JP2010139098A - Refrigerating cycle device and water heater having the same - Google Patents

Refrigerating cycle device and water heater having the same Download PDF

Info

Publication number
JP2010139098A
JP2010139098A JP2008313224A JP2008313224A JP2010139098A JP 2010139098 A JP2010139098 A JP 2010139098A JP 2008313224 A JP2008313224 A JP 2008313224A JP 2008313224 A JP2008313224 A JP 2008313224A JP 2010139098 A JP2010139098 A JP 2010139098A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air heat
water
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008313224A
Other languages
Japanese (ja)
Other versions
JP4869320B2 (en
Inventor
Makoto Saito
信 齊藤
Satoru Yanaike
悟 梁池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008313224A priority Critical patent/JP4869320B2/en
Publication of JP2010139098A publication Critical patent/JP2010139098A/en
Application granted granted Critical
Publication of JP4869320B2 publication Critical patent/JP4869320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device capable of reducing the refrigerant required in operations including a defrosting operation, and preventing accumulation of the refrigerant and liquid back to an air heat exchanger. <P>SOLUTION: The air heat exchanger 6 is divided into air heat exchanger divided sections 6a, 6b, 6c, their inflow sides are respectively connected with a refrigerant pipe at a discharge side, of an electric expansion valve 4 through liquid opening/closing valves 5a, 5b, 5c, and the refrigerant pipe at a discharge side of a compressor 1 and the refrigerant pipe at the discharge side of the electric expansion valve 4 are connected through a hot gas valve 9. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクル装置及びこれを搭載した給湯機に関するものであり、特に、凝縮器として水−冷媒熱交換器を用いて水加熱を実施する給湯用の冷凍サイクル装置の除霜運転に関するものである。   The present invention relates to a vapor compression refrigeration cycle apparatus and a water heater equipped with the vapor compression refrigeration cycle apparatus, and in particular, to remove a refrigeration cycle apparatus for hot water supply that performs water heating using a water-refrigerant heat exchanger as a condenser. It relates to frost operation.

水加熱を目的とする冷凍サイクル装置は、凝縮器にプレート積層型熱交換器や二重管式熱交換器等が使用されることが多い。これらの水−冷媒熱交換器は、蒸発器として通常用いられるプレートフィンチューブ空気熱交換器等に比べて小型であり、その内部の冷媒流路が占める内容積も小さいので、凝縮器及び蒸発器を含めた冷媒回路の全容積に対して液冷媒が占める割合が少なくなる。すなわち、加熱運転だけを考えれば封入冷媒量は少なくてよい。   In a refrigeration cycle apparatus for the purpose of water heating, a plate laminated heat exchanger, a double tube heat exchanger, or the like is often used as a condenser. These water-refrigerant heat exchangers are smaller than a plate fin tube air heat exchanger or the like normally used as an evaporator, and the internal volume occupied by the refrigerant flow path is small. The ratio of the liquid refrigerant to the entire volume of the refrigerant circuit including the is reduced. That is, if only the heating operation is considered, the amount of the enclosed refrigerant may be small.

一方で、一般的に冷凍サイクル装置は、外気が低温である場合には蒸発器となる空気熱交換器に着霜するため、圧縮機から吐出された高温のガス冷媒を空気熱交換器に送ることができるような除霜回路を備えている。この除霜運転中においては、空気熱交換器内で高温のガス冷媒が凝縮して溜まり込むために、低圧側に冷媒が不足してしまう可能性があり、この状態を回避するために比較的多量の冷媒が冷媒回路に封入されている。そのため、圧縮機の吸入側に液冷媒が直接戻ってくるような異常動作、いわゆる液バックが発生しやすいという問題が生じる。   On the other hand, in general, the refrigeration cycle apparatus frosts the air heat exchanger that serves as an evaporator when the outside air is at a low temperature, so the high-temperature gas refrigerant discharged from the compressor is sent to the air heat exchanger. A defrosting circuit is provided. During this defrosting operation, the high-temperature gas refrigerant condenses and accumulates in the air heat exchanger, so there is a possibility that the refrigerant will run short on the low-pressure side. A large amount of refrigerant is enclosed in the refrigerant circuit. Therefore, there arises a problem that an abnormal operation in which the liquid refrigerant returns directly to the suction side of the compressor, that is, so-called liquid back easily occurs.

上記のような問題を回避するために、除霜回路を用いた除霜運転の開始から所定時間経過した後に凝縮器側の膨張弁を閉止して液バックを回避するヒートポンプ式給湯機が知られている(例えば、特許文献1参照)。   In order to avoid the above problems, a heat pump type water heater is known that closes the condenser-side expansion valve and avoids liquid back after a predetermined time has elapsed since the start of the defrosting operation using the defrosting circuit. (For example, refer to Patent Document 1).

また、除霜運転時に圧縮機から吐出された高温のガス冷媒を直接蒸発器入口に送る回路と、凝縮器を経由して送る回路とを選択的に切り替えることで液バックと低圧異常低下の双方を回避するような冷凍装置が知られている(例えば、特許文献2参照)。   In addition, by selectively switching between a circuit that sends high-temperature gas refrigerant discharged from the compressor directly to the evaporator inlet during defrosting operation and a circuit that sends it through the condenser, both liquid back and low-pressure abnormalities are reduced. A refrigerating apparatus that avoids the above is known (see, for example, Patent Document 2).

特開2003−222447号公報(第6頁、図3)JP2003-222447A (6th page, FIG. 3) 特許第3343916号公報(第5頁、図1)Japanese Patent No. 3343916 (5th page, FIG. 1)

しかしながら、特許文献1に係るヒートポンプ式給湯機においては、膨張弁の開度制御のタイミングは除霜開始からの経過時間に基づくものであり、液バック状態であるのか冷媒不足状態であるのかを検出しておらず、対策としては信頼性が低いという問題がある。
また、特許文献1に係るヒートポンプ式給湯機及び特許文献2に係る冷凍装置のいずれにおいても、除霜運転中に空気熱交換器に冷媒が溜まりこむことを想定しなければならず、依然として加熱運転に必要な量以上の封入冷媒量が必要である。
However, in the heat pump type water heater according to Patent Document 1, the timing of the opening control of the expansion valve is based on the elapsed time from the start of defrosting, and it is detected whether the state is a liquid back state or a refrigerant shortage state. There is a problem that the reliability is low as a countermeasure.
Moreover, in any of the heat pump type hot water heater according to Patent Document 1 and the refrigeration apparatus according to Patent Document 2, it is assumed that the refrigerant accumulates in the air heat exchanger during the defrosting operation, and the heating operation is still performed. Therefore, the amount of the refrigerant to be filled is more than necessary.

本発明は、上記のような課題を解決するためになされたもので、除霜運転を含めても必要冷媒量を少なくし、液バックを回避し、そして、除霜時間が長くなることのない冷凍サイクル装置及びこれを搭載した給湯機を提供することである。   The present invention has been made in order to solve the above-described problems. Even when the defrosting operation is included, the required refrigerant amount is reduced, the liquid back is avoided, and the defrosting time is not prolonged. It is to provide a refrigeration cycle apparatus and a water heater equipped with the same.

本発明に係る冷凍サイクル装置は、圧縮機、水−冷媒熱交換器、減圧手段及び空気熱交換器を冷媒配管で順次接続して閉回路を構成する冷媒回路と、前記圧縮機と前記水−冷媒熱交換器との間と、前記減圧手段と前記空気熱交換器との間とを、第1の開閉手段を介して接続して形成されるホットガスバイパス路と、を備え、前記空気熱交換器は、その内部の冷媒流路が2系統以上に分割され、少なくとも1系統以上の前記分割された冷媒流路は、それぞれの冷媒流路上に独立に第2の開閉手段を有することを特徴とする。   A refrigeration cycle apparatus according to the present invention includes a refrigerant circuit that forms a closed circuit by sequentially connecting a compressor, a water-refrigerant heat exchanger, a decompression unit, and an air heat exchanger with a refrigerant pipe, the compressor, and the water- A hot gas bypass path formed by connecting between the refrigerant heat exchanger and between the pressure reducing means and the air heat exchanger via a first opening / closing means, The exchanger has an internal refrigerant flow path divided into two or more systems, and at least one of the divided refrigerant flow paths has a second opening / closing means independently on each refrigerant flow path. And

本発明の冷凍サイクル装置によれば、水−冷媒熱交換器が凝縮器として機能するのに十分な冷媒が封入されていれば、冷媒不足状態になることがなく、かつ、液バックを回避でき、また、除霜している空気熱交換器に液冷媒が溜まり込んだ場合でも、圧縮機に流入される冷媒が不足して除霜時間が長くなることもない。   According to the refrigeration cycle apparatus of the present invention, if a sufficient amount of refrigerant is enclosed so that the water-refrigerant heat exchanger functions as a condenser, a refrigerant shortage state can be avoided and liquid back can be avoided. In addition, even when the liquid refrigerant is accumulated in the defrosting air heat exchanger, the refrigerant flowing into the compressor is insufficient and the defrosting time is not prolonged.

