JP2004257610A - Method of manufacturing refrigerant cycle device - Google Patents

Method of manufacturing refrigerant cycle device Download PDF

Info

Publication number
JP2004257610A
JP2004257610A JP2003047229A JP2003047229A JP2004257610A JP 2004257610 A JP2004257610 A JP 2004257610A JP 2003047229 A JP2003047229 A JP 2003047229A JP 2003047229 A JP2003047229 A JP 2003047229A JP 2004257610 A JP2004257610 A JP 2004257610A
Authority
JP
Japan
Prior art keywords
refrigerant
amount
cycle device
compressor
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047229A
Other languages
Japanese (ja)
Inventor
Haruhisa Yamazaki
晴久 山崎
Kenzo Matsumoto
兼三 松本
Shigeya Ishigaki
茂弥 石垣
Masaji Yamanaka
正司 山中
Kazuaki Fujiwara
一昭 藤原
Tsunehisa Yumoto
恒久 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003047229A priority Critical patent/JP2004257610A/en
Publication of JP2004257610A publication Critical patent/JP2004257610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a refrigerant cycle device capable of easily determining an optimum amount of sealed refrigerant. <P>SOLUTION: The amount of the sealed refrigerant is determined by multiplying a predetermined specified factor C by a value obtained by multiplying the rated motor input W of a compressor 10 by a rated rotational speed S. Also, the amount of the sealed refrigerant is regulated according to the pipe length of a refrigerant circuit. After the amount of the refrigerant calculated by this method is sealed in the refrigerant cycle device, the refrigerant cycle device is operated to investigate the coefficient of performance (COP) and the capacity (cooling capacity or heating capacity) in each application of the compressor 10. This experiment is repeatedly performed while changing the sealed amount of the refrigerant, and the amount of the refrigerant capable of providing excellent COP and capacity in each application is determined as a sealed refrigerant amount M. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサ、ガスクーラ、絞り手段及び蒸発器を配管接続して所定の冷媒回路を構成する冷媒サイクル装置の製造方法に関するものである。
【0002】
【従来の技術】
従来のこの種冷媒サイクル装置は、コンプレッサ、ガスクーラ、絞り手段(膨張弁等)及び蒸発器等を順次環状に配管接続して冷媒サイクル(冷媒回路)が構成されている。そして、コンプレッサの回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経てガスクーラに吐出される。このガスクーラにて冷媒ガスは放熱した後、絞り手段で絞られて蒸発器に供給される。そこで吸熱して蒸発した後、回転圧縮要素に吸入されるサイクルを繰り返すものであった。
【0003】
ここで、近年では地球環境問題に対処するため、この種の冷媒サイクルにおいても、従来のフロンを用いずに自然冷媒である二酸化炭素(CO)を冷媒として用い、高圧側を超臨界圧力として運転する冷媒サイクルを用いた装置が開発されてきている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特公平7−18602号公報
【0005】
【発明が解決しようとする課題】
ところで、このような冷媒サイクル装置に封入される冷媒は各冷媒配管の内径、使用冷媒の圧力、使用冷媒の温度、冷媒密度及び冷媒体積などに基づき、所定量の冷媒を封入した後、実験的に冷媒サイクル装置を運転させて、実際の運転状況に基づいて、冷媒を追加チャージ若しくはディスチャージして最適な封入冷媒量を決定していた。このため、機種変更毎に冷媒サイクル装置の最適な封入冷媒量を求めなければならなかった。
【0006】
特に、冷媒として二酸化炭素を使用する場合、二酸化炭素はガスクーラにおいて凝縮しないため、冷媒の密度を一義的に決めることが困難であり、他の冷媒と比べて実験回数が著しく多くなり、開発コストの増大を招いていた。
【0007】
本発明は、係る従来の技術的課題を解決するために成されたものであり、最適な封入冷媒量を容易に決定することができる冷媒サイクル装置の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち、本発明の冷媒サイクル装置では、コンプレッサの定格モータ入力と定格回転数を乗じた値に予め決定した所定の係数を乗じることにより、封入冷媒量を決定して、請求項2の如く、冷媒回路の配管長に応じて封入冷媒量を調整することを特徴とする。
【0009】
このように、冷媒サイクル装置に封入する冷媒量をコンプレッサの能力に寄与するファクターに基づいて決定することで、最適な封入冷媒量を決定するための実験回数を著しく減らすことができるようになる。
【0010】
請求項3の発明では上記各発明に加えて、冷媒として二酸化炭素を用いるので、環境問題にも寄与できるようになる。
【0011】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の冷媒サイクル装置に使用するコンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式ロータリコンプレッサ10の縦断側面図、図2は本発明の冷媒サイクル装置の冷媒回路図である。
【0012】
各図において、10は二酸化炭素(CO)を冷媒として使用する内部中間圧型多段圧縮式ロータリコンプレッサで、このコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)から成る回転圧縮機構部18にて構成されている。
【0013】
密閉容器12は底部をオイル溜めとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0014】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0015】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画するベーン50、52と、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0016】
一方、上部支持部材54及び下部支持部材56には、図示しない吸込ポートにて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0017】
尚、吐出消音室64と密閉容器12内とは、上下シリンダ38、40や中間仕切板36を貫通する連通路にて連通されており、連通路の上端には中間吐出管121が立設され、この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内に吐出される。
【0018】
そして、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO)が使用され、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0019】
また、密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。
【0020】
そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の図示しない吸込通路と連通する。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。
【0021】
また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60と連通する。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒導入管96の一端は吐出消音室62と連通する。
【0022】
次に、図2において上述したコンプレッサ10は本発明の冷媒サイクル装置の冷媒回路の一部を構成する。
【0023】
即ち、この冷媒サイクル装置の冷媒回路はコンプレッサ10、ガスクーラ154、膨張弁156及び蒸発器157を配管接続することにより構成されている。このコンプレッサ10の冷媒吐出管96はガスクーラ154に接続される。ガスクーラ154を出た配管は減圧手段としての膨張弁156を経て蒸発器157に接続され、蒸発器157を出た配管は冷媒導入管94に接続されている。
【0024】
ここで、冷媒サイクル装置には図示しないサービスバルブなどからコンプレッサ10内に冷媒が封入されるが、この冷媒サイクル装置に封入される冷媒量Mはコンプレッサ10の能力に寄与するファクターに基づいて決定されている。即ち、コンプレッサの定格モータ入力Wと定格回転数Sを乗じた値に予め決定した所定の係数Cを乗じることにより封入冷媒量を決定している。そして、各冷媒配管の配管長に応じて当該封入冷媒量を調整して、冷媒サイクル装置のコンプレッサ10内に封入している。
【0025】
そして、コンプレッサ10内に上記方法により算出された量の冷媒を封入した後、当該冷媒サイクル装置を運転して、コンプレッサ10の成績係数(COP)や各使用用途における能力(冷却能力若しくは加熱能力)を調べる。この実験を封入する冷媒量を変更して数回行い、成績係数や使用用途における能力が優れているものを封入冷媒量Mとして決定する。
【0026】
ここで、実際に冷媒サイクル装置内に封入される封入冷媒量Mと当該方法により、算出される冷媒量について図3を用いて説明する。係数Cを例えば10として、冷媒サイクル装置を常温地向けの給湯機に使用する場合、冷媒量は上述した算出方法により630gと算出される。実際の最適な封入冷媒量Mは図3に示すように650gである。
【0027】
また、冷媒サイクル装置を常温地向けの給湯機に使用する場合、冷媒量は770gと算出され、実際の最適な封入冷媒量Mは800gである。更に、冷媒サイクル装置を自販機に使用する場合、冷媒量は265gと算出され、実際の最適な封入冷媒量Mも265gとなる。
【0028】
このように、コンプレッサ10の能力に寄与するファクターに基づいて算出された値が、実際の最適な封入冷媒量Mと非常に近い値となる。このため、当該方法によって算出された冷媒量を封入して最適な封入冷媒量Mを決定するための実験を行うことで、実験回数を著しく減らすことができるようになる。
【0029】
従来のように各冷媒配管の内径、使用冷媒の圧力、使用冷媒の温度、冷媒密度及び冷媒体積などに基づき、所定量の冷媒を封入した後、実験的に冷媒サイクル装置を運転させて最適な封入冷媒量Mを決定した場合には、最適な封入冷媒量Mを決定するための実験回数は必然的に多くなってしまう。特に、二酸化炭素のようなガスクーラにおいて凝縮しない冷媒では、密度を一義的に決めることができないので、他の冷媒に比べて実験回数が著しく多くなり、開発に要する時間及びコストの増大が生じていた。
【0030】
しかしながら、このようにコンプレッサ10の能力に寄与するファクターに基づいて冷媒量を算出して、当該算出された冷媒を封入して、冷媒サイクル装置を運転して最適な封入冷媒量Mを決定することで、少ない実験回数で最適な封入冷媒量Mを決定することができるようになるので、開発コストの著しい低減を図ることができるようになる。
【0031】
以上の構成で次に本発明の遷臨界冷媒サイクル装置の動作を説明する。ターミナル20及び図示されない配線を介してコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0032】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0033】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入管92を経て上部支持部材54に形成された図示しない吸込通路を経由して、図示しない吸込ポートから第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46とベーン50の動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出管96より外部に吐出される。
【0034】
冷媒吐出管96から吐出された冷媒ガスはガスクーラ154に流入し、そこで放熱した後、膨張弁156に至る。尚、膨張弁156の入口では冷媒ガスはまだ気体の状態である。冷媒は膨張弁156における圧力低下により、ガス/液体の二相混合体とされ、その状態で蒸発器157内に流入する。そこで冷媒は蒸発し、周囲から吸熱する。その後、冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0035】
このように、コンプレッサ10の能力に寄与するファクターであるコンプレッサの定格モータ入力Wと定格回転数Sを乗じた値に予め決定した所定の係数Cを乗じることにより封入冷媒量を決定し、各冷媒配管の配管長に応じて当該封入冷媒量を調整して、冷媒サイクル装置のコンプレッサ10内に封入するので、最適な封入冷媒量Mを決定するための実験回数を著しく減らすことができるようになる。
【0036】
これにより、最適な封入冷媒量Mを容易に決定することができるようになるので、開発に要する時間及びコストを著しく低減することができるようになる。
【0037】
尚、本実施例においてコンプレッサとして内部中間圧型の多段(2段)圧縮式ロータリコンプレッサを用いたが、本発明はこれに限定されるものでなく、どのようなコンプレッサであっても構わない。
【0038】
更に、実施例では二酸化炭素を冷媒として使用したが、請求項1又は請求項2の発明ではそれに限定されるものではなく、HC、亜酸化窒素、HFC系冷媒など該存の冷媒も適用可能である。更にまた、本実施例では所定の係数Cを10として冷媒量を算出したが、所定の係数はこれに限定された値ではなく、冷媒サイクル装置の使用用途などにより適宜変更するものとする。
【0039】
【発明の効果】
以上詳述した如く本発明によれば、コンプレッサの定格モータ入力と定格回転数を乗じた値に予め決定した所定の係数を乗じることにより、封入冷媒量を決定して、請求項2の如く冷媒回路の配管長に応じて封入冷媒量を調整する。
【0040】
このように、冷媒サイクル装置に封入する冷媒量をコンプレッサの能力に寄与するファクターに基づいて決定することで、最適な封入冷媒量を決定するための実験回数を著しく減らすことができるようになる。
【0041】
これにより、機種変更等で最適な封入冷媒量を求める際に、従来のような大がかりな実験を行うことなく、冷媒サイクル装置に封入する冷媒量を容易に決定することができるようになるので、開発に要する時間及びコストの削減を図ることができるようになる。
【0042】
そして、請求項3に記載の二酸化炭素のように、冷媒の密度を一義的に決めることができない冷媒を使用する場合により一層効果的である。
【0043】
更に、冷媒として二酸化炭素を使用することで、環境問題にも寄与することができるようになる。
【図面の簡単な説明】
【図1】本発明の冷媒サイクル装置に使用する実施例のコンプレッサの縦断面図である。
【図2】本発明の冷媒サイクル装置の冷媒回路図である。
【図3】各用途における最適な封入冷媒量を示した図である。
【符号の説明】
10 コンプレッサ
12 密閉容器
14 電動要素
32 第1の回転圧縮要素
34 第2の回転圧縮要素
92、94 冷媒導入管
96 冷媒吐出管
154 ガスクーラ
156 膨張弁(絞り手段)
157 蒸発器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a refrigerant cycle device that forms a predetermined refrigerant circuit by connecting a compressor, a gas cooler, a throttle device, and an evaporator with piping.
