JPH06101985A - Heat exchanger tube with grooved internal wall - Google Patents
Heat exchanger tube with grooved internal wallInfo
- Publication number
- JPH06101985A JPH06101985A JP4248290A JP24829092A JPH06101985A JP H06101985 A JPH06101985 A JP H06101985A JP 4248290 A JP4248290 A JP 4248290A JP 24829092 A JP24829092 A JP 24829092A JP H06101985 A JPH06101985 A JP H06101985A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- spiral
- tube
- liquid
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱交換機等に用いられ
る内面溝付伝熱管に関し、特に凝縮効率を高めるための
改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube used in a heat exchanger or the like, and more particularly to an improvement for increasing condensation efficiency.
【0002】[0002]
【従来の技術】この種の内面溝付伝熱管は、空調装置や
冷蔵庫等の熱交換器において蒸発管または凝縮管として
主に使用されるもので、最近では内面の全面に亙って螺
旋状の溝を形成した伝熱管が広く市販されている。一般
的な内面溝付伝熱管の溝の螺旋角は15〜20゜程度、
溝の深さは0.15〜0.20mm程度のものが多い。2. Description of the Related Art A heat transfer tube with an inner groove of this type is mainly used as an evaporation tube or a condensation tube in a heat exchanger such as an air conditioner or a refrigerator, and recently, it has a spiral shape over the entire inner surface. Heat transfer tubes having grooves are widely available on the market. The spiral angle of the groove of a general heat transfer tube with internal groove is about 15 to 20 degrees,
Most of the grooves have a depth of about 0.15 to 0.20 mm.
【0003】[0003]
【発明が解決しようとする課題】ところで、上記のよう
な螺旋溝付き伝熱管を凝縮管として使用する場合、伝熱
管の一端から熱媒蒸気を導入し、その熱を放出させつつ
凝縮させ、他端から熱媒液体を排出するが、その際、伝
熱管の内部において、熱媒蒸気の風圧により熱媒液体が
螺旋溝に沿ってかき上げられ、伝熱管の内面の大部分が
凝縮液に覆われることが避けられない。By the way, when the heat transfer tube with the spiral groove as described above is used as a condensing tube, heat medium vapor is introduced from one end of the heat transfer tube and condensed while releasing the heat, The heat transfer liquid is discharged from the end.At this time, the heat transfer liquid is lifted up along the spiral groove by the wind pressure of the heat transfer vapor inside the heat transfer tube, and most of the inner surface of the heat transfer tube is covered with the condensate. It is inevitable to be told.
【0004】このように、伝熱管内面の大部分が熱媒液
体に覆われると、伝熱管を構成する金属表面が熱媒液体
に遮蔽されて熱媒蒸気と直接的に接触しなくなり、伝熱
管と熱媒蒸気との間の伝熱効率が低下して凝縮効率が下
がるという問題があった。本発明は上記事情に鑑みてな
されたもので、伝熱管の内面に沿って熱媒液体が広がる
ことを抑止できる内面溝付伝熱管を提供することを課題
としている。As described above, when most of the inner surface of the heat transfer tube is covered with the heat transfer medium liquid, the metal surface forming the heat transfer tube is shielded by the heat transfer medium liquid and does not come into direct contact with the heat transfer medium vapor, so that the heat transfer tube is not directly contacted. However, there is a problem that the heat transfer efficiency between the heat transfer medium and the heat medium vapor decreases, and the condensation efficiency decreases. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an inner grooved heat transfer tube that can prevent the heat transfer liquid from spreading along the inner surface of the heat transfer tube.
【0005】[0005]
【課題を解決するための手段】本発明に係る内面溝付伝
熱管は、金属管の内面に、管軸に対する角度が10〜2
0゜である互いに平行な螺旋溝が多数形成されるととも
に、これら螺旋溝と交差して、管軸に対する角度が2〜
6゜である螺旋状の突条部が、1本ないし2本以上、管
内面の周方向に間隔を空けて形成されていることを特徴
としている。A heat transfer tube with an inner groove according to the present invention has an angle of 10 to 2 with respect to the tube axis on the inner surface of a metal tube.
A large number of parallel spiral grooves of 0 ° are formed, and the spiral grooves intersect with each other and have an angle of 2 to 2 with respect to the tube axis.
It is characterized in that one or two or more 6-degree spiral protrusions are formed at intervals in the circumferential direction of the inner surface of the pipe.
