JPH112498A - Heat transfer pipe with inner face groove and manufacture of the same - Google Patents

Heat transfer pipe with inner face groove and manufacture of the same

Info

Publication number
JPH112498A
JPH112498A JP15419997A JP15419997A JPH112498A JP H112498 A JPH112498 A JP H112498A JP 15419997 A JP15419997 A JP 15419997A JP 15419997 A JP15419997 A JP 15419997A JP H112498 A JPH112498 A JP H112498A
Authority
JP
Japan
Prior art keywords
fin
heat transfer
pattern
transfer tube
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15419997A
Other languages
Japanese (ja)
Other versions
JP3779794B2 (en
Inventor
Yasutoshi Mori
康敏 森
Koji Yamamoto
孝司 山本
Kenji Nakamizo
賢治 中溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15419997A priority Critical patent/JP3779794B2/en
Publication of JPH112498A publication Critical patent/JPH112498A/en
Application granted granted Critical
Publication of JP3779794B2 publication Critical patent/JP3779794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To promote refrigerant boiling and refrigerant stirring by changing fin pattern regularly along a circumferential direction and a lengthwise direction of a pipe and providing either one of a network cross-fin part, a strip fin part and a strip flat part in the lengthwise direction of the pipe. SOLUTION: A fin pattern comprises an inclined fin part 10 and a network cross-fin part 20 and the inclined fin part 10 is formed in such a manner that fins 11 are arranged with lead angles of β1 and β2 regularly and alternately changed one after another at a predetermined pitch P1 in a circumferential direction of a pipe and the network cross-fin part 20 is formed in an alignment with the circumferential direction. A pitch P2 is formed by the inclined fin part 10 and the network cross-fin part 20. Refrigerant flowing from the inclined fin part 10 causes turbulent flow to promote boiling so that heat transfer characteristic is enhanced. This network cross-fin part promotes boiling of the refrigerant and the strip fin part and the strip flat part enhance refrigerant stirring further.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調用熱交換器に用
いる凝縮性能と蒸発性能の両方を大幅に向上させた内面
溝付伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube having an inner surface groove, which is used in a heat exchanger for air conditioning and has greatly improved both the condensation performance and the evaporation performance.

【0002】[0002]

【従来の技術】空調設備などの熱交換器には、冷媒の蒸
発または凝縮を行う伝熱管として、内面に螺旋状の溝を
形成した内面溝付伝熱管が用いられている。この内面溝
付伝熱管は、従来、内面平滑な管内に溝付きプラグを保
持し、管外面を転造工具で押圧しながら引抜いて、管内
面に前記溝付きプラグの溝を転写する引抜法により製造
されていた。この引抜法で形成される管内面のフィンパ
ターンは、図16にその展開図を示すように、フィン11の
形成方向が一方向に傾斜した単調なものであった。これ
に対し、近年、金属帯板の表面にフィンを圧延により形
成し、この金属帯板をフィン形成面を内側にして丸めて
筒状体とし、この筒状体の突合わせ端面を高周波溶接機
などで溶接する圧延溶接法が採用されるようになった。
この圧延溶接法では、フィンを圧延により形成するた
め、図17に示すようにフィン11のパターンを複雑に形成
でき、得られる伝熱管は引抜法で得られるものより伝熱
特性が高い上、引抜法に較べて加工速度が速く生産性に
優れる。そして、この圧延溶接法では、伝熱特性の向上
を狙って種々のフィンパターンが提案されている。たと
えば、管内にオフセットフィンを設け、その先端から
新たな濃度境界層を発達させて拡散抵抗を低減させ非共
沸混合型冷媒に対して高い熱伝達率を実現したもの(特
開平8ー210730)。引抜法では製造が困難な頂
角30゜以下のフィンを形成したもの(特開平8ー52
78)。管軸に垂直な方向にフィンのリード角を変化
させて冷媒の流れを2方向にして乱流効果を高めたもの
(特開平4ー158193)などである。
2. Description of the Related Art In a heat exchanger of an air conditioner or the like, a heat transfer tube having a spiral groove formed on an inner surface thereof is used as a heat transfer tube for evaporating or condensing a refrigerant. Conventionally, this inner grooved heat transfer tube is a drawing method in which a grooved plug is held in a tube having a smooth inner surface, the tube outer surface is pulled out while being pressed with a rolling tool, and the groove of the grooved plug is transferred to the tube inner surface. Had been manufactured. The fin pattern on the inner surface of the tube formed by this drawing method was a monotonous one in which the fin 11 was formed in one direction, as shown in a developed view in FIG. On the other hand, in recent years, fins have been formed on the surface of a metal strip by rolling, and the metal strip is rolled into a tubular body with the fin forming surface inside, and the butted end face of the tubular body is a high-frequency welding machine. For example, a rolling welding method of welding by using a method such as that described above has been adopted.
In this rolling welding method, the fins are formed by rolling, so that the pattern of the fins 11 can be formed in a complicated manner as shown in FIG. 17, and the resulting heat transfer tube has higher heat transfer characteristics than that obtained by the drawing method, The processing speed is faster and the productivity is higher than the method. In this rolling welding method, various fin patterns have been proposed for the purpose of improving heat transfer characteristics. For example, an offset fin is provided in a pipe, and a new concentration boundary layer is developed from the tip thereof to reduce diffusion resistance and realize a high heat transfer coefficient to a non-azeotropic mixed refrigerant (Japanese Patent Laid-Open No. Hei 8-210730). . A fin having an apex angle of 30 ° or less, which is difficult to manufacture by the drawing method (JP-A-8-52)
78). Japanese Patent Application Laid-Open No. 4-158193 discloses a technique in which the fin flow angle is changed in a direction perpendicular to the tube axis so that the refrigerant flows in two directions to enhance the turbulent flow effect.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記方法に
は、それぞれ次のような問題がある。すなわち、の方
法ではR407C等の非共沸混合型冷媒には効果がある
が、ルームエアコン用として有望なR410Aなどの疑
似共沸型冷媒では濃度境界層が存在しないため、蒸発性
能は向上しても、凝縮性能が向上しない。の方法では
蒸発と凝縮の両性能の飛躍的向上が望めない。の方法
では冷媒の沸騰を促進させる領域がないため蒸発性能が
向上しない。本発明は、凝縮性能と蒸発性能の両方が大
幅に向上する内面溝付伝熱管およびその製造方法の提供
を目的とする。
However, each of the above methods has the following problems. That is, the method is effective for a non-azeotropic mixed refrigerant such as R407C, but the pseudo-azeotropic refrigerant such as R410A which is promising for room air conditioners does not have a concentration boundary layer, so that the evaporation performance is improved. However, the condensation performance is not improved. In the method described above, it is not possible to expect a dramatic improvement in both the performance of evaporation and condensation. In the method (1), since there is no region for promoting the boiling of the refrigerant, the evaporation performance is not improved. An object of the present invention is to provide a heat transfer tube with an inner surface groove in which both the condensation performance and the evaporation performance are significantly improved, and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
内面に多数のフィンが所定のパターンで形成された内面
溝付伝熱管において、前記フィンパターンが、フィンリ
ード角、フィン頂角、フィンピッチのうちの少なくとも
1種を管の円周方向と管の長さ方向に規則的に変化させ
て形成されており、かつ前記フィンパターンの管の長さ
方向の所定箇所に、網目状クロスフィン部、帯状フィン
部、帯状平面部のうちの少なくとも1つが設けられてい
ることを特徴とする内面溝付伝熱管である。
According to the first aspect of the present invention,
An inner grooved heat transfer tube in which a number of fins are formed in a predetermined pattern on an inner surface, wherein the fin pattern includes at least one of a fin lead angle, a fin apex angle, and a fin pitch in a circumferential direction of the tube and in a direction of the tube. At least one of a mesh-like cross fin portion, a band-like fin portion, and a band-like flat portion is provided at a predetermined position in the length direction of the tube of the fin pattern, which is formed so as to change regularly in the length direction. It is a heat transfer tube with an inner surface groove characterized by being made.

【0005】請求項2記載の発明は、フィンパターンの
規則的変化の円周方向のピッチP1と長さ方向のピッチ
2 がそれぞれ下記(1)、(2)式を満足することを
特徴とする請求項1記載の内面溝付伝熱管である。 (L/16)≦P1 ≦(L/4)…………(1) (2×L)≦P2 ≦(18×L)………(2) 但し、Lは内面溝付伝熱管の円周長さ。
[0005] According to a second aspect of the invention, characterized in that the pitch P 2 of the pitch P 1 to the length direction of the circumferential direction of the regular change of fin patterns following each (1), thereby satisfying the expression (2) The heat transfer tube with an inner surface groove according to claim 1. (L / 16) ≦ P 1 ≦ (L / 4) (1) (2 × L) ≦ P 2 ≦ (18 × L) (2) where L is a heat transfer tube with an inner surface groove. Circumference length.

【0006】請求項3記載の発明は、一定方向に繰出さ
れる金属帯板を、外周面にそれぞれ所定の溝パターンが
形成された分割ロールを複数枚組合わせた溝付組合わせ
ロールと平面ロールとの間に挟んで加圧して前記金属帯
板の片面に所定のフィンパターンを形成する工程、前記
フィンパターン形成面を内側にして前記金属帯板を幅方
向に丸めて管状体に形成する工程、前記管状体の突合わ
せ端面を溶接する工程を含む内面溝付伝熱管の製造方法
において、溝付組合わせロールを構成する分割ロールの
隣接する分割ロール間で溝パターンが異なり、前記分割
ロールの所定箇所に網目状溝部、帯状溝部、帯状平面部
のいずれかが隣接する分割ロール間で整合性を以て設け
られていることを特徴とする請求項1または2記載の内
面溝付伝熱管の製造方法である。
According to a third aspect of the present invention, there is provided a grooved combination roll and a flat roll formed by combining a plurality of divided rolls each having a predetermined groove pattern formed on an outer peripheral surface of a metal strip fed in a predetermined direction. Forming a predetermined fin pattern on one surface of the metal strip by pressing the metal strip in between, and forming the metal strip into a tubular body by rolling the metal strip in the width direction with the fin pattern forming surface inside. In the method for manufacturing an inner surface grooved heat transfer tube including a step of welding a butt end face of the tubular body, a groove pattern is different between adjacent split rolls of the split rolls constituting the grooved combination roll, 3. The heat transfer tube with an inner groove according to claim 1 or 2, wherein any one of a mesh-like groove, a band-like groove, and a band-like flat portion is provided at a predetermined location with consistency between adjacent split rolls. It is a method.