[0002]
[Prior art]
In this type of conventional refrigerant cycle device, a refrigerant cycle (refrigerant circuit) is configured by connecting a compressor, a gas cooler, a throttle means (expansion valve and the like), an evaporator, and the like in order in a circular pipe. Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the rotary compression element of the compressor, and is compressed by the operation of the rollers and the vanes to become high temperature and high pressure refrigerant gas. The gas is discharged to the gas cooler through the chamber. After the refrigerant gas radiates heat in this gas cooler, it is throttled by throttle means and supplied to the evaporator. Therefore, a cycle in which heat is absorbed and evaporated and then sucked into the rotary compression element is repeated.
[0003]
Here, in recent years, in order to deal with global environmental problems, even in this type of refrigerant cycle, carbon dioxide (CO 2 ), which is a natural refrigerant, is used as a refrigerant without using conventional chlorofluorocarbons, and the high pressure side is set to a supercritical pressure. A device using a refrigerant cycle to be operated has been developed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-18602
[Problems to be solved by the invention]
By the way, based on the inner diameter of each refrigerant pipe, the pressure of the used refrigerant, the temperature of the used refrigerant, the refrigerant density, the refrigerant volume, and the like, the refrigerant enclosed in such a refrigerant cycle device is filled with a predetermined amount of refrigerant, and then experimentally. In this case, the refrigerant cycle device is operated, and the refrigerant is additionally charged or discharged based on the actual operation state to determine the optimum amount of the charged refrigerant. For this reason, every time the model is changed, it is necessary to find the optimum amount of the charged refrigerant in the refrigerant cycle device.
[0006]
In particular, when carbon dioxide is used as a refrigerant, since carbon dioxide does not condense in the gas cooler, it is difficult to uniquely determine the density of the refrigerant, the number of experiments is significantly larger than other refrigerants, and the development cost is reduced. Was causing an increase.
[0007]
The present invention has been made to solve such a conventional technical problem, and an object of the present invention is to provide a method of manufacturing a refrigerant cycle device capable of easily determining an optimum amount of charged refrigerant.
[0008]
[Means for Solving the Problems]
That is, in the refrigerant cycle device of the present invention, the amount of the charged refrigerant is determined by multiplying a value obtained by multiplying the rated motor input of the compressor and the rated rotation speed by a predetermined coefficient which is determined in advance. It is characterized in that the amount of the charged refrigerant is adjusted according to the length of the circuit piping.
[0009]
As described above, by determining the amount of refrigerant to be charged into the refrigerant cycle device based on the factors contributing to the capacity of the compressor, the number of experiments for determining the optimum amount of charged refrigerant can be significantly reduced.
[0010]
According to the third aspect of the invention, in addition to the above inventions, carbon dioxide is used as the refrigerant, so that it can contribute to environmental problems.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a compressor used in the refrigerant cycle device of the present invention. FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
[0012]
In each of the drawings, reference numeral 10 denotes an internal intermediate pressure type multistage compression type rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The compressor 10 includes a cylindrical hermetic container 12 made of a steel plate and an inner space of the hermetic container 12. An electric element 14 as a driving element disposed and housed on the upper side, and a first rotary compression element 32 (first stage) and a first rotary compression element 32 disposed below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 includes two rotary compression elements 34 (second stage).
[0013]
The closed container 12 has an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) 12B that closes an upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Have been.
[0014]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 annularly attached along the inner peripheral surface of the upper space of the closed casing 12 with a slight interval provided inside the stator 22. And an installed rotor 24. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center. The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0015]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and the upper and lower cylinders abut on the upper and lower rollers 46 and 48. The vanes 50 and 52 partitioning the inside of the cylinders 38 and 40 into a low pressure chamber side and a high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed so that the bearing of the rotating shaft 16 is closed. An upper supporting member 54 and a lower supporting member 56 are also used as supporting members.
