形ないし矩形に近い台形であって所定の間隔で交差方向の溝状の途切れ部を介して断続する一次フィンを所定の間隔で多数加工する工程と、前記各一次フィンを、その断面が三角形ないし三角形類似の形状を呈する状態に、かつ、各途切れ部とその前後のフィン頂部相互が継目を介して連続するとともに、前記途切れ部をフィンを交差方向に貫通するトンネル状部に形成し、前記フィン間の溝の底面とトンネル状部の底面を連続する同一レベルの面とする状態に加圧変形させて整形されたフィンに加工する工程と、当該金属条をフィン加工面を内面として管状に成形しつつ両側の突合せ部を溶接して造管する工程とを含むことを特徴とする、内面溝付管の製造方法。 While feeding the metal strip in a fixed direction, the cross section having a predetermined angle β1 with respect to the length direction on one surface of the metal strip is a rectangle or a trapezoid close to a rectangle, and groove-shaped breaks in the intersecting direction are formed at predetermined intervals. a step of processing a large number of primary fins at predetermined intervals intermittently through, each of said primary fins, the state in which its cross section exhibits a triangular or triangle like shape, and the top portion of the front and rear fins of the discontinuity and its Mutually continuing through the seam , the discontinuity is formed in a tunnel-like part penetrating the fins in the crossing direction, and the bottom surface of the groove between the fins and the bottom surface of the tunnel-like part is a continuous level surface. A step of forming a fin shaped by being pressure-deformed into a state, and a step of forming the metal strip into a tubular shape with the fin processing surface as an inner surface and welding the butt portions on both sides to form a pipe. When That method of inner grooved tube.
JP2004171802A 2004-06-09 2004-06-09 Internal grooved tube and manufacturing method thereof Expired - Fee Related JP4630005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004171802A JP4630005B2 (en) 2004-06-09 2004-06-09 Internal grooved tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004171802A JP4630005B2 (en) 2004-06-09 2004-06-09 Internal grooved tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005351531A JP2005351531A (en) 2005-12-22
JP4630005B2 true JP4630005B2 (en) 2011-02-09

Family

ID=35586159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004171802A Expired - Fee Related JP4630005B2 (en) 2004-06-09 2004-06-09 Internal grooved tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4630005B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647389B2 (en) * 2008-03-31 2014-12-24 Jx日鉱日石エネルギー株式会社 Transmission oil composition for automobiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175485A (en) * 1985-01-30 1986-08-07 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JPH03207995A (en) * 1990-01-09 1991-09-11 Mitsubishi Heavy Ind Ltd Butt seam welded heat transfer tube and manufacture thereof
JPH0712482A (en) * 1993-06-24 1995-01-17 Kobe Steel Ltd Heat transfer tube with inner surface groove and manufacture thereof
JPH1183368A (en) * 1997-09-17 1999-03-26 Hitachi Cable Ltd Heating tube having grooved inner surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175485A (en) * 1985-01-30 1986-08-07 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JPH03207995A (en) * 1990-01-09 1991-09-11 Mitsubishi Heavy Ind Ltd Butt seam welded heat transfer tube and manufacture thereof
JPH0712482A (en) * 1993-06-24 1995-01-17 Kobe Steel Ltd Heat transfer tube with inner surface groove and manufacture thereof
JPH1183368A (en) * 1997-09-17 1999-03-26 Hitachi Cable Ltd Heating tube having grooved inner surface

Also Published As

Publication number Publication date
JP2005351531A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
EP1386116B1 (en) Improved heat transfer tube with grooved inner surface
US5704424A (en) Heat transfer tube having grooved inner surface and production method therefor
US5975196A (en) Heat transfer tube
US6026892A (en) Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH06201286A (en) Heat transfer pipe
JP2008190858A (en) Leakage detecting tube
JP2008267791A (en) Leakage detecting tube and heat exchanger using the same
JP4630005B2 (en) Internal grooved tube and manufacturing method thereof
WO2001038812A2 (en) Heat exchanger tube with grooved inner surface, tube expansion method therefor, and device for manufacture thereof
JP2948515B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JPH0355211B2 (en)
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP3599515B2 (en) Grooved strip for welded pipe and method of manufacturing the same
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JP2628712B2 (en) Method of forming heat transfer surface
JP3756936B2 (en) Internal grooved welded heat transfer tube and its manufacturing method
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP3069277B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP2000346580A (en) Heat transfer tube with inner surface groove, method and apparatus for manufacture
JPH112498A (en) Heat transfer pipe with inner face groove and manufacture of the same
JPH10263603A (en) Rolling method for forming groove on surface of metallic plate
JP2863722B2 (en) Heat transfer tube with inner groove and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees