JP2000274983A - Inner surface grooved pipe - Google Patents

Inner surface grooved pipe

Info

Publication number
JP2000274983A
JP2000274983A JP11074582A JP7458299A JP2000274983A JP 2000274983 A JP2000274983 A JP 2000274983A JP 11074582 A JP11074582 A JP 11074582A JP 7458299 A JP7458299 A JP 7458299A JP 2000274983 A JP2000274983 A JP 2000274983A
Authority
JP
Japan
Prior art keywords
groove
grooved
band
pipe
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11074582A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikawa
守 石川
Chikara Saeki
主税 佐伯
Nobuaki Hinako
伸明 日名子
Kiyonori Koseki
清憲 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11074582A priority Critical patent/JP2000274983A/en
Publication of JP2000274983A publication Critical patent/JP2000274983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inner surface grooved pipe that is used as a condenser such as a room air conditioner, and has improved condensation performance. SOLUTION: This inner surface grooved pipe is equipped with a first groove machining band 1 where a first groove 2 is formed on the inner surface of a metal or alloy pipe, and a second groove machining band 3 where a second groove 4 that has the same pitch in the pipe circumference direction of the metal or alloy pipe as the first groove 2 and has different helix angle and direction at a region that is different from the first groove machining band 1 on the inner surface of the metal or alloy pipe. In this case, the machining width of the first groove machining band 1 is different from that of the second one 3, one or a plurality of bands is alternately arranged in the circumferential direction of the metal or alloy pipe, at the same time, in the first and second groove machining bands 1 and 3, the helix angle of the groove with wider machining width is set to 45-85 deg., and that of the groove with narrower machining width is set to 8-45 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器に使用さ
れる内面溝付管に関し、特に、ルームエアコン等の凝縮
器として使用される凝縮性能が優れた内面溝付管に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved tube used for a heat exchanger, and more particularly to an inner grooved tube having excellent condensation performance used as a condenser for a room air conditioner or the like.

【0002】[0002]

【従来の技術】日本国内のエアコンディショナー等は冷
房暖房兼用型のヒートポンプ式が約80%を占めるが、
米国をはじめとする海外においては、40乃至60%が
冷房専用型の機種である。この冷房専用機種は室内で蒸
発器、室外で凝縮器として運転されており、省エネルギ
かつ高性能化にはこの凝縮器の性能向上が必要とされて
いる。
2. Description of the Related Art In Japan, about 80% of air conditioners and the like are of a heat pump type that is used for both cooling and heating.
In the United States and other overseas countries, 40 to 60% of models are exclusively used for cooling. This cooling only model is operated indoors as an evaporator and outdoors as a condenser, and it is necessary to improve the performance of the condenser in order to save energy and improve performance.

【0003】また、エアコンディショナー等の熱交換器
には性能向上のため、内面に螺旋溝が形成された内面螺
旋溝付管が広く使用されている。近時、高性能伝熱管と
して、伝熱性能を高めるために、管内に加工を施した種
々の伝熱管が提案されている(特開平4−158193
号公報、特開平8−121984号公報、特開平8−1
78574号公報及び特開平10−206060号公報
等)。
In order to improve the performance of a heat exchanger such as an air conditioner, an inner spiral grooved pipe having an inner spiral groove is widely used. Recently, various types of heat transfer tubes processed inside the tubes have been proposed as high performance heat transfer tubes in order to enhance the heat transfer performance (Japanese Patent Laid-Open No. 4-158193).
JP-A-8-121984, JP-A-8-11984
78574 and JP-A-10-206060).

【0004】これら従来の高性能伝熱管のうち、特開平
4−158193号公報に記載された伝熱管において
は、管内面に管軸方向に所定幅で数種類の凹凸群が形成
されている。これら凹凸群は並行し、且つ交互に位置す
る凸条と溝であり、1つの凹凸群と凹凸群と隣り合う凹
凸群とは溝ピッチ、溝寸法及び溝の管軸に対するリード
角の各要素の内のいずれか1つ以上の要素を異なるもの
としている。そして、これら凹凸群を3つ以上設けるこ
とにより高い伝熱性能を得ている。この従来技術には、
管内の冷媒の流れを攪乱して伝熱性能を高めるという効
果が記載されている。
[0004] Among these conventional high-performance heat transfer tubes, in the heat transfer tube described in Japanese Patent Application Laid-Open No. 4-158193, several types of irregularities are formed on the inner surface of the tube with a predetermined width in the tube axis direction. These uneven groups are parallel and alternately located ridges and grooves, and one uneven group and the adjacent uneven group are adjacent to the uneven group, and each element of the groove pitch, the groove dimension, and the lead angle of the groove with respect to the pipe axis. Any one or more of the elements is different. By providing three or more of these irregularities, high heat transfer performance is obtained. This prior art includes:
It describes the effect of increasing the heat transfer performance by disrupting the flow of the refrigerant in the pipe.

【0005】また、特開平8−121984号公報に記
載された伝熱管においては、管軸方向に互いに交差しな
いように形成された連続する複数のフィンと、この連続
フィンと隣接して連続フィンと交差しないように長手方
向に沿って不連続又は鋸歯状に形成された不連続フィン
と、不連続フィンと連続フィンとの間に夫々形成された
溝を具備している。
In the heat transfer tube described in JP-A-8-121984, a plurality of continuous fins formed so as not to intersect each other in the tube axis direction, and a continuous fin adjacent to the continuous fin. It has discontinuous fins formed discontinuously or in a sawtooth shape along the longitudinal direction so as not to intersect, and grooves formed respectively between the discontinuous fins and the continuous fins.

【0006】更に、特開平8−178574号公報で
は、内面に螺旋溝が形成された内面螺旋溝付管におい
て、主溝を管軸に対して7°乃至25°に成形すると共
に、副溝を管軸に対して並行に設ける構成になってい
る。また、この伝熱管は、主溝を管軸に対して7°乃至
25°に成形すると共に、副溝を主溝と交差するように
設け、副溝に冷媒の流れが副溝方向に曲がるように、主
溝を加工するときに残された三次元的な突起に加工する
ときに凸状の変形部分を形成した構成である。
Further, in Japanese Patent Application Laid-Open No. Hei 8-178574, in a tube with a spiral groove formed on the inner surface, a main groove is formed at 7 ° to 25 ° with respect to the tube axis, and a sub groove is formed. It is configured to be provided in parallel with the tube axis. The heat transfer tube has a main groove formed at 7 ° to 25 ° with respect to the tube axis, and a sub-groove is provided so as to intersect with the main groove. In this configuration, a convex deformed portion is formed when processing the three-dimensional projection left when processing the main groove.

【0007】更にまた、特開平10−206060号公
報に記載された伝熱管においては、管軸に対する捩れ方
向及び捩れ角度が異なる溝群を管周方向に異なる加工幅
で複数組設けた構成である。
Furthermore, the heat transfer tube described in Japanese Patent Application Laid-Open No. H10-206060 has a configuration in which a plurality of groove groups having different twist directions and twist angles with respect to the tube axis are provided with different processing widths in the circumferential direction of the tube. .

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述の
高性能伝熱管(特開平4−158193号公報、特開平
8−121984号公報、特開平8−178574号公
報及び特開平10−206060号公報等)は冷暖房兼
用型のエアコンディショナー等が対象とされ、蒸発と凝
縮との両方の性能を高める機能が付加されている。蒸発
器として使用する場合と凝縮器として使用する場合とで
は、例えば、蒸発性能向上には冷媒液を伝熱面全体に広
げる構造が必要になるのに対し、凝縮性能向上には伝熱
面に付着した冷媒凝縮液が容易に除去できると共に、凝
縮した液により伝熱面が再び覆われないように、冷媒液
を一ヶ所に集める構造が必要である点で異なる。即ち、
凝縮器に必要とされる機能が異なる。
However, the above-mentioned high-performance heat transfer tubes (JP-A-4-158193, JP-A-8-121984, JP-A-8-178574, JP-A-10-206060, etc.) ) Is intended for air conditioners and the like that can be used for both cooling and heating, and is provided with a function of improving the performance of both evaporation and condensation. When used as an evaporator and when used as a condenser, for example, a structure that spreads the refrigerant liquid over the entire heat transfer surface is required to improve the evaporation performance, whereas a heat transfer surface is required to improve the condensation performance. The difference is that a structure for collecting the refrigerant liquid in one place is required so that the adhered refrigerant condensate can be easily removed and the heat transfer surface is not covered again by the condensed liquid. That is,
The functions required for the condenser are different.

【0009】一方、特開平4−158193号公報に記
載された伝熱管においては、同じ向きの角度を有する螺
旋溝を配した場合には、冷媒液が広がりやすくなり凝縮
性能が低下する。一方、単に逆向きの角度を有する螺旋
溝を配した場合には、冷媒液の流れを阻害して圧力損失
の増加するという問題点がある。
On the other hand, in the case of the heat transfer tube described in Japanese Patent Application Laid-Open No. 4-158193, when spiral grooves having the same angle are arranged, the refrigerant liquid tends to spread, and the condensation performance is reduced. On the other hand, when the spiral groove having the opposite angle is simply provided, there is a problem that the flow of the refrigerant liquid is obstructed and the pressure loss increases.

【0010】また、特開平8−121984号公報及び
特開平8−178574号公報に記載された伝熱管にお
いては、伝熱面が連続溝を基準に設計されており、凝縮
器として使用した場合には、凝縮した液体が溝に沿って
旋回流を生じやすい。この結果、凝縮に必要な乾いた伝
熱面の確保が困難となり凝縮性能の低下を招くという問
題点がある。特開平8−178574号公報では、交差
溝構造の場合には溝交点部付近に加工時の反り等が発生
しやすく、この反り等が凝縮液の離脱の妨げになり、性
能の低下させるという問題点がある。
In the heat transfer tubes described in JP-A-8-121984 and JP-A-8-178574, the heat transfer surface is designed on the basis of a continuous groove, and when used as a condenser. In the method, the condensed liquid tends to generate a swirling flow along the groove. As a result, there is a problem that it is difficult to secure a dry heat transfer surface required for the condensation, and the condensation performance is reduced. In Japanese Patent Application Laid-Open No. 8-178574, in the case of an intersecting groove structure, a warp or the like during processing is likely to be generated in the vicinity of a groove intersection, and this warp or the like hinders the separation of the condensate and lowers the performance. There is a point.

【0011】更に、特開平10−206060号公報に
記載された伝熱管においては、冷媒流量が多い条件で
は、凝縮液の旋回流が生じやすく、高負荷運転での性能
が低下するという問題点がある。
Further, in the heat transfer tube described in Japanese Patent Application Laid-Open No. H10-206060, there is a problem that the swirling flow of the condensed liquid is likely to occur under the condition that the refrigerant flow rate is large, and the performance under high load operation is deteriorated. is there.

【0012】即ち、いずれの従来技術にも一長一短があ
り、特に凝縮性能を高めるには問題点がある。
That is, each of the conventional techniques has advantages and disadvantages, and in particular, there is a problem in improving the condensation performance.

【0013】本発明はかかる問題点に鑑みてなされたも
のであって、ルームエアコン等の凝縮器として使用され
る凝縮性能が優れた内面溝付管を提供することを目的と
する。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an inner grooved pipe having excellent condensation performance used as a condenser for a room air conditioner or the like.

【0014】[0014]

【課題を解決するための手段】本発明に係る内面溝付管
は、金属又は合金管の内面に第1の溝が形成された第1
の溝加工帯と、前記金属又は合金管の内面の前記第1の
溝加工帯とは異なる領域に前記第1の溝と前記金属又は
合金管の管円周方向のピッチが同一でねじれ角及びねじ
れ方向が異なる第2の溝が形成された第2の溝加工帯
と、を有し、前記第1の溝加工帯と前記第2の溝加工帯
との加工幅を異ならせて前記金属又は合金管の円周方向
に交互に1又は複数配置されると共に、前記第1及び第
2の溝加工帯のうち、加工幅が広い方の溝のねじれ角を
45乃至85°とし、加工幅が狭い方の溝のねじれ角を
8乃至45°とすることを特徴とする。
According to the present invention, there is provided a tube with an inner surface having a first groove formed on an inner surface of a metal or alloy tube.
And the pitch of the first groove and the metal or alloy pipe in the pipe circumferential direction are the same in a region different from the first groove processing zone on the inner surface of the metal or alloy pipe, and the torsion angle and A second grooved band in which a second groove having a different twisting direction is formed, wherein the first grooved band and the second grooved band have different processing widths to form the metal or One or more are alternately arranged in the circumferential direction of the alloy pipe, and among the first and second grooved bands, the torsion angle of the groove having the larger processing width is 45 to 85 °, and the processing width is The twist angle of the narrow groove is 8 to 45 °.