【0006】[0006]
【作用】この内面溝付伝熱管によれば、その内面のほぼ
全面に亙って形成された螺旋溝を分断して、管軸に対す
る角度が2〜6゜である螺旋状の突条部が1本ないし数
本形成されているから、凝縮管として使用された場合に
は、これら突条部に遮られて螺旋溝に沿う熱媒液体の広
がりが阻止される。したがって、熱媒液体に覆われない
金属露出面の割合を増すことができ、熱媒蒸気と金属面
との接触面積を増して凝縮効率を向上することができ
る。According to this heat transfer tube with internal groove, the spiral groove formed over almost the entire inner surface of the tube is divided to form a spiral protrusion having an angle of 2 to 6 ° with respect to the tube axis. Since one or several tubes are formed, when used as a condenser tube, the heat medium liquid is prevented from spreading along the spiral groove by being blocked by these protruding portions. Therefore, it is possible to increase the ratio of the metal exposed surface that is not covered with the heat medium liquid, increase the contact area between the heat medium vapor and the metal surface, and improve the condensation efficiency.
【0007】また、突条部の螺旋角が2〜6゜に設定さ
れていることにより、伝熱管の軸線回りの配置角度を適
宜調整すると、凝縮管として使用した際に熱媒液体の液
面が管の上流側から下流側へ向けて高くなるのに合わ
せ、突条部を、その液面からほぼ一定の高さの位置に沿
って液面とほぼ平行に位置決めすることが可能であり、
突条部の大部分に亙って熱媒液体の広がりを効果的に阻
止することができる。Further, since the spiral angle of the ridge is set to 2 to 6 °, if the arrangement angle around the axis of the heat transfer tube is adjusted appropriately, the liquid level of the heat transfer medium liquid when used as a condensation tube It is possible to position the ridges substantially parallel to the liquid surface along a position at a substantially constant height from the liquid surface, as the height increases from the upstream side to the downstream side of the pipe.
It is possible to effectively prevent the heat medium liquid from spreading over most of the ridges.
【0008】[0008]
【実施例】図1および図2は、本発明に係る内面溝付伝
熱管の一実施例を示し、図1は軸線方向の断面図、図2
は直径方向の断面図である。1 and 2 show an embodiment of a heat transfer tube with an inner groove according to the present invention. FIG. 1 is an axial sectional view,
FIG. 4 is a diametrical cross-sectional view.
【0009】この伝熱管1は断面円形の金属管であり、
その内面のほぼ全域に亙って、管軸に対する角度αが1
0〜20゜である互いに平行な螺旋溝2が多数形成さ
れ、これら螺旋溝2同士の間は突条部3となっている。
また、螺旋溝2と交差して、管軸に対する角度βが2〜
6゜である螺旋状の突条部4が、1本または2本以上、
周方向に間隔を空けて形成されている。螺旋溝2と突条
部4は螺旋方向が同じでも良いし、図示のように互いに
逆方向でもよい。The heat transfer tube 1 is a metal tube having a circular cross section,
The angle α with respect to the tube axis is 1 over almost the entire inner surface.
A large number of parallel spiral grooves 2 of 0 to 20 ° are formed, and a ridge portion 3 is formed between the spiral grooves 2.
Further, the angle β with respect to the pipe axis is 2 to 2 as it intersects with the spiral groove 2.
One or two or more spiral protrusions 4 having a 6 ° angle,
It is formed at intervals in the circumferential direction. The spiral groove 2 and the ridge portion 4 may have the same spiral direction, or may have opposite spiral directions as shown in the drawing.
【0010】突条部4の本数は特に1〜4本程度が好適
である。4本より多くなると螺旋溝2による熱媒の乱流
発生効果が減少し、かえって熱媒と伝熱管1との熱交換
効率が減少するおそれがある。The number of the ridges 4 is preferably about 1 to 4. If the number is more than four, the effect of turbulent flow generation of the heat medium by the spiral groove 2 is reduced, and the heat exchange efficiency between the heat medium and the heat transfer tube 1 may be reduced.