【0007】[0007]

【発明の実施の形態】本発明において、管内面の所定箇
所に設けられる網目状クロスフィン部は冷媒の沸騰を促
進し、帯状フィン部と帯状平面部は冷媒攪拌をより向上
させる。前記網目状クロスフィン部、帯状フィン部、帯
状平面部を2以上組合わせることにより蒸発性能が飛躍
的に向上する。本発明において、フィンのリード角、頂
角、ピッチなどを任意に設定できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a mesh-like cross fin portion provided at a predetermined position on the inner surface of a tube promotes boiling of a refrigerant, and a band-like fin portion and a band-like flat portion further improve refrigerant stirring. By combining two or more of the mesh-like cross fin portions, the band-like fin portions, and the band-like flat portions, the evaporation performance is dramatically improved. In the present invention, the lead angle, apex angle, pitch, etc. of the fins can be set arbitrarily.

【0008】以下に本発明の伝熱管に形成されるフィン
パターンの形状を図を参照して説明する。図1イ、ロは
本発明伝熱管のフィンパターンの第1の例を示すそれぞ
れ展開斜視図および展開平面図である。このフィンパタ
ーンは、傾斜フィン部10と網目状クロスフィン部20から
形成され、傾斜フィン部10はフィン11が管の円周方向に
そのリード角がβ1 とβ2 に所定ピッチP1 毎に規則的
に変化するように形成され、網目状クロスフィン部20が
円周方向に整合して設けられている。長さ方向のピッチ
2 は傾斜フィン部10と網目状クロスフィン部20とから
構成される。傾斜フイン部10から流動してくる冷媒は、
網目状クロスフィン部20で乱流を起こして沸騰が促進
し、伝熱特性が向上する。
Hereinafter, the shape of the fin pattern formed on the heat transfer tube of the present invention will be described with reference to the drawings. 1A and 1B are a developed perspective view and a developed plan view, respectively, showing a first example of a fin pattern of the heat transfer tube of the present invention. The fin pattern is formed from the inclined fin portion 10 and the mesh-like cross fin portion 20, the inclined fin portion 10 that lead angle is 2 beta 1 and beta in the circumferential direction of the fins 11 is the tube at predetermined pitches P 1 It is formed so as to change regularly, and the mesh-like cross fin portions 20 are provided so as to be aligned in the circumferential direction. Pitch P 2 in the longitudinal direction is composed of the inclined fin portion 10 and the mesh-like cross fin portion 20. The refrigerant flowing from the inclined fin section 10 is
Turbulence is generated in the mesh-like cross fin portion 20 to promote boiling and improve heat transfer characteristics.

【0009】図2は本発明伝熱管のフィンパターンの第
2の例を示す展開平面図である。このフィンパターン
は、網目状クロスフィン部の代わりに帯状フィン部21が
設けられている他は図1に示したものと同じで、傾斜フ
イン部10から流動してくる冷媒は帯状フィン部21で攪拌
されて沸騰が促進し、伝熱特性が向上する。
FIG. 2 is a developed plan view showing a second example of the fin pattern of the heat transfer tube of the present invention. This fin pattern is the same as that shown in FIG. 1 except that a band-like fin portion 21 is provided instead of the mesh-like cross fin portion, and the refrigerant flowing from the inclined fin portion 10 is Boiling is promoted by stirring, and heat transfer characteristics are improved.

【0010】図3は本発明伝熱管のフィンパターンの第
3の例を示す展開平面図である。このフィンパターン
は、網目状クロスフィン部の代わりに帯状平面部22が設
けられている他は図1に示したものと同じで、傾斜フイ
ン部10から流動してくる冷媒は帯状平面部22で攪拌され
て沸騰が促進し、伝熱特性が向上する。
FIG. 3 is a developed plan view showing a third example of the fin pattern of the heat transfer tube of the present invention. This fin pattern is the same as that shown in FIG. 1 except that a band-shaped flat portion 22 is provided instead of the mesh-shaped cross fin portion, and the refrigerant flowing from the inclined fin portion 10 is the band-shaped flat portion 22. Boiling is promoted by stirring, and heat transfer characteristics are improved.