実施の形態1.
(冷凍サイクル装置の全体構成)
図1は、本発明の実施の形態に係る冷凍サイクル装置の回路構成図であり、図2は、同冷凍サイクル装置の立体構成図である。
図1及び図2において、冷媒を圧縮する圧縮機1、その圧縮機1により圧縮されたガス冷媒から放熱させる水−冷媒熱交換器2、その水−冷媒熱交換器2を通過した冷媒を膨張させる電動膨張弁4、その電動膨張弁4によって膨張された冷媒を蒸発させる空気熱交換器6及びその空気熱交換器6を通過した冷媒を一時蓄積するアキュムレータ8が順に冷媒配管によって接続され冷媒が循環する冷媒回路を形成している。この冷媒回路に、冷媒として、例えばHFC冷媒であるR410Aが封入されている。なお、HFC冷媒であるR410Aに限らず、二酸化炭素冷媒又はHFO1234yf等その他の冷媒が封入されるものとしてもよい。水−冷媒熱交換器2は、水配管3を有し、この水配管3は冷媒回路と分離している。空気熱交換器6は、空気熱交換器分割部6a、6b及び6cに3分割されており、それらの流入側はそれぞれ液開閉弁5a、5b及び5cを介して電動膨張弁4の吐出側の冷媒配管に接続され、空気熱交換器分割部6a、6b及び6cそれぞれの冷媒の流通の有無の選択が可能となっている。図2で示されるように、この空気熱交換器分割部6a、6b及び6cは、上下方向に3分割され、かつ、一体型として形成されている。この3分割された空気熱交換器分割部6a、6b及び6cのガス冷媒側の冷媒回路上にはそれぞれ温度センサ11a、11b及び11cが取り付けられている。また、空気熱交換器6には、その熱交換を促進又は調整する送風機7が設置され、その送風機7の近傍には、外気温度を検出する外気温度センサ14が取り付けられている。圧縮機1の吐出側の冷媒配管と、電動膨張弁4の吐出側の冷媒配管は、ホットガス弁9を介して接続されている。また、電動膨張弁4及びホットガス弁9の吐出側、かつ、液開閉弁5a、5b及び5cの流入側の冷媒回路上には、電動膨張弁4を通過し低圧となった冷媒の温度等を検出する低圧冷媒温度センサ13が取り付けられている。
Embodiment 1 FIG.
(Overall configuration of refrigeration cycle equipment)
FIG. 1 is a circuit configuration diagram of a refrigeration cycle apparatus according to an embodiment of the present invention, and FIG. 2 is a three-dimensional configuration diagram of the refrigeration cycle apparatus.
1 and 2, the compressor 1 that compresses the refrigerant, the water-refrigerant heat exchanger 2 that releases heat from the gas refrigerant compressed by the compressor 1, and the refrigerant that has passed through the water-refrigerant heat exchanger 2 are expanded. The electric expansion valve 4 to be operated, the air heat exchanger 6 that evaporates the refrigerant expanded by the electric expansion valve 4, and the accumulator 8 that temporarily stores the refrigerant that has passed through the air heat exchanger 6 are sequentially connected by the refrigerant piping. A circulating refrigerant circuit is formed. In this refrigerant circuit, for example, R410A which is an HFC refrigerant is enclosed as a refrigerant. The refrigerant is not limited to R410A which is an HFC refrigerant, and other refrigerants such as carbon dioxide refrigerant or HFO1234yf may be enclosed. The water-refrigerant heat exchanger 2 has a water pipe 3, which is separated from the refrigerant circuit. The air heat exchanger 6 is divided into three air heat exchanger dividing parts 6a, 6b and 6c, and their inflow sides are respectively connected to the discharge side of the electric expansion valve 4 via liquid on-off valves 5a, 5b and 5c. It is connected to the refrigerant pipe, and it is possible to select whether or not each refrigerant flows through the air heat exchanger dividing sections 6a, 6b and 6c. As shown in FIG. 2, the air heat exchanger dividing portions 6a, 6b and 6c are divided into three in the vertical direction and are formed as an integral type. Temperature sensors 11a, 11b, and 11c are mounted on the refrigerant circuits on the gas refrigerant side of the three-divided air heat exchanger divisions 6a, 6b, and 6c, respectively. Further, the air heat exchanger 6 is provided with a blower 7 that promotes or adjusts the heat exchange, and an outdoor air temperature sensor 14 that detects the outside air temperature is attached in the vicinity of the blower 7. The refrigerant pipe on the discharge side of the compressor 1 and the refrigerant pipe on the discharge side of the electric expansion valve 4 are connected via a hot gas valve 9. In addition, on the refrigerant circuit on the discharge side of the electric expansion valve 4 and the hot gas valve 9 and on the inflow side of the liquid on-off valves 5a, 5b, and 5c, the temperature of the refrigerant that has passed through the electric expansion valve 4 and has become low pressure, etc. A low-pressure refrigerant temperature sensor 13 for detecting the above is attached.

水−冷媒熱交換器2は、プレート積層型の熱交換器であり、その冷媒流路内容積は加熱能力1kWあたりで約120cc〜150ccである。一方、空気熱交換器6は、伝熱管径が8mmのプレートフィンチューブ型であり、処理熱量1kWあたりで300cc〜500cc程度であるので、その内部の冷媒流路内容積は水−冷媒熱交換器2の冷媒流路内容積より2倍以上大きい。従って、空気熱交換器6において3分割された空気熱交換器分割部6a、6b及び6cのそれぞれの冷媒流路内容積は、水−冷媒熱交換器2の冷媒流路内容積と略同一又はそれよりも小さくなっている。   The water-refrigerant heat exchanger 2 is a plate stack type heat exchanger, and the volume of the refrigerant flow path is about 120 cc to 150 cc per 1 kW of heating capacity. On the other hand, the air heat exchanger 6 is a plate fin tube type having a heat transfer tube diameter of 8 mm and is about 300 cc to 500 cc per 1 kW of processing heat. Therefore, the internal volume of the refrigerant channel is water-refrigerant heat exchange. 2 times larger than the volume of the refrigerant flow path of the vessel 2. Therefore, the refrigerant flow path volume of each of the air heat exchanger divisions 6a, 6b and 6c divided into three in the air heat exchanger 6 is substantially the same as the refrigerant flow volume of the water-refrigerant heat exchanger 2 or It is smaller than that.

(冷凍サイクル装置の基本動作)
次に、上記のように構成された冷凍サイクル装置の水加熱運転時の基本的な動作について説明する。
圧縮機1から吐出された高温高圧のガス冷媒は、水−冷媒熱交換器2へ流入し、水配管3に流通する水に放熱して熱交換が実施され凝縮する。このとき、除霜運転用のホットガス弁9は、閉止している。その凝縮した液冷媒は、電動膨張弁4によって減圧され、低圧の二相冷媒となり、開放された液開閉弁5a、5b及び5cを経由して、空気熱交換器分割部6a、6b及び6cに流入する。ここで、上記の低圧二相冷媒は、送風機7によって送られる外気から熱を吸収して蒸発し、ガス冷媒となる。このガス冷媒は、アキュムレータ8において一時蓄積され、再び圧縮機1に吸入される。以後、この動作を繰り返す。
(Basic operation of refrigeration cycle equipment)
Next, the basic operation during the water heating operation of the refrigeration cycle apparatus configured as described above will be described.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 2, dissipates heat to the water flowing through the water pipe 3, performs heat exchange, and condenses. At this time, the hot gas valve 9 for defrosting operation is closed. The condensed liquid refrigerant is decompressed by the electric expansion valve 4 to become a low-pressure two-phase refrigerant, and is passed through the opened liquid on-off valves 5a, 5b and 5c to the air heat exchanger dividing sections 6a, 6b and 6c. Inflow. Here, the low-pressure two-phase refrigerant absorbs heat from the outside air sent by the blower 7 and evaporates to become a gas refrigerant. This gas refrigerant is temporarily accumulated in the accumulator 8 and is sucked into the compressor 1 again. Thereafter, this operation is repeated.