【0011】螺旋溝2の螺旋角αが10゜未満(最小0
゜)であると螺旋溝2による熱媒の乱流発生効果に乏し
くなって凝縮および蒸発性能が低下し、20゜より大き
い(最大90゜)と螺旋溝2による流液抵抗が増すう
え、伝熱管1内面での液の広がり傾向が強く、圧力損失
が大きくなりすぎて好ましくない。The spiral angle α of the spiral groove 2 is less than 10 ° (minimum 0
)), The effect of generating turbulent flow of the heat medium by the spiral groove 2 becomes poor, and the condensation and evaporation performance deteriorates. The liquid tends to spread on the inner surface of the heat pipe 1 and the pressure loss becomes too large, which is not preferable.
【0012】突条部4の螺旋角βは以下の理由によって
決定されている。図4に示すように、伝熱管1を凝縮管
として水平状態で使用した場合には、伝熱管1の内部
に、凝縮した熱媒液体の流れが生じ、その液面Lの高さ
は、熱媒流の上流側から下流側へ向けて漸次高くなる。
本発明者らは、一般的な熱交換装置に関して、凝縮管内
部での熱媒液体の挙動を詳細に検討し、その結果、液面
Lの傾斜角度は概ね2〜6゜の範囲に収まるという新規
な事実を見いだした。The spiral angle β of the protrusion 4 is determined for the following reason. As shown in FIG. 4, when the heat transfer tube 1 is used in a horizontal state as a condensing tube, a flow of the condensed heat medium liquid occurs inside the heat transfer tube 1, and the height of the liquid level L is It gradually increases from the upstream side to the downstream side of the medium flow.
The inventors of the present invention have studied in detail the behavior of the heat transfer liquid inside the condensing tube with respect to a general heat exchange device, and as a result, the inclination angle of the liquid surface L is generally within the range of 2 to 6 °. I found a new fact.
【0013】したがって、本発明に係る突条部4の螺旋
角βが2〜6゜であると、下流側へ向けて液面Lが高く
なるのに合わせ、突条部4を、図4に示すように液面L
からほぼ一定の高さに沿って位置決めすることが可能で
あり、突条部4の長さ方向の大部分に亙って、熱媒液体
の広がりを効果的に阻止することが可能となるのであ
る。Therefore, when the spiral angle β of the ridge portion 4 according to the present invention is 2 to 6 °, the ridge portion 4 is shown in FIG. 4 as the liquid level L increases toward the downstream side. Liquid level L as shown
Since it is possible to position along a substantially constant height from above, it is possible to effectively prevent the heat medium liquid from spreading over most of the lengthwise direction of the ridge portion 4. is there.
【0014】これに対し、突条部4が管軸と平行である
と、上流側では液面Lよりも突条部4の位置が高すぎて
液の広がり防止効果が発揮されない、あるいは下流側で
は突条部4が熱媒液体に埋没して液の広がり防止効果が
発揮されない等の問題が生じ、突条部4の全長に占め
る、良好な液広がり防止効果の得られる部分の割合が少
なくなる。On the other hand, if the ridge 4 is parallel to the pipe axis, the position of the ridge 4 is too higher than the liquid level L on the upstream side, and the effect of preventing the spread of the liquid is not exerted, or on the downstream side. In this case, the ridge 4 is buried in the heat medium liquid, and the problem that the liquid spreading prevention effect is not exerted occurs. Therefore, the proportion of the portion of the ridge 4 that has a good liquid spreading preventing effect is small. Become.
【0015】突条部4の上端は、図3に示すように、螺
旋溝2の間の突条部3の上端とほぼ揃う程度に設定され
ている。具体的には、突条部4の螺旋溝2の底面からの
突出量が、突条部3の突出量の70〜100%程度であ
ることが望ましい。70%未満では熱媒液体の広がりを
防止する効果に乏しく、100%より大では形成が困難
であるうえ、アルミフィンに密着させる際の拡管工程に
おいて、外面が円にならず、座屈しやすくなるという問
題を生じる。As shown in FIG. 3, the upper end of the protruding portion 4 is set to be substantially aligned with the upper end of the protruding portion 3 between the spiral grooves 2. Specifically, the amount of protrusion of the protrusion 4 from the bottom surface of the spiral groove 2 is preferably about 70 to 100% of the amount of protrusion of the protrusion 3. If it is less than 70%, the effect of preventing the spread of the heat transfer liquid is poor, and if it is more than 100%, it is difficult to form it, and the outer surface does not become a circle in the pipe expanding step when it is adhered to the aluminum fins, and it is easy to buckle. Causes the problem.
