JP6147576B2 - Operation method of heat pump water heater - Google Patents

Operation method of heat pump water heater Download PDF

Info

Publication number
JP6147576B2
JP6147576B2 JP2013118475A JP2013118475A JP6147576B2 JP 6147576 B2 JP6147576 B2 JP 6147576B2 JP 2013118475 A JP2013118475 A JP 2013118475A JP 2013118475 A JP2013118475 A JP 2013118475A JP 6147576 B2 JP6147576 B2 JP 6147576B2
Authority
JP
Japan
Prior art keywords
heat pump
refrigerant
amount
temperature
heating capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013118475A
Other languages
Japanese (ja)
Other versions
JP2014234977A (en
Inventor
誠 川瀬
誠 川瀬
寛基 木口
寛基 木口
昭彦 片木
昭彦 片木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kitanihon Electric Cable Co Ltd
Nihon Itomic Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kitanihon Electric Cable Co Ltd
Nihon Itomic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kitanihon Electric Cable Co Ltd, Nihon Itomic Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2013118475A priority Critical patent/JP6147576B2/en
Publication of JP2014234977A publication Critical patent/JP2014234977A/en
Application granted granted Critical
Publication of JP6147576B2 publication Critical patent/JP6147576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、寒冷地に好適なヒートポンプ給湯装置の運転方法に関する。
The present invention relates to a driving method of the preferred heat pump water heater in cold climates.

一般的な市販の家庭用・業務用ヒートポンプ給湯装置は、第1熱交換器、圧縮機、第2熱交換器、膨張弁を順次接続した冷媒回路に冷媒を循環させることにより、第1熱交換器で熱交換により冷媒に熱を吸収させ、圧縮機で冷媒を圧縮してさらに高温にし、第2熱交換器で冷媒から熱交換により熱を放出させ、膨張弁で冷媒を膨張させるよう構成されている。そして、この構成により、ヒートポンプ給湯装置は、第2熱交換器で放出される熱を利用して湯を沸かすことができる。   General commercial heat pump water heaters for home and business use the first heat exchanger by circulating the refrigerant through a refrigerant circuit in which a first heat exchanger, a compressor, a second heat exchanger, and an expansion valve are sequentially connected. The heat is absorbed in the refrigerant by heat exchange in the condenser, the refrigerant is compressed to a higher temperature by the compressor, the heat is released from the refrigerant by heat exchange in the second heat exchanger, and the refrigerant is expanded by the expansion valve. ing. And by this structure, the heat pump hot-water supply apparatus can boil hot water using the heat discharge | released with a 2nd heat exchanger.

社団法人日本冷凍空調工業会(JRAIA)は、このヒートポンプ給湯装置について、JRA規格(JRA 4050:2007R、JRA 4050:2009、JRA 4060:2009)を定めており、特に、冷媒量については、外気温16℃のときの加熱能力の表示が規定されている。このため、一般の家庭用・業務用ヒートポンプ給湯装置は、冷媒量を、外気温16℃で加熱能力が最大となる標準冷媒量(以下、「標準冷媒量」という)に調整して市販されているのが実情である。なお、この「標準冷媒量」は、ヒートポンプ給湯装置の大きさ等によって異なっており、市販の最も小さい装置では、標準冷媒量が1.6kgよりも少なく、最も大きい装置では、標準冷媒量が14.2kgよりも多くなっている。本発明者等は「標準冷媒量」が11.3kgと14.2kgの市販の装置で実験を行っており、本発明でいう「標準冷媒量」は、「11.0kg〜14.5kg」の範囲とする。   The Japan Refrigeration and Air Conditioning Industry Association (JRAIA) has established JRA standards (JRA 4050: 2007R, JRA 4050: 2009, JRA 4060: 2009) for this heat pump hot water supply device. The display of the heating capacity at 16 ° C. is specified. For this reason, general household and commercial heat pump water heaters are commercially available with the refrigerant amount adjusted to a standard refrigerant amount (hereinafter referred to as “standard refrigerant amount”) that maximizes the heating capacity at an ambient temperature of 16 ° C. The fact is. The “standard refrigerant amount” varies depending on the size of the heat pump hot water supply device and the like. The smallest commercially available device has a standard refrigerant amount of less than 1.6 kg, and the largest device has a standard refrigerant amount of 14 More than 2kg. The present inventors have conducted experiments with commercially available apparatuses having “standard refrigerant amount” of 11.3 kg and 14.2 kg, and the “standard refrigerant amount” in the present invention is “11.0 kg to 14.5 kg”. Range.

