JPH0712482A - Heat transfer tube with inner surface groove and manufacture thereof - Google Patents

Heat transfer tube with inner surface groove and manufacture thereof

Info

Publication number
JPH0712482A
JPH0712482A JP15361093A JP15361093A JPH0712482A JP H0712482 A JPH0712482 A JP H0712482A JP 15361093 A JP15361093 A JP 15361093A JP 15361093 A JP15361093 A JP 15361093A JP H0712482 A JPH0712482 A JP H0712482A
Authority
JP
Japan
Prior art keywords
groove
heat transfer
tube
primary
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15361093A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikawa
守 石川
Akihiko Ishibashi
明彦 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15361093A priority Critical patent/JPH0712482A/en
Publication of JPH0712482A publication Critical patent/JPH0712482A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a heat transfer tube with an inner surface groove and a method for manufacturing the same in which performance is further improved without increasing a pressure loss and without increasing a processing load at the time of manufacturing. CONSTITUTION:A heat transfer tube with an inner surface groove comprises a plurality of fins 3 of substantially a triangular section formed of a secondary groove of an inverted trapezoidal shape on an inner surface of the tube, and a plurality of cavities 5 provided at a suitable interval at a top of the fins 3. A height of the cavity 5 is 0.25 to 1.0 times as large as a depth of the secondary groove. The tube is manufactured by the steps of providing a primary groove having a rectangular shape and a ratio of groove widths of 1.2 to 2.0 on the inner surface of the tube, and then providing the secondary groove of an inverted trapezoidal shape in section crossed with the primary groove on the inner surface of the tube. A depth of the primary groove is 0.25 to 1.0 times as large as a depth of the secondary groove, and the secondary groove is crossed at an angle of 10 to 45 deg. to a lead of the primary groove.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はルームエアコン等の熱交
換器に組み込まれる内面溝付伝熱管及びその製造方法に
関し、特にその高性能化及び小型化に寄与する内面溝付
伝熱管及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube incorporated in a heat exchanger such as a room air conditioner and a method for manufacturing the same, and particularly to an inner grooved heat transfer tube which contributes to high performance and downsizing. Regarding the method.

【0002】[0002]

【従来の技術】ルームエアコン用の伝熱管としては、管
の内面に螺旋状に連続する複数のフィン及び溝が成形さ
れた内面溝付管が使用されている(特開昭60−142
195号)。この内面溝付管の伝熱性能を向上させるた
めには、フィンを高くしたり、溝数を増加したり、又は
フィンの先端角を鋭くすることが有効であることが知ら
れている。
2. Description of the Related Art As a heat transfer tube for a room air conditioner, an inner grooved tube having a plurality of spirally continuous fins and grooves formed on the inner surface of the tube is used (JP-A-60-142).
195). In order to improve the heat transfer performance of the inner grooved tube, it is known that it is effective to elevate the fins, increase the number of grooves, or sharpen the tip angle of the fins.

【0003】また、管内面に2つの溝を逆台形状に交差
させて設けることにより伝熱性能を更に一層高めた内面
溝付伝熱管が提案されている(特開平1−317637
号等)。
Further, there has been proposed an inner surface grooved heat transfer tube in which two grooves are provided so as to intersect each other in an inverted trapezoidal shape on the inner surface of the tube to further improve heat transfer performance (Japanese Patent Laid-Open No. 1-317637).
Etc.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の従来の内面溝付伝熱管は、管内面に高いフィンを設け
ることにより伝熱性能を高めることができるものの、高
いフィンを設けることにより管内側の圧力損失が増加
し、コンプレッサーの負荷が増大してエネルギ効率を低
下させてしまうという難点がある。
However, in these conventional heat transfer tubes with inner groove, although heat transfer performance can be improved by providing high fins on the inner surface of the tube, the heat transfer performance can be improved by providing high fins. There is a drawback that the pressure loss increases, the load of the compressor increases, and the energy efficiency decreases.

【0005】また、内面溝付伝熱管の製造においては、
高いフィンの形成のために加工負荷が増大し、加工速度
の低下及び工具消耗の増加等が生じるため、製造コスト
が高くなるという欠点がある。
Further, in the manufacture of the heat transfer tube with the inner groove,
There is a drawback that the manufacturing cost increases because the processing load increases due to the formation of the high fins, the processing speed decreases, and the tool consumption increases.

【0006】このように、管内面に高いフィンを形成し
た内面溝付伝熱管は、圧力損失及び製造コストが高くな
るという不利があるのに対し、内面に高いフィンを設け
ることによる伝熱性能の向上は十分なものではなく、伝
熱性能が更に一層向上した伝熱管の製造が要望されてい
る。
As described above, the heat transfer tube with groove on the inner surface in which the high fins are formed on the inner surface of the tube has the disadvantages of high pressure loss and high manufacturing cost. The improvement is not sufficient, and it has been desired to manufacture a heat transfer tube having further improved heat transfer performance.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、圧力損失が増加しないと共に、製造時の加
工負荷も増大せず、性能が更に一層向上した内面溝付伝
熱管及びその製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and pressure loss does not increase, processing load during manufacturing does not increase, and a heat transfer tube with an inner groove having further improved performance and its manufacture. The purpose is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明に係る内面溝付伝
熱管は、管内面に逆台形状の溝により形成された断面が
実質的に三角形状の複数個のフィン部と、このフィン部
の頂部に適宜間隔で設けられた複数個の空洞とを有し、
前記空洞の高さは前記溝の深さの0.25乃至1.0倍
であることを特徴とする。
DISCLOSURE OF THE INVENTION In a heat transfer tube with an inner groove according to the present invention, a plurality of fin portions each having an inverted trapezoidal groove formed on the inner surface of the tube and having a substantially triangular cross section, and the fin portions are provided. Has a plurality of cavities provided at appropriate intervals on the top of,
The height of the cavity is 0.25 to 1.0 times the depth of the groove.

【0009】本発明に係る内面溝付伝熱管の製造方法
は、管内面に矩形状の一次溝を1.2乃至2.0の溝幅
比で設ける工程と、前記管内面に前記一次溝に交差する
断面が逆台形状の二次溝を設ける工程とを有し、前記一
次溝の深さは前記二次溝の深さの0.25乃至1.0倍
であることを特徴とする。この場合に、前記二次溝は前
記一次溝のリードに対して10乃至45°の角度で交差
するように設けることが好ましい。
A method of manufacturing a heat transfer tube with an inner groove according to the present invention comprises a step of providing rectangular primary grooves on the inner surface of the tube at a groove width ratio of 1.2 to 2.0, and a step of forming the primary groove on the inner surface of the tube. And a step of providing a secondary groove having an inverted trapezoidal cross section. The depth of the primary groove is 0.25 to 1.0 times the depth of the secondary groove. In this case, it is preferable that the secondary groove is provided so as to intersect the lead of the primary groove at an angle of 10 to 45 °.

【0010】[0010]

【作用】本発明においては、先ず、一次溝として、例え
ば図2に示すように、断面形状が矩形状の溝を管内面に
成形する。この溝の溝幅比は、図2の溝の凸部1の円周
方向の長さaと溝の凹部2の円周方向の長さbとの比a
/bとして定義される。本発明においては、この溝幅比
a/bが1.2乃至2.0であるから、円周方向の溝長
さ比は、溝凹部幅:溝凸部幅=1:1.2〜1:2.0
である。また、この一次溝は、溝深さが次工程で成形す
る二次溝の深さの0.25〜1.0倍である。
In the present invention, first, as the primary groove, for example, as shown in FIG. 2, a groove having a rectangular cross section is formed on the inner surface of the pipe. The groove width ratio of this groove is a ratio a of the circumferential length a of the convex portion 1 of the groove and the circumferential length b of the concave portion 2 of the groove of FIG.
/ B. In the present invention, since the groove width ratio a / b is 1.2 to 2.0, the groove length ratio in the circumferential direction is groove recess width: groove projection width = 1: 1.2 to 1. : 2.0
Is. Further, the depth of the primary groove is 0.25 to 1.0 times the depth of the secondary groove formed in the next step.

【0011】次いで、二次溝として、例えば図3に示す
ように、断面形状が逆台形状の溝を前記一次溝のリード
角に対し10°〜40°の角度で交差するように成形す
る。図3に示す二次溝により、管内周面に溝底部4と、
この溝底部4から立設する断面三角形状のフィン3とが
形成される。
Next, as a secondary groove, for example, as shown in FIG. 3, a groove having an inverted trapezoidal cross section is formed so as to intersect the lead angle of the primary groove at an angle of 10 ° to 40 °. With the secondary groove shown in FIG. 3, a groove bottom 4 is formed on the inner peripheral surface of the pipe,
A fin 3 having a triangular cross section, which is erected from the groove bottom portion 4, is formed.

【0012】そうすると、図1に示すように、この逆台
形状の溝により構成されるフィン3は断面が実質的に三
角形状をなし、二次溝成形後は、実質的に管内周面の外
観形状が、この二次溝の底部4と、断面三角形状のフィ
ン3とを有し、フィン3の頂部に一次溝がつぶれて形成
される空洞5が残存するものとなる。
As a result, as shown in FIG. 1, the fin 3 formed by the inverted trapezoidal groove has a substantially triangular cross section, and after the secondary groove is formed, the appearance of the inner peripheral surface of the pipe is substantially improved. The shape has a bottom 4 of the secondary groove and a fin 3 having a triangular cross section, and a cavity 5 formed by crushing the primary groove at the top of the fin 3 remains.

【0013】即ち、二次溝により形成されるフィン部の
頂部には、二次溝の成形工程で一次溝の凹部が圧迫され
てその開口部がつながることにより、空洞5が形成され
る。更に、この空洞5は山の外表面まで亀裂状に連なっ
ており、外表層部では開口6となっている。この空洞5
及び開口6の形状を図4に模式的に示す。一次溝がつぶ
れて形成される空洞5はその深さがhiであり、二次溝
の深さはhoである。そして、空洞の溝深さ比はhi/h
oである。
That is, at the top of the fin portion formed by the secondary groove, a cavity 5 is formed by pressing the concave portion of the primary groove in the molding step of the secondary groove and connecting the opening thereof. Further, the cavities 5 are continuous in a crack shape up to the outer surface of the mountain, and form an opening 6 in the outer surface layer portion. This cavity 5
The shapes of the openings 6 and 6 are schematically shown in FIG. The cavity 5 formed by collapsing the primary groove has a depth of hi and the secondary groove has a depth of ho. And the groove depth ratio of the cavity is hi / h
o.

【0014】このように形成された空洞部は沸騰核とな
り、伝熱面が液に満たされている場合に、液内沸騰を促
進させる。この結果、本発明の内面溝付伝熱管は、蒸発
性能が向上する。また、山の外表層部に開口した部位に
より内表面積が増加するので、凝縮性能も向上する。一
方、管内圧力損失は製品の管内面の外観形状が従来の内
面溝付管と同等であることから、若干の圧力損失の増加
はあるものの、伝熱性能向上の割には圧力損失の増大を
小さく抑制することができる。
The cavity thus formed serves as a boiling nucleus and promotes in-liquid boiling when the heat transfer surface is filled with the liquid. As a result, the heat transfer tube with inner groove of the present invention has improved evaporation performance. Further, since the inner surface area is increased due to the opening of the mountain on the outer surface layer, the condensation performance is also improved. On the other hand, the internal pressure loss of the pipe is slightly increased because the external shape of the internal surface of the product is the same as that of the conventional internal grooved pipe. It can be suppressed small.

【0015】次に、本発明にて規定する数値条件につい
て説明する。一次溝の形状 本発明においては、一次溝の管内周方向の溝幅比a/b
を1.2〜2.0とする。図5は横軸に一次溝の溝幅比
をとり、縦軸に蒸発性能比をとって、両者の関係を示す
グラフ図である。なお、図5にはフィン高さ比も併せて
示す。図5において、蒸発性能比は、二次溝形状と同等
形状の単溝の性能を1としたときの性能比である。
Next, the numerical conditions specified in the present invention will be described. Shape of primary groove In the present invention, the groove width ratio a / b of the primary groove in the inner circumferential direction of the pipe.
Is 1.2 to 2.0. FIG. 5 is a graph showing the relationship between the groove width ratio of the primary grooves on the horizontal axis and the evaporation performance ratio on the vertical axis. Note that the fin height ratio is also shown in FIG. In FIG. 5, the evaporation performance ratio is a performance ratio when the performance of the single groove having the same shape as the secondary groove shape is 1.