【0016】なお、この例の伝熱管1は板条材を電縫加
工して形成されたもので、このため、図示してはいない
が、伝熱管1の内周面の一部には、その全長に亙って管
軸方向に延びる溶接線が形成され、この溶接線によって
も螺旋溝2が分断されている。伝熱管1の材質は銅,銅
合金,アルミニウム,アルミニウム合金等の従来から使
用されているいずれの材質でもよく、肉厚や径等は用途
に応じて決められる。The heat transfer tube 1 of this example is formed by electro-stitching a strip material. Therefore, although not shown, a part of the inner peripheral surface of the heat transfer tube 1 is A welding line extending in the pipe axis direction is formed over the entire length thereof, and the spiral groove 2 is also divided by this welding line. The material of the heat transfer tube 1 may be any conventionally used material such as copper, copper alloy, aluminum, aluminum alloy and the like, and the wall thickness and diameter thereof are determined according to the application.
【0017】具体的な寸法例を挙げると、直径1cm前
後の一般的な内面溝付伝熱管では、螺旋溝2の幅が0.
20〜0.25mm程度、螺旋溝2の深さが0.20〜
0.30mm程度、突条部3の幅が0.2〜0.25m
m程度とされることが好ましい。これらの範囲内である
と、一般的な熱媒に対して凝縮性能および蒸発性能が良
好であることが本発明者らにより確かめられている。To give a concrete example of dimensions, in a general heat transfer tube with an inner groove having a diameter of about 1 cm, the width of the spiral groove 2 is 0.
20-0.25 mm, the depth of the spiral groove 2 is 0.20
About 0.30 mm, the width of the ridge portion 3 is 0.2 to 0.25 m
It is preferably about m. It has been confirmed by the present inventors that the condensation performance and the evaporation performance are good with respect to a general heat medium within the range.
【0018】上記のような伝熱管1を製造するには、ま
ず、帯状の金属板条材を圧延ロールで連続的に圧延し、
螺旋溝2および突条部4を同時に形成する。前記圧延ロ
ールの外周面には予め、螺旋溝2を形成するための突条
および突条部4を形成するための溝を一体的に形成して
おく。In order to manufacture the heat transfer tube 1 as described above, first, a strip-shaped metal plate material is continuously rolled by a rolling roll,
The spiral groove 2 and the protrusion 4 are formed at the same time. A ridge for forming the spiral groove 2 and a groove for forming the ridge portion 4 are integrally formed in advance on the outer peripheral surface of the rolling roll.
【0019】螺旋溝2および突条部4の圧延加工が終わ
ったら、板条材を溝形成面を内面側に向けた状態で電縫
装置にセットし、多段階に成形ロールの間を通して板条
材を幅方向に丸め、最終的に板条材の両側縁部を溶接し
て円管形に成形する。電縫装置としては通常使用されて
いるものでよく、また電縫条件も通常の加工と同じでよ
い。その後、必要に応じて管の外周面の溶接部を整形し
たうえ、ロール状に巻きとるか所定の長さで切断し、長
尺の伝熱管を得る。After the rolling process of the spiral groove 2 and the ridge portion 4 is completed, the plate material is set in the electric sewing machine with the groove forming surface facing the inner surface side, and the plate material is passed between the forming rolls in multiple stages. The material is rolled in the width direction, and finally both side edges of the plate material are welded to form a circular pipe shape. The electric resistance sewing machine may be a commonly used one, and the electric resistance sewing conditions may be the same as those for normal processing. Then, if necessary, the welded portion on the outer peripheral surface of the pipe is shaped, and then wound into a roll or cut into a predetermined length to obtain a long heat transfer pipe.
【0020】上記構成からなる伝熱管によれば、その内
面のほぼ全面に亙って形成された螺旋溝2を分断して、
管軸に対する角度が2〜6゜である螺旋状の突条部4が
1本ないし数本形成されているから、凝縮管として使用
した場合には、これら突条部4により遮られて螺旋溝2
に沿う熱媒液体の広がりが阻止される。したがって、熱
媒液体に覆われない金属露出面積を増すことができ、熱
媒蒸気と金属面との間の伝熱効率を高めて凝縮効率の向
上が図れる。According to the heat transfer tube having the above structure, the spiral groove 2 formed over almost the entire inner surface of the heat transfer tube is divided,
Since one or several spiral ridges 4 having an angle of 2 to 6 ° with respect to the tube axis are formed, when used as a condenser tube, these ridges 4 block the spiral grooves. Two
Spreading of the heat carrier liquid along is prevented. Therefore, it is possible to increase the exposed area of the metal that is not covered with the heat medium liquid, improve the heat transfer efficiency between the heat medium vapor and the metal surface, and improve the condensation efficiency.