【0015】この場合、前記第1及び第2の溝加工帯の
うち、加工幅が広い方の溝加工帯の加工幅をW1とし、
加工幅が狭い方の溝加工帯の加工幅をW2とするとき、
前記W 1と前記W2との比W1/W2は1.1乃至3.0で
あることが好ましい。
In this case, the first and second grooved bands are
Of these, the processing width of the wider groove processing zone is W1age,
The processing width of the narrower groove processing band is WTwoWhen
Said W 1And the WTwoAnd the ratio W1/ WTwoIs from 1.1 to 3.0
Preferably, there is.

【0016】また、前記第1の溝加工帯と前記第2の溝
加工帯との間に平滑領域が形成されていることが好まし
い。
It is preferable that a smooth region is formed between the first grooved band and the second grooved band.

【0017】このような内面溝付管は、金属又は合金か
らなる板状の条材の表面に、圧延により前記第1の溝加
工帯及び前記第2の溝加工帯を形成し、前記条材を円周
方向に丸めながら溶接により形成することができる。
The inner grooved pipe is formed by rolling the first grooved band and the second grooved band on the surface of a plate-shaped strip made of metal or alloy by rolling. Can be formed by welding while rolling in the circumferential direction.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施例について添
付の図面を参照して詳細に説明する。図1は本発明の実
施例に係る内面溝付管に管内表面を展開して示す模式図
である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing the inner surface of a tube with an inner groove developed according to an embodiment of the present invention.

【0019】本実施例では、第1の溝加工帯1と第2の
溝加工帯3とが交互に複数形成されている。この第1の
溝加工帯1と第2の溝加工帯3との間には平滑領域5が
形成されている。
In this embodiment, a plurality of first grooved bands 1 and a plurality of second grooved bands 3 are formed alternately. A smooth region 5 is formed between the first grooved band 1 and the second grooved band 3.

【0020】第1の溝加工帯1には、管軸方向に対して
傾斜する方向に伸びる第1の溝2が管軸方向にピッチp
で複数形成されている。第2の溝加工帯3には管軸方向
に対して第1の溝2と等しい角度をなして第1の溝2と
は逆方向に傾斜する第2の溝4が管軸方向に第1の溝2
と同一ピッチpで複数形成されている。平滑領域5には
何も形成されておらず、第1の溝加工帯1と第2の溝加
工帯3とが連続して配置されないように、分離してい
る。なお、第1の溝加工帯1の加工幅はW1、第2の溝
加工帯3の加工幅はW2、平滑領域の加工幅はW3であ
る。
In the first grooved band 1, a first groove 2 extending in a direction inclined with respect to the tube axis direction has a pitch p in the tube axis direction.
Are formed. The second grooved band 3 has a second groove 4 formed at an angle equal to the first groove 2 with respect to the tube axis direction and inclined in a direction opposite to the first groove 2 in the tube axis direction. Groove 2
Are formed at the same pitch p. Nothing is formed in the smooth region 5, and the first grooved band 1 and the second grooved band 3 are separated so that they are not arranged continuously. The processing width of the first grooved band 1 is W 1 , the processing width of the second grooved band 3 is W 2 , and the processing width of the smooth region is W 3 .

【0021】次に、上述のように構成された内面溝付管
の動作について説明する。この内面溝付管を凝縮器とし
て使用した場合には、内面溝付管内に冷媒ガスが供給さ
れる。冷媒ガスは伝熱面と接触して冷却されて液化して
管軸方向に排出される。
Next, the operation of the inner grooved pipe configured as described above will be described. When this inner grooved tube is used as a condenser, refrigerant gas is supplied into the inner grooved tube. The refrigerant gas contacts the heat transfer surface, is cooled and liquefied, and is discharged in the pipe axis direction.

