JPS63135748A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS63135748A
JPS63135748A JP61280601A JP28060186A JPS63135748A JP S63135748 A JPS63135748 A JP S63135748A JP 61280601 A JP61280601 A JP 61280601A JP 28060186 A JP28060186 A JP 28060186A JP S63135748 A JPS63135748 A JP S63135748A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
expansion valve
heat exchanger
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280601A
Other languages
Japanese (ja)
Inventor
永治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61280601A priority Critical patent/JPS63135748A/en
Publication of JPS63135748A publication Critical patent/JPS63135748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、ヒートポンプ式空気調和機などの冷凍サイ
クルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a refrigeration cycle such as a heat pump type air conditioner.

(従来の技術) 一般的なヒートポンプ式空気調和機の冷凍サイクルにお
いては、冷房時、暖房時および室内外の空気条件などに
より効率の最もよくなる冷媒封入量に設定されているた
めに、冷媒封入量の調整は行われていない。しかし、室
内側熱交換器を直列に配管接続したマルチシステムのヒ
ートポンプ式空気調和機にあっては、効率の悪化が無視
できず何らかの冷媒封入層の調整が必要となる。
(Prior technology) In the refrigeration cycle of a general heat pump type air conditioner, the amount of refrigerant charged is set to be the most efficient depending on the cooling, heating, indoor and outdoor air conditions, etc. No adjustments have been made. However, in a multi-system heat pump air conditioner in which indoor heat exchangers are connected in series via piping, the deterioration in efficiency cannot be ignored and some adjustment of the refrigerant sealing layer is required.

第5図は従来の2室直列配管マルチシステムの冷凍サイ
クルを示すもので、1はコンプレッサで、2は四方弁で
ある。この四方弁2は第1v3に設けた第1の室内側熱
交換器4、第2v5に設けた第2の室内熱交換器6を介
して膨張機構7に接続され、この膨張機構7は室外側熱
交換器8を介して前記四方弁2に接続されている。そし
て、第1の室内側熱交換器4には第1の室内ファン4a
が、第2の室内側熱交換器6には第2の至内ファン6a
が設けられている。
FIG. 5 shows a conventional refrigeration cycle of a two-chamber series piping multi-system, where 1 is a compressor and 2 is a four-way valve. This four-way valve 2 is connected to an expansion mechanism 7 via a first indoor heat exchanger 4 provided on the first v3 and a second indoor heat exchanger 6 provided on the second v5, and this expansion mechanism 7 is connected to the outdoor side. It is connected to the four-way valve 2 via a heat exchanger 8. The first indoor heat exchanger 4 includes a first indoor fan 4a.
However, the second indoor heat exchanger 6 has a second indoor fan 6a.
is provided.

したがって、第1室3と第2空5の2室暖房時において
は、第1の室内ファン4aと第2の室内ファン6aがオ
ンとなり、コンプレッサ1から吐出された冷媒は、第1
の室内側熱交換器4、第2の室内側熱交換器6で室内空
気と熱交換してそれぞれの室内を暖房する。このときの
サイクルのモリエル線図に示すと、第6図の実線に示す
ようになり、このときの第1および第2の室内側熱交換
器4.6での液冷媒とガス冷媒との分布状態を模式的に
表わすと第7図(A)のようになる。すなわち、第1の
室内側熱交換器4で吐出ガス冷媒が半分液化しく乾き度
1/2)(第6因のb点)、第2の室内側熱交換器6で
残りの半分のガス冷媒が液化し、第2の室内側熱交換器
6の出口で完全に液化する(第6図C点)ような分布と
なる。
Therefore, when heating two rooms, the first room 3 and the second room 5, the first indoor fan 4a and the second indoor fan 6a are turned on, and the refrigerant discharged from the compressor 1 is
The indoor heat exchanger 4 and the second indoor heat exchanger 6 exchange heat with indoor air to heat each room. The Mollier diagram of the cycle at this time is as shown by the solid line in Figure 6, and the distribution of liquid refrigerant and gas refrigerant in the first and second indoor heat exchangers 4.6 at this time. The state is schematically represented as shown in FIG. 7(A). That is, half of the discharged gas refrigerant is liquefied in the first indoor heat exchanger 4 (dryness 1/2) (point b of the sixth factor), and the remaining half of the gas refrigerant is liquefied in the second indoor heat exchanger 6. is liquefied and completely liquefied at the outlet of the second indoor heat exchanger 6 (point C in FIG. 6).