【0016】また、フィン高さ比は所定の二次溝のフィ
ン高さを1としたときの実際に成形された二次溝のフィ
ン高さである。一次溝の溝幅比が小さくなると、即ち、
一次溝の溝底部の幅に比して溝凸部の幅が小さくなる
と、二次溝の成形時に、プラグの溝内に入り込む管肉部
分が少なくなり、得られた二次溝のフィン高さが1より
も小さくなる。
The fin height ratio is the fin height of the actually formed secondary groove when the fin height of the predetermined secondary groove is 1. When the groove width ratio of the primary groove becomes small, that is,
When the width of the groove convex portion is smaller than the width of the groove bottom portion of the primary groove, the tube wall portion that enters the groove of the plug during molding of the secondary groove is reduced, and the fin height of the obtained secondary groove is reduced. Is smaller than 1.

【0017】なお、管径は7.0mm、二次溝は管軸直
角断面で溝数が50フィン、リード角は18°、溝深さ
は0.21、mmである。比較する単溝は同じく溝数5
0フィン、リード角18°、溝深さ0.21mmであ
る。
The tube diameter is 7.0 mm, the secondary groove has a groove number of 50 fins in a cross section perpendicular to the tube axis, the lead angle is 18 °, and the groove depth is 0.21 mm. The number of single grooves to be compared is 5
The fin is 0, the lead angle is 18 °, and the groove depth is 0.21 mm.

【0018】この図5から明らかなように、溝幅比が
1.2倍未満の領域においては、二次溝成形時に材料の
圧力量が不足するため高い山が得難くなり、蒸発性能が
低下する。一方、2.0倍を超える領域では、二次溝成
形時に材料の圧縮量が過大となり、このため一次溝の凹
部は閉塞され、沸騰に有効な空洞の形成が困難となって
上述と同様に蒸発性能の低下が生じる。伝熱性能は一次
溝の溝深さの増加と共に向上する傾向にあるが、1.0
倍を超える領域では管の耐圧強度が低下する傾向にあ
り、実使用上問題が生じる可能性がある。これは、一次
溝の深さが二次溝より深いことにより、最終断面形状に
おいて二次溝の底部に空洞が形成されるため、強度上必
要な肉厚が確保できなくなるためである。
As is apparent from FIG. 5, in the region where the groove width ratio is less than 1.2 times, it is difficult to obtain high ridges because the pressure amount of the material is insufficient at the time of forming the secondary groove, and the evaporation performance is deteriorated. To do. On the other hand, in the region of more than 2.0 times, the amount of compression of the material becomes excessive at the time of forming the secondary groove, so that the concave portion of the primary groove is closed, and it becomes difficult to form a cavity effective for boiling, as in the above case. Evaporation performance deteriorates. The heat transfer performance tends to improve as the groove depth of the primary groove increases, but 1.0
The pressure resistance strength of the pipe tends to decrease in a region exceeding twice, which may cause a problem in practical use. This is because when the depth of the primary groove is deeper than that of the secondary groove, a cavity is formed at the bottom of the secondary groove in the final cross-sectional shape, so that the wall thickness required for strength cannot be secured.

【0019】一次溝の深さ比 図6は横軸に溝深さ比hi/ho(図4参照)をとり、縦
軸に蒸発性能比及び耐圧強度比をとって、夫々両者の関
係を示すグラフ図である。蒸発性能比は二次溝形状と同
等形状の単溝の性能を1としたときの性能比である。ま
た、耐圧強度比は二次溝形状と同等形状の単溝の耐圧力
を1としたときの強度比である。
Depth Ratio of Primary Grooves FIG. 6 shows the groove depth ratio hi / ho (see FIG. 4) on the horizontal axis and the evaporation performance ratio and pressure resistance strength ratio on the vertical axis, showing the relationship between the two. It is a graph figure. The evaporation performance ratio is a performance ratio when the performance of a single groove having the same shape as the secondary groove shape is 1. The pressure resistance strength ratio is a strength ratio when the pressure resistance of a single groove having a shape similar to the shape of the secondary groove is 1.