[0016]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (the upper suction passage is not shown) communicating with the insides of the upper and lower cylinders 38 and 40 through a suction port (not shown), and a part thereof is recessed. The discharge muffling chambers 62 and 64 formed by closing the recess with the upper cover 66 and the lower cover 68 are provided.
[0017]
The discharge muffling chamber 64 and the inside of the closed container 12 are communicated with each other by a communication passage penetrating the upper and lower cylinders 38 and 40 and the intermediate partition plate 36, and an intermediate discharge pipe 121 is provided upright at the upper end of the communication passage. The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the closed container 12.
[0018]
As the refrigerant, the above-mentioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used for the earth environment, is used. Existing oils such as alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0019]
Further, on the side surface of the container body 12A of the closed container 12, the suction passages 60 (the upper side is not shown) of the upper supporting member 54 and the lower supporting member 56, the discharge muffling chamber 62, and the upper side of the upper cover 66 (the upper side of the electric element 14). The sleeves 141, 142, 143, and 144 are respectively welded and fixed at positions corresponding to the lower end (positions substantially corresponding to the lower ends). The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is substantially on a diagonal line of the sleeve 141. The sleeve 144 is located at a position shifted from the sleeve 141 by approximately 90 degrees.
[0020]
One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 and communicates with the inside of the closed container 12.
[0021]
One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. A coolant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the coolant introduction pipe 96 communicates with the discharge muffling chamber 62.
[0022]
Next, the compressor 10 described above in FIG. 2 constitutes a part of the refrigerant circuit of the refrigerant cycle device of the present invention.
[0023]
That is, the refrigerant circuit of the refrigerant cycle device is configured by connecting the compressor 10, the gas cooler 154, the expansion valve 156, and the evaporator 157 by piping. The refrigerant discharge pipe 96 of the compressor 10 is connected to a gas cooler 154. The pipe exiting the gas cooler 154 is connected to an evaporator 157 via an expansion valve 156 as a pressure reducing means, and the pipe exiting the evaporator 157 is connected to a refrigerant introduction pipe 94.
[0024]
Here, the refrigerant is sealed in the compressor 10 from a service valve or the like (not shown) in the refrigerant cycle device. The amount M of the refrigerant sealed in the refrigerant cycle device is determined based on a factor contributing to the capacity of the compressor 10. ing. That is, the amount of the charged refrigerant is determined by multiplying a value obtained by multiplying the rated motor input W of the compressor and the rated rotation speed S by a predetermined coefficient C. The amount of the charged refrigerant is adjusted according to the length of each refrigerant pipe, and the refrigerant is sealed in the compressor 10 of the refrigerant cycle device.
[0025]
Then, after charging the amount of the refrigerant calculated by the above method into the compressor 10, the refrigerant cycle device is operated, and the coefficient of performance (COP) of the compressor 10 and the capacity (cooling capacity or heating capacity) in each application are used. Find out. This experiment is performed several times by changing the amount of refrigerant to be sealed, and a refrigerant having an excellent coefficient of performance and capacity in use is determined as the amount of refrigerant M to be sealed.
[0026]
Here, the enclosed refrigerant amount M actually enclosed in the refrigerant cycle device and the refrigerant amount calculated by the method will be described with reference to FIG. When the coefficient C is set to 10, for example, and the refrigerant cycle device is used for a water heater for a room temperature region, the refrigerant amount is calculated to be 630 g by the above-described calculation method. The actual optimum amount M of the filled refrigerant is 650 g as shown in FIG.
[0027]
Further, when the refrigerant cycle device is used for a water heater for a normal temperature region, the refrigerant amount is calculated to be 770 g, and the actual optimum enclosed refrigerant amount M is 800 g. Further, when the refrigerant cycle device is used for a vending machine, the refrigerant amount is calculated to be 265 g, and the actual optimum sealed refrigerant amount M is also 265 g.
[0028]
As described above, the value calculated based on the factor contributing to the capacity of the compressor 10 becomes a value very close to the actual optimum amount M of the charged refrigerant. For this reason, the number of experiments can be significantly reduced by enclosing the refrigerant amount calculated by the method and performing an experiment for determining the optimal enclosed refrigerant amount M.
[0029]
As before, based on the inner diameter of each refrigerant pipe, the pressure of the refrigerant used, the temperature of the refrigerant used, the refrigerant density and the refrigerant volume, etc., after charging a predetermined amount of refrigerant, the refrigerant cycle device is operated experimentally to optimize When the amount M of enclosed refrigerant is determined, the number of experiments for determining the optimal amount M of enclosed refrigerant necessarily increases. In particular, in the case of a refrigerant that does not condense in a gas cooler such as carbon dioxide, the density cannot be unambiguously determined, so that the number of experiments is significantly increased compared to other refrigerants, and the time and cost required for development have been increased. .
[0030]
However, the amount of refrigerant is calculated based on the factors contributing to the capacity of the compressor 10 as described above, the calculated refrigerant is charged, and the refrigerant cycle device is operated to determine the optimum charged refrigerant amount M. As a result, the optimal amount M of the charged refrigerant can be determined with a small number of experiments, so that the development cost can be significantly reduced.
[0031]
Next, the operation of the transcritical refrigerant cycle device of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the compressor 10 is energized through the terminal 20 and the wiring (not shown), the electric element 14 starts and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0032]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 is supplied to the roller 48 and the vane 52. It is compressed by the operation and becomes an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 through a communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0033]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 passes through a refrigerant introduction pipe 92, passes through a suction passage (not shown) formed in the upper support member 54, and passes through a suction port (not shown) to a position above the second rotary compression element 34. The refrigerant is sucked into the low pressure chamber side of the cylinder 38 and is compressed in the second stage by the operation of the roller 46 and the vane 50 to become a high pressure and high temperature refrigerant gas. The refrigerant gas is formed on the upper support member 54 from the high pressure chamber through a discharge port (not shown). The refrigerant is discharged from the refrigerant discharge pipe 96 to the outside through the discharge muffling chamber 62.
[0034]
The refrigerant gas discharged from the refrigerant discharge pipe 96 flows into the gas cooler 154, radiates heat there, and reaches the expansion valve 156. At the inlet of the expansion valve 156, the refrigerant gas is still in a gaseous state. The refrigerant is converted into a gas / liquid two-phase mixture by the pressure drop at the expansion valve 156, and flows into the evaporator 157 in that state. There, the refrigerant evaporates and absorbs heat from the surroundings. Thereafter, the cycle of sucking the refrigerant from the refrigerant introduction pipe 94 into the first rotary compression element 32 is repeated.
[0035]
As described above, the amount of the charged refrigerant is determined by multiplying the value obtained by multiplying the rated motor input W of the compressor, which is a factor contributing to the capacity of the compressor 10, by the rated rotational speed S, by the predetermined coefficient C, which is determined in advance. Since the amount of the charged refrigerant is adjusted according to the length of the piping and is charged in the compressor 10 of the refrigerant cycle device, the number of experiments for determining the optimum charged refrigerant amount M can be significantly reduced. .
[0036]
This makes it possible to easily determine the optimum amount M of the charged refrigerant, so that the time and cost required for development can be significantly reduced.
[0037]
In this embodiment, an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor is used as a compressor, but the present invention is not limited to this, and any compressor may be used.
[0038]
Further, in the embodiment, carbon dioxide is used as the refrigerant. However, the present invention is not limited thereto, and the existing refrigerant such as HC, nitrous oxide, HFC-based refrigerant is also applicable. is there. Furthermore, in the present embodiment, the refrigerant amount is calculated by setting the predetermined coefficient C to 10, but the predetermined coefficient is not limited to this value, and may be appropriately changed according to the usage of the refrigerant cycle device.
[0039]
【The invention's effect】
As described in detail above, according to the present invention, the amount of the charged refrigerant is determined by multiplying a value obtained by multiplying the rated motor input of the compressor and the rated rotation speed by a predetermined coefficient which is determined in advance. The amount of refrigerant charged is adjusted according to the length of the piping in the circuit.
[0040]
As described above, by determining the amount of refrigerant to be charged into the refrigerant cycle device based on the factors contributing to the capacity of the compressor, the number of experiments for determining the optimum amount of charged refrigerant can be significantly reduced.