(冷凍サイクル装置の除霜運転)
図3は、同冷凍サイクル装置の除霜運転の動作を表すフローチャートである。
本発明の実施の形態1に係る冷凍サイクル装置は、外気が低温で蒸発温度が氷点下となる条件で前述の水加熱運転を継続すると、空気熱交換器6の表面で霜が発生し、外気からの採熱を阻害し始める。このとき、例えば、外気温度センサ14によって検知された温度と低圧冷媒温度センサ13によって検知された温度との偏差が所定値よりも大きくなることで着霜による電熱不良と判断し除霜運転を開始する(ステップS1)。なお、除霜運転の開始条件として、上記のものに限られるものではなく、例えば、低圧冷媒温度センサ13による検知温度が氷点下となる状態が所定時間(例えば、60分間)経過したことで着霜していると判断してもよい。除霜運転が開始されると、まず、送風機7を停止し、ホットガス弁9を開放し、そして、電動膨張弁4を閉止又は僅かに開放する程度として水−冷媒熱交換器2において熱交換が実施されないようにする(ステップS2)。続いて、液開閉弁5aを開放したまま、液開閉弁5b及び5cを閉止する(ステップS3)。これによって、圧縮機1から吐出された高温のガス冷媒、すなわちホットガスはホットガス弁9及び液開閉弁5aを経由して空気熱交換器分割部6aのみに流通する。このとき、空気熱交換器分割部6aは、圧縮機1から吐出されたホットガスによって高温となり霜を融解させ、その内部冷媒流路において除霜開始直後は凝縮して液冷媒が溜まり込む。その後、空気熱交換器分割部6aの内部冷媒流路の冷媒状態は、霜の融解とともに徐々にその圧力を高めながら高乾き度の状態に移行していく。そして、温度センサ11aの検知温度T1が、霜が融解しきったと判断できる設定温度(例えば、7℃)に達したことで空気熱交換器分割部6aにおける除霜動作を終了する(ステップS4)。
(Defrosting operation of refrigeration cycle equipment)
FIG. 3 is a flowchart showing the operation of the defrosting operation of the refrigeration cycle apparatus.
In the refrigeration cycle apparatus according to Embodiment 1 of the present invention, when the water heating operation described above is continued under conditions where the outside air is at a low temperature and the evaporation temperature is below freezing point, frost is generated on the surface of the air heat exchanger 6, and Begin to disturb the heat collection. At this time, for example, when the deviation between the temperature detected by the outside air temperature sensor 14 and the temperature detected by the low-pressure refrigerant temperature sensor 13 is larger than a predetermined value, it is determined that there is an electric heat failure due to frost formation and the defrosting operation is started. (Step S1). Note that the start conditions for the defrosting operation are not limited to those described above. For example, frost formation occurs when a predetermined time (for example, 60 minutes) has passed when the temperature detected by the low-pressure refrigerant temperature sensor 13 is below freezing. You may judge that you are doing. When the defrosting operation is started, first, the blower 7 is stopped, the hot gas valve 9 is opened, and then the electric expansion valve 4 is closed or slightly opened so that heat exchange is performed in the water-refrigerant heat exchanger 2. Is not performed (step S2). Subsequently, the liquid on / off valves 5b and 5c are closed while the liquid on / off valve 5a is opened (step S3). As a result, the high-temperature gas refrigerant discharged from the compressor 1, that is, hot gas, flows only to the air heat exchanger dividing unit 6a via the hot gas valve 9 and the liquid on-off valve 5a. At this time, the air heat exchanger divider 6a becomes hot due to the hot gas discharged from the compressor 1 and melts frost, and in the internal refrigerant flow path, the liquid refrigerant accumulates by condensing immediately after the start of defrosting. Thereafter, the refrigerant state of the internal refrigerant flow path of the air heat exchanger dividing unit 6a shifts to a high dryness state while gradually increasing the pressure as the frost melts. And the defrosting operation | movement in the air heat exchanger division | segmentation part 6a is complete | finished because detection temperature T1 of the temperature sensor 11a has reached the preset temperature (for example, 7 degreeC) which can be judged that the frost has fully melt | dissolved (step S4).