【0020】一次溝の深さhiを二次溝の深さhoの0.
25〜1.0倍としたのは、0.25倍未満では二次溝
成形時に一次溝の凹部が閉塞し、空洞の成形が不可能と
なる。これにより、図6からわかるように、蒸発性能が
低下する。一方、一次溝の深さを二次溝の深さの1.0
倍以下としたのは、これを超えると、二次溝の溝底に空
洞が形成され、図6から明らかなように、管の強度が著
しく低下するためである。
The depth h i of the primary groove is 0.
The reason for setting it to 25 to 1.0 times is that if it is less than 0.25 times, the concave portion of the primary groove is closed at the time of forming the secondary groove, and it becomes impossible to form a cavity. As a result, the evaporation performance is lowered, as can be seen from FIG. On the other hand, the depth of the primary groove is set to 1.0 of the depth of the secondary groove.
The reason why it is set to not more than twice is that, if it exceeds this, a cavity is formed in the groove bottom of the secondary groove, and as is clear from FIG. 6, the strength of the pipe is significantly reduced.

【0021】交差角度 図7は横軸に一次溝と二次溝の交差角度をとり、縦軸に
蒸発性能比及び圧力損失比をとって両者の関係を示すグ
ラフ図である。蒸発性能比は二次溝形状と同等形状の単
溝の性能を1としたときの性能比、圧力損失比は二次溝
形状と同等形状の単溝の圧力損失を1としたときの圧力
損失比である。
Crossing Angle FIG. 7 is a graph showing the relationship between the primary groove and the secondary groove on the horizontal axis and the evaporation performance ratio and the pressure loss ratio on the vertical axis. The evaporation performance ratio is the performance ratio when the performance of the single groove of the same shape as the secondary groove shape is 1, and the pressure loss ratio is the pressure loss when the pressure loss of the single groove of the same shape as the secondary groove shape is 1. Is a ratio.

【0022】一次溝と、二次溝のリードの交差角度を1
0°〜45°としたのは、10°未満の領域では、二次
溝を一次溝に交差させて成形するときに、2種の溝が干
渉し、所望の形状の溝を成形できないためである。一
方、交差角度の増加と共に伝熱性能は向上する傾向とな
るが、これに伴い圧力損失も増加する。そして、交差角
度が45°を超える領域では、図7からわかるように、
圧力損失が同等形状の単一溝を設けた伝熱管に比較して
1.4倍以上となり、実使用上熱交換器の冷媒回路数を
増加させる等の改良設計が必要となるため、熱交換器の
製造コストが上昇してしまう。このため、交差角度は1
0乃至45°とする。
The crossing angle between the leads of the primary groove and the secondary groove is 1
The reason for setting 0 ° to 45 ° is that in the region of less than 10 °, two types of grooves interfere with each other when the secondary groove intersects with the primary groove and is formed, and thus a groove having a desired shape cannot be formed. is there. On the other hand, the heat transfer performance tends to improve as the crossing angle increases, but the pressure loss also increases. Then, in the region where the intersection angle exceeds 45 °, as can be seen from FIG.
The pressure loss is 1.4 times or more compared to a heat transfer tube with a single groove of the same shape, and it is necessary to make an improved design such as increasing the number of refrigerant circuits in the heat exchanger in actual use. The manufacturing cost of the container increases. Therefore, the intersection angle is 1
The angle is 0 to 45 °.

【0023】[0023]

【実施例】次に、本発明を外径が7mmの伝熱管に適用
した実施例について説明する。先ず、一次溝として、管
軸に直交する断面における溝数が5.0、リード角が0
°、溝深さが0.15mm、凹部と凸部の比が1:1.
5(溝幅比a/b=1.5)である矩形状の溝を成形し
た。
EXAMPLE Next, an example in which the present invention is applied to a heat transfer tube having an outer diameter of 7 mm will be described. First, as the primary grooves, the number of grooves in the cross section orthogonal to the tube axis is 5.0 and the lead angle is 0.
°, groove depth 0.15 mm, concave to convex ratio 1: 1.
A rectangular groove having a groove width ratio of 5 (groove width ratio a / b = 1.5) was formed.

【0024】次に、二次溝として、管軸直交断面におけ
る溝数が50、リード角が18°、溝深さが0.22m
mの逆台形状の溝を前記一次溝に交差させて成形した。
この逆台形状の溝により形成されるフィン部はその山頂
角が40°の断面三角形状をなす。
Next, as secondary grooves, the number of grooves in the cross section orthogonal to the tube axis is 50, the lead angle is 18 °, and the groove depth is 0.22 m.
The reverse trapezoidal groove of m was formed by intersecting the primary groove.
The fin portion formed by the inverted trapezoidal groove has a triangular cross section with a peak angle of 40 °.

