JPH0443756Y2 - - Google Patents

Info

Publication number
JPH0443756Y2
JPH0443756Y2 JP1985119531U JP11953185U JPH0443756Y2 JP H0443756 Y2 JPH0443756 Y2 JP H0443756Y2 JP 1985119531 U JP1985119531 U JP 1985119531U JP 11953185 U JP11953185 U JP 11953185U JP H0443756 Y2 JPH0443756 Y2 JP H0443756Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
tubes
air
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985119531U
Other languages
Japanese (ja)
Other versions
JPS6229555U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985119531U priority Critical patent/JPH0443756Y2/ja
Publication of JPS6229555U publication Critical patent/JPS6229555U/ja
Application granted granted Critical
Publication of JPH0443756Y2 publication Critical patent/JPH0443756Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、ヒートポンプ式の空気調和機等に使
用されるクロスフイン型の空気熱交換器に関する
ものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a cross-fin type air heat exchanger used in heat pump type air conditioners and the like.

(従来の技術) 従来公知のクロスフイン型空気熱交換器として
は、第5図図示の如く、風上側から風下側に向つ
て複数列の冷媒系統3a′,3b′,3c′を有するも
のがある(例えば、特開昭53−13247号公報参
照)。かかる構造の空気熱交換器においては、冷
媒系統3a′,3b′,3c′を構成すべき伝熱管2a′,
2b′,2c′として同一の熱伝達性能を有する管体
が用いられており、これら伝熱管2a′,2b′,2
c′に対して共通のフイン1′,1′…が直交状に配
設されている。
(Prior Art) As a conventionally known cross-fin type air heat exchanger, there is one that has multiple rows of refrigerant systems 3a', 3b', and 3c' from the windward side to the leeward side, as shown in FIG. (For example, see Japanese Patent Application Laid-open No. 13247/1983). In the air heat exchanger having such a structure, the heat transfer tubes 2a', which constitute the refrigerant systems 3a', 3b', 3c',
Tubes having the same heat transfer performance are used as 2b', 2c', and these heat transfer tubes 2a', 2b', 2
Common fins 1', 1', . . . are arranged perpendicularly to c'.

(考案が解決しようとする問題点) 上記公知例の空気熱交換器をヒートポンプ式空
気調和機の室外コイルとして使用する場合、暖房
運転時には、この室外コイルは蒸発器として作用
することとなり、外気温度が低くなると、フイン
表面温度が0℃以下となつて着霜d′が生じる。こ
の着霜d′は空気流W′に対して上流側(即ち、風
上側)に位置するフイン表面から進行するところ
から、着霜量が増大してくると、第5図図示の如
く、フイン1′,1′の風上側において目詰まりが
起こり、通風抵抗の増大、ひいては風量低下をき
たす。その結果、冷凍能力が激減して、冷凍シス
テムとしての正常な運転を維持できなくなる。こ
のため、着霜量がある限界を越えると、冷媒流通
経路を逆サイクルとなす逆サイクル方式等による
除霜運転が必要になる。この除霜運転中には、室
内側に冷風が吹き出されるため、コールドドラフ
トによる不快感が生ずるとともに、除霜運転の頻
度が多くなると、平均暖房能力が低下するという
問題を生ずる。
(Problem to be solved by the invention) When the air heat exchanger of the above-mentioned known example is used as an outdoor coil of a heat pump type air conditioner, this outdoor coil acts as an evaporator during heating operation, and the outside air temperature When the temperature decreases, the fin surface temperature becomes 0° C. or lower and frost formation d' occurs. This frost d' advances from the fin surface located on the upstream side (i.e., windward side) with respect to the air flow W', and as the amount of frost increases, the fin surface becomes Clogging occurs on the windward side of tubes 1' and 1', resulting in an increase in ventilation resistance and a decrease in air volume. As a result, the refrigeration capacity is drastically reduced, making it impossible to maintain normal operation as a refrigeration system. Therefore, when the amount of frost exceeds a certain limit, defrosting operation using a reverse cycle method or the like in which the refrigerant flow path is reversed becomes necessary. During this defrosting operation, cold air is blown toward the interior of the room, causing discomfort due to cold draft, and when the frequency of defrosting operation increases, a problem arises in that the average heating capacity decreases.