[0041]
This allows the amount of refrigerant to be charged into the refrigerant cycle device to be easily determined without performing a large-scale experiment as in the past when finding the optimal amount of charged refrigerant by changing the model or the like. The time and cost required for development can be reduced.
[0042]
Further, the present invention is more effective when a refrigerant whose density cannot be uniquely determined, such as carbon dioxide, is used.
[0043]
Further, the use of carbon dioxide as a refrigerant can contribute to environmental problems.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor of an embodiment used in a refrigerant cycle device of the present invention.
FIG. 2 is a refrigerant circuit diagram of the refrigerant cycle device of the present invention.
FIG. 3 is a diagram showing an optimum amount of charged refrigerant for each application.
[Explanation of symbols]
Reference Signs List 10 Compressor 12 Closed container 14 Electric element 32 First rotary compression element 34 Second rotary compression element 92, 94 Refrigerant introduction pipe 96 Refrigerant discharge pipe 154 Gas cooler 156 Expansion valve (throttle means)
157 evaporator

Claims (3)

コンプレッサ、ガスクーラ、絞り手段及び蒸発器等を配管接続して所定の冷媒回路を構成する冷媒サイクル装置において、
前記コンプレッサの定格モータ入力と定格回転数を乗じた値に予め決定した所定の係数を乗じることにより、封入冷媒量を決定することを特徴とする冷媒サイクル装置の製造方法。
In a refrigerant cycle device that constitutes a predetermined refrigerant circuit by connecting a compressor, a gas cooler, a throttle device, an evaporator, and the like,
A method of manufacturing a refrigerant cycle device, wherein a sealed refrigerant amount is determined by multiplying a value obtained by multiplying a rated motor input of the compressor and a rated rotation speed by a predetermined coefficient.
前記冷媒回路の配管長に応じて封入冷媒量を調整することを特徴とする請求項1の冷媒サイクル装置の製造方法。2. The method according to claim 1, wherein the amount of the filled refrigerant is adjusted according to a length of the refrigerant circuit. 前記冷媒は二酸化炭素であることを特徴とする請求項1又は請求項2の冷媒サイクル装置の製造方法。The method according to claim 1, wherein the refrigerant is carbon dioxide.
JP2003047229A 2003-02-25 2003-02-25 Method of manufacturing refrigerant cycle device Pending JP2004257610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047229A JP2004257610A (en) 2003-02-25 2003-02-25 Method of manufacturing refrigerant cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047229A JP2004257610A (en) 2003-02-25 2003-02-25 Method of manufacturing refrigerant cycle device

Publications (1)

Publication Number Publication Date
JP2004257610A true JP2004257610A (en) 2004-09-16

Family

ID=33113530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047229A Pending JP2004257610A (en) 2003-02-25 2003-02-25 Method of manufacturing refrigerant cycle device

Country Status (1)

Country Link
JP (1) JP2004257610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197254A (en) * 2014-04-01 2015-11-09 東芝キヤリア株式会社 Refrigeration cycle device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH06194014A (en) * 1992-12-25 1994-07-15 Zexel Corp Detecting equipment of insufficiency of refrigerant in refrigerant circulating cycle
JPH0821675A (en) * 1994-07-06 1996-01-23 Hitachi Ltd Air conditioner and refrigerant quantity-determining method therefor
JPH08200905A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Indicator for amount of refrigerant
JPH09264255A (en) * 1996-03-27 1997-10-07 Mitsubishi Heavy Ind Ltd Air compressor
JPH09287462A (en) * 1996-04-18 1997-11-04 Hitachi Ltd High-supercharging system for engine
JPH1163745A (en) * 1997-08-08 1999-03-05 Hitachi Ltd Refrigerant feeding amount indicating device for air conditioner and monitoring device
JPH11270913A (en) * 1997-11-13 1999-10-05 Samsung Kwangju Electronics Co Ltd Designing method of refrigerating system
JP2001069792A (en) * 1999-08-27 2001-03-16 Hitachi Service & Engineering (East) Ltd Induction motor-controlling device
JP2001074342A (en) * 1999-09-03 2001-03-23 Sanden Corp Method and device for charging carbon dioxide freezing cycle with refrigerant
JP2001099446A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Air conditioning apparatus, and non-humidifying heating body-containing cooling equipment