【0025】そして、この伝熱管を二重管式熱交換器に
使用して単管性能を測定した。図8は横軸に凝縮性能を
とり、縦軸に蒸発性能をとって、凝縮時及び蒸発時の管
内鏡膜伝熱係数を示すグラフ図である。この凝縮及び蒸
発性能は、いずれも冷媒流量が30kg/時における測
定値である。図中、(1)は従来の逆台形状内面溝付管
(一次溝のみ)の伝熱性能であり、この伝熱管は溝数が
50、リード角が18°、溝深さが0.22mmの溝を
設けたものである。また、(2)は本発明の実施例のデ
ータ群である。図8に示すように、本発明の実施例の内
面溝付管は、同等形状の従来内面溝付管に比較して、蒸
発及び凝縮性能とも110%以上向上した。一方、圧力
損失は103〜105%の増加に止まった。
The heat transfer tube was used in a double tube heat exchanger to measure the single tube performance. FIG. 8 is a graph showing the tube inner membrane heat transfer coefficient during condensation and during evaporation, with the horizontal axis representing the condensation performance and the vertical axis representing the evaporation performance. The condensation and evaporation performances are both measured values when the refrigerant flow rate is 30 kg / hour. In the figure, (1) shows the heat transfer performance of a conventional inverted trapezoidal inner grooved tube (primary groove only). This heat transfer tube has 50 grooves, a lead angle of 18 °, and a groove depth of 0.22 mm. The groove is provided. Further, (2) is a data group of the embodiment of the present invention. As shown in FIG. 8, the inner grooved tube of the embodiment of the present invention has improved the evaporation and condensation performances by 110% or more as compared with the conventional inner grooved tube of the same shape. On the other hand, the pressure loss only increased by 103 to 105%.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係る内面
溝付伝熱管は、空洞を有するフィン部を設けたので、圧
力損失等は抑制しつつ、蒸発及び凝縮時の伝熱特性を著
しく向上させることができる。このように、本発明は、
高性能な伝熱管を供給することができ、ルームエアコン
等の熱交換器の小型高性能化に寄与する。
As described above, since the heat transfer tube with the inner surface groove according to the present invention is provided with the fin portion having the cavity, the heat transfer characteristics at the time of evaporation and condensation are remarkably suppressed while suppressing the pressure loss and the like. Can be improved. Thus, the present invention
High-performance heat transfer tubes can be supplied, contributing to the miniaturization and high performance of heat exchangers such as room air conditioners.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の伝熱面の外観を示す模式的斜視図であ
る。
FIG. 1 is a schematic perspective view showing an appearance of a heat transfer surface of the present invention.

【図2】一次溝の溝形状を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing a groove shape of a primary groove.

【図3】二次溝の溝形状を示す模式的斜視図である。FIG. 3 is a schematic perspective view showing a groove shape of a secondary groove.

【図4】空洞3及び開口6の形状を説明する模式図であ
る。
FIG. 4 is a schematic diagram illustrating the shapes of a cavity 3 and an opening 6.

【図5】横軸に一次溝の溝幅比をとり、縦軸に蒸発性能
比及びフィン高さ比をとって両者の関係を示すグラフ図
である。
FIG. 5 is a graph showing the relationship between the groove width ratio of the primary groove on the horizontal axis and the evaporation performance ratio and the fin height ratio on the vertical axis.

【図6】横軸に溝深さ比をとり、縦軸に蒸発性能比及び
耐圧強度比をとって両者の関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the groove depth ratio on the horizontal axis and the evaporation performance ratio and pressure resistance strength ratio on the vertical axis.

【図7】横軸に溝交差角度をとり、縦軸に蒸発性能比及
び圧力損失比をとって両者の関係を示すグラフ図であ
る。
FIG. 7 is a graph showing the relationship between the two, with the horizontal axis representing the groove intersection angle and the vertical axis representing the evaporation performance ratio and the pressure loss ratio.

【図8】本発明の実施例の伝熱管の単管性能測定結果を
示すグラフ図である。
FIG. 8 is a graph showing the results of single tube performance measurement of the heat transfer tubes of the examples of the present invention.