本考案は、上記の点に鑑みてなされたもので、
クロスフイン型の空気熱交換器において、着霜に
よるフインの目詰まりの発生をできるだけ遅らせ
るようにすることを目的とするものである。
This invention was made in view of the above points,
The purpose of this invention is to delay as much as possible the occurrence of clogging of the fins due to frost formation in a cross-fin type air heat exchanger.

(問題点を解決するための手段) 本考案では、上記問題点を解決するための手段
として、第1図ないし第3図に示すように、風上
側から風下側に向つて3列の冷媒系統3a,3
b,3cを有するクロスフイン型の空気熱交換器
において、前記冷媒系統3a,3b,3cを、内
面平滑管からなる伝熱管2a、螺旋角θ1の螺旋講
4,4…を内面に形成した内面加工管からなる伝
熱管2bおよび前記螺旋角θ1より小さな螺旋角θ2
の螺旋講5,5…を内面に形成した内面加工管か
らなる伝熱管2cによりそれぞれ構成するととも
に、前記伝熱管2a,2b,2cに対して直交し
且つこれらの伝熱管2a,2b,2cに共用とさ
れたフイン1,1…を配設している。
(Means for Solving the Problems) In the present invention, as a means for solving the above problems, as shown in Figures 1 to 3, the refrigerant system is arranged in three rows from the windward side to the leeward side. 3a, 3
In the cross-fin type air heat exchanger having the refrigerant systems 3a, 3b, 3c, the heat exchanger tubes 2a are made of smooth inner surfaces, and the inner surfaces are formed with spiral corners 4, 4, . . . with a helical angle of θ 1. Heat exchanger tube 2b made of a processed tube and a helical angle θ 2 smaller than the helical angle θ 1
Each of the heat exchanger tubes 2c is made of an internally processed tube with a spiral spiral 5, 5... formed on the inner surface thereof, and is orthogonal to the heat exchanger tubes 2a, 2b, 2c and is connected to these heat exchanger tubes 2a, 2b, 2c. Commonly used fins 1, 1, . . . are provided.

(作用) 本考案では、上記手段によつて、次のような作
用が得られる。
(Function) In the present invention, the following effects can be obtained by the above-mentioned means.

即ち、同じ蒸発温度であつても、伝熱管3a,
3b,3cの管外表面温度Ta,Tb,Tc(第4図
参照)が風上側から風下側にかけて順次低く(即
ち、Ta〉Tb〉Tc)になり、空気温度と伝熱管
外表面温度(換言すれば、フイン表面温度)との
温度差が風上側から風下側にかけて同じになる。
従つて、フインへの着霜は風上側、風下側にかか
わらず、均一に進行し、着霜による目詰まりの発
生までの時間が長くなるのである。
That is, even if the evaporation temperature is the same, the heat exchanger tubes 3a,
The tube outer surface temperatures Ta, Tb, and Tc (see Fig. 4) of tubes 3b and 3c gradually decrease from the windward side to the leeward side (that is, Ta〉Tb〉Tc), and the air temperature and heat transfer tube outer surface temperature (in other words, Then, the temperature difference from the fin surface temperature will be the same from the windward side to the leeward side.
Therefore, frost buildup on the fins progresses uniformly regardless of whether they are on the windward side or the leeward side, and the time until clogging occurs due to frost formation becomes longer.

(実施例) 以下、添付の図面を参照して、本考案の好適な
実施例を説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1図および第2図には、本考案の実施例が示
されている。
An embodiment of the invention is shown in FIGS. 1 and 2. FIG.

本実施例の空気熱交換器は、空気流Wに関し
て、風上側から風下側に向つて複雑列の冷媒系統
3a,3b,3cを有するクロスフイン型とされ
ている。該各冷媒系統3a,3b,3cには、分
流器7を介して冷媒が分配されるようになつてい
る。
The air heat exchanger of this embodiment is of a cross-fin type having a complicated row of refrigerant systems 3a, 3b, and 3c from the windward side to the leeward side with respect to the air flow W. Refrigerant is distributed to each of the refrigerant systems 3a, 3b, and 3c via a flow divider 7.

而して、前記冷媒系統3a,3b,3cをそれ
ぞれ構成する伝熱管2a,2b,2cには、第2
図図示の如く、これらの伝熱管2a,2b,2c
に共用とされた多数のフイン1,1…が直交状に
配設されている。
The heat exchanger tubes 2a, 2b, 2c constituting the refrigerant systems 3a, 3b, 3c, respectively, have second
As shown in the figure, these heat exchanger tubes 2a, 2b, 2c
A large number of fins 1, 1, . . . which are commonly used are arranged orthogonally.

前記伝熱管2a,2b及び2cとしては、それ
ぞれ内面が平滑な平滑管、螺旋角θ1(本実施例で
は約25°)の螺旋講4,4…を内面に形成してな
る内面加工管及び螺旋角θ2本実施例では約18°)
の螺旋講6,6…を内面に形成してなる内面加工
管が用いられている。
The heat exchanger tubes 2a, 2b, and 2c are each a smooth tube with a smooth inner surface, an inner-surface-treated tube having spiral courses 4, 4, etc. formed on the inner surface with a helical angle θ 1 (approximately 25° in this embodiment), and Helix angle θ 2 : Approximately 18° in this example)
An internally processed pipe is used in which spiral grooves 6, 6, . . . are formed on the inner surface.

つまり、前記伝熱管2a,2b,2cは、風上
側より風下側の方が相対的に高い熱伝達性能を有
する管体で構成されているのである。因に、螺旋
講を有する内面加工管における螺旋講の螺旋角θ
に対する冷媒側熱伝達率kの変化は、第4図図示
の如くである。これによれば、螺旋角θが大きく
なると、冷媒側熱伝達率kが小さくなつている。
In other words, the heat transfer tubes 2a, 2b, and 2c are constructed of tube bodies that have relatively higher heat transfer performance on the leeward side than on the windward side. Incidentally, the helical angle θ of the spiral in an internally machined pipe with a spiral
The change in the refrigerant side heat transfer coefficient k with respect to the temperature is as shown in FIG. According to this, as the helical angle θ increases, the refrigerant side heat transfer coefficient k decreases.

上記構成の空気熱交換器は、次のように作用す
る。
The air heat exchanger having the above structure operates as follows.

この空気熱交換器をヒートポンプ式空気調和機
の室外コイルとして使用する場合、伝熱管2a,
2b,2cの熱伝達性能が順次高くなつているた
め、それらの管外表面温度(換言すれば、フイン
表面温度)Ta,Tb,Tcが順次低くなり、その
結果、空気温度とフイン表面温度との温度差が風
上側と風上側とで殆ど同じになる。従つて、各フ
イン1,1…への着霜の進行が均一化され、着霜
dによる目詰まり発生までの時間が長くなる。つ
まり、着霜時の能力低下が少なくなるとともに、
除霜運転頻度も少なくなり、平均暖房能力が向上
するのである。
When using this air heat exchanger as an outdoor coil of a heat pump type air conditioner, the heat exchanger tube 2a,
As the heat transfer performance of 2b and 2c gradually increases, their tube outer surface temperatures (in other words, fin surface temperatures) Ta, Tb, and Tc gradually decrease, and as a result, the air temperature and fin surface temperature decrease. The temperature difference between the windward and windward sides is almost the same. Therefore, the progress of frost formation on each fin 1, 1, . . . is made uniform, and the time until clogging occurs due to frost formation d is lengthened. In other words, there is less decline in performance during frost formation, and
The frequency of defrosting operations also decreases, and the average heating capacity improves.