【0011】本発明において、フィンパターンの規則的
変化の円周方向のピッチP1 と長さ方向のピッチP2
それぞれ下記(1)、(2)式を満足するのが望まし
い。 (L/16)≦P1 ≦(L/4)…………(1) (2×L)≦P2 ≦(18×L)………(2) 但し、Lは内面溝付伝熱管の円周長さ。その理由は、前
記P1 がL/16未満では圧延加工中の溝付ロールのチ
ッピングが発生し易くなり加工が困難になるためであ
る。またピッチP1 がL/4を超えると傾斜フィン部で
の冷媒の攪拌が十分でなくなる。ピッチP2 が2×L未
満では、蒸発性能に寄与する網目状クロスフィン部など
の領域が広くなりすぎ、それに伴い凝縮性能が相対的に
低下するためであり、ピッチP2 が18×Lを超えると
蒸発性能に寄与する網目状クロスフィン部が減少して蒸
発性能が低下するためである。
[0011] In the present invention, each pitch P 2 of the pitch P 1 to the length direction of the circumferential direction of the regular change of fin patterns following (1), it is desirable to satisfy the expression (2). (L / 16) ≦ P 1 ≦ (L / 4) (1) (2 × L) ≦ P 2 ≦ (18 × L) (2) where L is a heat transfer tube with an inner surface groove. Circumference length. The reason is that the P 1 is processed easily chipping of grooved rolls in the rolling occurs is difficult is less than L / 16. The stirring of the refrigerant in the inclined fin portion pitch P 1 is greater than L / 4 is not sufficient. The pitch P 2 is less than 2 × L, evaporation performance too wide an area, such as contributing reticulated cross fin portion is because the condensation performance with it relatively lowered, the pitch P 2 is a 18 × L If it exceeds, the mesh-like cross fin portion contributing to the evaporation performance is reduced, and the evaporation performance is reduced.

【0012】次に、本発明伝熱管を圧延溶接法により製
造するのに用いる溝付組合わせロールについて説明す
る。図4は本発明にて用いる溝付組合わせロールの第1
の例を示す正面図である。この溝付組合わせロール30
は、リード角がβ1 またはβ2 の傾斜溝31が形成された
分割ロール32を、間に幅狭の平面ロール33を挟んで2本
づつ交互に配列したもので、各分割ロール32の所要箇所
に網目状溝部34がロール軸に平行に、隣接する分割ロー
ル32間で整合性を以て設けられている。この溝付組合わ
せロール30により図1に示したフィンパターンが形成さ
れる。
Next, the grooved combination roll used for manufacturing the heat transfer tube of the present invention by the rolling welding method will be described. FIG. 4 shows the first combination roll with grooves used in the present invention.
It is a front view which shows the example of. This grooved combination roll 30
Is formed by alternately arranging two divided rolls 32 each having an inclined groove 31 having a lead angle of β 1 or β 2 with a narrow flat roll 33 interposed therebetween. A mesh-like groove portion 34 is provided at a location in parallel with the roll axis, with consistency between adjacent split rolls 32. The fin pattern shown in FIG. 1 is formed by the grooved combination roll 30.

【0013】図5は本発明にて用いる溝付組合わせロー
ルの第2の例を示す正面図である。この溝付組合わせロ
ール40は、各分割ロール42の所定箇所に帯状溝部44がロ
ール軸に平行に一直線状に設けられている。この溝付組
合わせロールにより図2に示したフィンパターンが形成
される。
FIG. 5 is a front view showing a second example of the grooved combination roll used in the present invention. In the grooved combination roll 40, a band-shaped groove portion 44 is provided in a predetermined position of each divided roll 42 in a straight line parallel to the roll axis. The fin pattern shown in FIG. 2 is formed by the grooved combination roll.

【0014】図6は本発明にて用いる溝付組合わせロー
ルの第3の例を示す正面図である。この溝付組合わせロ
ール50は、各分割ロール52の所定箇所に帯状平面部54が
ロール軸に平行に一直線状に設けられている。この溝付
組合わせロール50により図3に示したフィンパターンが
形成される。
FIG. 6 is a front view showing a third example of the grooved combination roll used in the present invention. In the grooved combination roll 50, a band-shaped flat portion 54 is provided in a predetermined position of each divided roll 52 in a straight line parallel to the roll axis. The grooved combination roll 50 forms the fin pattern shown in FIG.

【0015】[0015]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)脱酸銅条(厚さ0.5mm、幅20mm)
を溝付組合わせロール(図4参照)と平面ロールからな
る2段圧延機で圧延して、その片面に図1に示したフィ
ンパターン(高さ0.2mm、頂角30゜)を形成し
た。前記溝付組合わせロールの溝のリード角はβ1 =2
0゜、β2 =−20゜とした。条の幅方向に対するフィ
ンパターン(リード角)が変化するピッチP1 は5mm
(L(20mm)/4)とし、フィンリード角が条の長さ方向
に変化するピッチP 2 は180mm(9×L(20mm))と
した。
The present invention will be described in more detail with reference to the following examples.
You. (Example 1) Deoxidized copper strip (thickness 0.5 mm, width 20 mm)
From a grooved combination roll (see Fig. 4) and a flat roll.
Rolled by a two-high rolling mill, and the surface shown in FIG.
Pattern (height 0.2 mm, vertex angle 30 °)
Was. The lead angle of the groove of the grooved combination roll is β1= 2
0 ゜, βTwo= −20 °. For the width direction of the strip
P at which pattern (lead angle) changes1Is 5mm
(L (20mm) / 4), and the fin lead angle is the length direction of the strip.
Pitch P changing to TwoIs 180mm (9 × L (20mm))
did.