しかし、北海道や東北地方などの寒冷地では、冬季と夏季の外気温差が大きく、しかも年間を通して外気温が16℃以下である日が多いため、標準冷媒量に調整されたヒートポンプ給湯装置であっても、最大の能力を発揮して運転されることは殆どなく、むしろ加熱能力が低下してしまうという問題が生じている。   However, in cold regions such as Hokkaido and Tohoku, there are many differences in the outside temperature between winter and summer, and the outside temperature is often below 16 ° C throughout the year. However, it is rarely operated with the maximum capability, but rather the heating capability is reduced.

特許文献1には、このような問題に対して、冬季と夏季の年間を通じて安定した一定の最適温度の給湯を可能にするために、冬季と夏季の冷媒量の差を吸収するバッファーを設けたヒートポンプ給湯装置が記載されている。しかし、このようなヒートポンプ給湯装置では、バッファーや冷媒制御回路を設ける必要があるために、生産コストが高くなるという問題があるばかりか、平均外気温が16℃以下の条件では、バッファーの設置だけでは加熱能力の低下を解決するのに十分ではないという問題がある。   To solve such a problem, Patent Document 1 is provided with a buffer that absorbs the difference in refrigerant amount between winter and summer in order to enable hot water supply at a constant temperature that is stable throughout the winter and summer. A heat pump water heater is described. However, in such a heat pump hot water supply apparatus, since it is necessary to provide a buffer and a refrigerant control circuit, there is a problem that the production cost becomes high. Then, there is a problem that it is not enough to solve the decrease in heating capacity.

特開2004−132606号公報JP 2004-132606 A

本発明者等は、このような寒冷地の事情に着目して、先ず、東北地方の実態調査を行った。その結果、表1に示すように、寒冷地を代表する青森市や盛岡市では、年間を通して、社団法人日本冷凍空調工業会による外気温条件(JRA標準)よりも平均外気温が低く、また中間期(春期、秋期)および冬期の平均気温が16℃を下回っており、夏期以外のほとんどの時期で16℃以下であることが確認された。なお、表1の青森市および盛岡市の平均外気温は、社団法人日本冷凍空調工業会による算出方法と同じ方法で算出したものである。   The inventors first conducted a survey of the actual situation in the Tohoku region, paying attention to the circumstances of such cold regions. As a result, as shown in Table 1, in Aomori City and Morioka City, which are representative of cold regions, the average outside temperature is lower than the outside temperature conditions (JRA standard) by the Japan Refrigeration and Air Conditioning Industry Association throughout the year. The average temperature in the seasons (spring and autumn) and winter was below 16 ° C, and it was confirmed that it was below 16 ° C in most periods except summer. In addition, the average outside temperature of Aomori City and Morioka City in Table 1 is calculated by the same method as that calculated by the Japan Refrigeration and Air Conditioning Industry Association.

そこで、青森市や盛岡市において、外気温が16℃以下の条件下で、標準冷媒量に調整された市販のヒートポンプ給湯装置(冷媒量:11.3Kg)を使ってその性能試験を行ったところ、両市では、ヒートポンプ給湯装置の加熱能力が低下することが明らかになった。   Therefore, in Aomori City and Morioka City, performance tests were conducted using a commercially available heat pump water heater (refrigerant amount: 11.3 kg) adjusted to the standard refrigerant amount under conditions where the outside air temperature was 16 ° C or lower. In both cities, it became clear that the heating capacity of the heat pump water heater decreased.

本発明は、このような問題に鑑みなされたものであり、寒冷地に好適なヒートポンプ給湯装置の運転方法を提供することを目的とするものである。
This invention is made | formed in view of such a problem, and it aims at providing the operating method of the heat pump hot-water supply apparatus suitable for a cold region.

本発明者等は、上記目的を達成するために鋭意検討を行ったところ、平均外気温が16℃以下の寒冷地では、外気から吸熱したときに、冷媒量が必要以上に過剰であれば、その過剰な冷媒が凝縮器において液冷媒で留まる割合が多くなり、伝熱効率が低下し、ヒートポンプの加熱能力を下げてしまうこと、また、冷媒が過剰な場合には高圧が上昇するため、その上昇を回避するために膨張弁が開き、その結果、過熱度が取れなくなり圧縮機吐出口温度が低下してヒートポンプの加熱能力を下げてしまうことを知見し、本発明に至ったものである。   The inventors of the present invention have made extensive studies to achieve the above object.In a cold district where the average outside air temperature is 16 ° C. or lower, if the refrigerant amount is excessive when it absorbs heat from the outside air, The proportion of the excess refrigerant remaining in the condenser in the condenser increases, heat transfer efficiency decreases, the heating capacity of the heat pump decreases, and if the refrigerant is excessive, the high pressure increases, so the increase In order to avoid this, the expansion valve is opened, and as a result, it has been found that the degree of superheat cannot be obtained, the compressor discharge port temperature is lowered, and the heating capacity of the heat pump is lowered, and the present invention has been achieved.

すなわち、本発明に係るヒートポンプ給湯装置の運転方法は、加熱能力50kW〜80kWのヒートポンプ給湯装置の運転方法であって、外気温16℃のときの加熱能力が最大になる標準冷媒量11.0kg〜14.5kgに対して、前記ヒートポンプ給湯装置の冷媒量を該標準冷媒量の80%乃至92%の範囲に調整すると共に、外気温8℃〜−10℃の条件で運転して、加熱能力比を101%〜104%に向上させることを特徴とする。
That is, the operation method of the heat pump hot water supply apparatus according to the present invention is an operation method of a heat pump hot water supply apparatus having a heating capacity of 50 kW to 80 kW, and a standard refrigerant amount of 11.0 kg that maximizes the heating capacity at an outside temperature of 16 ° C. With respect to 14.5 kg, the amount of refrigerant of the heat pump hot water supply device is adjusted to a range of 80% to 92% of the standard refrigerant amount, and is operated under the condition of an outside air temperature of 8 ° C to -10 ° C. Is improved to 101% to 104% .

本発明に係るヒートポンプ給湯装置の運転方法は、特に、前記外気温が10℃〜−10℃であることが好ましい。
As for the operating method of the heat pump hot-water supply apparatus which concerns on this invention, it is preferable that the said external temperature is 10 to -10 degreeC especially .

本発明に係るヒートポンプ装置の運転方法では、標準冷媒量よりも冷媒量を減らして運転することにより、外気温16℃以下の条件での加熱能力を高めることができる。このため、平均外気温が16℃以下の寒冷地での加熱性能を向上させることができる。特に、冷媒量を標準冷媒量の80%乃至92%にすることにより、外気温が8℃〜−10℃のときの加熱能力を高めることができ、寒冷地で効率的に運転することができる。
In the operation method of the heat pump device according to the present invention, the heating capacity under the condition of the outside air temperature of 16 ° C. or less can be increased by operating with the refrigerant amount being reduced from the standard refrigerant amount. For this reason, the heating performance in a cold district where the average outside air temperature is 16 ° C. or less can be improved. In particular, by setting the refrigerant amount to 80% to 92% of the standard refrigerant amount, it is possible to increase the heating capacity when the outside air temperature is 8 ° C. to −10 ° C., and it is possible to operate efficiently in a cold region. .

また、本発明に関し、ヒートポンプ給湯装置は、熱交換により冷媒に熱を吸収・放出させる熱交換器と、該熱交換器から供給された前記冷媒を圧縮する圧縮機と、前記冷媒を膨張させる膨張弁とを有する、加熱能力50kW〜80kWのヒートポンプ給湯装置であって、前記冷媒量が、外気温16℃のときの加熱能力が最大になる標準冷媒量11.0kg〜14.5kgに対して、80%乃至92%の範囲に調整されていることを特徴とする。
Also relates to the present invention, the heat pump water heater includes a compressor for compressing the heat exchanger to absorb and release heat to the refrigerant by heat exchange, the refrigerant supplied from the heat exchanger, expanding the refrigerant A heat pump water heater having an expansion valve and a heating capacity of 50 kW to 80 kW, wherein the refrigerant amount is 11.0 kg to 14.5 kg with a maximum amount of heating capacity when the ambient temperature is 16 ° C. , 80% to 92% .

本発明に関するヒートポンプ装置では、標準冷媒量よりも冷媒量が少ないため、外気温16℃以下での加熱能力を高めることができる。このため、平均外気温が16℃以下の寒冷地での加熱性能を向上させることができる。特に、冷媒量を標準冷媒量の80%乃至92%にすることにより、外気温が8℃〜−10℃のときの加熱能力を高めることができ、寒冷地で効率的に使用することができる。
In the heat pump device according to the present invention, the amount of refrigerant is less than the standard amount of refrigerant, so that the heating capacity at an outside temperature of 16 ° C. or less can be increased. For this reason, the heating performance in a cold district where the average outside air temperature is 16 ° C. or less can be improved. In particular, by setting the refrigerant amount to 80% to 92% of the standard refrigerant amount, the heating capacity when the outside air temperature is 8 ° C. to −10 ° C. can be increased, and it can be used efficiently in cold regions. .

本発明によれば、寒冷地に好適なヒートポンプ給湯装置の運転方法を提供することができる。また、平均外気温が16℃以下になることが多い寒冷地では、ヒートポンプ給湯装置の加熱能力を市販のものと比べて向上させることができるため、寒冷地でのヒートポンプ給湯装置の普及・拡販に貢献することができる。
ADVANTAGE OF THE INVENTION According to this invention, the operating method of the heat pump hot-water supply apparatus suitable for a cold region can be provided. Also, in cold regions where the average outside air temperature often falls below 16 ° C, the heating capacity of the heat pump water heater can be improved compared to the commercially available one, so that the heat pump water heater can be widely used and expanded in cold regions. Can contribute.

本発明の実施の形態のヒートポンプ給湯装置を示す全体構成図である。It is a whole lineblock diagram showing the heat pump hot-water supply apparatus of an embodiment of the invention. 本発明の実施の形態のヒートポンプ給湯装置の、外気温8℃における冷媒量と加熱能力との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant amount in the external temperature of 8 degreeC, and a heating capability of the heat pump hot-water supply apparatus of embodiment of this invention. 本発明の実施の形態のヒートポンプ給湯装置の、冷媒量が標準冷媒量の87%のときおよび標準冷媒量のときの、外気温度に対する加熱能力を示すグラフである。It is a graph which shows the heating capability with respect to external temperature when the refrigerant | coolant amount is 87% of a standard refrigerant | coolant amount and the standard refrigerant | coolant amount of the heat pump hot-water supply apparatus of embodiment of this invention. 本発明の実施の形態のヒートポンプ給湯装置の、外気温−7℃における冷媒量と加熱能力との関係を示すグラフである。It is a graph which shows the relationship between the refrigerant | coolant amount and heating capability in the external temperature -7 degreeC of the heat pump hot-water supply apparatus of embodiment of this invention.

以下、図面に基づき、本発明の実施の形態について説明する。
図1は、本発明の実施の形態のヒートポンプ給湯装置の運転方法およびヒートポンプ給湯装置を示している。
図1に示すように、ヒートポンプ給湯装置10は、第1熱交換器11と圧縮機12と第2熱交換器13と膨張弁14とを有している。ヒートポンプ給湯装置10は、第1熱交換器11、圧縮機12、第2熱交換器13、膨張弁14を順次接続した冷媒回路15に冷媒を循環して使用されるようになっている。なお、本発明の実施の形態のヒートポンプ給湯装置の運転方法は、ヒートポンプ給湯装置10により好適に実施される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an operation method of a heat pump water heater and a heat pump water heater according to an embodiment of the present invention.
As shown in FIG. 1, the heat pump hot water supply apparatus 10 includes a first heat exchanger 11, a compressor 12, a second heat exchanger 13, and an expansion valve 14. The heat pump hot water supply device 10 is used by circulating a refrigerant through a refrigerant circuit 15 in which a first heat exchanger 11, a compressor 12, a second heat exchanger 13, and an expansion valve 14 are sequentially connected. The operation method of the heat pump hot water supply apparatus according to the embodiment of the present invention is preferably implemented by the heat pump hot water supply apparatus 10.

第1熱交換器11は、蒸発器から成り、熱交換により外気から熱を奪い、その熱を冷媒に吸収させるようになっている。圧縮機12は、第1熱交換器11から供給された冷媒を圧縮して、冷媒の温度をさらに高めるようになっている。第2熱交換器13は、凝縮器から成り、給湯に使用するための水が内部を通過するよう構成されている。第2熱交換器13は、圧縮機12から供給された冷媒から熱交換により熱を放出させ、その熱で給湯用の水を加熱するようになっている。   The 1st heat exchanger 11 consists of an evaporator, takes heat from outside air by heat exchange, and makes the refrigerant absorb it. The compressor 12 compresses the refrigerant supplied from the first heat exchanger 11 to further increase the temperature of the refrigerant. The 2nd heat exchanger 13 consists of a condenser, and is comprised so that the water for using for hot water supply may pass through an inside. The second heat exchanger 13 releases heat from the refrigerant supplied from the compressor 12 by heat exchange, and heats hot water using the heat.

膨張弁14は、第2熱交換器13から供給された冷媒を膨張して冷媒の温度をさらに低下させた後、第1熱交換器11に冷媒を供給するようになっている。冷媒は、二酸化炭素(CO)から成っている。また、冷媒は、圧縮機12の潤滑油としての油を含んでいる。ヒートポンプ給湯装置10は、第2熱交換器13で水を加熱して沸かしたお湯を貯湯槽等に蓄えるなどして、給湯を行うよう構成されている。 The expansion valve 14 expands the refrigerant supplied from the second heat exchanger 13 to further reduce the temperature of the refrigerant, and then supplies the refrigerant to the first heat exchanger 11. The refrigerant is made of carbon dioxide (CO 2 ). Further, the refrigerant contains oil as lubricating oil for the compressor 12. The heat pump hot water supply apparatus 10 is configured to supply hot water by, for example, storing hot water boiled by heating water in the second heat exchanger 13 in a hot water storage tank or the like.

また、ヒートポンプ給湯装置10は、アキュムレータ(液分離器)16と油・液戻し制御弁17とデフロスト弁18とを有している。アキュムレータ16は、第1熱交換器11と圧縮機12との間の冷媒回路15に配置され、圧縮機12での液圧縮を防止するため、冷媒を気液分離させて気体の冷媒だけを圧縮機12に送るよう構成されている。油・液戻し制御弁17は、アキュムレータ16の底部から圧縮機12の上流に伸びる配管17aに設けられ、アキュムレータ16で分離された液状の冷媒と油とを圧縮機12へ戻す際に、その量を調節するために設けられている。デフロスト弁18は、圧縮機12の下流と第1熱交換器11の上流とを接続する配管18aに設けられ、第1熱交換器11に霜がつくのを防ぐために、圧縮機12で高温にされた冷媒を第1熱交換器11に供給する際に、その量を調整するために設けられている。   The heat pump hot water supply apparatus 10 includes an accumulator (liquid separator) 16, an oil / liquid return control valve 17, and a defrost valve 18. The accumulator 16 is disposed in the refrigerant circuit 15 between the first heat exchanger 11 and the compressor 12, and in order to prevent liquid compression in the compressor 12, the refrigerant is separated into gas and liquid to compress only the gaseous refrigerant. It is configured to send to the machine 12. The oil / liquid return control valve 17 is provided in a pipe 17 a extending from the bottom of the accumulator 16 to the upstream of the compressor 12, and when returning the liquid refrigerant and oil separated by the accumulator 16 to the compressor 12, It is provided to adjust. The defrost valve 18 is provided in a pipe 18 a connecting the downstream of the compressor 12 and the upstream of the first heat exchanger 11. The defrost valve 18 is heated to a high temperature by the compressor 12 in order to prevent the first heat exchanger 11 from frosting. When the supplied refrigerant is supplied to the first heat exchanger 11, it is provided to adjust the amount of the refrigerant.

[冷媒量の検討]
ヒートポンプ給湯装置10は、寒冷地での加熱能力を高めるために、以下のようにして冷媒量を設定している。まず、割安な夜間電力を利用することを考慮して、寒冷地の青森市や盛岡市での夜間(22時〜8時)の中間期(春期、秋期)の平均外気温を求め、表2に示す。表2に示すように、中間期の夜間平均気温は、青森市で8.6℃、盛岡市で7.8℃であり、この2都市の平均は8.2℃であった。
[Examination of refrigerant amount]
The heat pump hot water supply apparatus 10 sets the amount of refrigerant as follows in order to increase the heating capability in a cold region. First, taking into account the use of cheap nighttime electricity, the average outside air temperature in the middle of the night (22:00 to 8:00) in the cold regions of Aomori and Morioka (from 22:00 to 8:00) was calculated. Shown in As shown in Table 2, the average nighttime temperatures during the interim period were 8.6 ° C in Aomori City and 7.8 ° C in Morioka City, and the average of these two cities was 8.2 ° C.

一般的に給湯の使用量は、冬期が多く、夏期は少ない。また、空冷式の場合には、冬期は加熱能力が低く生成湯量も少ないが、夏期は加熱能力が高く生成湯量が多い。このことから、ヒートポンプ給湯機では、給湯使用量が多く、生成湯量の少ない冬期における性能向上が重要であり、寒冷地においては、中間期の夜間平均気温の約8℃以下での性能向上が特に効果的である。なお、0℃以下における性能向上は、湯切れ発生回避効果も得られる。   In general, the amount of hot water used is large in winter and small in summer. In the case of the air-cooled type, the heating capacity is low and the amount of generated hot water is low in winter, but the heating capacity is high and the amount of generated hot water is large in summer. For this reason, it is important to improve the performance in winter when the amount of hot water used is large and the amount of hot water generated is small in a heat pump water heater. It is effective. In addition, the performance improvement in 0 degrees C or less can also obtain the hot water outbreak generation avoidance effect.