ところが、第1v3を暖房し、第2室5は暖房しないと
き、第2の室内ファン6aはオフとなり、第2室5での
熱交換がなくなり、冷凍サイクルは第6図の破線のよう
に第1の室内側熱交換器4で完全に液化することなく気
液混合状態で第2の室内側熱交換器6を出ていく。膨張
機構7としての弁の口径が充分大きいとサイクルはこの
状態で安定する。このときの冷媒分布は第7図(B)の
ようになる。このような運転状態では第1至3の暖房能
力は、2室暖房時と同程度出るが入力は2室同時運転と
同じたけ必要で、冷凍サイクルの効率は2室同時運転時
の約半分に低下してしまう。
However, when heating the first chamber 5 and not heating the second chamber 5, the second indoor fan 6a is turned off, there is no heat exchange in the second chamber 5, and the refrigeration cycle is turned off as shown by the broken line in FIG. It exits the second indoor heat exchanger 6 in a gas-liquid mixed state without being completely liquefied in the first indoor heat exchanger 4. If the diameter of the valve serving as the expansion mechanism 7 is sufficiently large, the cycle will be stable in this state. The refrigerant distribution at this time is as shown in FIG. 7(B). In such operating conditions, the heating capacity of the first to third rooms is about the same as when heating two rooms, but the input is required to be the same as when operating two rooms simultaneously, and the efficiency of the refrigeration cycle is about half that of operating two rooms simultaneously. It will drop.

(発明が解決しようとする問題点) 前述したように、複数の室内側熱交換器を直列に接続し
たマルチシステムにおいて、その前段側の一部のみを運
転した場合、後段側の室内側熱交換器では熱交換が行わ
れないため、完全に液化されないで気液混合状態で出て
いぐことになり、運転状況に応じて適切な冷媒量が得ら
れず、効率低下の原因になっていた。
(Problems to be Solved by the Invention) As mentioned above, in a multi-system in which a plurality of indoor heat exchangers are connected in series, when only a part of the former stage is operated, the indoor heat exchanger of the latter stage is Since no heat exchange takes place in the refrigerant, the refrigerant is not completely liquefied and leaves the refrigerant in a mixed gas-liquid state, making it impossible to obtain the appropriate amount of refrigerant depending on the operating conditions, leading to a decrease in efficiency.

この発明は、前記事情に着目してなされたもので、その
目的とするところは、どのような運転状況においても適
切な冷媒mに調整することができる冷凍サイクルを提供
することにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to provide a refrigeration cycle that can adjust the refrigerant m to an appropriate level under any operating conditions.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段及び作用)この発明は、
室外側熱交換器とリキッドタンクとの間に開度によって
冷媒量を可変できる電動膨張弁を設け、この電動膨張弁
の開度を運転パターンにより選択し、リキッドタンク内
の冷媒の乾き度を変化させることにより、リキッドタン
ク内の液冷媒とガス冷媒の体積を変化させて冷凍サイク
ルの冷媒量を適正に調節するようにしたものである。
(Means and effects for solving the problem) This invention has the following features:
An electric expansion valve that can vary the amount of refrigerant depending on the opening is installed between the outdoor heat exchanger and the liquid tank, and the opening of this electric expansion valve is selected depending on the driving pattern to change the degree of dryness of the refrigerant in the liquid tank. By doing so, the volume of the liquid refrigerant and gas refrigerant in the liquid tank is changed to appropriately adjust the amount of refrigerant in the refrigeration cycle.

(実施例) 以下、この発明の一実施例を第1図に基づいて説明する
が、第5図に示した従来と同一構成部分は同一符号を付
して説明を省略する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described based on FIG. 1, but the same components as the conventional one shown in FIG. 5 will be given the same reference numerals and the explanation will be omitted.

第1図に示すように、第2室5に設けた第2の室内側熱
交換器6と室外側熱交換器8との間にはリキッドタンク
10が設けられ、このリキッドタンク10の前部には第
1の電動膨張弁11が、後部に第2の電動膨張弁12が
設けられている。そして、この第1および第2の電動膨
張弁11.12の駆動部11a、12aには膨張弁コン
トローラ13が接続され、この膨張弁コントローラ13
によって第1および第2の電動膨張弁11.12の開度
を変化させ冷媒量を調整できるようになっている。
As shown in FIG. 1, a liquid tank 10 is provided between a second indoor heat exchanger 6 and an outdoor heat exchanger 8 provided in the second chamber 5. A first electric expansion valve 11 is provided at the rear, and a second electric expansion valve 12 is provided at the rear. An expansion valve controller 13 is connected to the drive units 11a and 12a of the first and second electric expansion valves 11.12.
By changing the opening degrees of the first and second electric expansion valves 11 and 12, the amount of refrigerant can be adjusted.