【0021】また、突条部4の螺旋角が2〜6゜に設定
されているから、伝熱管1の軸線回りの配置角度を適宜
調整することにより、熱媒液体の液面Lが管の上流側か
ら下流側へ向けて高くなるのに合わせ、突条部4を、そ
の液面Lからほぼ一定の高さの位置に沿ってほぼ平行に
位置決めすることが可能である。したがって、突条部4
の長さ方向の大きな割合の部分に亙って、熱媒液体の広
がりを効果的に阻止することが可能である。Further, since the spiral angle of the ridge 4 is set to 2 to 6 °, the liquid level L of the heat transfer medium is adjusted by adjusting the arrangement angle around the axis of the heat transfer tube 1 appropriately. As the height increases from the upstream side to the downstream side, it is possible to position the ridge portion 4 substantially parallel to the liquid surface L along a position having a substantially constant height. Therefore, the ridge portion 4
It is possible to effectively prevent the spread of the heat transfer liquid over a large proportion of the length of the heat transfer liquid.
【0022】なお、上記実施例では、伝熱管の形状が断
面円形であったが、本発明は円形に限らず、断面楕円形
や偏平管状等としても実施可能であるし、螺旋溝2や突
条部3,4の断面形状は任意に変更してよい。また、伝
熱管1の外周にフィンを固定することも可能である。In the above embodiment, the shape of the heat transfer tube was circular in cross section, but the present invention is not limited to circular shape, and can be embodied as an elliptical cross section, a flat tubular shape, or the like, and the spiral groove 2 or protrusion. The cross-sectional shape of the ridges 3 and 4 may be changed arbitrarily. It is also possible to fix the fins to the outer circumference of the heat transfer tube 1.
【0023】[0023]
【実験例】次に、実験例を挙げて本発明の効果を実証す
る。 (実験1)外径9.52mmの銅管の内面に多数の螺旋
溝のみを形成した伝熱管(突条部無し)、および前記螺
旋溝に加えて1本の突条部を複数の螺旋角度で形成した
伝熱管を作成し、それぞれの凝縮性能を比較した。要部
の寸法は以下の通りである。 螺旋溝の幅:0.20mm 螺旋溝の深さ:0.20mm 螺旋溝のピッチ:0.50mm 螺旋溝の底面からの突条部の高さ:0.2mm[Experimental Example] Next, the effect of the present invention will be demonstrated with reference to an experimental example. (Experiment 1) A heat transfer tube in which only a large number of spiral grooves are formed on the inner surface of a copper tube having an outer diameter of 9.52 mm (without a ridge), and in addition to the spiral groove, one ridge has a plurality of spiral angles. The heat transfer tubes formed in Step 1 were created and their condensation performances were compared. The dimensions of the main part are as follows. Width of spiral groove: 0.20 mm Depth of spiral groove: 0.20 mm Pitch of spiral groove: 0.50 mm Height of protrusion from bottom of spiral groove: 0.2 mm
【0024】実験1の結果を図5に示す。グラフの縦軸
は、突条部の無い単純溝付き管に対する凝縮性能比を示
している。図5から明らかなように、突条部の螺旋角度
が2〜6゜である場合に凝縮性能が高くなる。The results of Experiment 1 are shown in FIG. The vertical axis of the graph shows the condensation performance ratio for a simple grooved tube having no ridge. As is clear from FIG. 5, the condensation performance is high when the spiral angle of the ridge is 2 to 6 °.