(考案の効果) 叙上の如く、本考案によれば、風上側から風下
側に向つて3列の冷媒系統3a,3b,3cを有
するクロスフイン型の空気熱交換器において、前
記冷媒系統3a,3b,3cを、内面平滑管から
なる伝熱管2a、螺旋角θ1の螺旋講4,4…を内
面に形成した内面加工管からなる伝熱管2bおよ
び前記螺旋角θ1より小さな螺旋角θ2の螺旋講5,
5…を内面に形成した内面加工管からなる伝熱管
2cによりそれぞれ構成するとともに、前記伝熱
管2a,2b,2cに対して直交し且つこれらの
伝熱管2a,2b,2cに共用とされたフインフ
イン1,1…を配設したので、伝熱管3a,3
b,3cの管外表面温度Ta,Tb,Tcが風上側
から風下側にかけて順次低くなるところから、空
気温度とフイン表面温度との温度差が風上側と風
下側とでほぼ同じとなり、フイン1,1…への着
霜が均一に進行することとなる。従つて、着霜に
よる風量低下が非常に少なくなるとともに、着霜
による目詰まり発生までの時間が長くなる。この
ことは、ヒートポンプ式空気調和機の室外コイル
として低外気温下で暖房運転する場合、除霜運転
頻度を大幅に減少することに寄与し、平均暖房能
力の向上および成績係数の向上に寄与すること大
である。
(Effects of the invention) As described above, according to the invention, in a cross-fin type air heat exchanger having three rows of refrigerant systems 3a, 3b, and 3c from the windward side to the leeward side, the refrigerant systems 3a, 3b and 3c are a heat exchanger tube 2a made of a smooth inner surface tube, a heat exchanger tube 2b made of an inner surface processed tube with spiral corners 4 , 4, . Spiral course 5,
Each of the heat exchanger tubes 2c is made of an inner-processed tube with 5... formed on the inner surface, and a fin fin is orthogonal to the heat exchanger tubes 2a, 2b, 2c and shared by these heat exchanger tubes 2a, 2b, 2c. Since heat exchanger tubes 3a, 3... are arranged, heat exchanger tubes 3a, 3
Since the tube outer surface temperatures Ta, Tb, and Tc of tubes b and 3c gradually decrease from the windward side to the leeward side, the temperature difference between the air temperature and the fin surface temperature is almost the same on the windward and leeward sides, and the fin 1 , 1... will progress uniformly. Therefore, the reduction in air volume due to frost formation is extremely small, and the time until clogging occurs due to frost formation is lengthened. This contributes to a significant reduction in the frequency of defrosting operations when used as an outdoor coil in a heat pump air conditioner for heating operation at low outside temperatures, contributing to an improvement in the average heating capacity and coefficient of performance. It's a big deal.