つぎに、前述のように構成された冷凍サイクルの作用に
ついて説明する。まず、第1室3と第2室5の2πとも
暖房が必要であるという信号を膨張弁コントローラ13
が受信すると、膨張弁コントローラ13は第1の電動膨
張弁11の開度を全開に近い状態に設定する。また、第
2の電動膨張弁12は従来の膨張弁と同様にコンプレッ
サ1の吸込ガスのスーパヒートを一定にするよう開度を
コントロールする。このように第1の電動膨張弁11の
開度は大きいため、第2の室内側熱交換器6の出口で液
化した冷媒は、第1の電動膨張弁11を通ったのちも第
1の電動膨張弁11の前後の圧力損失が小さいため乾き
度があまり変化せずリキッドタンク10内に適度の液冷
媒が溜る。この第1および第2の室内側熱交換器4.6
およびリキッドタンク1o内でのガス冷媒、液冷媒の分
布状態を示すと、第3図(A)のようになり、また、こ
の状態のサイクルのモリエル線図は第2図(A)のよう
になる。すなわち、リキッドタンク10の冷媒状態はd
点となり乾き度が小さく、リキッドタンク10内は液冷
媒が多くなる。
Next, the operation of the refrigeration cycle configured as described above will be explained. First, the expansion valve controller 13 sends a signal indicating that heating is necessary for both the first chamber 3 and the second chamber 5.
When received, the expansion valve controller 13 sets the opening degree of the first electric expansion valve 11 to a state close to fully open. Further, the opening degree of the second electric expansion valve 12 is controlled to keep the superheat of the suction gas of the compressor 1 constant, like a conventional expansion valve. In this way, since the opening degree of the first electric expansion valve 11 is large, the refrigerant liquefied at the outlet of the second indoor heat exchanger 6 will be transferred to the first electric expansion valve 11 even after passing through the first electric expansion valve 11. Since the pressure loss before and after the expansion valve 11 is small, the degree of dryness does not change much and an appropriate amount of liquid refrigerant accumulates in the liquid tank 10. This first and second indoor heat exchanger 4.6
The distribution state of the gas refrigerant and liquid refrigerant in the liquid tank 1o is shown in Fig. 3 (A), and the Mollier diagram of the cycle in this state is shown in Fig. 2 (A). Become. That is, the refrigerant state of the liquid tank 10 is d
The degree of dryness becomes small, and the liquid refrigerant in the liquid tank 10 increases.

また、第1空3を暖房運転、第2空5をオフとした場合
、この運転状態は膨張弁コントローラ13が受信する。
Further, when the first air 3 is in the heating operation and the second air 5 is turned off, the expansion valve controller 13 receives this operating state.

そして、この膨張弁コントローラ13は第1の電動膨張
弁11の開度を絞った状態に設定し、第2の電動膨張弁
12はコンプレッサ1の吸込ガスのスーパヒートが一定
になるようにコントロールされる。このときは第1の電
動膨張弁11の開度は小さいためリキッドタンク10の
乾き度は第2図(B)のd点のように大きくなり、リキ
ッドタンク10内のガス冷媒が多くなる。
Then, this expansion valve controller 13 sets the opening degree of the first electric expansion valve 11 to a narrowed state, and the second electric expansion valve 12 is controlled so that the superheat of the suction gas of the compressor 1 is constant. . At this time, since the opening degree of the first electric expansion valve 11 is small, the degree of dryness of the liquid tank 10 increases as shown at point d in FIG. 2(B), and the amount of gas refrigerant in the liquid tank 10 increases.

このため、液冷媒は第2の室内側熱交換器6内に充満し
第1の室内側熱交換器4の出口で完全に液化する。この
状態の冷媒の分布状態は第3図(B)のようになる。こ
のため、従来のように第1の室内側熱交換器4で完全に
液化せず効率が低下するようなことはなく、通常の効率
が保てる。ただし能力は1室のみの暖房にもかかわらず
、能力は多く出るのでコンプレッサ1の容量は制御する
必要がある。
Therefore, the liquid refrigerant fills the second indoor heat exchanger 6 and is completely liquefied at the outlet of the first indoor heat exchanger 4. The refrigerant distribution state in this state is as shown in FIG. 3(B). Therefore, unlike the conventional case, the first indoor heat exchanger 4 does not completely liquefy and the efficiency decreases, and the normal efficiency can be maintained. However, although the capacity is for heating only one room, it produces a large amount of capacity, so the capacity of the compressor 1 needs to be controlled.