次に、液開閉弁5bを開放して空気熱交換器分割部6bにおける除霜動作を開始する(ステップS5)。このとき、既に除霜を完了した空気熱交換器分割部6aの流入側の冷媒回路上に設置された液開閉弁5aは開放したままにする。着霜状態である空気熱交換器分割部6bにおいては、圧縮機1から吐出されたホットガスが流入して霜が融解し、その内部冷媒流路において除霜開始直後は凝縮して液冷媒が溜まり込むが、既に高温である空気熱交換器分割部6aにおいては、ガス冷媒のまま流通するため、圧縮機1の吸入側にはガス冷媒が供給され、圧力及び温度を高い状態に維持できる。これによって、圧縮機1から吐出される冷媒の圧力及び温度も高い状態に維持されるため、空気熱交換器分割部6bにおける除霜動作に寄与することができる。その後、空気熱交換器分割部6bの内部冷媒流路の冷媒状態は、霜の融解とともに徐々にその圧力を高めながら高乾き度の状態に移行していく。そして、温度センサ11bの検知温度T2が、霜が融解しきったと判断できる設定温度(例えば、7℃)に達したことで空気熱交換器分割部6bにおける除霜動作を終了する(ステップS6)。   Next, the liquid on-off valve 5b is opened to start the defrosting operation in the air heat exchanger dividing unit 6b (step S5). At this time, the liquid on-off valve 5a installed on the refrigerant circuit on the inflow side of the air heat exchanger divider 6a that has already been defrosted is kept open. In the air heat exchanger dividing unit 6b that is in a frosted state, hot gas discharged from the compressor 1 flows in and frost is melted, and in the internal refrigerant flow path, the liquid refrigerant is condensed immediately after the start of defrosting. In the air heat exchanger dividing unit 6a, which is already hot, the gas refrigerant is circulated as it is, so that the gas refrigerant is supplied to the suction side of the compressor 1, and the pressure and temperature can be maintained high. Thereby, since the pressure and temperature of the refrigerant discharged from the compressor 1 are also maintained in a high state, it can contribute to the defrosting operation in the air heat exchanger dividing unit 6b. Thereafter, the refrigerant state of the internal refrigerant flow path of the air heat exchanger dividing unit 6b shifts to a high dryness state while gradually increasing the pressure as the frost melts. And the defrosting operation | movement in the air heat exchanger division | segmentation part 6b is complete | finished because the detection temperature T2 of the temperature sensor 11b has reached the preset temperature (for example, 7 degreeC) which can be judged that the frost has fully melt | dissolved (step S6).

次に、液開閉弁5cを開放して空気熱交換器分割部6cにおける除霜動作を開始する(ステップS7)。このとき、既に除霜を完了した空気熱交換器分割部6a及び6bの流入側の冷媒回路上に設置された液開閉弁5a及び5bは開放したままにする。このときの動作は、前述のステップS5と同様である。そして、温度センサ11cの検知温度T3が、霜が融解しきったと判断できる設定温度(例えば、7℃)に達したことで空気熱交換器分割部6cにおける除霜動作を終了し、全ての除霜動作が終了と判定し、除霜運転を終了する(ステップS8)。除霜運転終了後、送風機7を稼働させ、電動膨張弁4を開放し、そして、ホットガス弁9を閉止することによって、再び水−冷媒熱交換器2を凝縮器、そして、空気熱交換器6を外気から採熱する蒸発器として水加熱運転を実施する(ステップS9)。   Next, the liquid on-off valve 5c is opened to start the defrosting operation in the air heat exchanger dividing unit 6c (step S7). At this time, the liquid on-off valves 5a and 5b installed on the refrigerant circuit on the inflow side of the air heat exchanger dividers 6a and 6b that have already been defrosted are kept open. The operation at this time is the same as step S5 described above. And the defrosting operation | movement in the air heat exchanger division | segmentation part 6c is complete | finished because detection temperature T3 of the temperature sensor 11c has reached the preset temperature (for example, 7 degreeC) which can be judged that the frost has fully thawed, and all defrosting It determines with operation | movement being complete | finished and complete | finishes a defrost operation (step S8). After the defrosting operation is finished, the blower 7 is operated, the electric expansion valve 4 is opened, and the hot gas valve 9 is closed, so that the water-refrigerant heat exchanger 2 is again the condenser and the air heat exchanger. A water heating operation is performed using 6 as an evaporator for collecting heat from the outside air (step S9).

ここで、本発明の実施の形態1における冷凍サイクル装置の封入冷媒量について説明する。本発明の実施の形態1における冷凍サイクル装置の封入冷媒量は、水加熱運転で必要な冷媒量に等しい。すなわち、水−冷媒熱交換器2が凝縮器として機能し、空気熱交換器6が蒸発器として機能している状態での必要冷媒量が封入冷媒量である。一方、除霜運転中は、水−冷媒熱交換器2には液冷媒は存在せず、また、ホットガスが流通していない空気熱交換器分割部にも液冷媒が存在しない。従って、除霜運転中に最も冷媒が必要な運転状態は、一時的に除霜している空気熱交換器分割部に溜まり込むタイミングであり、そのときの空気熱交換器分割部がほぼ液冷媒で満たされている状態である。このとき、空気熱交換器分割部6a、6b及び6cそれぞれの冷媒流路内容積は、水−冷媒熱交換器2の冷媒流路内容積と略同一又はそれよりも小さくなっているので、水−冷媒熱交換器2が凝縮器として機能するのに十分な冷媒が封入されていれば、除霜運転中に空気熱交換器分割部6a、6b及び6cのうちの一つが液冷媒で満たされたとしても、冷媒不足状態になることがない。従って、水加熱運転中と除霜運転中とで必要となる封入冷媒量に差異がなくなるので、アキュムレータ8がかなり小さくてよく、又は、不要とすることもできる。   Here, the amount of refrigerant enclosed in the refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described. The amount of refrigerant enclosed in the refrigeration cycle apparatus according to Embodiment 1 of the present invention is equal to the amount of refrigerant required for the water heating operation. That is, the required amount of refrigerant in a state where the water-refrigerant heat exchanger 2 functions as a condenser and the air heat exchanger 6 functions as an evaporator is the enclosed refrigerant amount. On the other hand, during the defrosting operation, there is no liquid refrigerant in the water-refrigerant heat exchanger 2, and there is no liquid refrigerant in the air heat exchanger division where no hot gas is circulated. Therefore, the operation state in which the refrigerant is most necessary during the defrosting operation is the timing at which the refrigerant is temporarily accumulated in the defrosting air heat exchanger division, and the air heat exchanger division at that time is almost liquid refrigerant. It is a state that is satisfied with. At this time, the volume of the refrigerant flow path in each of the air heat exchanger dividing sections 6a, 6b and 6c is substantially the same as or smaller than the volume of the refrigerant flow path of the water-refrigerant heat exchanger 2, -If the refrigerant heat exchanger 2 is filled with sufficient refrigerant to function as a condenser, one of the air heat exchanger dividers 6a, 6b and 6c is filled with liquid refrigerant during the defrosting operation. Even if it does, it will not become a refrigerant shortage state. Accordingly, since there is no difference in the amount of enclosed refrigerant required between the water heating operation and the defrosting operation, the accumulator 8 may be considerably small or unnecessary.