また、フイン1,1…を伝熱管2a,2b,2
cに対して共用としているので、部品の共用化に
よるコストダウンおよびコンパクト化を図ること
も可能となるという利点もある。
In addition, the fins 1, 1... are connected to the heat transfer tubes 2a, 2b, 2
Since it is shared with respect to c, there is also the advantage that it is possible to reduce costs and make it more compact by sharing parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の実施例にかかる空気熱交換
器の概略を示す側面図、第2図は、第1図の空気
熱交換器の要部断面図、第3図は、螺旋講を有す
る内面加工管における螺旋講の螺旋角θに対する
冷媒側熱伝達率kの変化を示す特性図、第4図
は、本考案実施例にかかる空気熱交換器における
各冷媒系統での伝熱管外表面温度、空気温度およ
び蒸発温度を示す特性図、第5図は、従来例の空
気熱交換器の要部断面図である。 2a,2b……伝熱管、3a,3b……冷媒系
統。
Fig. 1 is a side view schematically showing an air heat exchanger according to an embodiment of the present invention, Fig. 2 is a sectional view of the main part of the air heat exchanger of Fig. 1, and Fig. 3 is a spiral plan view. FIG. 4 is a characteristic diagram showing the change in the refrigerant side heat transfer coefficient k with respect to the helical angle θ of the spiral in the inner surface processed pipe, and FIG. FIG. 5, a characteristic diagram showing temperature, air temperature, and evaporation temperature, is a sectional view of a main part of a conventional air heat exchanger. 2a, 2b... Heat exchanger tube, 3a, 3b... Refrigerant system.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 風上側から風下側に向つて3列の冷媒系統3
a,3b,3cを有するクロスフイン型の空気熱
交換器において、前記冷媒系統3a,3b,3c
を、内面平滑管からなる伝熱管2a、螺旋角θ1
螺旋溝4,4…を内面に形成した内面加工管から
なる伝熱管2bおよび前記螺旋角θ1より小さな螺
旋角θ2の螺旋溝5,5…を内面に形成した内面加
工管からなる伝熱管2cによりそれぞれ構成する
とともに、前記伝熱管2a,2b,2cに対して
直交し且つこれらの伝熱管2a,2b,2cに共
用とされたフイン1,1…を配設したことを特徴
とする空気熱交換器。
Refrigerant system 3 in three rows from the windward side to the leeward side
In the cross-fin type air heat exchanger having the refrigerant systems 3a, 3b, 3c,
A heat exchanger tube 2a made of a smooth inner surface, a heat exchanger tube 2b made of an inner surface processed tube having spiral grooves 4 , 4 , . Each of the heat exchanger tubes 2c is made of an inner-processed tube with 5, 5, . An air heat exchanger characterized in that fins 1, 1... are arranged.
JP1985119531U 1985-08-02 1985-08-02 Expired JPH0443756Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985119531U JPH0443756Y2 (en) 1985-08-02 1985-08-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985119531U JPH0443756Y2 (en) 1985-08-02 1985-08-02

Publications (2)

Publication Number Publication Date
JPS6229555U JPS6229555U (en) 1987-02-23
JPH0443756Y2 true JPH0443756Y2 (en) 1992-10-15

Family

ID=31006989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985119531U Expired JPH0443756Y2 (en) 1985-08-02 1985-08-02

Country Status (1)

Country Link
JP (1) JPH0443756Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171446A1 (en) * 2020-02-27 2021-09-02 三菱電機株式会社 Heat exchanger of heat source-side unit, and heat pump device equipped with said heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051420B2 (en) * 1990-03-02 2000-06-12 株式会社日立製作所 Air conditioner and method of manufacturing indoor heat exchanger used for the device
JP5378782B2 (en) * 2008-12-26 2013-12-25 カルソニックカンセイ株式会社 Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0125909Y2 (en) * 1984-11-13 1989-08-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021171446A1 (en) * 2020-02-27 2021-09-02 三菱電機株式会社 Heat exchanger of heat source-side unit, and heat pump device equipped with said heat exchanger
JPWO2021171446A1 (en) * 2020-02-27 2021-09-02

Also Published As

Publication number Publication date
JPS6229555U (en) 1987-02-23

Similar Documents

Publication Publication Date Title
JP2002188895A (en) Tube structure of microchannel heat exchanger
US6412549B1 (en) Heat transfer pipe for refrigerant mixture
JP3264525B2 (en) Heat exchanger
JPH08247678A (en) Heat-exchanger made of aluminum
JPH0443756Y2 (en)
JPS61153498A (en) Finned heat exchanger
JP3430909B2 (en) Air conditioner
JPH03102193A (en) Condenser
JPH02166394A (en) Heat exchanger with fin
JPH0245729Y2 (en)
JP2811601B2 (en) Heat exchanger
JP3421130B2 (en) Air conditioner
JPH11230638A (en) Heat exchanger
JPS61159094A (en) Finned heat exchanger
JPH0297897A (en) Fin tube type heat exchanger
JP2001004291A (en) Heat exchanger and method for manufacturing same
CN217274514U (en) Air conditioning system and heat exchanger
JPH058354U (en) Heat exchanger
JPH0612230B2 (en) Heat exchanger
JPS63150589A (en) Heat exchanger with fins
JPH0125909Y2 (en)
JPS6133432Y2 (en)
JPS6340762Y2 (en)
JPS63306396A (en) Finned heat exchanger
JP2733361B2 (en) Heat exchanger manufacturing method