【0016】(比較例1)図16に示したフィンパターン
の内面溝付伝熱管(シームレス管)を引抜法により作製
した。また図17に示したフィンパターンの内面溝付伝熱
管を圧延溶接法により作製した。ここで、図16の伝熱管
のフィンリード角は20゜、フィン高さは0.2mm、
頂角は30゜とした。図17の伝熱管のフィンリード角は
β1 =20゜、β2 =−20゜で、条幅方向にフィンリ
ード角が変化するピッチはL/4(=5mm)である。
(Comparative Example 1) A heat transfer tube (seamless tube) having an inner surface groove having a fin pattern shown in FIG. 16 was manufactured by a drawing method. Further, a heat transfer tube having an inner surface groove having a fin pattern shown in FIG. 17 was produced by a rolling welding method. Here, the fin lead angle of the heat transfer tube of FIG. 16 is 20 °, the fin height is 0.2 mm,
The apex angle was 30 °. The fin lead angles of the heat transfer tube of FIG. 17 are β 1 = 20 ° and β 2 = −20 °, and the pitch at which the fin lead angle changes in the strip width direction is L / 4 (= 5 mm).

【0017】前記3種類の伝熱管の凝縮性能と蒸発性能
を冷媒流速を種々に変化させて測定し評価した。凝縮性
能(管内凝縮熱伝達率)は、テストセクションが内管と
外管の二重管になっている測定装置を用い、内管として
内面溝付伝熱管をセットし、内面溝付伝熱管内に冷媒を
加圧状態で流し、外管に所定量の冷却水を流し、前記冷
却水の上昇温度を測定し評価した。蒸発性能(管内蒸発
熱伝達率)は、類似の測定装置を用い、前記内管として
内面溝付伝熱管内に冷媒を減圧状態で流し、外管に被冷
却水を流し、前記被冷却水の下降温度を測定し評価し
た。
The condensation performance and evaporation performance of the three types of heat transfer tubes were measured and evaluated by changing the flow rate of the refrigerant in various ways. The condensing performance (condensation heat transfer coefficient in the tube) was measured using a measuring device in which the test section was a double tube consisting of an inner tube and an outer tube, and an inner grooved heat transfer tube was set as the inner tube. A coolant was flowed in a pressurized state, a predetermined amount of cooling water was allowed to flow through the outer tube, and the temperature of the cooling water was measured and evaluated. Evaporation performance (in-pipe evaporation heat transfer coefficient) was measured using a similar measuring device, by flowing a refrigerant under reduced pressure into the inner grooved heat transfer pipe as the inner pipe, flowing cooling water through the outer pipe, and flowing the cooling water. The falling temperature was measured and evaluated.

【0018】凝縮性能の結果を図7に示す。図7より明
らかなように、本発明例品の凝縮性能 (曲線a1)は全冷
媒流速において最も高く、以下図17に示したフィンパタ
ーンの伝熱管の凝縮性能 (曲線b1)、図16に示したフィ
ンパターンの伝熱管の凝縮性能 (曲線b2)の順であっ
た。冷媒流速300(kg/m2 s)のときの曲線
1 、b1 、b2 の凝縮性能比は、およそ24:16:
10である。
FIG. 7 shows the results of the condensation performance. As is clear from FIG. 7, the condensation performance (curve a 1 ) of the sample of the present invention is the highest at all refrigerant flow velocities, and the condensation performance (curve b 1 ) of the fin pattern heat transfer tube shown in FIG. The order of the condensation performance (curve b 2 ) of the heat transfer tubes having the fin pattern shown in FIG. When the refrigerant flow rate is 300 (kg / m 2 s), the condensation performance ratio of the curves a 1 , b 1 , and b 2 is approximately 24:16:
It is 10.

【0019】蒸発性能の結果を図8に示す。図8より明
らかなように、本発明例品の蒸発性能 (曲線a1)は全冷
媒流速において最も高く、以下図17に示したフィンパタ
ーンの伝熱管の蒸発性能 (曲線b1)、図16に示したフィ
ンパターンの伝熱管の蒸発性能 (曲線b2)の順である。
冷媒流速300(kg/m2 s)のときの曲線a1 、b
1 、b2 の凝縮性能比は、およそ18:13:10であ
る。
FIG. 8 shows the results of the evaporation performance. As is clear from FIG. 8, the evaporation performance (curve a 1 ) of the sample of the present invention is the highest at all the refrigerant flow velocities, and the evaporation performance (curve b 1 ) of the heat transfer tube having the fin pattern shown in FIG. The order of the evaporation performance (curve b 2 ) of the heat transfer tube having the fin pattern shown in FIG.
Curves a 1 and b at a refrigerant flow rate of 300 (kg / m 2 s)
1, b 2 of the condensation performance ratio is approximately 18:13:10.

【0020】(実施例2)次に実施例1で用いたフィン
パターンの伝熱管について、フィンリード角が規則的に
変化する管の円周方向のピッチP1 の凝縮性能と蒸発性
能に及ぼす影響を調査した。凝縮性能と蒸発性能は実施
例1の場合と同様にして測定した。ピッチP1 はL/2
0〜L/2の範囲に変化させた。長さ方向のピッチP2
は180mm(9×L)に、冷媒流速は200(kg/
2 s)にそれぞれ一定にした。結果を図9、10に示
す。
[0020] The heat transfer tube of fins pattern used in Example 2 following Example 1, effects on condensation performance and evaporation performance of the pitch P 1 in the circumferential direction of the tube fins lead angle changes regularly investigated. The condensation performance and the evaporation performance were measured in the same manner as in Example 1. Pitch P 1 is L / 2
The range was changed from 0 to L / 2. Pitch in length direction P 2
Is 180 mm (9 × L) and the refrigerant flow rate is 200 (kg /
m 2 s). The results are shown in FIGS.

【0021】図9より明らかなように凝縮性能はピッチ
1 がL/4までは高い値を示し、L/4を超すと大き
く低下する。また蒸発性能は、図10より明らかなように
ピッチP1 がL/4を超えて大きくなると低下する。ピ
ッチP1 がL/16より小さくなると圧延加工中の溝付
ロールのチッピングが発生しやすくなり加工が困難にな
ることを配慮すると、ピッチP1 はL/16≦P1 ≦L
/4の範囲が望ましい。
The condensation performance As is clear from Figure 9 the pitch P 1 is up to L / 4 showed high values, greatly reduced when more than L / 4. The evaporation performance, pitch P 1 As is clear from FIG. 10 decreases and increases beyond the L / 4. When the pitch P 1 is chipping is likely to occur machining grooved roll during rolling and smaller than L / 16 to consider that the difficulty, the pitch P 1 is L / 16 ≦ P 1 ≦ L
A range of / 4 is desirable.

【0022】(実施例3)次に実施例1で用いたフィン
パターンの伝熱管について、フィンリード角が規則的に
変化する管の長さ方向のピッチP2 の凝縮性能と蒸発性
能に及ぼす影響を調査した。凝縮性能と蒸発性能は実施
例1の場合と同様にして測定した。なお、ピッチP2
L〜20×Lの範囲で変化させた。なお、円周方向のピ
ッチP1 は5mm(L/4)に、冷媒流速は200(k
g/m2 s)にそれぞれ一定にした。結果を図11、12に
示す。
[0022] The heat transfer tube of fins pattern used in Example 3 following examples 1, effect on the condensation performance and evaporation performance of the pitch P 2 in the length direction of the tube fins lead angle changes regularly investigated. The condensation performance and the evaporation performance were measured in the same manner as in Example 1. The pitch P 2 was varied in the range of L~20 × L. Incidentally, in the circumferential direction of the pitch P 1 is 5mm (L / 4), the refrigerant flow rate 200 (k
g / m 2 s). The results are shown in FIGS.

【0023】図11、12より明らかなように、凝縮性能は
ピッチP2 が2×Lより大きくなると著しく向上した。
これはピッチP2 が2×Lより小さいと蒸発性能に寄与
する網目状クロスフィンの領域が広くなり相対的に凝縮
性能が低下するためである。凝縮性能はピッチP2 が1
3×Lより大きいところでも高い値が保持された。他方
蒸発性能は7×Lまでほぼ一定の高い値が保持され、そ
の後僅かづつ低下し、18×Lを超えたところで急激に
低下した。これは蒸発性能に寄与する網目状クロスフィ
ンの領域が狭くなりすぎたためである。このことからピ
ッチP2 は(2×L)≦P2 ≦(18×L)mmの範囲
が望ましい。
As is apparent from FIGS. 11 and 12, the condensing performance was remarkably improved when the pitch P 2 was larger than 2 × L.
This is because if the pitch P 2 is smaller than 2 × L, the area of the mesh-like cross fins contributing to the evaporation performance is widened and the condensation performance is relatively reduced. Condensing performance is 1 pitch P 2
High values were maintained even where the value was greater than 3 × L. On the other hand, the evaporating performance maintained a substantially constant high value up to 7 × L, and then decreased little by little, and suddenly decreased when it exceeded 18 × L. This is because the area of the mesh cross fins that contributes to the evaporation performance has become too narrow. For this reason, the pitch P 2 is desirably in the range of (2 × L) ≦ P 2 ≦ (18 × L) mm.

【0024】(実施例4)図2または図3に示したフィ
ンパターンの伝熱管について凝縮性能と蒸発性能を実施
例1の場合と同様にして測定した。結果を図13、14に示
す。図13、14には実施例1と比較例1の結果も併記し
た。図13、14より明らかなように、本発明例品a1 、a
2 、a3 はいずれも比較例品(従来品)より性能が著し
く高い。本発明品a1 、a2 、a3 の中では、帯状フィ
ン部を設けたa3 の伝熱管の性能が最も高く、他の2品
はほぼ同等の性能であった。
Example 4 Condensing performance and evaporating performance of the heat transfer tube having the fin pattern shown in FIG. 2 or 3 were measured in the same manner as in Example 1. The results are shown in FIGS. 13 and 14 also show the results of Example 1 and Comparative Example 1. As is clear from FIGS. 13 and 14, the products a 1 , a
2, a 3 are all comparative examples are significantly higher performance than the (conventional). Among the products a 1 , a 2 , and a 3 of the present invention, the performance of the heat transfer tube a 3 provided with the band-shaped fin portion was the highest, and the other two products had almost the same performance.

【0025】(実施例5)実施例1または4で用いた本
発明例品a1 、a2 、a3 の伝熱管について管内蒸発圧
力損失を測定した。結果を図15に示す。図15より明らか
なように、本発明品a2 の伝熱管は特に圧力損失が低
く、実機に組込んだときにコンプレッサーの負担を最も
軽減できるものである。
(Example 5) The evaporating pressure loss in the tubes was measured for the heat transfer tubes of Examples a 1 , a 2 and a 3 of the present invention used in Examples 1 and 4. The results are shown in FIG. As is clear from FIG. 15, the heat transfer tube of the present invention product a 2 is particularly low pressure loss, in which can best reduce the burden of the compressor when incorporated in an actual machine.

【0026】[0026]

【発明の効果】以上に述べたように、本発明の内面溝付
伝熱管は、フィンパターンが管の円周方向と長さ方向に
規則的に変化し、かつ管の長さ方向の所定箇所に網目状
クロスフィン部、帯状フィン部、帯状平面部のいずれか
が設けられているので、冷媒沸騰または冷媒攪拌が促進
され、凝縮性能と蒸発性能の両方が大幅に向上する。本
発明の内面溝付伝熱管は、圧延溶接法により容易に製造
することができる。依って、工業上顕著な効果を奏す
る。
As described above, in the heat transfer tube with an inner groove according to the present invention, the fin pattern changes regularly in the circumferential direction and the length direction of the tube, and at a predetermined position in the length direction of the tube. Is provided with any one of a mesh-like cross fin portion, a band-like fin portion, and a band-like flat portion, so that the boiling of the refrigerant or the stirring of the refrigerant is promoted, and both the condensation performance and the evaporation performance are greatly improved. The internally grooved heat transfer tube of the present invention can be easily manufactured by a rolling welding method. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明伝熱管のフィンパターンの第1の例を示
すそれぞれ展開斜視図(イ)、および展開平面図(ロ)
である。
FIG. 1 is a developed perspective view (a) and a developed plan view (b) showing a first example of a fin pattern of the heat transfer tube of the present invention.
It is.

【図2】本発明伝熱管のフィンパターンの第2の例を示
す展開平面図である。
FIG. 2 is a developed plan view showing a second example of the fin pattern of the heat transfer tube of the present invention.

【図3】本発明伝熱管のフィンパターンの第3の例を示
す展開平面図である。
FIG. 3 is a developed plan view showing a third example of the fin pattern of the heat transfer tube of the present invention.

【図4】本発明にて用いる溝付組合わせロールの第1の
例を示す正面図である。
FIG. 4 is a front view showing a first example of a grooved combination roll used in the present invention.

【図5】本発明にて用いる溝付組合わせロールの第2の
例を示す正面図である。
FIG. 5 is a front view showing a second example of the grooved combination roll used in the present invention.

【図6】本発明にて用いる溝付組合わせロールの第3の
例を示す正面図である。
FIG. 6 is a front view showing a third example of a grooved combination roll used in the present invention.

【図7】本発明伝熱管と従来の伝熱管の凝縮性能の比較
図である。
FIG. 7 is a comparison diagram of the condensation performance of the heat transfer tube of the present invention and a conventional heat transfer tube.

【図8】本発明伝熱管と従来の伝熱管の蒸発性能の比較
図である。
FIG. 8 is a comparison diagram of the evaporation performance of the heat transfer tube of the present invention and a conventional heat transfer tube.

【図9】ピッチP1 と凝縮性能の関係図である。FIG. 9 is a relationship diagram of the pitch P 1 and the condensing performance.

【図10】ピッチP1 と蒸発性能の関係図である。FIG. 10 is a relationship diagram of the pitch P 1 and the evaporation performance.

【図11】ピッチP2 と凝縮性能の関係図である。FIG. 11 is a relationship diagram of the pitch P 2 and the condensing performance.

【図12】ピッチP2 と蒸発性能の関係図である。FIG. 12 is a relationship diagram of the pitch P 2 and the evaporation performance.

【図13】本発明伝熱管の凝縮性能の比較図である。FIG. 13 is a comparison diagram of the condensation performance of the heat transfer tube of the present invention.

【図14】本発明伝熱管の蒸発性能を示す図である。FIG. 14 is a view showing the evaporation performance of the heat transfer tube of the present invention.

【図15】本発明伝熱管の管内蒸発圧力損失の比較図であ
る。
FIG. 15 is a comparison diagram of evaporating pressure loss in the heat transfer tube of the present invention.

【図16】引抜法で形成した管内面のフィンパターンの展
開図である。
FIG. 16 is a development view of a fin pattern on the inner surface of the tube formed by a drawing method.

【図17】圧延溶接法で形成した管内面のフィンパターン
の展開図である。
FIG. 17 is a developed view of a fin pattern on the inner surface of the pipe formed by the rolling welding method.

【符号の説明】[Explanation of symbols]