【0022】このとき、内面溝付管内面に管円周方向の
ピッチpが同じで、管軸に対するねじれ角度及びねじれ
方向が異なる2種の第1及び第2の溝2、4を夫々管軸
円周方向に加工幅を異ならせて交互に複数組設けた内面
溝付管では、管円周方向の加工幅が広い部分に設けた溝
の管軸に対するねじれ角度を45°以上とすると、液化
した冷媒液が溝に沿って管断面の鉛直方向に集液されや
すくなり、伝熱面が乾いた状態に維持されて凝縮性能が
向上する。
At this time, two kinds of first and second grooves 2, 4 having the same pitch p in the circumferential direction of the pipe on the inner surface of the inner grooved pipe and having different twist angles and twist directions with respect to the pipe axis are respectively connected to the pipe axis. In the case of inner grooved pipes provided with a plurality of sets alternately with different processing widths in the circumferential direction, if the torsion angle with respect to the pipe axis of the groove provided in the part with a wider processing width in the pipe circumferential direction is set to 45 ° or more, liquefaction The refrigerant liquid thus collected is easily collected along the groove in the vertical direction of the cross section of the tube, and the heat transfer surface is maintained in a dry state, so that the condensation performance is improved.

【0023】一方、管軸に対する溝のねじれ角度が90
°付近で凝縮性能は最大値になるが、溝のねじれ角度が
85°を超え90°までの範囲では、管軸方向における
管平均肉厚の増減ピッチが細かくなり、曲げ強度が低下
して、ヘアピン曲げの際に破断が発生しやすくなる。従
って、管円周方向の加工幅が広い部分の溝のねじれ角度
は45乃至85°とする。
On the other hand, the torsion angle of the groove with respect to the pipe axis is 90.
Condensation performance reaches the maximum value in the vicinity of °, but in the range where the torsion angle of the groove is more than 85 ° and up to 90 °, the pitch of increase and decrease of the average wall thickness in the axial direction of the pipe becomes fine, and the bending strength decreases. Breakage is likely to occur during hairpin bending. Therefore, the torsion angle of the groove in the portion where the machining width is large in the circumferential direction of the pipe is set to 45 to 85 °.

【0024】また、管円周方向の溝加工幅が狭い部分の
溝加工帯の溝の管軸に対するねじれ方向を異にすること
により、集液された冷媒液が管軸方向に排出される際
に、旋回流が抑制され、伝熱面が再び冷媒液に覆われる
ことを防止することができるため、高い凝縮性能を維持
することができる。
[0024] Further, by changing the twisting direction of the groove of the grooved band of the portion where the grooved width in the circumferential direction of the tube is small with respect to the tube axis, the collected refrigerant liquid is discharged in the tube axis direction. In addition, since the swirling flow is suppressed and the heat transfer surface can be prevented from being covered with the refrigerant liquid again, high condensation performance can be maintained.

【0025】更に、管円周方向の溝加工幅が狭い部分の
溝加工帯の溝の管軸に対するねじれ角度を8乃至45°
に保つことにより、冷媒液の管軸方向への排出性が向上
し、高い凝縮性能を維持することができる。また、管円
周方向の第1の溝加工帯1と第2の溝加工帯3との間に
平滑領域5を形成することにより、冷媒液の排出性がよ
り一層向上して性能の向上を図ることができる。
Further, the torsion angle of the groove of the groove in the portion where the groove width in the circumferential direction of the pipe is narrow is 8 to 45 ° with respect to the pipe axis.
By keeping the temperature in the range, the discharge performance of the refrigerant liquid in the pipe axis direction is improved, and high condensation performance can be maintained. Further, by forming the smooth region 5 between the first grooved band 1 and the second grooved band 3 in the circumferential direction of the pipe, the dischargeability of the refrigerant liquid is further improved and the performance is improved. Can be planned.

【0026】なお、第1の溝加工帯1の幅W1と第2の
溝加工帯3の幅W2との比W1/W2の値が1.0以上
1.1未満では、凝縮性能が向上するが、逆方向のねじ
れ角方向を有する溝により、冷媒の流れが阻害されて圧
力損失の低下を招く。一方、このW1/W2の値が3.0
を超えると、冷媒液の旋回流が生じやすくなり、凝縮液
が伝熱面全体に広がりやすくなり、伝熱面を覆って冷媒
ガスとの接触が阻害される。このため、凝縮性能は低下
する。従って、W1/W2の値は1.1乃至3.0とする
ことが好ましい。
It should be noted, is less than the first grooving band 1 width W 1 and the value of the ratio W 1 / W 2 of the width W 2 of the second groove processing zone 3 is 1.0 to 1.1, the condensation Although the performance is improved, the flow of the refrigerant is obstructed by the groove having the reverse twist angle direction, and the pressure loss is reduced. On the other hand, the value of W 1 / W 2 is 3.0
When the pressure exceeds the above range, a swirling flow of the refrigerant liquid easily occurs, the condensed liquid easily spreads over the entire heat transfer surface, and the heat transfer surface is covered and the contact with the refrigerant gas is hindered. For this reason, the condensation performance decreases. Therefore, the value of W 1 / W 2 is preferably set to 1.1 to 3.0.