【0025】(実験2)外径9.52mmの銅管の内面
に多数の螺旋溝のみを形成した伝熱管(突条部無し)、
および前記螺旋溝に加えて1〜6本の突条部を螺旋角度
4゜で形成した伝熱管を作成し、それぞれの凝縮性能を
比較した。要部の寸法は以下の通りである。 螺旋溝の幅:0.20mm 螺旋溝の深さ:0.20mm 螺旋溝のピッチ:0.50mm 螺旋溝の底面からの突条部の高さ:0.2mm(Experiment 2) A heat transfer tube in which a large number of spiral grooves are formed on the inner surface of a copper tube having an outer diameter of 9.52 mm (without a ridge),
And, in addition to the above-mentioned spiral groove, a heat transfer tube was formed by forming 1 to 6 ridges at a spiral angle of 4 °, and the respective condensation performances were compared. The dimensions of the main part are as follows. Width of spiral groove: 0.20 mm Depth of spiral groove: 0.20 mm Pitch of spiral groove: 0.50 mm Height of protrusion from bottom of spiral groove: 0.2 mm
【0026】実験2の結果を図6に示す。グラフの縦軸
は、突条部の無い単純溝付き管に対する凝縮性能比を示
している。図6から明らかなように、突条部の本数が1
〜4程度であると凝縮性能が向上するが、5本以上では
かえって凝縮性能が低下した。The results of Experiment 2 are shown in FIG. The vertical axis of the graph shows the condensation performance ratio for a simple grooved tube having no ridge. As is clear from FIG. 6, the number of ridges is 1
When it is about 4 or so, the condensation performance is improved, but when it is 5 or more, the condensation performance is rather deteriorated.
【0027】[0027]
【発明の効果】以上説明したように、本発明の内面溝付
伝熱管によれば、その内面のほぼ全面に亙って形成され
た螺旋溝を分断して、管軸に対する角度が2〜6゜であ
る螺旋状の突条部が1本ないし数本形成されているか
ら、凝縮管として使用された場合には、これら突条部に
より螺旋溝に沿う熱媒液体の広がりが阻止される。した
がって、螺旋溝自体の熱交換促進効果を阻害することな
く、熱媒液体に覆われない金属露出面積を増すことがで
き、熱媒蒸気と金属面との接触頻度を高めて凝縮効率を
向上することができる。As described above, according to the heat transfer tube with the inner surface groove of the present invention, the spiral groove formed over almost the entire inner surface of the heat transfer tube is divided to form an angle of 2 to 6 with respect to the tube axis. Since one or several spiral protrusions having a degree of 0 are formed, when used as a condenser tube, these protrusions prevent the heat medium liquid from spreading along the spiral groove. Therefore, the exposed area of the metal that is not covered with the heat medium liquid can be increased without impeding the heat exchange promoting effect of the spiral groove itself, and the contact frequency between the heat medium vapor and the metal surface is increased to improve the condensation efficiency. be able to.
【0028】また、突条部の螺旋角が2〜6゜に設定さ
れているから、伝熱管の軸線回りの配置角度を適宜調整
すると、凝縮管として使用した際に熱媒液体の液面が管
の上流側から下流側へ向けて高くなるのに合わせ、突条
部を、その液面からほぼ一定の高さの位置に沿って液面
とほぼ平行に位置決めすることが可能であり、熱媒液体
の広がりを効果的に阻止することができる。Further, since the spiral angle of the ridge is set to 2 to 6 °, if the arrangement angle of the heat transfer tube around the axis is adjusted appropriately, the liquid level of the heat transfer medium liquid when used as a condenser tube As the height increases from the upstream side to the downstream side of the pipe, the ridge can be positioned almost parallel to the liquid surface along a position at a substantially constant height from the liquid surface, The spread of the liquid medium can be effectively prevented.
【図1】本発明に係る内面溝付伝熱管の一実施例の管軸
に沿った断面図である。FIG. 1 is a cross-sectional view taken along the tube axis of an embodiment of a heat transfer tube with an inner groove according to the present invention.
【図2】同伝熱管の直径方向の拡大図である。FIG. 2 is an enlarged view of the heat transfer tube in a diameter direction.
【図3】螺旋溝と突条部の形状を示す斜視図である。FIG. 3 is a perspective view showing the shapes of spiral grooves and ridges.
【図4】同伝熱管の突条部4の作用を示す斜視図であ
る。FIG. 4 is a perspective view showing an action of a ridge portion 4 of the heat transfer tube.
【図5】本発明の実験例の効果を示すグラフである。FIG. 5 is a graph showing the effect of the experimental example of the present invention.
【図6】本発明の実験例の効果を示すグラフである。FIG. 6 is a graph showing the effect of an experimental example of the present invention.
1 伝熱管 2 螺旋溝 3 螺旋溝の間の突条部 4 突条部 L 熱媒液体の液面 1 heat transfer tube 2 spiral groove 3 ridge between spiral grooves 4 ridge L Liquid level of heat transfer liquid
Claims (1)
〜20゜である互いに平行な螺旋溝が多数形成されると
ともに、これら螺旋溝と交差して、管軸に対する角度が
2〜6゜である螺旋状の突条部が、1本ないし2本以
上、管内面の周方向に間隔を空けて形成されていること
を特徴とする内面溝付伝熱管。1. An inner surface of a metal tube having an angle of 10 with respect to the tube axis.
A large number of ˜20 ° parallel spiral grooves are formed, and one or more spiral ridges intersecting these spiral grooves and forming an angle of 2 to 6 ° with the tube axis are formed. An inner grooved heat transfer tube characterized in that it is formed at intervals in the circumferential direction of the inner surface of the tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248290A JPH06101985A (en) | 1992-09-17 | 1992-09-17 | Heat exchanger tube with grooved internal wall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4248290A JPH06101985A (en) | 1992-09-17 | 1992-09-17 | Heat exchanger tube with grooved internal wall |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06101985A true JPH06101985A (en) | 1994-04-12 |
Family
ID=17175894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4248290A Withdrawn JPH06101985A (en) | 1992-09-17 | 1992-09-17 | Heat exchanger tube with grooved internal wall |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06101985A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6412549B1 (en) * | 1994-12-28 | 2002-07-02 | Hitachi, Ltd. | Heat transfer pipe for refrigerant mixture |
US6883597B2 (en) * | 2001-04-17 | 2005-04-26 | Wolverine Tube, Inc. | Heat transfer tube with grooved inner surface |
JP2011227315A (en) * | 2010-04-21 | 2011-11-10 | Ricoh Co Ltd | Cooling device and image forming apparatus |
JP2012018239A (en) * | 2010-07-07 | 2012-01-26 | Ricoh Co Ltd | Cooling device and image forming apparatus |
-
1992
- 1992-09-17 JP JP4248290A patent/JPH06101985A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6412549B1 (en) * | 1994-12-28 | 2002-07-02 | Hitachi, Ltd. | Heat transfer pipe for refrigerant mixture |
US6883597B2 (en) * | 2001-04-17 | 2005-04-26 | Wolverine Tube, Inc. | Heat transfer tube with grooved inner surface |
JP2011227315A (en) * | 2010-04-21 | 2011-11-10 | Ricoh Co Ltd | Cooling device and image forming apparatus |
JP2012018239A (en) * | 2010-07-07 | 2012-01-26 | Ricoh Co Ltd | Cooling device and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3049692B2 (en) | Heat transfer tube | |
US6298909B1 (en) | Heat exchange tube having a grooved inner surface | |
JP3751393B2 (en) | Tube inner surface grooved heat transfer tube | |
US5275234A (en) | Split resistant tubular heat transfer member | |
JPH06101985A (en) | Heat exchanger tube with grooved internal wall | |
JP2842810B2 (en) | Heat transfer tube with internal groove | |
JP3811909B2 (en) | Heat transfer tube and heat exchanger using the same | |
JP2000121272A (en) | Heat exchanger tube with internal groove and heat exchanger | |
JPH085278A (en) | Heat transfer tube with inner surface grooves | |
JP2003343942A (en) | Evaporator | |
JP3286171B2 (en) | Heat transfer tube with internal groove | |
JP3199636B2 (en) | Heat transfer tube with internal groove | |
JP2802184B2 (en) | Heat transfer tube for condenser | |
JP3145277B2 (en) | Heat transfer tube with internal groove | |
JP2758567B2 (en) | Heat transfer tube with internal groove | |
JP2000310495A (en) | Heat transfer pipe with inner surface grooves | |
JPH0610594B2 (en) | Heat transfer tube with internal groove | |
JP2000035295A (en) | Heat transfer tube with inner surface grooves | |
JPH11108579A (en) | Pipe with grooved inner face | |
JPS62276397A (en) | Heat transfer pipe | |
JP3617538B2 (en) | Heat exchanger tube for absorber | |
JPH1163878A (en) | Internal surface grooved heat transfer pipe | |
JP3617537B2 (en) | Heat exchanger tube for absorber | |
JPH06101986A (en) | Heat exchanger tube with grooved internal wall | |
JPH07318278A (en) | Heat transfer tube with inner surface groove |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19991130 |