そこで、中間期の夜間平均気温の約8℃以下での性能向上が特に効果的であることから、外気温8℃における種々の冷媒量比について実験を行って、ヒートポンプ給湯装置10の加熱能力を調べた。この実験は、具体的には、室温を一定に保つことができる環境試験室(恒温槽)内にヒートポンプ給湯装置10を設置し、室温を8℃で一定に調整した状態でヒートポンプ給湯装置10を運転させて行った。実験は、冷媒量を標準冷媒量の100%から76%まで変化させながら、給水温度、給湯温度、生成湯量を計測し、加熱能力を算出するという方法で実施し、図2および表3に示すような結果が得られた。   Therefore, since the performance improvement at about 8 ° C. or less of the average nighttime temperature during the intermediate period is particularly effective, experiments on various refrigerant amount ratios at the outside air temperature of 8 ° C. are performed, and the heating capacity of the heat pump water heater 10 is increased. Examined. Specifically, in this experiment, the heat pump water heater 10 is installed in an environmental test chamber (a constant temperature bath) that can keep the room temperature constant, and the room temperature is adjusted to 8 ° C. I drove it. The experiment was performed by measuring the feed water temperature, the hot water supply temperature, the amount of generated hot water and calculating the heating capacity while changing the refrigerant amount from 100% to 76% of the standard refrigerant amount, as shown in FIG. 2 and Table 3. The result was obtained.

なお、この実験では、標準冷媒量が「11.3kg」のインバータ制御のヒートポンプ給湯装置を使用している。このヒートポンプ給湯装置は、16℃における加熱能力が、標準モード(消費電力16.1kW)のとき、67.5kW、省エネモード(消費電力11.4kW)のとき、50.0kW、パワーモード(消費電力21.0kW)のとき、80.0kWである。本実験は、標準モードで行っている。図2および表3の冷媒量を変化させたときの加熱能力比は、標準冷媒量の加熱能力を100%としたときの割合で示している。   In this experiment, an inverter-controlled heat pump water heater with a standard refrigerant amount of “11.3 kg” is used. This heat pump water heater has a heating capacity at 16 ° C. of 67.5 kW when in the standard mode (power consumption 16.1 kW), 50.0 kW when in the energy saving mode (power consumption 11.4 kW), and power mode (power consumption) 20.0 kW), it is 80.0 kW. This experiment is performed in the standard mode. The heating capacity ratio when the refrigerant quantity in FIG. 2 and Table 3 is changed is shown as a ratio when the heating capacity of the standard refrigerant quantity is 100%.

図2および表3に示すように、冷媒量が標準冷媒量の80%、84%、87%、89%、92%のとき、その加熱能力が標準冷媒量の場合と比べて向上していることが確認された。特に、87%の場合に最も向上していることが確認されたが、一方で76%の場合には加熱能力が向上しないことも確認された。
As shown in FIG. 2 and Table 3, when the refrigerant amount is 80%, 84%, 87%, 89%, and 92% of the standard refrigerant amount, the heating capacity is improved as compared with the standard refrigerant amount. It was confirmed. In particular, it was confirmed that the improvement was the highest at 87%, while it was also confirmed that the heating ability was not improved at 76%.

そこで、次に、図2および表3で最も加熱能力が高かった87%の場合について、種々の外気温度における加熱能力を試験したところ、図3および表4に示すような結果が得られた。図3および表4は、冷媒量が標準冷媒量の87%の場合の外気温度に対する加熱能力と、標準冷媒量の場合の外気温度に対する加熱能力とを比較したものである。   Then, next, when the heating capacity at 87%, the highest heating capacity in FIG. 2 and Table 3, was tested at various outside air temperatures, the results shown in FIG. 3 and Table 4 were obtained. FIG. 3 and Table 4 compare the heating capability with respect to the outside temperature when the refrigerant amount is 87% of the standard refrigerant amount and the heating capability with respect to the outside temperature in the case of the standard refrigerant amount.