なお、前記一実施例においては、複数の室内側熱交換器
を直列に接続したマルチシステムにおける冷凍サイクル
について説明したが、第4図に示すように、コンプレッ
サ14、凝縮器15、リキッドタンク16および蒸発器
17を順次接続した冷凍サイクルにおいても、前記リキ
ッドタンク16の前後に第1および第2の電動膨張弁1
8.1つを設けることによって冷媒量を調整できる。
In the above embodiment, a refrigeration cycle in a multi-system in which a plurality of indoor heat exchangers are connected in series has been described, but as shown in FIG. Even in a refrigeration cycle in which evaporators 17 are connected in sequence, first and second electric expansion valves 1 are installed before and after the liquid tank 16.
8. By providing one, the amount of refrigerant can be adjusted.

この場合、凝縮器15出口の圧力と湿度によりその過冷
却度を膨張弁コントローラで演算し、この過冷却度を一
定に保つように第1の電動膨張弁18の開度を調整する
。過冷却が少ないときは第1の電動膨張弁18の開度を
絞りリキッドタンク16内の乾き度を大きくしてリキッ
ドタンク16内の液冷媒を凝縮器15側に溜めて過冷却
を太きくする。過冷却が大きいときは第1の電動膨張弁
18の開度を開きリキッドタンク16内の乾き度を減ら
して凝縮器15の液冷媒をリキッドタンク16に溜める
。このように過冷却度を一定に保つように第1の電動膨
張弁18の開度を調整することによって冷媒量を適正に
保つことができる。
In this case, the degree of subcooling is calculated by the expansion valve controller based on the pressure and humidity at the outlet of the condenser 15, and the opening degree of the first electric expansion valve 18 is adjusted so as to keep this degree of subcooling constant. When supercooling is small, the degree of opening of the first electric expansion valve 18 is reduced to increase the degree of dryness in the liquid tank 16, and the liquid refrigerant in the liquid tank 16 is stored on the condenser 15 side to increase the supercooling. . When the supercooling is large, the first electric expansion valve 18 is opened to reduce the degree of dryness in the liquid tank 16, and the liquid refrigerant in the condenser 15 is stored in the liquid tank 16. In this way, by adjusting the opening degree of the first electric expansion valve 18 so as to keep the degree of subcooling constant, the amount of refrigerant can be maintained at an appropriate level.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、リキッドタン
クの前後に開度が自由に可変できる電動膨張弁を設けた
から、開度を調整することによってリキッドタンク内の
液冷媒とガス冷媒の体積を変化させ、冷凍サイクルの冷
媒量を適正に調節することができ、高効率の運転が可能
となるという効果を奏する。
As explained above, according to the present invention, an electric expansion valve whose opening degree can be freely varied is provided at the front and rear of the liquid tank, so that the volume of the liquid refrigerant and gas refrigerant in the liquid tank can be adjusted by adjusting the opening degree. It is possible to appropriately adjust the amount of refrigerant in the refrigeration cycle by changing the amount of refrigerant, which has the effect of enabling highly efficient operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はこの発明の一実施例を示すもので、
第1図は冷凍サイクルの構成図、第2因(A)(B)は
冷凍サイクルのモリエル線図、第3図(A>(B)は運
転中のガス冷媒、液冷媒の分布を模式的に示す説明図、
第4図はこの発明の他の実施例を示す冷凍サイクルの構
成図、第5図は従来の冷凍サイクルの構成図、第6図は
冷凍サイクルのモリエル線図、第7図(A)(B)は運
転中のガス冷媒、液冷媒の分布を模式的に示す説明図で
ある。 1・・・コンプレッサ、4.6・・・室内側熱交換器、
8・・・室外側熱交換器、10・・・リキッドタンク、
11.12・・・電動膨張弁。 出願人代理人 弁理士 鈴 江 武 彦(A)    
    (B) 第2図 ON    ON 1に3図 第4rlA 第5図 第6rIAM7r!!J
Figures 1 to 3 show an embodiment of this invention.
Figure 1 is a configuration diagram of the refrigeration cycle, second factors (A) and (B) are Mollier diagrams of the refrigeration cycle, and Figure 3 (A>(B) is a schematic diagram of the distribution of gas refrigerant and liquid refrigerant during operation. An explanatory diagram shown in
Fig. 4 is a block diagram of a refrigeration cycle showing another embodiment of the present invention, Fig. 5 is a block diagram of a conventional refrigeration cycle, Fig. 6 is a Mollier diagram of the refrigeration cycle, and Figs. ) is an explanatory diagram schematically showing the distribution of gas refrigerant and liquid refrigerant during operation. 1...Compressor, 4.6...Indoor heat exchanger,
8...Outdoor heat exchanger, 10...Liquid tank,
11.12...Electric expansion valve. Applicant's agent Patent attorney Takehiko Suzue (A)
(B) Figure 2 ON ON 1 to 3 Figure 4rlA Figure 5 6rIAM7r! ! J