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001263256A (en) * 2000-03-17 2001-09-26 Matsushita Refrig Co Ltd Control device for compressor
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2001304621A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air- conditioning equipment
JP2002039649A (en) * 2000-07-24 2002-02-06 Funai Electric Co Ltd Operation alarm device of air conditioner
JP2002039648A (en) * 2000-07-25 2002-02-06 Mitsubishi Electric Corp Refrigerant charging method and air conditioner
JP2002267232A (en) * 2001-03-12 2002-09-18 Hitachi Ltd Service system and service-providing device for air conditioner

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH06194014A (en) * 1992-12-25 1994-07-15 Zexel Corp Detecting equipment of insufficiency of refrigerant in refrigerant circulating cycle
JPH0821675A (en) * 1994-07-06 1996-01-23 Hitachi Ltd Air conditioner and refrigerant quantity-determining method therefor
JPH08200905A (en) * 1995-01-20 1996-08-09 Hitachi Ltd Indicator for amount of refrigerant
JPH09264255A (en) * 1996-03-27 1997-10-07 Mitsubishi Heavy Ind Ltd Air compressor
JPH09287462A (en) * 1996-04-18 1997-11-04 Hitachi Ltd High-supercharging system for engine
JPH1163745A (en) * 1997-08-08 1999-03-05 Hitachi Ltd Refrigerant feeding amount indicating device for air conditioner and monitoring device
JPH11270913A (en) * 1997-11-13 1999-10-05 Samsung Kwangju Electronics Co Ltd Designing method of refrigerating system
JP2001069792A (en) * 1999-08-27 2001-03-16 Hitachi Service & Engineering (East) Ltd Induction motor-controlling device
JP2001074342A (en) * 1999-09-03 2001-03-23 Sanden Corp Method and device for charging carbon dioxide freezing cycle with refrigerant
JP2001099446A (en) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp Air conditioning apparatus, and non-humidifying heating body-containing cooling equipment
JP2001227822A (en) * 2000-02-17 2001-08-24 Mitsubishi Electric Corp Refrigerating air conditioner
JP2001263256A (en) * 2000-03-17 2001-09-26 Matsushita Refrig Co Ltd Control device for compressor
JP2001304621A (en) * 2000-04-14 2001-10-31 Daikin Ind Ltd Outdoor heat exchanger, indoor heat exchanger and air- conditioning equipment
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2002039649A (en) * 2000-07-24 2002-02-06 Funai Electric Co Ltd Operation alarm device of air conditioner
JP2002039648A (en) * 2000-07-25 2002-02-06 Mitsubishi Electric Corp Refrigerant charging method and air conditioner
JP2002267232A (en) * 2001-03-12 2002-09-18 Hitachi Ltd Service system and service-providing device for air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015197254A (en) * 2014-04-01 2015-11-09 東芝キヤリア株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2004293813A (en) Refrigerant cycle device
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP2005003239A (en) Refrigerant cycling device
JP2004293871A (en) Refrigerant cycle equipment
JP2004293958A (en) Refrigerant cycle equipment
JP4039921B2 (en) Transcritical refrigerant cycle equipment
JP2004116957A (en) Refrigerant cycle system
JP2004184022A (en) Cooling medium cycle device
JP2004317073A (en) Refrigerant cycling device
JP2004257611A (en) Transient critical refrigerant cycle device
JP2004251513A (en) Refrigerant cycle device
JP2004028492A (en) Cooling medium circuit using co2 cooling medium
JP2004257610A (en) Method of manufacturing refrigerant cycle device
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP2003161280A (en) Rotary compressor
JP2004251492A (en) Refrigerant cycle device
JP3986338B2 (en) Refrigerant circuit using inverter-controlled compressor
JP2004309012A (en) Refrigerant cycle device
JP2004251514A (en) Refrigerant cycle device
JP2004317004A (en) Refrigeration cycle device
JP2004170043A (en) Cooling device
JP2004308489A (en) Refrigerant cycle apparatus
JP2003166489A (en) Manufacturing method for multi-stage compression type rotary compressor
JP2004270517A (en) Compressor and refrigerant cycle device
JP3863799B2 (en) Multi-stage rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728