(実施の形態1の効果)
以上の構成及び動作のように、空気熱交換器分割部6a、6b及び6cそれぞれの冷媒流路内容積は、水−冷媒熱交換器2の冷媒流路内容積と略同一又はそれよりも小さくなっているので、水−冷媒熱交換器2が凝縮器として機能するのに十分な冷媒が封入されていれば、除霜運転中に空気熱交換器分割部6a、6b及び6cのうちの一つが液冷媒で満たされたとしても、冷媒不足状態になることがなく、また、除霜している空気熱交換器6に液冷媒が溜まり込んだ場合でも、圧縮機1に流入される冷媒が不足して除霜時間が長くなってしまうこともない。
また、水加熱運転時に必要な冷媒量だけを封入していればよく、除霜運転のために多くの冷媒を封入する必要がないので、液バックを回避することができ、かつ、余剰冷媒を貯留するために設置するアキュムレータ8等の液溜容器も小さくてよく、又は、不要とすることもできるのでコストダウンが図れる。
また、空気熱交換器分割部6a、6b及び6cに3分割された空気熱交換器6を一体型として形成されていることによって、フィン間の熱伝導によって除霜していない空気熱交換器分割部にも熱が伝わって霜が融解するので都合がよい。
さらに、空気熱交換器6は、上下方向に3分割されており、除霜運転の順序としては上から実施していることにより、上方における霜の融解水がまだ除霜していない空気熱交換器分割部に滴下するので、除霜用に投入した熱を逃がすことなく有効に使用することができる。
(Effect of Embodiment 1)
As in the above-described configuration and operation, the refrigerant flow volume in each of the air heat exchanger dividers 6a, 6b, and 6c is substantially the same as or smaller than the refrigerant flow volume in the water-refrigerant heat exchanger 2. Therefore, as long as the refrigerant sufficient for the water-refrigerant heat exchanger 2 to function as a condenser is sealed, one of the air heat exchanger dividing parts 6a, 6b, and 6c during the defrosting operation. Even if one of them is filled with liquid refrigerant, the refrigerant does not become insufficient, and even when liquid refrigerant accumulates in the defrosting air heat exchanger 6, the refrigerant flowing into the compressor 1 does not flow. There is no shortage of defrosting time.
Moreover, it is sufficient to enclose only the amount of refrigerant necessary for the water heating operation, and it is not necessary to enclose a large amount of refrigerant for the defrosting operation, so that liquid back can be avoided, and surplus refrigerant can be removed. The liquid storage container such as the accumulator 8 installed for storage may be small or unnecessary, so that the cost can be reduced.
Further, the air heat exchanger 6 divided into three parts in the air heat exchanger dividing parts 6a, 6b, and 6c is formed as an integrated type, so that the air heat exchanger is not defrosted by heat conduction between the fins. Since heat is transmitted to the part and frost melts, it is convenient.
Further, the air heat exchanger 6 is divided into three in the vertical direction, and the air defrosting operation is performed from the top, so that the air heat exchange in which the frost melting water above has not yet been defrosted is performed. Since it is dripped at an apparatus division | segmentation part, it can be used effectively, without releasing the heat | fever input for defrosting.

なお、外気温度が0℃よりも高い状況である場合には、液開閉弁を閉止している空気熱交換器分割部においても霜が融解するので、この場合においては、圧縮機1を停止し送風機7を低速で稼働させて0℃以上の外気による空気熱交換器6の除霜、いわゆるオフサイクル除霜を実施してもよい。
また、図3で示される除霜運転において、空気熱交換器分割部6a、6bそして6cの順番で除霜動作が実施されているが、この順序に限られるものではなく、異なる順序で除霜動作が実施されるものとしてもよい。このとき、空気熱交換器分割部6a、6b及び6cそれぞれの流入側の冷媒回路上には液開閉弁5a、5b及び5cが設けられているが、図3で示されるように、空気熱交換器分割部6aから除霜運転が実施される場合、水加熱運転及び除霜運転双方において液開閉弁5aは常時開放しているので、液開閉弁5aは設置しない構成としてもよい。
さらに、実施の形態1に係る冷凍サイクル装置における空気熱交換器6は、空気熱交換器分割部6a、6b及び6cに3分割されているが、これに限られるものではなく、2分割あるいは4分割以上としてもよい。
When the outside air temperature is higher than 0 ° C., frost is melted even in the air heat exchanger dividing unit that closes the liquid on-off valve. In this case, the compressor 1 is stopped. The blower 7 may be operated at a low speed to perform defrosting of the air heat exchanger 6 by outside air at 0 ° C. or higher, so-called off-cycle defrosting.
Further, in the defrosting operation shown in FIG. 3, the defrosting operation is performed in the order of the air heat exchanger dividing units 6a, 6b, and 6c, but is not limited to this order, and the defrosting is performed in a different order. The operation may be performed. At this time, liquid on-off valves 5a, 5b and 5c are provided on the refrigerant circuits on the inflow side of the air heat exchanger dividing sections 6a, 6b and 6c, respectively. As shown in FIG. When the defrosting operation is performed from the device dividing unit 6a, the liquid on / off valve 5a is always open in both the water heating operation and the defrosting operation, and therefore the liquid on / off valve 5a may not be installed.
Further, the air heat exchanger 6 in the refrigeration cycle apparatus according to Embodiment 1 is divided into three parts, that is, the air heat exchanger dividing parts 6a, 6b, and 6c. It may be divided or more.

実施の形態2.
(給湯機の全体構成)
図4は、本発明の実施の形態2に係る給湯機の回路構成図である。
図4において、冷凍サイクル部31に、実施の形態1に係る冷凍サイクル装置が備えられている。その冷凍サイクル装置における水−冷媒熱交換器2に導通している水配管3は、冷凍サイクル装置内の冷媒回路とは分離しており、水−冷媒熱交換器2、その水−冷媒熱交換器2によって加熱された水を貯めるタンク18及びそのタンク18から流出した水を送り出すポンプ17を順に接続して水循環回路を形成している。この水循環回路によって蓄熱回路部32が構成されている。
Embodiment 2. FIG.
(Whole water heater configuration)
FIG. 4 is a circuit configuration diagram of a water heater according to Embodiment 2 of the present invention.
In FIG. 4, the refrigeration cycle unit 31 is provided with the refrigeration cycle apparatus according to the first embodiment. The water pipe 3 connected to the water-refrigerant heat exchanger 2 in the refrigeration cycle apparatus is separated from the refrigerant circuit in the refrigeration cycle apparatus, and the water-refrigerant heat exchanger 2, the water-refrigerant heat exchange. A water circulation circuit is formed by sequentially connecting a tank 18 for storing water heated by the vessel 2 and a pump 17 for sending out water flowing out of the tank 18. The water storage circuit 32 is constituted by this water circulation circuit.

(給湯機の動作)
上記の水循環回路を流通する水は、ポンプ17によって水−冷媒熱交換器2に送られ、その水−冷媒熱交換器2において冷媒回路からの放熱によって温められる。温められた水は、タンク18に流入し貯水される。このタンク18に貯められた水は、再びポンプ17に送られる。
(Operation of the water heater)
The water flowing through the water circulation circuit is sent to the water-refrigerant heat exchanger 2 by the pump 17, and is warmed by heat radiation from the refrigerant circuit in the water-refrigerant heat exchanger 2. The warmed water flows into the tank 18 and is stored. The water stored in the tank 18 is sent to the pump 17 again.

(実施の形態2の効果)
以上の構成よって、上記の実施の形態1と同様の効果を有した給湯機を得ることができる。
(Effect of Embodiment 2)
With the above configuration, a water heater having the same effects as those of the first embodiment can be obtained.

本発明の実施の形態1に係る冷凍サイクル装置の回路構成図である。1 is a circuit configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. 同冷凍サイクル装置の立体構成図である。It is a three-dimensional block diagram of the refrigeration cycle apparatus. 同冷凍サイクル装置の除霜運転の動作を表すフローチャートである。It is a flowchart showing operation | movement of the defrost driving | operation of the same refrigeration cycle apparatus. 本発明の実施の形態2に係る給湯機の回路構成図である。It is a circuit block diagram of the water heater based on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 水−冷媒熱交換器、3 水配管、4 電動膨張弁、5a〜5c 液開閉弁、6 空気熱交換器、6a〜6c 空気熱交換器分割部、7 送風機、8 アキュムレータ、9 ホットガス弁、11a〜11c 温度センサ、13 低圧冷媒温度センサ、14 外気温度センサ、17 ポンプ、18 タンク、31 冷凍サイクル部、32 蓄熱回路部。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Water-refrigerant heat exchanger, 3 Water piping, 4 Electric expansion valve, 5a-5c Liquid on-off valve, 6 Air heat exchanger, 6a-6c Air heat exchanger division | segmentation part, 7 Blower, 8 Accumulator, 9 Hot gas valve, 11a-11c Temperature sensor, 13 Low-pressure refrigerant temperature sensor, 14 Outside air temperature sensor, 17 Pump, 18 Tank, 31 Refrigerating cycle part, 32 Heat storage circuit part.

Claims (8)