Claims (3)

【特許請求の範囲】[Claims] (1)コンプレッサ、室外側熱交換器、リキッドタンク
、膨張機構および室内側熱交換器を順次接続して構成し
た冷凍サイクルにおいて、前記リキッドタンクの前後に
開度によって冷媒量を可変できる電動膨張弁を設けたこ
とを特徴とする冷凍サイクル。
(1) In a refrigeration cycle configured by sequentially connecting a compressor, an outdoor heat exchanger, a liquid tank, an expansion mechanism, and an indoor heat exchanger, an electric expansion valve that can vary the amount of refrigerant by changing the opening degree before and after the liquid tank A refrigeration cycle characterized by being provided with.
(2)電動膨張弁の開度は、冷凍サイクルの運転パター
ンにより制御されることを特徴とする特許請求の範囲第
1項記載の冷凍サイクル。
(2) The refrigeration cycle according to claim 1, wherein the opening degree of the electric expansion valve is controlled by the operating pattern of the refrigeration cycle.
(3)電動膨張弁の開度は、室外側熱交換器の出口の過
冷却度が一定になるように制御されることを特徴とする
特許請求の範囲第1項記載の冷凍サイクル。
(3) The refrigeration cycle according to claim 1, wherein the opening degree of the electric expansion valve is controlled so that the degree of subcooling at the outlet of the outdoor heat exchanger is constant.
JP61280601A 1986-11-27 1986-11-27 Refrigeration cycle Pending JPS63135748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280601A JPS63135748A (en) 1986-11-27 1986-11-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280601A JPS63135748A (en) 1986-11-27 1986-11-27 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS63135748A true JPS63135748A (en) 1988-06-08

Family

ID=17627305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280601A Pending JPS63135748A (en) 1986-11-27 1986-11-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS63135748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464880A (en) * 1990-07-04 1992-02-28 Japan Electron Control Syst Co Ltd Air conditioning device
JP2014234977A (en) * 2013-06-05 2014-12-15 東北電力株式会社 Heat pump water heater operation method and heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464880A (en) * 1990-07-04 1992-02-28 Japan Electron Control Syst Co Ltd Air conditioning device
JP2014234977A (en) * 2013-06-05 2014-12-15 東北電力株式会社 Heat pump water heater operation method and heat pump water heater

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
US7325414B2 (en) Hybrid tandem compressor system with economizer circuit and reheat function for multi-level cooling
JP3643162B2 (en) Air conditioner
JP2522361B2 (en) Air conditioner
JPH01247967A (en) Multi-room type air-conditioner
JPH0420764A (en) Air conditioner
JPS63135748A (en) Refrigeration cycle
JP2760500B2 (en) Multi-room air conditioner
JP3936757B2 (en) Air conditioner
JPH0428970A (en) Multi-room type air conditioner
JP3511161B2 (en) Air conditioner
KR20040094101A (en) By-pass device with variable flow rate of multi air-conditioner system
KR20080075581A (en) Control method for air conditioning system
JPH0420757A (en) Air conditioner
KR100303680B1 (en) Cooling and heating of air conditioner
JPH08128748A (en) Multi-room type air conditioner
JP3268967B2 (en) Air conditioner
JP2001336858A (en) Air conditioning apparatus
JP2522371B2 (en) Air conditioner
JPH0510618A (en) Multi-chamber air conditioner
JPH05203275A (en) Air conditioner
JPH03129259A (en) Multi-room type air conditioner
JP3152614B2 (en) Air conditioner
JP2508225B2 (en) Air conditioner
JPH03230059A (en) Multi-room type air conditioner