【符号の説明】[Explanation of symbols]

1;凸部 2;凹部 3;フィン 4;溝底部 5;空洞 6;開口 1; convex part 2; concave part 3; fin 4; groove bottom part 5; cavity 6; opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管内面に逆台形状の溝により形成された
断面が実質的に三角形状の複数個のフィン部と、このフ
ィン部の頂部に適宜間隔で設けられた複数個の空洞とを
有し、前記空洞の高さは前記溝の深さの0.25乃至
1.0倍であることを特徴とする内面溝付伝熱管。
1. A plurality of fins each having a substantially triangular cross section formed by an inverted trapezoidal groove on the inner surface of the pipe, and a plurality of cavities provided at appropriate intervals on the tops of the fins. An inner grooved heat transfer tube, wherein the height of the cavity is 0.25 to 1.0 times the depth of the groove.
【請求項2】 管内面に矩形状の一次溝を1.2乃至
2.0の溝幅比で設ける工程と、前記管内面に前記一次
溝に交差する断面が逆台形状の二次溝を設ける工程とを
有し、前記一次溝の深さは前記二次溝の深さの0.25
乃至1.0倍であることを特徴とする内面溝付伝熱管の
製造方法。
2. A step of providing a rectangular primary groove on the inner surface of the pipe at a groove width ratio of 1.2 to 2.0, and a secondary groove having an inverted trapezoidal cross section intersecting with the primary groove on the inner surface of the pipe. And the step of providing, the depth of the primary groove is 0.25 of the depth of the secondary groove.
To 1.0 times the inner surface grooved heat transfer tube manufacturing method.
【請求項3】 前記二次溝は前記一次溝のリードに対し
て10乃至45°の角度で交差することを特徴とする請
求項2に記載の内面溝付伝熱管の製造方法。
3. The method of claim 2, wherein the secondary groove intersects with the lead of the primary groove at an angle of 10 to 45 °.
JP15361093A 1993-06-24 1993-06-24 Heat transfer tube with inner surface groove and manufacture thereof Pending JPH0712482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15361093A JPH0712482A (en) 1993-06-24 1993-06-24 Heat transfer tube with inner surface groove and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15361093A JPH0712482A (en) 1993-06-24 1993-06-24 Heat transfer tube with inner surface groove and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0712482A true JPH0712482A (en) 1995-01-17

Family

ID=15566253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15361093A Pending JPH0712482A (en) 1993-06-24 1993-06-24 Heat transfer tube with inner surface groove and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0712482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351531A (en) * 2004-06-09 2005-12-22 Furukawa Electric Co Ltd:The Inner face grooved tube and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351531A (en) * 2004-06-09 2005-12-22 Furukawa Electric Co Ltd:The Inner face grooved tube and its manufacturing method
JP4630005B2 (en) * 2004-06-09 2011-02-09 古河電気工業株式会社 Internal grooved tube and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2688406B2 (en) Heat exchange tube
JP2788793B2 (en) Heat transfer tube
EP0603108B1 (en) Heat exchanger tube
EP1386116B1 (en) Improved heat transfer tube with grooved inner surface
WO2004053415A1 (en) Method for producing cross-fin tube for heat exchanger, and cross fin-type heat exchanger
JPH03251688A (en) Manufacture of tube member for heat exchanger
JPH0769117B2 (en) Small diameter heat transfer tube and its manufacturing method
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH0712482A (en) Heat transfer tube with inner surface groove and manufacture thereof
JP3405103B2 (en) Inner grooved pipe and method of manufacturing the same
CN212458078U (en) Heat exchange tube and air conditioner
JPH04260793A (en) Heat transfer tube with inner surface groove
US20030168209A1 (en) Heat transfer tube with ribbed inner surface
JPH085278A (en) Heat transfer tube with inner surface grooves
JP2005127570A (en) Heat transfer pipe and refrigeration unit using the same
JP3747974B2 (en) Internal grooved heat transfer tube
JPH08174044A (en) Production of small-diameter heat transfer tube with groove on inside surface
GB2160450A (en) Method of manufacture of an enhanced boiling surface heat transfer tube and the tube produced thereby
JPH08233480A (en) Heat transfer tube with inner surface groove
JP2628712B2 (en) Method of forming heat transfer surface
JP2705826B2 (en) Method for manufacturing flat multi-hole tube material for heat exchanger
JPS611995A (en) Spiral fin
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH0712483A (en) Heat transfer tube with inner surface groove
JPH0297896A (en) Manufacture of heat exchanger