【0027】[0027]

【実施例】以下、本発明の範囲に入る内面溝付管の実施
例について、その凝縮性能を比較例と比較して具体的に
説明する。
EXAMPLES Hereinafter, examples of the inner grooved tube falling within the scope of the present invention will be described in detail by comparing the condensation performance with a comparative example.

【0028】先ず、銅板の片側表面にロール圧延で溝成
形を行ない、この溝成形された溝加工面を内側に丸めな
がら、板幅端部を突き合わせて高周波溶接して外径が
7.0mmの内面溝付管を製作した。
First, a groove is formed on one surface of a copper plate by roll rolling, and while this grooved grooved surface is rounded inward, the ends of the plate width are butted and high frequency welded to form an outer diameter of 7.0 mm. An inner grooved tube was manufactured.

【0029】溝の圧延は溝深さを0.2mm、管周方向
溝ピッチを0.41mmとし、管軸に対するねじれ角度
及びねじれ方向が異なる溝を管円周方向の加工幅を変え
て製作した。
The grooves were rolled with a groove depth of 0.2 mm, a groove pitch in the circumferential direction of the tube of 0.41 mm, and a groove having a different twist angle and a different twist direction with respect to the tube axis by changing the processing width in the circumferential direction of the tube. .

【0030】この内面溝付管を長さが3000mmの二
重管式熱交換器の内側に配置し、内面溝付管に冷媒(R
−410A)を入れ、内面溝付管と外管との環状部に水
を流して熱交換を行ない伝熱性能を測定した。なお、比
較例として、直径が7mmの従来の内面溝付管(溝深さ
0.2mm、管周方向溝ピッチ0.41mm、ねじれ角
度18°)を使用した。なお、下記に示す伝熱性能比は
冷媒流量が20kg/hにおける比較例の蒸発及び凝縮
性能を基準としている。
This inner grooved tube is disposed inside a double-tube heat exchanger having a length of 3000 mm, and a refrigerant (R) is inserted into the inner grooved tube.
-410A) was inserted thereinto, water was passed through the annular portion between the inner grooved tube and the outer tube to perform heat exchange, and the heat transfer performance was measured. As a comparative example, a conventional inner grooved tube having a diameter of 7 mm (groove depth 0.2 mm, groove pitch in the circumferential direction of the tube 0.41 mm, twist angle 18 °) was used. The heat transfer performance ratio shown below is based on the evaporation and condensation performance of the comparative example at a refrigerant flow rate of 20 kg / h.

【0031】図2は縦軸に伝熱性能比、横軸に溝加工帯
の溝ねじれ角度をとり、溝ねじれ角度と伝熱性能との関
係を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the groove twist angle and the heat transfer performance, with the vertical axis representing the heat transfer performance ratio and the horizontal axis representing the groove twist angle of the grooved band.

【0032】図2に示すように、ねじれ角度が80乃至
100°で伝熱性能が極大値をとることがわかった。し
かし、ねじれ角度が85°を超え95°までの範囲では
管径比が1.2倍の曲げ半径のヘアピン曲げ加工におい
て、破断の発生率が高くエアコン等の適用は実用的でな
いことが判明した。
As shown in FIG. 2, it was found that the heat transfer performance had a maximum value when the twist angle was 80 to 100 °. However, when the twist angle is in the range of more than 85 ° to 95 °, in a hairpin bending process with a bend radius of 1.2 times the pipe diameter ratio, the breakage rate is high, and it has been found that application of an air conditioner or the like is not practical. .

【0033】図3は縦軸に凝縮伝熱性能比、横軸に第1
の溝加工帯の加工幅と第2の溝加工帯とのの加工幅との
比W1/W2をとり、凝縮伝熱性を示すグラフ図である。
FIG. 3 shows the heat transfer performance ratio on the vertical axis and the first ratio on the horizontal axis.
FIG. 8 is a graph showing the condensation heat transfer property, taking the ratio W 1 / W 2 of the processing width of the grooved band to the processing width of the second grooved band.