圧縮機、水−冷媒熱交換器、減圧手段及び空気熱交換器を冷媒配管で順次接続して閉回路を構成する冷媒回路と、
前記圧縮機と前記水−冷媒熱交換器との間と、前記減圧手段と前記空気熱交換器との間とを、第1の開閉手段を介して接続して形成されるホットガスバイパス路と、
を備え、
前記空気熱交換器は、その内部の冷媒流路が2系統以上に分割され、
少なくとも1系統以上の前記分割された冷媒流路は、それぞれの冷媒流路上に独立に第2の開閉手段を有する
ことを特徴とする冷凍サイクル装置。
A refrigerant circuit that forms a closed circuit by sequentially connecting a compressor, a water-refrigerant heat exchanger, a decompression means, and an air heat exchanger with refrigerant piping;
A hot gas bypass formed by connecting the compressor and the water-refrigerant heat exchanger, and between the pressure reducing means and the air heat exchanger via a first opening / closing means; ,
With
The air heat exchanger has an internal refrigerant flow path divided into two or more systems,
The refrigeration cycle apparatus characterized in that at least one of the divided refrigerant flow paths has a second opening / closing means independently on each refrigerant flow path.
2系統以上に分割された前記分割された冷媒流路は、それぞれの冷媒経路上に独立に前記第2の開閉手段を有する
ことを特徴とする請求項1記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1, wherein the divided refrigerant flow path divided into two or more systems has the second opening / closing means independently on each refrigerant path.
前記空気熱交換器は、一体で形成されている
ことを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1 or 2, wherein the air heat exchanger is integrally formed.
前記空気熱交換器における前記2系統以上の冷媒流路は、上下方向に分割されている
ことを特徴とする請求項1〜請求項3記載の冷凍サイクル装置。
The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the two or more refrigerant flow paths in the air heat exchanger are divided in a vertical direction.
前記空気熱交換器における前記分割された冷媒流路の1つの内容積は、前記水−冷媒熱交換器の冷媒流路内容積と略同一又はそれよりも小さい
ことを特徴とする請求項1〜請求項4のいずれかに記載の冷凍サイクル装置。
The internal volume of one of the divided refrigerant flow paths in the air heat exchanger is substantially the same as or smaller than the internal volume of the refrigerant flow path of the water-refrigerant heat exchanger. The refrigeration cycle apparatus according to claim 4.
前記冷媒回路の封入冷媒量は、前記水−冷媒熱交換器の冷媒側流路が液冷媒で満たされる量と略同一又はそれよりも小さい
ことを特徴とする請求項5に記載の冷凍サイクル装置。
6. The refrigeration cycle apparatus according to claim 5, wherein an amount of refrigerant enclosed in the refrigerant circuit is substantially the same as or smaller than an amount in which a refrigerant-side flow path of the water-refrigerant heat exchanger is filled with liquid refrigerant. .
前記空気熱交換器における除霜を実施する除霜運転モードを有し、
前記除霜運転モードにおいては、
前記第1の開閉手段を開放して、前記圧縮機から吐出されるホットガスを前記空気熱交換器に流通させ、
前記第2の開閉手段を順次開放し、前記分割された冷媒流路ごとに除霜を実施する
ことを特徴とする請求項1〜請求項6のいずれかに記載の冷凍サイクル装置。
Having a defrosting operation mode for performing defrosting in the air heat exchanger;
In the defrosting operation mode,
Opening the first opening and closing means, circulating hot gas discharged from the compressor to the air heat exchanger,
The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the second opening / closing means is sequentially opened to perform defrosting for each of the divided refrigerant flow paths.
請求項1〜請求項7いずれかに記載の冷凍サイクル装置を備えた
ことを特徴とする給湯機。
A water heater comprising the refrigeration cycle apparatus according to any one of claims 1 to 7.
JP2008313224A 2008-12-09 2008-12-09 Refrigeration cycle apparatus and water heater equipped with the same Active JP4869320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313224A JP4869320B2 (en) 2008-12-09 2008-12-09 Refrigeration cycle apparatus and water heater equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313224A JP4869320B2 (en) 2008-12-09 2008-12-09 Refrigeration cycle apparatus and water heater equipped with the same

Publications (2)

Publication Number Publication Date
JP2010139098A true JP2010139098A (en) 2010-06-24
JP4869320B2 JP4869320B2 (en) 2012-02-08

Family

ID=42349381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313224A Active JP4869320B2 (en) 2008-12-09 2008-12-09 Refrigeration cycle apparatus and water heater equipped with the same

Country Status (1)

Country Link
JP (1) JP4869320B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020568A (en) * 2012-07-12 2014-02-03 Hitachi Appliances Inc Air conditioner
KR101479833B1 (en) * 2012-03-12 2015-01-06 린나이코리아 주식회사 Heat pump
CN105423617A (en) * 2015-11-13 2016-03-23 清华大学 Air source flexible water chiller-heater unit and operation method
CN105698423A (en) * 2016-04-05 2016-06-22 清华大学 Year-round efficient cooling water chilling unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293857A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat pump device
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293857A (en) * 2003-03-26 2004-10-21 Matsushita Electric Ind Co Ltd Heat pump device
JP2008082653A (en) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp Hot water supply cold and warm water air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479833B1 (en) * 2012-03-12 2015-01-06 린나이코리아 주식회사 Heat pump
JP2014020568A (en) * 2012-07-12 2014-02-03 Hitachi Appliances Inc Air conditioner
CN105423617A (en) * 2015-11-13 2016-03-23 清华大学 Air source flexible water chiller-heater unit and operation method
CN105423617B (en) * 2015-11-13 2018-04-10 清华大学 A kind of air-source flexibility water chiller-heater unit and operation method
CN105698423A (en) * 2016-04-05 2016-06-22 清华大学 Year-round efficient cooling water chilling unit

Also Published As

Publication number Publication date
JP4869320B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP6320568B2 (en) Refrigeration cycle equipment
JP5659292B2 (en) Dual refrigeration cycle equipment
JP5327308B2 (en) Hot water supply air conditioning system
EP3693680B1 (en) Refrigeration cycle apparatus
JP4937244B2 (en) Heat pump device and heat pump water heater and air conditioner equipped with the same
WO2012032680A1 (en) Refrigeration cycle apparatus
EP2530411B1 (en) Refrigeration cycle equipment
JP5653451B2 (en) Heat pump type water heater
JP5274174B2 (en) Air conditioner
JP6057871B2 (en) Heat pump system and heat pump type water heater
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP5062039B2 (en) Refrigeration equipment
JP2015064169A (en) Hot water generation device
WO2008069092A1 (en) Refrigeration device
JP2014231921A (en) Refrigeration device, and defrosting method of load cooler
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP6524670B2 (en) Air conditioner
JP2017026171A (en) Air conditioner
JP2014081180A (en) Heat pump apparatus
JP6888280B2 (en) Refrigerator
JP6336102B2 (en) Air conditioner
JP2017101857A (en) Freezing device
WO2015162790A1 (en) Refrigeration cycle device and air conditioner provided with same
WO2017094594A1 (en) Refrigeration device
JP2013139948A (en) Refrigeration device and method for detecting filling of wrong refrigerant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4869320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250