表4に示すように、冷媒量が標準冷媒量の87%の場合、ヒートポンプを運転する外気温度が16℃を超えたとき、および−20℃のときには、加熱能力の向上は見られず、−10℃から7℃の範囲で加熱能力の向上が確認された。図3では、外気温度が10℃〜−10℃のとき、加熱能力が向上していることが確認された。   As shown in Table 4, when the refrigerant amount is 87% of the standard refrigerant amount, when the outside air temperature at which the heat pump is operated exceeds 16 ° C., and when it is −20 ° C., the heating capacity is not improved. Improvement in heating capacity was confirmed in the range of 10 ° C to 7 ° C. In FIG. 3, it was confirmed that the heating ability was improved when the outside air temperature was 10 ° C. to −10 ° C.

以上の結果から、外気温が16℃以下の寒冷地では、ヒートポンプ給湯装置10の運転は、冷媒量を標準冷媒量に対して80%乃至92%に設定して行うことが加熱能力の向上にとって好ましく、また、外気温が−10℃〜10℃の場合に、より好ましいことが確認できた。
From the above results, in the cold district where the outside air temperature is 16 ° C. or less, the operation of the heat pump hot water supply apparatus 10 is performed by setting the refrigerant amount to 80% to 92% with respect to the standard refrigerant amount in order to improve the heating capacity. It was also confirmed that it was more preferable when the outside air temperature was −10 ° C. to 10 ° C.

次に、特に寒いときのヒートポンプ給湯装置10の加熱能力を調べるために、外気温−7℃における種々の冷媒量比について実験を行った。この実験は、具体的には、室温を一定に保つことができる環境試験室(恒温槽)内にヒートポンプ給湯装置10を設置し、室温を−7℃で一定に調整した状態でヒートポンプ給湯装置10を運転させて行った。実験は、冷媒量を標準冷媒量の100%から79%まで変化させながら、給水温度、給湯温度、生成湯量を計測し、加熱能力を算出するという方法で実施し、図4および表5に示すような結果が得られた。   Next, in order to investigate the heating capability of the heat pump water heater 10 when it is particularly cold, experiments were conducted on various refrigerant amount ratios at an outside temperature of −7 ° C. Specifically, in this experiment, the heat pump water heater 10 is installed in an environmental test chamber (a constant temperature bath) that can keep the room temperature constant, and the room temperature is adjusted to -7 ° C. at a constant temperature. It was made to drive. The experiment was carried out by measuring the feed water temperature, the hot water supply temperature, the amount of generated hot water and calculating the heating capacity while changing the refrigerant amount from 100% to 79% of the standard refrigerant amount, as shown in FIG. 4 and Table 5. The result was obtained.

なお、この実験では、標準冷媒量が「14.2kg」の一定速のヒートポンプ給湯装置を使用している。このヒートポンプ給湯装置は、16℃における加熱能力が、67.5kWである。図4および表5の冷媒量を変化させたときの加熱能力比は、標準冷媒量の加熱能力を100%としたときの割合で示している。   In this experiment, a constant-speed heat pump water heater with a standard refrigerant amount of “14.2 kg” is used. This heat pump water heater has a heating capacity at 16 ° C. of 67.5 kW. The heating capacity ratio when the refrigerant quantity in FIG. 4 and Table 5 is changed is shown as a ratio when the heating capacity of the standard refrigerant quantity is 100%.

図4および表5に示すように、冷媒量が標準冷媒量の80%、81%、82%、85%、のとき、その加熱能力が標準冷媒量の場合と比べて向上していることが確認された。特に、82%の場合に最も向上していることが確認されたが、一方で79%の場合には加熱能力が向上しないことも確認された。この結果から、外気温が−7℃と非常に寒いときでも、冷媒量を標準冷媒量に対して80%乃至92%に設定してヒートポンプ給湯装置10の運転を行うことが、加熱能力の向上にとって好ましいことが確認できた。
As shown in FIG. 4 and Table 5, when the refrigerant amount is 80%, 81%, 82%, 85% of the standard refrigerant amount, the heating capacity is improved as compared with the case of the standard refrigerant amount. confirmed. In particular, it was confirmed that the improvement was most achieved at 82%, but it was also confirmed that the heating ability was not improved at 79%. From this result, even when the outside air temperature is very cold at −7 ° C., setting the refrigerant amount to 80% to 92% with respect to the standard refrigerant amount and operating the heat pump water heater 10 improves the heating capacity. It was confirmed that it was preferable to the