【0034】本発明の範囲に入る領域においては、最大
値を得ることができ、比較例と比較して凝縮性能が優れ
ることがわかった。一方、本発明の範囲から外れるW1
/W2が1.0未満では凝縮伝熱性能が低く、W1/W
2が3.0を超える領域においては、凝縮伝熱性能が低
下した。
In the range falling within the range of the present invention, the maximum value was obtained, and it was found that the condensation performance was superior to that of the comparative example. On the other hand, W1 out of the scope of the present invention
When / W2 is less than 1.0, the condensation heat transfer performance is low, and W1 / W
In the region where 2 exceeds 3.0, the condensation heat transfer performance was reduced.

【0035】[0035]

【発明の効果】以上詳述したように本発明においては、
金属又は合金管の内面に第1の溝が形成された第1の溝
加工帯と、この第1の溝と金属又は合金管の管円周方向
のピッチが同一でねじれ角及びねじれ方向が異なる第2
の溝が形成された第2の溝加工帯とを交互に1又は複数
配置し、第1及び第2の溝加工帯のうち、加工幅が広い
方の溝のねじれ角を45乃至85°とし、加工幅が狭い
方の溝のねじれ角を8乃至45°とすることにより、凝
縮性能が優れた内面溝付管を形成することができる。ま
た、これはルームエアコン等の凝縮器として好適であ
り、省エネルギかつ高性能な凝縮器を得ることができ
る。
As described in detail above, in the present invention,
A first groove processing band in which a first groove is formed on the inner surface of a metal or alloy pipe, and a pitch in the circumferential direction of the first groove and the metal or alloy pipe which is the same and a twist angle and a twist direction are different; Second
One or a plurality of the second grooving bands on which grooves are formed are alternately arranged, and the torsion angle of the groove having a wider processing width among the first and second grooving bands is 45 to 85 °. By setting the torsion angle of the groove having a narrower processing width to 8 to 45 °, an inner grooved tube having excellent condensation performance can be formed. Further, this is suitable as a condenser for a room air conditioner or the like, and an energy-saving and high-performance condenser can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る内面溝付管に管内表面を
展開して示す模式図である。
FIG. 1 is a schematic view showing an inner surface of a tube with an inner groove developed according to an embodiment of the present invention.

【図2】縦軸に伝熱性能比、横軸に溝加工帯の溝ねじれ
角度をとり、溝ねじれ角度と伝熱性能との関係を示すグ
ラフ図である。
FIG. 2 is a graph showing the relationship between the groove torsion angle and the heat transfer performance, with the vertical axis representing the heat transfer performance ratio and the horizontal axis representing the groove twist angle of the grooved band.

【図3】縦軸に凝縮伝熱性能比、横軸に第1の溝加工帯
の加工幅と第2の溝加工帯とのの加工幅との比W1/W2
をとり、凝縮伝熱性を示すグラフ図である。
FIG. 3 shows the heat transfer performance ratio on the vertical axis, and the ratio W 1 / W 2 of the processing width of the first groove processing zone to the processing width of the second groove processing band on the horizontal axis.
FIG. 3 is a graph showing condensation heat transfer properties.

【符号の説明】[Explanation of symbols]

1;第1の溝加工帯 2;第1の溝 3;第2の溝加工帯 4;第2の溝 5;平滑領域 DESCRIPTION OF SYMBOLS 1; 1st groove processing band 2; 1st groove 3; 2nd groove processing band 4; 2nd groove 5;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日名子 伸明 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 小関 清憲 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 ──────────────────────────────────────────────────の Continuing on the front page (72) Nobuaki Hinako 65, Hirasawa, Hadano City, Kanagawa Prefecture Inside the Hadano Plant, Kobe Steel Co., Ltd. Inside

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金管の内面に第1の溝が形成
された第1の溝加工帯と、前記金属又は合金管の内面の
前記第1の溝加工帯とは異なる領域に前記第1の溝と前
記金属又は合金管の管円周方向のピッチが同一でねじれ
角及びねじれ方向が異なる第2の溝が形成された第2の
溝加工帯と、を有し、前記第1の溝加工帯と前記第2の
溝加工帯との加工幅を異ならせて前記金属又は合金管の
円周方向に交互に1又は複数配置されると共に、前記第
1及び第2の溝加工帯のうち、加工幅が広い方の溝のね
じれ角を45乃至85°とし、加工幅が狭い方の溝のね
じれ角を8乃至45°とすることを特徴とする内面溝付
管。
1. A first grooved band in which a first groove is formed on an inner surface of a metal or alloy tube, and the first grooved band on a different surface of the inner surface of the metal or alloy tube from the first grooved band. A first groove and a second groove processing zone in which a second groove having the same pitch in the circumferential direction of the metal or alloy pipe but having a different twist angle and a different twist direction is formed. One or more grooves are alternately arranged in the circumferential direction of the metal or alloy pipe with different processing widths of the groove processing band and the second groove processing band, and the first and second groove processing bands are formed. An inner grooved pipe characterized in that the torsion angle of the groove having the larger processing width is 45 to 85 ° and the torsion angle of the groove having the smaller processing width is 8 to 45 °.
【請求項2】 前記第1及び第2の溝加工帯のうち、加
工幅が広い方の溝加工帯の加工幅をW1とし、加工幅が
狭い方の溝加工帯の加工幅をW2とするとき、前記W1
前記W2との比W1/W2は1.1乃至3.0であること
を特徴とする請求項1に記載の内面溝付管。
2. A processing width of a groove processing band having a larger processing width among the first and second groove processing bands is W 1 , and a processing width of a groove processing band having a smaller processing width is W 2. when the, inner grooved tube according to claim 1, wherein the ratio W 1 / W 2 of the W 1 and the W 2 is 1.1 to 3.0.
【請求項3】 前記第1の溝加工帯と前記第2の溝加工
帯との間に平滑領域が形成されていることを特徴とする
請求項1又は2に記載の内面溝付管。
3. The inner grooved pipe according to claim 1, wherein a smooth region is formed between the first grooved band and the second grooved band.
【請求項4】 金属又は合金からなる板状の条材の表面
に、圧延により前記第1の溝加工帯及び前記第2の溝加
工帯を形成し、前記条材を円周方向に丸めながら溶接に
より形成することを特徴とする請求項1乃至3のいずれ
か1項に記載の内面溝付管。
4. The first grooved band and the second grooved band are formed by rolling on the surface of a plate-shaped strip made of metal or alloy, and the strip is rolled in the circumferential direction. The inner grooved pipe according to any one of claims 1 to 3, wherein the pipe is formed by welding.
JP11074582A 1999-03-18 1999-03-18 Inner surface grooved pipe Pending JP2000274983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11074582A JP2000274983A (en) 1999-03-18 1999-03-18 Inner surface grooved pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11074582A JP2000274983A (en) 1999-03-18 1999-03-18 Inner surface grooved pipe

Publications (1)

Publication Number Publication Date
JP2000274983A true JP2000274983A (en) 2000-10-06

Family

ID=13551313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11074582A Pending JP2000274983A (en) 1999-03-18 1999-03-18 Inner surface grooved pipe

Country Status (1)

Country Link
JP (1) JP2000274983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004046277A1 (en) * 2002-11-15 2006-03-16 株式会社クボタ Cracking tube with spiral fin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004046277A1 (en) * 2002-11-15 2006-03-16 株式会社クボタ Cracking tube with spiral fin
US7799963B2 (en) 2002-11-15 2010-09-21 Kubota Corporation Cracking tube having helical fins

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
JP4347961B2 (en) Multiway flat tube
US5791405A (en) Heat transfer tube having grooved inner surface
US6336501B1 (en) Tube having grooved inner surface and its production method
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP3751393B2 (en) Tube inner surface grooved heat transfer tube
JPH109789A (en) Heat exchanger tube
JP3331518B2 (en) Heat transfer tubes and heat exchangers with internal fins
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2000274983A (en) Inner surface grooved pipe
JP3286171B2 (en) Heat transfer tube with internal groove
JP2005127570A (en) Heat transfer pipe and refrigeration unit using the same
JP3199636B2 (en) Heat transfer tube with internal groove
JPH11108579A (en) Pipe with grooved inner face
JP2000283680A (en) Pipe with grooved inside face and its manufacture
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH02161290A (en) Inner face processed heat transfer tube
JP3779794B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP3572497B2 (en) Welded pipe with internal groove for heat exchanger for air conditioning
JP2922824B2 (en) Heat transfer tube with internal groove
JP2726480B2 (en) Heat transfer tube
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH06101985A (en) Heat exchanger tube with grooved internal wall