10……傾斜フィン部 11……フィン 20……網目状クロスフィン部 21……帯状フィン部 22……帯状平面部 32……分割ロール β1 …フィン(溝)のリード角 β2 …フィン(溝)のリード角10: inclined fins 11: fins 20: mesh-like cross fins 21: band-like fins 22: band-like flat parts 32: split roll β 1 … lead angle of fin (groove) β 2 … fin ( Groove) lead angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内面に多数のフィンが所定のパターンで
形成された内面溝付伝熱管において、前記フィンパター
ンが、フィンリード角、フィン頂角、フィンピッチのう
ちの少なくとも1種を管の円周方向と管の長さ方向に規
則的に変化させて形成されており、かつ前記フィンパタ
ーンの管の長さ方向の所定箇所に、網目状クロスフィン
部、帯状フィン部、帯状平面部のうちの少なくとも1つ
が設けられていることを特徴とする内面溝付伝熱管。
1. A heat transfer tube having an inner surface having a plurality of fins formed in a predetermined pattern on an inner surface, wherein the fin pattern includes at least one of a fin lead angle, a fin vertex angle, and a fin pitch. It is formed by changing regularly in the circumferential direction and the length direction of the tube, and at a predetermined position in the length direction of the tube of the fin pattern, a mesh-like cross fin portion, a band-like fin portion, and a band-like flat portion. Characterized in that at least one of the heat transfer tubes is provided.
【請求項2】 フィンパターンの規則的変化の円周方向
のピッチP1 と長さ方向のピッチP2 がそれぞれ下記
(1)、(2)式を満足することを特徴とする請求項1
記載の内面溝付伝熱管。 (L/16)≦P1 ≦(L/4)…………(1) (2×L)≦P2 ≦(18×L)………(2) 但し、Lは内面溝付伝熱管の円周長さ。
2. A circumferential regular change of fin pattern pitch P 1 and a length-direction pitch P 2 respectively below (1), according to claim 1, characterized by satisfying the expression (2)
The heat transfer tube with an inner surface groove as described. (L / 16) ≦ P 1 ≦ (L / 4) (1) (2 × L) ≦ P 2 ≦ (18 × L) (2) where L is a heat transfer tube with an inner surface groove. Circumference length.
【請求項3】 一定方向に繰出される金属帯板を、外周
面にそれぞれ所定の溝パターンが形成された分割ロール
を複数枚組合わせた溝付組合わせロールと平面ロールと
の間に挟んで加圧して前記金属帯板の片面に所定のフィ
ンパターンを形成する工程、前記フィンパターン形成面
を内側にして前記金属帯板を幅方向に丸めて管状体に形
成する工程、前記管状体の突合わせ端面を溶接する工程
を含む内面溝付伝熱管の製造方法において、溝付組合わ
せロールを構成する分割ロールの隣接する分割ロール間
で溝パターンが異なり、前記分割ロールの所定箇所に網
目状溝部、帯状溝部、帯状平面部のいずれかが隣接する
分割ロール間で整合性を以て設けられていることを特徴
とする請求項1または2記載の内面溝付伝熱管の製造方
法。
3. A metal strip which is fed in a fixed direction is sandwiched between a grooved combination roll formed by combining a plurality of divided rolls each having a predetermined groove pattern formed on an outer peripheral surface thereof and a plane roll. Forming a predetermined fin pattern on one side of the metal strip by pressing, forming the metal strip into a tubular body by rolling the metal strip in the width direction with the fin pattern forming surface inside, and projecting the tubular body. In the method for manufacturing an inner surface grooved heat transfer tube including a step of welding a mating end face, a groove pattern is different between adjacent split rolls of a split roll constituting a grooved combination roll, and a mesh-shaped groove portion is provided at a predetermined position of the split roll. 3. The method according to claim 1, wherein any one of the band-shaped groove portion and the band-shaped flat portion is provided between adjacent divided rolls with consistency.
JP15419997A 1997-06-12 1997-06-12 Internal grooved heat transfer tube and manufacturing method thereof Expired - Fee Related JP3779794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15419997A JP3779794B2 (en) 1997-06-12 1997-06-12 Internal grooved heat transfer tube and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15419997A JP3779794B2 (en) 1997-06-12 1997-06-12 Internal grooved heat transfer tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH112498A true JPH112498A (en) 1999-01-06
JP3779794B2 JP3779794B2 (en) 2006-05-31

Family

ID=15579015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15419997A Expired - Fee Related JP3779794B2 (en) 1997-06-12 1997-06-12 Internal grooved heat transfer tube and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3779794B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157579A (en) * 2015-02-24 2016-09-01 ダイキョーニシカワ株式会社 Cooling structure of heating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157579A (en) * 2015-02-24 2016-09-01 ダイキョーニシカワ株式会社 Cooling structure of heating element

Also Published As

Publication number Publication date
JP3779794B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
US6298909B1 (en) Heat exchange tube having a grooved inner surface
KR100227209B1 (en) Heat transfer tube having grooved inner surface and production method therefor
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
KR950007759B1 (en) Method of producing in small electric tube
JP2842810B2 (en) Heat transfer tube with internal groove
JPH112498A (en) Heat transfer pipe with inner face groove and manufacture of the same
WO2000031486A1 (en) Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
JPH085278A (en) Heat transfer tube with inner surface grooves
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2948515B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP2628712B2 (en) Method of forming heat transfer surface
JP3286171B2 (en) Heat transfer tube with internal groove
JP2922824B2 (en) Heat transfer tube with internal groove
JP4630005B2 (en) Internal grooved tube and manufacturing method thereof
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2868163B2 (en) Method of manufacturing heat exchanger tube for heat exchanger
JP3145277B2 (en) Heat transfer tube with internal groove
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP3069277B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH11108579A (en) Pipe with grooved inner face
JPH02161290A (en) Inner face processed heat transfer tube
JPH1163878A (en) Internal surface grooved heat transfer pipe
JP3283166B2 (en) Material for manufacturing heat transfer tube with internal groove and method for manufacturing heat transfer tube with internal groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Effective date: 20060116

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060303

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100310

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110310

LAPS Cancellation because of no payment of annual fees