10 ヒートポンプ給湯装置
11 第1熱交換器
12 圧縮機
13 第2熱交換器
14 膨張弁
15 冷媒回路
16 アキュムレータ
17 油・液戻し制御弁
18 デフロスト弁
DESCRIPTION OF SYMBOLS 10 Heat pump hot water supply apparatus 11 1st heat exchanger 12 Compressor 13 2nd heat exchanger 14 Expansion valve 15 Refrigerant circuit 16 Accumulator 17 Oil and liquid return control valve 18 Defrost valve

Claims (1)

加熱能力50kW〜80kWのヒートポンプ給湯装置の運転方法であって、
外気温16℃のときの加熱能力が最大になる標準冷媒量11.0kg〜14.5kgに対して、前記ヒートポンプ給湯装置の冷媒量を該標準冷媒量の80%乃至92%の範囲に調整すると共に、外気温8℃〜−10℃の条件で運転して、加熱能力比を101%〜104%に向上させることを特徴とするヒートポンプ給湯装置の運転方法。
An operation method of a heat pump hot water supply apparatus having a heating capacity of 50 kW to 80 kW,
With respect to the standard refrigerant amount of 11.0 kg to 14.5 kg that maximizes the heating capacity when the outside air temperature is 16 ° C., the refrigerant amount of the heat pump water heater is adjusted to a range of 80% to 92% of the standard refrigerant amount. And the operating method of the heat pump hot-water supply apparatus characterized by operating on the conditions of external temperature 8 degreeC--10 degreeC , and improving a heating capability ratio to 101% -104% .
JP2013118475A 2013-06-05 2013-06-05 Operation method of heat pump water heater Expired - Fee Related JP6147576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118475A JP6147576B2 (en) 2013-06-05 2013-06-05 Operation method of heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118475A JP6147576B2 (en) 2013-06-05 2013-06-05 Operation method of heat pump water heater

Publications (2)

Publication Number Publication Date
JP2014234977A JP2014234977A (en) 2014-12-15
JP6147576B2 true JP6147576B2 (en) 2017-06-14

Family

ID=52137815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118475A Expired - Fee Related JP6147576B2 (en) 2013-06-05 2013-06-05 Operation method of heat pump water heater

Country Status (1)

Country Link
JP (1) JP6147576B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135748A (en) * 1986-11-27 1988-06-08 株式会社東芝 Refrigeration cycle
JP3602116B2 (en) * 2002-10-10 2004-12-15 西淀空調機株式会社 Heat pump water heater
JP4379322B2 (en) * 2004-12-07 2009-12-09 富士電機ホールディングス株式会社 Vending machine cooling system
JP5516162B2 (en) * 2010-07-09 2014-06-11 株式会社デンソー Refrigeration cycle apparatus and control method thereof

Also Published As

Publication number Publication date
JP2014234977A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
JP2016035045A (en) Tetra-n-butylammonium bromide aqueous solution
CN107741102B (en) Air source heat pump device with heat pipe radiator running all year round
CN105333641B (en) Air-source air conditioning and water heating system
JPWO2012121326A1 (en) Two-way refrigeration cycle equipment
JP6293557B2 (en) Refrigeration cycle equipment
CN103615838B (en) The cooling/heating system that internal-external heat exchanger device volumetric ratio is variable
CN102494375A (en) Ultrahigh and low-temperature refrigerating, heating and water heating three-purpose air-conditioning system
CN201779919U (en) Directly-heated type and circulating type integrated air conditioner water heater
JP6147576B2 (en) Operation method of heat pump water heater
CN106225098A (en) A kind of without draining moisture-keeping air conditioner machine and using method thereof
KR101500068B1 (en) Heat pump system including inverter compressor
CA3044010A1 (en) Cooling system
CN105371516A (en) Carbon dioxide two-stage cold and heat co-generation system
JP2006017377A (en) Heat pump water heater
CN202008224U (en) Directly-heated constant temperature type air energy water heater
CN204126896U (en) Compressor lower cover structure
KR101434097B1 (en) Controling defrosting mode heat pump system
CN202328764U (en) Air source heat pump water heater
CN206257828U (en) Crude oil transportation is with compound carbon dioxide heating apparatus
CN203518326U (en) Domestic combined cooling heating and power system
JP2016095039A (en) Refrigeration cycle device
CN205079505U (en) Electricity boosting ally oneself with air conditioning unit more
CN204612333U (en) Refrigerating circulatory device and the heat radiation comprised utilize structure
Liu et al. Research on the air conditioning water heater system
CN204254964U (en) A kind of water heater absorbing refrigerator/ice box waste-heat water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees