WO2017094594A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2017094594A1
WO2017094594A1 PCT/JP2016/084858 JP2016084858W WO2017094594A1 WO 2017094594 A1 WO2017094594 A1 WO 2017094594A1 JP 2016084858 W JP2016084858 W JP 2016084858W WO 2017094594 A1 WO2017094594 A1 WO 2017094594A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
path
capillary tube
pipe
Prior art date
Application number
PCT/JP2016/084858
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 北尾
明敏 上野
東 近藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015233957A external-priority patent/JP2017101857A/en
Priority claimed from JP2015233956A external-priority patent/JP2017101856A/en
Priority claimed from JP2015233958A external-priority patent/JP2017101858A/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2017094594A1 publication Critical patent/WO2017094594A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a refrigeration apparatus having a refrigerant circuit in which a reverse cycle defrosting operation is performed, and particularly to a technique for suppressing frost from remaining in the lower part of a frosted heat exchanger during the defrosting operation. .
  • the refrigeration device includes a cooling device that cools the interior of the refrigerator, an air conditioner that heats the room under conditions of low outside air, and the like.
  • Patent Document 1 discloses a configuration in which a supercooling coil is provided in a lower part of an outdoor heat exchanger of an air conditioner, and a bypass pipe branched from a discharge gas pipe of a compressor is connected to the supercooling coil.
  • the bypass pipe is provided with an electromagnetic valve (open / close valve) and a throttle mechanism (capillary tube).
  • the high-temperature gas refrigerant discharged from the compressor is each refrigerant of the outdoor heat exchanger. While passing through the path, a part of the high-temperature gas refrigerant is diverted from the discharge gas piping of the compressor and flows through the supercooling coil. As described above, in the technique disclosed in Patent Document 1, a high-temperature gas refrigerant is caused to flow through the supercooling coil during the defrosting operation in the reverse cycle, thereby preventing unmelted frost in the lower part of the heat exchanger.
  • frost remains in the lower part of the heat exchanger.
  • the frost in the reverse cycle defrosting operation, the frost is not melted in the lower portion where the liquid refrigerant is accumulated in the frosted heat exchanger.
  • This invention is made
  • the first aspect of the present disclosure includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51).
  • the first heat exchanger (23) serves as a radiator and the second heat exchanger (51) serves as an evaporator, and includes a refrigerant circuit (15) that performs a cooling operation in a positive cycle, and is attached to the second heat exchanger (51).
  • the refrigerant discharged from the compressor (21a, 21b) is supplied to the second heat exchanger (51) to perform a reverse cycle defrosting operation, and a plurality of the second heat exchangers (51) are arranged from above to below.
  • the refrigerant path (51a to 51n) and the flow divider (55) and the refrigerant path (51a to 51n) provided between the expansion mechanism (53) and the second heat exchanger (51) are capillary. It assumes a refrigeration system connected by a tube (56).
  • the refrigeration apparatus includes a capillary connected to a refrigerant path (51a to 51n) positioned at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the second heat exchanger (51).
  • the tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). It is said.
  • the tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55).
  • the capillary tube (56) connected to the refrigerant path (51a to 51n) located below the flow divider (55) is connected to the refrigerant path (51a to 51n) to which the capillary tube (56) is connected.
  • the shunt (55) have a smaller dynamic pressure resistance than the head difference. Therefore, during the defrosting operation, the refrigerant hardly flows to the flow divider (55) through the capillary tube (56) connected to the path below the heat exchanger, and the refrigerant path (51a to 51n) below the heat exchanger.
  • the dynamic pressure resistance is set as described above, the flow velocity is increased and the head difference is reduced.
  • the refrigerant flows to the flow divider (55) through the capillary tube (56) connected to the lower path of the heat exchanger, so the liquid refrigerant flows into the refrigerant path (51a to 51n) below the heat exchanger. Does not remain. Therefore, the unmelted frost in the lower part of the heat exchanger can be suppressed.
  • a capillary tube (56) that connects the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) includes: It is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the lowermost refrigerant path (51n) and the flow divider (55), and all capillary tubes (56) have the same inner diameter and the same length. It is a feature.
  • the capillary tube (56) connecting the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path (51n).
  • the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all capillary tubes (56) have the same inner diameter and the same length, so that the path below the heat exchanger Therefore, it is possible to prevent liquid refrigerant from remaining in the refrigeration, so that frost remaining in the lower portion of the heat exchanger can be suppressed.
  • a temperature sensor (75) that detects a temperature of a refrigerant flowing through a pipe on the downstream side of the flow divider (55) during the defrosting operation is provided. It is characterized by.
  • the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the second heat exchanger (51) is determined by the temperature sensor (75). Is detected.
  • the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and when the refrigerant temperature exceeds a predetermined value, the lowermost refrigerant path It can be judged that (51n) frost has melted.
  • 56) is characterized in that it is formed in a shape having a refrigerant trap (59) passing through the height below the lowermost refrigerant path (51n).
  • the liquid refrigerant is accumulated in the lower path of the heat exchanger, so that the gas refrigerant discharged from the compressor (21a, 21b) follow the upper path. If the defrosting operation is continued as it is, frost attached to the upper path of the heat exchanger is removed, but frost attached to the lower path may remain without being removed. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
  • the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant.
  • the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance, so that the refrigerant passes through each refrigerant path (51a to 51n) of the second heat exchanger (51). It flows evenly. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant flows easily through each path, and only the upper refrigerant path (51a to 51n) is prevented from flowing through the lower refrigerant path. In addition, since the gas refrigerant can be supplied, the frost attached to the lower path can be surely removed.
  • a fifth aspect of the present disclosure includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51).
  • the first heat exchanger (23) serves as a radiator and the second heat exchanger (51) serves as an evaporator, and includes a refrigerant circuit that performs a cooling operation in the positive cycle.
  • the second heat exchanger (51) is frosted, the refrigerant is compressed.
  • the refrigerant discharged from the machine (21a, 21b) is supplied to the second heat exchanger (51) to perform a defrosting operation in the reverse cycle, and the second heat exchanger (51) has a plurality of refrigerant paths extending from above to below.
  • a flow divider (55) and a refrigerant path (51a to 51n) provided between the expansion mechanism (53) and the second heat exchanger (51) include a capillary tube (56 ) Is assumed to be connected to the refrigeration system.
  • the capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the second heat exchanger (51) has a lower refrigerant path (51n ) It is formed in the shape provided with the refrigerant
  • the liquid refrigerant is accumulated in the lower path of the heat exchanger and the passage resistance of the gas refrigerant is large, so that the compressor (21a, 21b The gas refrigerant discharged from the gas flows through the upper path of the heat exchanger. If the defrosting operation is continued as it is, frost attached to the upper path of the heat exchanger is removed, but frost attached to the lower path may remain without being removed. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
  • the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant.
  • the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance, so that the refrigerant passes through each refrigerant path (51a to 51n) of the second heat exchanger (51). It will flow evenly. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant flows easily through each path, and only the upper refrigerant path (51a to 51n) is prevented from flowing through the lower refrigerant path. In addition, since the gas refrigerant can be supplied, the frost attached to the lower path can be surely removed.
  • a sixth aspect of the present disclosure is characterized in that, in the fifth aspect, the flow divider (55) is arranged with the connection portion of the capillary tube (56) facing downward.
  • the normal operation is defrosted as in the fifth aspect.
  • the gas refrigerant easily flows through each path evenly. Accordingly, since the gas refrigerant can be supplied to the lower path by preventing the gas refrigerant from flowing only through the upper refrigerant path (51a to 51n), the frost attached to the lower path can be surely removed.
  • the shape of all the refrigerant traps (59) of the capillary tube (56) is the same as the height of the lower end of the capillary tube (56). It is characterized by that.
  • the gas refrigerant easily flows through each path even when the normal operation is switched to the defrosting operation. Accordingly, since the gas refrigerant can be supplied to the lower path by preventing the gas refrigerant from flowing only through the upper refrigerant path (51a to 51n), the frost attached to the lower path can be surely removed.
  • a supercooling coil (57) is provided below the second heat exchanger (51), and the supercooling coil (57)
  • the refrigerant inflow side end (57a) during the cycle cooling operation communicates directly with the liquid line (15L) of the refrigerant circuit, and the refrigerant inflow side end (57b) during the reverse cycle defrosting operation
  • the refrigerant path (51a to 51n) of the second heat exchanger (51) is communicated with the flow divider (55).
  • the high-temperature gas refrigerant discharged from the compressor (21a, 21b) is supplied to the frosted second heat exchanger (51).
  • the liquid refrigerant is accumulated in the lower refrigerant path (51a to 51n) of the second heat exchanger (51)
  • the gas refrigerant flows through the upper path and then passes through the flow divider (55), and further It flows through the supercooling coil (57).
  • the high-temperature gas refrigerant occupies most of the refrigerant flowing through the supercooling coil (57), and the liquid refrigerant hardly flows.
  • the temperature of the supercooling coil rises, and the second heat exchanger (51) is warmed from the bottom.
  • the refrigerant path (51a to 51n) through which the high-temperature gas refrigerant flows expands downward from the uppermost refrigerant path (51a to 51n), so the second heat exchanger ( 51) is also warmed from top to bottom.
  • the second heat exchanger (51) is heated from both above and below, so that not only frost adhering to the upper refrigerant path (51a to 51n) but also the lower refrigerant path ( Frost adhering to 51a-51n) is also removed.
  • the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) are connected during the defrosting operation.
  • a temperature sensor (75) for detecting the temperature of the refrigerant flowing through the capillary tube (56) is provided.
  • the capillary tube (56) connected to the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected.
  • the temperature of the flowing refrigerant is detected by the temperature sensor (75). And when this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. That is, it can be determined that the frost on the use side heat exchanger has melted as a whole.
  • the temperature sensor (75) detects the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) during the defrosting operation. It is characterized by having.
  • the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) is detected by the temperature sensor (75).
  • the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and the temperature of the refrigerant reaches a predetermined value or more. If so, it can be determined that the frost in the lowermost refrigerant path (51n) has melted.
  • An eleventh aspect of the present disclosure includes the internal unit (12) including the expansion mechanism (53) and the second heat exchanger (51) in the ninth or tenth aspect, and the temperature sensor ( 75) is provided in the interior unit (12).
  • the eleventh aspect has the defrosting operation been completed using the temperature sensor (75) provided in the internal unit (12) having the expansion mechanism (53) and the second heat exchanger (51)? Whether it can be detected.
  • the refrigerant paths (51a to 51n) of the second heat exchanger (51) of the second heat exchanger (51) at least the refrigerant paths (51a to 51n) positioned below the flow divider (55).
  • the connected capillary tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55).
  • the flow rate of the refrigerant is increased, the head difference is overcome, and the refrigerant flows through the capillary tube (56) connected to the path below the heat exchanger to the flow divider (55).
  • the liquid refrigerant does not stay in the refrigerant path (51a to 51n) below. Therefore, it is possible to suppress frost from being melted at the lower part of the frosted heat exchanger during the defrosting operation.
  • a bypass pipe provided with an electromagnetic valve or a capillary tube (56) is connected to the refrigerant circuit (15), or an operation of opening the electromagnetic valve during a reverse cycle defrosting operation is performed. Since it is not necessary, the configuration and control can be prevented from becoming complicated.
  • the capillary tube (56) that connects the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected to the lowermost heat exchanger (51).
  • the heat exchanger is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51n) and the flow divider (55), and all capillary tubes (56) have the same inner diameter and the same length. Since the liquid refrigerant can be prevented from remaining in the lower path, the configuration of the apparatus can be simplified, and frost remaining in the lower part of the heat exchanger can be suppressed.
  • the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the second heat exchanger (51) is the temperature. If it is detected by the sensor (75) and the temperature of the refrigerant is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. In this temperature sensor (75), since the entire amount of refrigerant after passing through the flow divider (55) flows during the reverse cycle operation, it can be accurately determined whether or not the defrosting operation has ended.
  • the capillary tube (56) with the refrigerant trap (59) not only the liquid refrigerant in the lowermost refrigerant path (51n) becomes the passage resistance of the gas refrigerant.
  • the liquid refrigerant accumulated in the refrigerant trap (59) becomes resistance, so that the refrigerant is evenly distributed in each refrigerant path (51a to 51n) of the second heat exchanger (51).
  • the gas refrigerant can easily flow through each path, and the gas refrigerant can be supplied to the lower paths by preventing the gas refrigerant from flowing only through the upper refrigerant paths (51a to 51n).
  • the capillary tube (56) with the refrigerant trap (59) by providing the capillary tube (56) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) becomes the passage resistance of the gas refrigerant.
  • the liquid refrigerant accumulated in the trap (59) becomes resistance, so that the refrigerant paths (51a to 51a) of the second heat exchanger (51) 51n) refrigerant flows evenly. Therefore, the gas refrigerant can easily flow through each path, and the gas refrigerant can be supplied to the lower paths by preventing the gas refrigerant from flowing only through the upper refrigerant paths (51a to 51n).
  • the second heat exchanger (51) is warmed from both above and below, so frost adhering to the upper part of the second heat exchanger (51).
  • frost attached to the lower portion of the second heat exchanger (51) can be removed. That is, it is possible to prevent frost from remaining unmelted.
  • the 8th aspect it is not necessary to connect the bypass piping which provided the solenoid valve and the capillary tube (56) to the refrigerant circuit, or to open the solenoid valve during the reverse cycle defrosting operation. Therefore, it is possible to prevent the configuration and control from becoming complicated.
  • the capillary tube connected to the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) during the defrosting operation in the reverse cycle. Since the temperature of the refrigerant flowing through (56) is detected by the temperature sensor (75) and this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. It can be detected whether or not.
  • the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) is detected by the temperature sensor (75), If this temperature exceeds a predetermined value after a predetermined time from the start of the defrosting operation, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. Can do. Further, if the temperature sensor (75) is provided at a position after passing through the supercooling coil (57), the temperature can be detected from the total flow rate of the refrigerant, so that the end of the defrosting operation can be detected more accurately.
  • the defrosting operation is performed using the temperature sensor (75) provided in the internal unit (12) including the expansion mechanism (53) and the second heat exchanger (51). Therefore, it is possible to detect whether or not the defrosting operation has ended, by using only the in-compartment unit (12).
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit configuration diagram showing details of piping around the use side heat exchanger.
  • FIG. 3 is a graph showing the pipe diameters of the ratio of the length and pipe diameter of the flow divider capillary tube and the refrigerant circulation amount.
  • FIG. 4 is a diagram illustrating a refrigerant flow in the cooling operation in the refrigerant circuit of FIG. 1.
  • FIG. 5 is a diagram illustrating a refrigerant flow in a reverse cycle defrosting operation in the refrigerant circuit of FIG. 1.
  • FIG. 6 is a circuit configuration diagram showing details of piping around the use side heat exchanger of the refrigeration apparatus according to another embodiment.
  • FIG. 7 is a circuit configuration diagram illustrating details of piping around the use-side heat exchanger according to the second embodiment.
  • FIG. 8 is a diagram illustrating a modification of the connection form between the use-side heat exchanger
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • FIG. 1 shows a configuration example of the refrigeration apparatus (10) according to the first embodiment.
  • the refrigeration apparatus (10) includes a heat source side unit (11) provided outside the storage, a use side unit (12) provided in a storage such as a refrigerator or a freezer, and a controller (80).
  • the heat source side unit (11) includes a heat source side circuit (16) and a heat source side fan (17)
  • the usage side unit (12) includes a usage side circuit (18), a usage side fan (19), and Is provided.
  • the heat source side circuit (16) of the heat source side unit (11) and the usage side circuit (18) of the usage side unit (12) are connected to the liquid side communication pipe (13) and the gas side communication pipe ( 14), a refrigerant circuit (15) in which a refrigerant circulates and a vapor compression refrigeration cycle is performed is configured.
  • a liquid closing valve (V1) and a gas closing valve (V2) are provided at the liquid end and the gas end of the heat source side circuit (16), respectively, and the liquid closing valve (V1) and the gas closing valve (V2)
  • One end of the liquid side connecting pipe (13) and one end of the gas side connecting pipe (14) are connected to the other end of the liquid side connecting pipe (13) and the gas side connecting pipe (14). The liquid end and the gas end are connected to each other.
  • the heat source side circuit (16) includes a first compressor (21a) and a second compressor (21b), a four-way switching valve (22), a heat source side heat exchanger (23), and a supercooling heat exchanger (24 ), Supercooling expansion valve (31), intermediate expansion valve (32), intermediate on-off valve (33), intermediate check valve (34), receiver (35), and heat source side expansion valve (36)
  • the heat source side circuit (16) includes a discharge refrigerant pipe (41), an intake refrigerant pipe (42), a heat source side liquid refrigerant pipe (43), an injection pipe (44), and a first connection pipe (45). ) And a second connection pipe (46), and an oil return pipe (47).
  • the first compressor (21a) is configured to compress and discharge the sucked refrigerant.
  • the first compressor (21a) is provided with a suction port, an intermediate port, and a discharge port.
  • the suction port is formed so as to communicate with the compression chamber (that is, the low-pressure compression chamber) in the suction stroke of the first compressor (21a).
  • the intermediate port is formed so as to communicate with the compression chamber (that is, the compression chamber of intermediate pressure) during the compression stroke of the first compressor (21a).
  • the discharge port is configured to communicate with the compression chamber (that is, the high-pressure compression chamber) in the discharge stroke of the first compressor (21a).
  • the first compressor (21a) is configured by a scroll compressor in which a compression chamber is formed between a fixed scroll and a movable scroll that mesh with each other.
  • the second compressor (21b) has a configuration similar to that of the first compressor (21a).
  • the first compressor (21a) has a variable operating frequency (capacity).
  • the first compressor (21a) is configured such that by changing the output frequency of the inverter (not shown), the rotational speed of the motor provided therein changes, and the operating frequency changes. ing.
  • the operating frequency (capacity) of the second compressor (21b) is fixed. That is, as for the 2nd compressor (21b), the rotation speed of the electric motor provided in the inside is constant, and the operating frequency is constant.
  • the four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, And the fourth port are in communication with each other and the second port and the third port are in communication with each other (a state indicated by a broken line in FIG. 1).
  • the first port of the four-way switching valve (22) is connected to the discharge ports of the first and second compressors (21a, 21b) by the discharge refrigerant pipe (41), and the second port of the four-way switching valve (22) is
  • the suction refrigerant pipe (42) is connected to the suction ports of the first and second compressors (21a, 21b).
  • the third port of the four-way switching valve (22) is connected to the gas end of the heat source side heat exchanger (23), and the fourth port of the four-way switching valve (22) is connected to the gas closing valve (V2). .
  • the discharge refrigerant pipe (41) has first and second discharge pipes (41a, 41b) whose one ends are connected to discharge ports of the first and second compressors (21a, 21b), and first and second discharge pipes. It is comprised by the discharge main pipe (41c) which connects the other end of (41a, 41b) and the 1st port of the four-way selector valve (22).
  • the suction refrigerant pipe (42) has first and second suction pipes (42a, 42b) connected at one end to the suction ports of the first and second compressors (21a, 21b), respectively, and the first and second suction pipes.
  • the suction main pipe (42c) connects the other end of the pipe (42a, 42b) and the second port of the four-way selector valve (22).
  • the liquid end of the heat source side heat exchanger (23) is connected to one end of the heat source side liquid refrigerant pipe (43), and the gas end is connected to the third port of the four-way switching valve (22).
  • the heat source side fan (17) is arrange
  • the heat source side heat exchanger (23) is configured to exchange heat between the refrigerant and the heat source side air (that is, outside air) conveyed by the heat source side fan (17).
  • the heat source side heat exchanger (23) is configured by a cross-fin type fin-and-tube heat exchanger.
  • the heat source side liquid refrigerant pipe (43) has one end connected to the heat source side heat exchanger (23) and the other end connected to the liquid closing valve (V1).
  • the heat source side liquid refrigerant pipe (43) includes a first heat source side liquid pipe (43a) that connects the liquid end of the heat source side heat exchanger (23) and the receiver (35), and a receiver (35).
  • a first heat source side liquid pipe (43a) that connects the liquid end of the heat source side heat exchanger (23) and the receiver (35), and a receiver (35).
  • the injection pipe (44) connects the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the intermediate ports of the first and second compressors (21a, 21b).
  • the injection pipe (44) includes a first injection main pipe (44m) that connects the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the supercooling heat exchanger (24), and one end.
  • the second injection main pipe (44n) connected to the supercooling heat exchanger (24), the other end of the second injection main pipe (44n), and the intermediate ports of the first and second compressors (21a, 21b).
  • the first and second injection branch pipes (44a, 44b) are connected to each other.
  • the supercooling heat exchanger (24) is connected to the heat source side liquid refrigerant pipe (43) and the injection pipe (44), and includes a refrigerant flowing through the heat source side liquid refrigerant pipe (43) and a refrigerant flowing through the injection pipe (44).
  • the supercooling heat exchanger (24) includes a first flow path (24a) connected between the second heat source side liquid pipe (43b) and the third heat source side liquid pipe (43c), The second flow path (24b) connected between the 1 injection main pipe (44m) and the second injection main pipe (44n), and the refrigerant flowing through the first flow path (24a) and the second flow path (24b )
  • the supercooling heat exchanger (24) is configured by a plate heat exchanger.
  • the supercooling expansion valve (31) is located between the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the supercooling heat exchanger (24) in the injection pipe (44) (in this example, the first It is provided in the injection main pipe (44m). Further, the supercooling expansion valve (31) is configured such that its opening degree can be adjusted.
  • the supercooling expansion valve (31) is constituted by an electronic expansion valve (motorized valve).
  • the intermediate expansion valve (32) is located between the supercooling heat exchanger (24) and the intermediate port of the first compressor (21a) in the injection pipe (44) (in this example, the first injection branch pipe (44a)). Is provided. Further, the intermediate expansion valve (32) is configured so that its opening degree can be adjusted. For example, the intermediate expansion valve (32) is configured by an electronic expansion valve (motorized valve).
  • the intermediate on-off valve (33) and the intermediate check valve (34) are disposed between the supercooling heat exchanger (24) and the intermediate port of the second compressor (21b) in the injection pipe (44) (in this example, the first 2 injection branch pipe (44b)).
  • an intermediate on-off valve (33) and an intermediate check valve (34) are sequentially arranged from the inlet side to the outlet side of the second injection branch pipe (44b).
  • the intermediate on-off valve (33) is configured to be switchable.
  • the intermediate opening / closing valve (33) is constituted by a solenoid valve.
  • the intermediate check valve (34) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second injection branch pipe (44b) and to block the refrigerant flow in the reverse direction.
  • the receiver (35) is connected between the heat source side heat exchanger (23) and the supercooling heat exchanger (24) in the heat source side liquid refrigerant pipe (43), and is connected to a condenser (specifically, heat source side heat In the exchanger (first heat exchanger) (23) or a later-described use side heat exchanger (second heat exchanger) (51)), the condensed refrigerant can be temporarily stored.
  • the receiver (35) has a first heat source side liquid pipe (43a) connected to the inlet and a second heat source side liquid pipe (43b) connected to the outlet.
  • the first connection pipe (45) connects the second midway part (Q2) and the third midway part (Q3) of the heat source side liquid refrigerant pipe (43).
  • the second halfway part (Q2) is located between the first halfway part (Q1) and the liquid shut-off valve (V1) in the heat source side liquid refrigerant pipe (43), and the third halfway part (Q3) is located on the heat source side It is located between the liquid end of the heat source side heat exchanger (23) and the receiver (35) in the liquid refrigerant pipe (43).
  • the second connection pipe (46) connects the fourth midway part (Q4) and the fifth midway part (Q5) of the heat source side liquid refrigerant pipe (43).
  • the fourth midway part (Q4) is located between the first halfway part (Q1) and the second halfway part (Q2) in the heat source side liquid refrigerant pipe (43), and the fifth halfway part (Q5) is located on the heat source side
  • the liquid refrigerant pipe (43) is located between the liquid end of the heat source side heat exchanger (23) and the third midway part (Q3).
  • the heat source side expansion valve (36) is provided in the second connection pipe (46). Moreover, the heat source side expansion valve (36) is comprised so that the opening degree can be adjusted.
  • the heat source side expansion valve (36) is configured by an electronic expansion valve (motorized valve).
  • the first check valve (CV1) is provided between the third midway part (Q3) and the fifth midway part (Q5) of the heat source side liquid refrigerant pipe (43), and the first check valve (CV1) 3.
  • the refrigerant flow toward the middle part (Q3) is allowed and the refrigerant flow in the opposite direction is blocked.
  • the second check valve (CV2) is provided between the second midway part (Q2) and the fourth midway part (Q4) of the heat source side liquid refrigerant pipe (43), and the second midway part (Q4) to the second midway part (Q4). 2
  • the refrigerant flow toward the middle part (Q2) is allowed and the refrigerant flow in the opposite direction is blocked.
  • the third check valve (CV3) is provided in the first connection pipe (45), and the refrigerant flows from the second midway part (Q2) to the third midway part (Q3) of the heat source side liquid refrigerant pipe (43). And the refrigerant flow in the opposite direction is blocked.
  • the first oil separator (OSa) and the first discharge check valve (CVa) are disposed between the first compressor (21a) and the first port of the four-way switching valve (22) in the discharge refrigerant pipe (41) (specifically Specifically, it is provided in the first discharge pipe (41a).
  • a first oil separator (OSa) and a first discharge check valve (CVa) are sequentially arranged from the inlet side to the outlet side of the first discharge pipe (41a).
  • the first oil separator (OSa) is configured to separate the refrigerating machine oil from the refrigerant discharged from the first compressor (21a) and store it inside.
  • the first discharge check valve (CVa) is configured to allow the flow of the refrigerant from the inlet side to the outlet side of the first discharge pipe (41a) and prevent the refrigerant flow in the reverse direction.
  • the second oil separator (OSb) is disposed between the second compressor (21b) and the first port of the four-way switching valve (22) in the discharge refrigerant pipe (41) (specifically, the second discharge pipe (41b )).
  • a second oil separator (OSb) and a second discharge check valve (CVb) are sequentially arranged from the inlet side to the outlet side of the second discharge pipe (41b).
  • the second oil separator (OSb) is configured so that the refrigeration oil can be separated from the refrigerant discharged from the second compressor (21b) and stored inside.
  • the second discharge check valve (CVb) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second discharge pipe (41b) and to block the refrigerant flow in the reverse direction.
  • the oil return pipe (47) is a pipe for supplying the refrigeration oil stored in the first and second oil separators (OSa, OSb) to the injection pipe (44).
  • the oil return pipe (47) includes first and second oil return pipes (47a, 47b) whose one ends are connected to the first and second oil separators (OSa, OSb), and the first and second oil return pipes (47). 2.
  • Oil return main pipe (47c) connecting the other end of the oil return pipe (47a, 47b) and the middle part of the injection pipe (44) (specifically, the middle part (Q6) of the second injection main pipe (44n)) )
  • the middle part (Q6) of the second injection main pipe (44n) and.
  • the first capillary tube (CTa) is located between the first oil separator (OSa) and the middle part (Q6) of the injection pipe (44) in the oil return pipe (47) (specifically, the first oil return pipe). (47a)).
  • the second capillary tube (CTb) and oil return check valve (CVc) are located between the second oil separator (OSb) and the middle part (Q6) of the injection pipe (44) in the oil return pipe (47).
  • the second oil return pipe (47b) is provided.
  • an oil return check valve (CVc) and a second capillary tube (CTb) are sequentially arranged from the inlet side to the outlet side of the second oil return pipe (47b).
  • the oil return check valve (CVc) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second oil return pipe (47b) and to block the refrigerant flow in the reverse direction.
  • the utilization side circuit (18) includes a utilization side heat exchanger (51), a utilization side on-off valve (52), a utilization side expansion valve (expansion mechanism) (53), and a utilization side check valve (54).
  • the use side circuit (18) is provided with a use side liquid refrigerant pipe (61), a use side gas refrigerant pipe (62), and a bypass pipe (63).
  • FIG. 1 has simplified and shown the utilization side heat exchanger (51) and piping connected to the utilization side heat exchanger (51).
  • the liquid end of the use side heat exchanger (51) is connected to the liquid side connection pipe (13) by the use side liquid refrigerant pipe (61), and the gas end is connected to the gas side by the use side gas refrigerant pipe (62). Connected to pipe (14).
  • the utilization side fan (19) is arrange
  • the use side heat exchanger (51) is configured to exchange heat between the refrigerant and the use side air (that is, the internal air) conveyed by the use side fan (19).
  • the use side heat exchanger (51) is configured by a cross-fin type fin-and-tube heat exchanger.
  • the use side liquid refrigerant pipe (61) has one end connected to the liquid side communication pipe (13) and the other end connected to the liquid end of the use side heat exchanger (51).
  • the use side gas refrigerant pipe (62) has one end connected to the gas end of the use side heat exchanger (51) and the other end connected to the gas side communication pipe (14).
  • the use side opening / closing valve (52) and the use side expansion valve (53) are provided in the use side liquid refrigerant pipe (61).
  • a use side on-off valve (52) and a use side expansion valve (53) are arranged in this order from one end side to the other end side of the use side liquid refrigerant pipe (61). .
  • the use side on-off valve (52) is configured to be switchable.
  • the use side on-off valve (52) is constituted by a solenoid valve.
  • the use side expansion valve (53) is configured such that its opening degree can be adjusted.
  • the use side expansion valve (53) is constituted by an external pressure equalization type temperature automatic expansion valve. That is, the use side expansion valve (53) includes a temperature sensing cylinder (53a) provided in the use side gas refrigerant pipe (62) and a pressure equalizing pipe (not shown) connected to the middle part of the use side gas refrigerant pipe (62). The opening degree is adjusted according to the temperature of the temperature sensing cylinder (53a) and the refrigerant pressure of the pressure equalizing pipe.
  • bypass pipe (63) One end of the bypass pipe (63) is connected to a midway part between the use side expansion valve (53) and the use side heat exchanger (51) in the use side liquid refrigerant pipe (61), and the other end is used.
  • the liquid refrigerant pipe (61) is connected to a midway part between the liquid side connecting pipe (13) and the use side on-off valve (52).
  • the use-side check valve (54) is provided in the bypass pipe (63) and allows the refrigerant to flow from the use-side heat exchanger (51) side to the liquid-side connecting pipe (13) side, and in the opposite direction. It is configured to block the flow of the refrigerant.
  • the use side heat exchanger (51) has a plurality of refrigerant paths (51a to 51n) arranged from the top to the bottom as shown in FIG. Further, a flow divider (55) is connected between the use side expansion valve (53) and the use side heat exchanger (51), and the flow divider (55) and each refrigerant path (51a to 51n) are connected to the capillary. They are connected by tubes (56 (56a to 56n)).
  • a capillary tube (56) connected to a refrigerant path located at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the use side heat exchanger (51).
  • it is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55).
  • the value obtained by adding the dynamic pressure resistances of the capillary tube (56) and the cooling pipes (refrigerant paths) (51a to 51n) is the shunt (55) and the lowermost refrigerant path.
  • the length and the diameter of the capillary tube (56) are determined so as to be larger than the head difference ( ⁇ PHi) of (51n). As a result, the flow rate of the refrigerant increases, and the refrigerant flows through the capillary tube (56) by overcoming the head difference.
  • the capillary tube (56n) that connects the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) includes the lowermost refrigerant path (51n).
  • the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all the capillary tubes (56a to 56n) have the same inner diameter and the same length.
  • the use side circuit (18) is provided with a temperature sensor (75) for detecting the temperature of the refrigerant flowing in the downstream pipe of the flow divider (55) during the defrosting operation.
  • the refrigeration apparatus (10) is a refrigeration having a use side unit (internal unit) (12) including the use side expansion valve (53) and a use side heat exchanger (51).
  • the temperature sensor (75) is a device, and is provided inside the use side unit (12).
  • the refrigeration apparatus (10) is provided with various sensors such as an intake temperature sensor (71), an intake pressure sensor (72), and an internal temperature sensor (73).
  • the suction temperature sensor (71) is configured to detect the temperature of the refrigerant sucked into the first and second compressors (21a, 21b) (hereinafter referred to as “suction temperature”).
  • suction temperature the temperature of the refrigerant sucked into the first and second compressors (21a, 21b)
  • the suction temperature sensor (71) is installed in the suction main pipe (42c) and detects the refrigerant temperature at the installation location as the suction temperature.
  • the suction pressure sensor (72) is configured to detect the pressure of the refrigerant sucked into the first and second compressors (21a, 21b) (hereinafter referred to as “suction pressure”).
  • suction pressure the pressure of the refrigerant sucked into the first and second compressors (21a, 21b)
  • the suction pressure sensor (72) is installed in the suction main pipe (42c) and detects the refrigerant pressure at the installation location as the suction pressure.
  • the internal temperature sensor (73) is configured to detect the temperature of air in the internal space (hereinafter referred to as “internal temperature (Tr)”).
  • the internal temperature sensor (73) is installed upstream of the air flow of the usage-side fan (19) in the usage-side unit (12) and detects the air temperature at the installation location as the internal temperature (Tr). To do.
  • the controller (80) controls the operation of the refrigeration apparatus (10) by controlling each part of the refrigeration apparatus (10) based on the detection values of the various sensors.
  • the controller (80) includes a main controller (81) provided in the heat source side unit (11) and a use side controller (82) provided in the use side unit (12).
  • the main controller (81) controls the components provided in the heat source side unit (11).
  • the heat source side fan (17) provided in the heat source side unit (11) various valves (in this example, a four-way switching valve (22), a supercooling expansion valve (31), an intermediate expansion valve (32), The intermediate on-off valve (33), the heat source side expansion valve (36)), the first compressor (21a), the second compressor (21b), and the like are controlled, and the target evaporation temperature is also set.
  • the usage side controller (82) controls the components (in this example, the usage side fan (19) and the usage side on-off valve (52)) provided in the usage side unit (12).
  • the use side controller (82) determines whether or not the operation of the refrigeration apparatus (10) should be started, and if it determines that the operation of the refrigeration apparatus (10) should be started, the cooling operation (cools the inside of the refrigerator) For starting the operation) and an operation start signal is transmitted to the main controller (81). Further, the use side controller (82) determines whether or not the operation of the refrigeration apparatus (10) should be terminated, and when determining that the operation of the refrigeration apparatus (10) should be terminated, the operation for the cooling operation is performed. At the same time, an operation end signal is transmitted to the main controller (81). For example, the use side controller (82) determines the operation start and operation end of the refrigeration apparatus (10) in response to an operation by the user (operation for instructing operation start and operation end).
  • the use side controller (82) determines whether or not to start the defrosting operation (operation for defrosting the use side heat exchanger (51)) during the period during which the cooling operation is performed, When it is determined that the defrosting operation should be started, an operation for the defrosting operation is started and a defrosting start signal is transmitted to the main controller (81). Further, the use side controller (82) determines whether or not the defrosting operation should be terminated during the period during which the defrosting operation is being performed. And the operation for cooling operation is started, and a defrosting end signal is transmitted to the main controller (81).
  • the use-side controller (82) determines that the defrosting operation should be started when a predetermined time (cooling operation time) elapses from the time when the cooling operation is started, for example, the temperature sensor (75). When the detected temperature reaches a predetermined temperature, it is determined that the defrosting operation should be terminated. It should be noted that when a predetermined time (defrosting operation time) has elapsed since the start of the defrosting operation, it may be determined that the defrosting operation has ended.
  • the refrigeration apparatus (10) of the present embodiment includes the compressor (21a, 21b), the heat source side heat exchanger (first heat exchanger) (23), and the use side expansion valve (expansion mechanism) (53 ) And the use side heat exchanger (second heat exchanger) (51), the heat source side heat exchanger (23) becomes a radiator and the use side heat exchanger (51) becomes an evaporator.
  • the refrigeration apparatus includes a refrigerant circuit (15) for operation.
  • the refrigeration apparatus (10) supplies the refrigerant discharged from the compressor (21a, 21b) to the use side heat exchanger (51) when the use side heat exchanger (51) is frosted, thereby removing the reverse cycle. It is configured to perform frost operation.
  • the refrigerant flow in the refrigerant circuit (15) during the cooling operation will be described with reference to FIG.
  • the four-way selector valve (22) is set to the first state, and the discharge ports of the first and second compressors (21a, 21b) communicate with the gas ends of the heat source side heat exchanger (23), The suction ports of the first and second compressors (21a, 21b) communicate with the gas side communication pipe (14).
  • the refrigerant discharged from the first and second compressors (21a, 21b) is discharged from the first and second oil separators (OSa, OSb) and the first and second discharge check valves (41) in the discharge refrigerant pipe (41). CVa, CVb), and then passes through the four-way switching valve (22) and flows into the heat source side heat exchanger (23).
  • the heat source side heat exchanger (23) In the heat source side heat exchanger (23), the heat source side air (that is, outside air) ) To dissipate heat and condense.
  • the refrigerant (high-pressure refrigerant) flowing out from the heat source side heat exchanger (23) passes through the first check valve (CV1) in the first heat source side liquid pipe (43a), and then the receiver (35) and the second heat source side.
  • a refrigerant (passing through the liquid pipe (43b) in order and flowing into the first flow path (24a) of the supercooling heat exchanger (24) and flowing through the second flow path (24b) of the supercooling heat exchanger (24) (
  • the refrigerant is absorbed by the intermediate pressure refrigerant) and supercooled.
  • the refrigerant flowing out of the first flow path (24a) of the supercooling heat exchanger (24) flows into the third heat source side liquid pipe (43c), and part of it flows into the first injection main pipe (44m),
  • the remaining portion passes through the second check valve (CV2) in the third heat source side liquid pipe (43c), then passes through the liquid closing valve (V1) and flows into the liquid side connecting pipe (13).
  • the refrigerant flowing into the first injection main pipe (44m) is depressurized in the supercooling expansion valve (31), flows into the second flow path (24b) of the supercooling heat exchanger (24), and then enters the supercooling heat exchanger ( Heat is absorbed from the refrigerant (high-pressure refrigerant) flowing through the first flow path (24a) of 24).
  • the refrigerant flowing out from the second flow path (24b) of the supercooling heat exchanger (24) passes through the second injection main pipe (44n), and part of it flows into the first injection branch pipe (44a). The remaining part flows into the second injection branch pipe (44b).
  • the refrigerant flowing into the first injection branch pipe (44a) is decompressed by the intermediate expansion valve (32) and flows into the intermediate port of the first compressor (21a).
  • the refrigerant flowing into the second injection branch pipe (44b) sequentially passes through the intermediate opening / closing valve (33) and the intermediate check valve (34) and flows into the intermediate port of the second compressor (21b).
  • the refrigerant that has passed through the intermediate port and has flowed into the first and second compressors (21a, 21b) is the refrigerant in the first and second compressors (21a, 21b) (specifically, the refrigerant in the compression chamber). ). That is, the refrigerant in the first and second compressors (21a, 21b) is compressed while being cooled.
  • the refrigerant flowing into the liquid side communication pipe (13) passes through the open use side on-off valve (52) in the use side liquid refrigerant pipe (61) of the use side unit (12) and passes through the use side expansion valve (52). 53), the pressure is reduced and flows into the use-side heat exchanger (51), and the use-side heat exchanger (51) absorbs heat from the use-side air (that is, the internal air) to evaporate. Thereby, utilization side air is cooled.
  • the refrigerant flowing out of the use side heat exchanger (51) is divided into the use side gas refrigerant pipe (62), the gas side connecting pipe (14), the gas shutoff valve (V2) and the four-way switching valve (22) of the heat source side unit (11). ) And the suction refrigerant pipe (42) in order, and is sucked into the suction ports of the first and second compressors (21a, 21b).
  • the refrigeration oil is separated from the refrigerant (that is, the refrigerant discharged from the first and second compressors (21a, 21b)). It is stored in the first and second oil separators (OSa, OSb).
  • the refrigerating machine oil stored in the first oil separator (OSa) flows into the oil return main pipe (47c) after passing through the first capillary tube (CTa) in the first oil return pipe (47a).
  • the refrigerating machine oil stored in the second oil separator (OSb) passes through the oil return check valve (CVc) and the second capillary tube (CTb) in order in the second oil return pipe (47b), and then returns to the oil. It flows into the main pipe (47c).
  • the refrigeration oil that has flowed into the oil return main pipe (47c) flows into the second injection main pipe (44n) and merges with the refrigerant flowing through the second injection main pipe (44n).
  • the refrigerant discharged from the first and second compressors (21a, 21b) is discharged from the first and second oil separators (OSa, OSb) and the first and second discharge check valves (41) in the discharge refrigerant pipe (41).
  • the gas After passing through CVa, CVb), the gas passes through the four-way switching valve (22) and the gas shut-off valve (V2) in order, and flows into the gas side connecting pipe (14).
  • the refrigerant that has flowed into the gas side communication pipe (14) passes through the use side gas refrigerant pipe (62) of the use side unit (12) and flows into the use side heat exchanger (51). In 51), it dissipates heat and condenses.
  • the frost adhering to the use side heat exchanger (51) is heated and melted.
  • a part of the refrigerant flowing out of the use side heat exchanger (51) passes between the open use side expansion valve (53) and the open use side on-off valve (52) in the use side liquid refrigerant pipe (61). Passing in order, the remainder passes through the use side check valve (54) in the bypass pipe (63).
  • the refrigerant that has passed through the open-side use-side on-off valve (52) in the use-side liquid refrigerant pipe (61) joins the refrigerant that has passed through the use-side check valve (54) in the bypass pipe (63), and communicates with the liquid side. It flows into the pipe (13).
  • the refrigerant that has passed through the liquid side connection pipe (13) passes through the liquid shut-off valve (V1) of the heat source side unit (11), flows into the first connection pipe (45), and enters the first connection pipe (45). 3 It passes through the check valve (CV3) and flows into the middle part (third middle part (Q3)) of the first heat source side liquid pipe (43a).
  • the refrigerant that has flown into the middle of the first heat source side liquid pipe (43a) passes through the receiver (35), the second heat source side liquid pipe (43b), and the first flow path (24a) of the supercooling heat exchanger (24). And then flows into the third heat source side liquid pipe (43c).
  • the refrigerant that has flowed into the third heat source side liquid pipe (43c) flows into the second connection pipe (46) in the fourth midway portion (Q4), and is depressurized in the heat source side expansion valve (36) to be first heat source side liquid. It flows into the middle part (5th middle part (Q5)) of the pipe (43a).
  • the refrigerant that has flown into the middle part of the first heat source side liquid pipe (43a) flows into the heat source side heat exchanger (23), and from the heat source side air (that is, outside air) in the heat source side heat exchanger (23). It absorbs heat and evaporates.
  • the refrigerant flowing out of the heat source side heat exchanger (23) passes through the four-way switching valve (22) and the suction refrigerant pipe (42) in order, and is sucked into the suction ports of the first and second compressors (21a, 21b). Is done.
  • (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55).
  • the capillary tube (56) connected to the refrigerant path (51a to 51n) located below the flow divider (55) is connected to the refrigerant path (51a to 51n) to which the capillary tube (56) is connected.
  • the shunt (55) produce a smaller dynamic pressure resistance than the head difference. Therefore, during the defrosting operation, the refrigerant does not flow to the flow divider (55) through the capillary tube (56) connected to the refrigerant path below the user side heat exchanger (51), and the user side heat exchanger. Liquid refrigerant remains in the refrigerant path below (51), causing frost to remain undissolved.
  • the dynamic pressure resistance is set as described above, the flow velocity of the refrigerant is increased, the head difference is overcome, and the connection is made to the path below the use-side heat exchanger (51).
  • the refrigerant flows through the capillary tube (56) to the flow divider (55), the liquid refrigerant does not stay in the refrigerant path below the use side heat exchanger (51). Therefore, the unmelted frost in the lower part of the use side heat exchanger (51) can be suppressed.
  • the capillary tube (56) connecting the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path (51n).
  • the flow divider (55) as a throttle that generates a dynamic pressure resistance larger than the head difference, and all the capillary tubes (56) have the same inner diameter and the same length. Therefore, it is possible to simplify the configuration, and it is possible to prevent liquid refrigerant from remaining in the refrigerant path below the usage-side heat exchanger (51), thereby preventing the usage-side heat exchanger (51). Frost at the bottom of the frost can be suppressed.
  • the temperature sensor (75) detects the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path of the use side heat exchanger (51). In the portion where the temperature sensor (75) is provided, the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and when the temperature of the refrigerant is equal to or higher than a predetermined value, It can be determined that the frost in the lowermost refrigerant path (51n) has melted.
  • the capillary tube (56) connected to the refrigerant path positioned at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the use side heat exchanger (51) is provided.
  • the flow rate of the refrigerant is increased by configuring the throttle as a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). The head difference is overcome, and the refrigerant can flow to the flow divider (55) through the capillary tube (56) connected to the refrigerant path below the use side heat exchanger (51).
  • the capillary tube (56) that connects the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path.
  • (51n) and the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all capillary tubes (56) have the same inner diameter and length, making the system configuration simpler.
  • the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the usage-side heat exchanger (51) is measured by the temperature sensor ( If it is detected at 75) and the temperature of the refrigerant is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted.
  • this temperature sensor (75) since the entire amount of refrigerant after passing through the flow divider (55) flows during the reverse cycle operation, it can be accurately determined whether or not the defrosting operation has ended. Further, since it is possible to detect whether or not the defrosting operation has been completed using the temperature sensor (75) provided in the use side unit (12), the end detection of the defrosting operation is completed only by the use side unit. be able to.
  • the temperature sensor (75) is connected to the lowermost refrigerant path (51a) and the flow divider (55) of the use side heat exchanger (51) during the defrosting operation, as indicated by a virtual line in FIG. You may provide in the position which detects the temperature of the refrigerant
  • the refrigerant flows through the capillary tube (56) connected to the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55). Is detected by the temperature sensor (75). Also in this modified example, if this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path has melted, so it can be determined whether or not the defrosting operation has ended.
  • the lowermost refrigerant path is connected to the capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the use side heat exchanger (51).
  • a refrigerant trap (59) passing through the height below may be formed.
  • frost attached to the refrigerant path below the use side heat exchanger (51) can be surely removed. This point will be described.
  • liquid refrigerant accumulates in the lower path of the use-side heat exchanger (51) and the gas refrigerant has a high resistance to passage, so that it is discharged from the compressor (21a, 21b).
  • the gas refrigerant flows only through the refrigerant path at the top of the use side heat exchanger (51).
  • frost attached to the upper refrigerant path of the use side heat exchanger (51) is removed, but the frost attached to the lower refrigerant path may remain without being removed. There is. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
  • the liquid refrigerant in the lowermost refrigerant path (51n) not only becomes a passage resistance of the gas refrigerant, but also the upper part.
  • the liquid refrigerant collected in the trap (59) becomes resistance, so that the refrigerant is evenly distributed in each refrigerant path (51a to 51n) of the use side heat exchanger (51). It begins to flow.
  • the gas refrigerant when switching from the normal operation to the defrosting operation, the gas refrigerant easily flows through each refrigerant path (51a to 51n) evenly (difficult to cause a drift), and the gas refrigerant flows only through the upper refrigerant path. Therefore, the gas refrigerant can be supplied also to the lower refrigerant path, so that frost adhering to the lower path can also be reliably removed. That is, it is possible to reliably suppress the frost from remaining unmelted in the lower refrigerant path portion where the liquid-phase refrigerant is accumulated in the frosted use side heat exchanger (51).
  • the plurality of capillary tubes (56) between the use side heat exchanger (51) and the flow divider (55) are all the same length and have the same tube diameter, but the use side heat exchanger
  • the length and diameter of the capillary tube (56) may be set so that the dynamic pressure resistance increases continuously or stepwise from the refrigerant path above (51) toward the refrigerant path below.
  • the capillary tube (56) has a length and a tube diameter within a range in which the pressure loss of the refrigerant does not become excessive during the cooling operation.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described. Since the refrigerant circuit of Embodiment 2 is the same as Embodiment 1, description is abbreviate
  • a cooling coil (57) is provided in the subcooling coil (57).
  • the end portion (57a) on the refrigerant inflow side during the cooling operation in the positive cycle is in direct communication with the liquid line (15L) of the refrigerant circuit (15).
  • the supercooling coil (57) has the end portion (57b) on the refrigerant inflow side in the defrosting operation in the reverse cycle connected to the refrigerant path (51a to 51n) of the use side heat exchanger (51).
  • the usage side circuit (18) is provided with a temperature sensor (75) for detecting the temperature of the refrigerant that has passed through the supercooling coil (57) of the usage side heat exchanger (51) during the defrosting operation.
  • the refrigeration apparatus (10) is a refrigeration having a use side unit (internal unit) (12) including the use side expansion valve (53) and a use side heat exchanger (51).
  • the temperature sensor (75) is a device, and is provided inside the use side unit (12).
  • capillary tubes (51a to 51n) connected to the flow divider (55) and the refrigerant paths (51a to 51n) of the utilization side heat exchanger (51) 56 (56a to 56n)) is formed in a shape having a refrigerant trap (59) passing through the height below the lowermost refrigerant path (51n).
  • the high-temperature gas refrigerant discharged from the compressor (21a, 21b) is supplied to the frosting use side heat exchanger (51). Is done.
  • the gas refrigerant flows through the upper refrigerant path (51a side refrigerant path). It passes through the flow divider (55) and further flows through the supercooling coil (57).
  • the refrigerant flowing through the supercooling coil (57) occupies most of the flow rate, and the liquid refrigerant hardly flows.
  • the high-temperature gas refrigerant that occupies most of the refrigerant flow flows through the supercooling coil (57), the temperature of the supercooling coil (57) rises, and the usage-side heat exchanger (51) is warmed from below.
  • the refrigerant path through which the high-temperature gas refrigerant flows expands downward from the upper refrigerant path (51a-side refrigerant path), so the use-side heat exchanger (51) It will be warmed down from the bottom.
  • the temperature of the refrigerant that has passed through the supercooling coil (57) of the use side heat exchanger (51) is the temperature sensor (75) provided inside the use side unit (12). Is detected.
  • the total amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows through the supercooling coil (57) of the use side heat exchanger (51), and the temperature of the refrigerant is equal to or higher than a predetermined value. It can be determined that the frost in the lowermost refrigerant path (51n) has melted.
  • the reverse cycle defrosting operation is started, only the gas refrigerant flows through the supercooling coil (57) and the temperature is high.
  • the refrigerant path (51n side refrigerant path) below the use side heat exchanger (51) is provided. Adhering frost can be removed reliably. This point will be described.
  • the liquid refrigerant in the lowermost refrigerant path (51n) has a resistance to passage of gas refrigerant.
  • the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance in the upper refrigerant path (51a side refrigerant path), each refrigerant path (51a to 51a) of the use side heat exchanger (51) 51n) refrigerant flows evenly.
  • the gas refrigerant flows easily through each refrigerant path (51a to 51n), and the gas refrigerant flows only through the upper refrigerant path (51a side refrigerant path). Therefore, the gas refrigerant can also be supplied to the lower refrigerant path (51n-side refrigerant path), so that frost attached to the lower refrigerant path (51n-side refrigerant path) can also be reliably removed.
  • Embodiment 2- by providing the capillary tube (56 (56a to 56n)) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant.
  • the liquid refrigerant accumulated in the refrigerant trap (59) becomes resistance also in the upper refrigerant path (51a side refrigerant path), each refrigerant path (51a) of the use side heat exchanger (51) Through 51n), the refrigerant flows evenly.
  • the gas refrigerant easily flows through each refrigerant path (51a to 51n), and only the upper refrigerant path (51a side refrigerant path) is prevented from flowing, and the lower refrigerant path (51n side Gas refrigerant can also be supplied to the refrigerant path. Therefore, when the normal operation is switched to the defrosting operation, it is possible to suppress the occurrence of a drift in which the gas refrigerant flows only in the refrigerant path above the heat exchanger in the use side heat exchanger (51). Therefore, it is possible to reliably suppress the frost from remaining in the lower refrigerant path (51n side refrigerant path) where the liquid refrigerant has accumulated in the frosted use side heat exchanger (51). .
  • the use side heat exchanger (51) is warmed from both the upper side and the lower side in the defrosting operation, only the frost adhering to the upper part of the use side heat exchanger (51) is obtained. In addition, it is possible to obtain an effect of removing frost attached to the lower portion of the use side heat exchanger (51).
  • the temperature of the refrigerant that has passed through the supercooling coil (57) of the use side heat exchanger (51) is provided inside the use side unit (12).
  • the temperature sensor (75) detects that the frost in the lowermost refrigerant path (51n) has melted when a predetermined time has elapsed since the start of the defrosting operation and this temperature has exceeded a predetermined value. Since it can be determined, it can be detected whether the defrosting operation has been completed.
  • the temperature sensor (75) when the temperature sensor (75) is provided at the position after passing through the supercooling coil (57), the temperature can be detected from the total flow rate of the refrigerant, so that the completion of the defrosting operation can be accurately detected. .
  • the temperature sensor (75) provided in the usage side unit (12) since it is possible to detect whether or not the defrosting operation has been completed using the temperature sensor (75) provided in the usage side unit (12), only the usage side unit (12) can detect the completion of the defrosting operation. Can be completed with.
  • the temperature sensor (75) is connected to the lowermost refrigerant path (51n) and the flow divider (55) of the use side heat exchanger (51) during the defrosting operation, as indicated by a virtual line in FIG. You may provide in the position which detects the temperature of the refrigerant
  • the refrigerant flows through the capillary tube (56n) connected to the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55). Is detected by the temperature sensor (75). And also in this modified example, when this temperature is equal to or higher than a predetermined value, the frost in the lowermost refrigerant path (56n) has melted (the entire frost in the use side heat exchanger (51) has melted). Therefore, it can be detected whether or not the defrosting operation has been completed.
  • the flow divider (55) may be arranged so that the connection portion of the capillary tube (56a to 56n) faces downward. Also in this configuration, as in the example of FIG. 7, the capillary tube (56a to 56n) is provided with the trap (59) passing through the height below the lowermost refrigerant path (51n). Moreover, the subcooling coil (57) comprised similarly to the example of FIG. 7 is provided in the lower part of the utilization side heat exchanger (51).
  • the supercooling coil (57) is provided in the lower part of the utilization side heat exchanger (51), and the frost adhering to the lower part of the utilization side heat exchanger (51) is made into an upper refrigerant
  • the refrigerant gas flowing through the path (51a side refrigerant path) is heated and removed, but the supercooling coil (57) is not necessarily provided.
  • the supercooling coil (57) is not provided, by providing the refrigerant trap (59) in the capillary tube (56a to 56n), the refrigerant drift when switching from the normal cooling operation to the reverse cycle defrosting operation is reduced. Therefore, it is possible to enhance the defrosting effect by causing the gas refrigerant to flow uniformly to the use side heat exchanger (51).
  • the capillary tube (56a to 56n) is provided with a trap (59) passing through the height below the lowermost refrigerant path (51n), which is the reverse of the normal cooling operation.
  • the refrigerant is prevented from drifting when switching to the defrosting operation of the cycle to prevent liquid refrigerant from accumulating in the lower refrigerant path (51n side refrigerant path).
  • 59) is not necessarily provided, and the provision of the above supercooling coil (57) without the provision of the trap (59) prevents the frost from remaining in the use side heat exchanger (51). Can be increased as compared with the conventional case.
  • this invention may be applied to the outdoor heat exchanger of the air conditioning apparatus which heats a room
  • the supercooling coil may not be provided, and in the first embodiment, the supercooling coil (57) of the second embodiment may be provided.
  • the present invention in a refrigeration apparatus having a refrigerant circuit in which a reverse cycle defrosting operation is performed, suppresses frost from remaining in the lower part of the frosted heat exchanger during the defrosting operation. Useful for.
  • Refrigeration equipment 12 User-side unit (inside unit) 15 Refrigerant circuit 15L Liquid line 21a 1st compressor 21b 2nd compressor 23 Heat source side heat exchanger (1st heat exchanger) 51 User side heat exchanger (second heat exchanger) 51a Refrigerant path 51n Refrigerant path 53 User-side expansion valve (expansion mechanism) 55 Shunt 56 Capillary tube 57 Supercooling coil 59 Refrigerant trap 75 Temperature sensor

Abstract

In order to inhibit incomplete melting of frost in the lower part of a frosted service-side heat exchanger (51) during a defrosting operation in the reverse cycle of a refrigeration device, and also to prevent the configuration and control of the device from becoming complicated, dynamic pressure resistance is generated in a capillary tube (56) connected at least to those coolant paths (51a-51n) in the service-side heat exchanger (51) that are positioned below a diverter (55). The dynamic pressure resistance is greater than the head difference between the coolant path to which the capillary tube (56) is connected and the diverter (55).

Description

冷凍装置Refrigeration equipment
 本発明は、逆サイクルの除霜運転が行われる冷媒回路を有する冷凍装置に関し、特に、除霜運転時に、着霜した熱交換器の下部で霜が溶け残るのを抑制する技術に関するものである。 The present invention relates to a refrigeration apparatus having a refrigerant circuit in which a reverse cycle defrosting operation is performed, and particularly to a technique for suppressing frost from remaining in the lower part of a frosted heat exchanger during the defrosting operation. .
 従来、冷凍サイクルで着霜した熱交換器の霜を除去するために、冷媒を逆サイクルで循環させる除霜運転を行う冷凍装置が知られている。ここで、冷凍装置には、庫内を冷却する冷却装置や、例えば低外気の条件で室内を暖房する空気調和装置などが含まれる。 Conventionally, a refrigeration apparatus that performs a defrosting operation in which a refrigerant is circulated in a reverse cycle is known in order to remove frost from a heat exchanger frosted in a refrigeration cycle. Here, the refrigeration device includes a cooling device that cools the interior of the refrigerator, an air conditioner that heats the room under conditions of low outside air, and the like.
 例えば特許文献1には、空気調和装置の室外熱交換器の下部に過冷却コイルを設け、圧縮機の吐出ガス配管から分岐するバイパス配管を上記過冷却コイルに接続する構成が開示されている。バイパス配管には、電磁弁(開閉弁)や絞り機構(キャピラリチューブ)が設けられている。 For example, Patent Document 1 discloses a configuration in which a supercooling coil is provided in a lower part of an outdoor heat exchanger of an air conditioner, and a bypass pipe branched from a discharge gas pipe of a compressor is connected to the supercooling coil. The bypass pipe is provided with an electromagnetic valve (open / close valve) and a throttle mechanism (capillary tube).
 この空気調和装置では、暖房運転時に室外熱交換器(蒸発器)に着霜すると行われる逆サイクルの除霜運転時には、圧縮機から吐出された高温のガス冷媒が該室外熱交換器の各冷媒パスを通過するとともに、高温のガス冷媒の一部が圧縮機の吐出ガス配管から分流して上記過冷却コイルを流れる。このように、特許文献1の技術では、逆サイクルの除霜運転時に過冷却コイルに高温のガス冷媒を流すことにより、熱交換器の下部の霜の溶け残りを防止するようにしている。 In this air conditioner, during the reverse cycle defrosting operation performed when the outdoor heat exchanger (evaporator) is frosted during the heating operation, the high-temperature gas refrigerant discharged from the compressor is each refrigerant of the outdoor heat exchanger. While passing through the path, a part of the high-temperature gas refrigerant is diverted from the discharge gas piping of the compressor and flows through the supercooling coil. As described above, in the technique disclosed in Patent Document 1, a high-temperature gas refrigerant is caused to flow through the supercooling coil during the defrosting operation in the reverse cycle, thereby preventing unmelted frost in the lower part of the heat exchanger.
特開2007-232274号公報JP 2007-232274 A
 ここで、特許文献1の技術では、暖房運転中に蒸発器に着霜すると熱交換が進みにくくなり、蒸発器の下部に液冷媒が溜まっていく。そして、この状態で運転を切り換えて逆サイクルの除霜運転を開始すると、熱交換器の下部のパスに液冷媒が溜まっていてガス冷媒の通過抵抗が大きいので、圧縮機から吐出されたガス冷媒が熱交換器の上部のパスを流れていく。このまま除霜運転を続けると、熱交換器の上部のパスに付着した霜は除去されるものの、下部のパスに付着した霜は除去されずに残ってしまう。そのため、除霜運転が終了しても、熱交換器の下部には霜が残った状態になってしまう。このように、従来の技術では、逆サイクルの除霜運転時に、着霜した熱交換器において液相冷媒が溜まった下方の部分に霜の溶け残りが生じてしまうことがあった。 Here, in the technique of Patent Document 1, when the evaporator is frosted during the heating operation, heat exchange is difficult to proceed, and liquid refrigerant accumulates in the lower part of the evaporator. Then, when the operation is switched in this state and the reverse cycle defrosting operation is started, the liquid refrigerant is accumulated in the lower path of the heat exchanger and the gas refrigerant has a large passage resistance. Therefore, the gas refrigerant discharged from the compressor Flows through the upper path of the heat exchanger. If the defrosting operation is continued as it is, the frost attached to the upper path of the heat exchanger is removed, but the frost attached to the lower path remains without being removed. Therefore, even if the defrosting operation is completed, frost remains in the lower part of the heat exchanger. As described above, in the conventional technology, in the reverse cycle defrosting operation, the frost is not melted in the lower portion where the liquid refrigerant is accumulated in the frosted heat exchanger.
 また、特許文献1の技術では、電磁弁やキャピラリチューブを設けたバイパス配管を冷媒回路に設けているので、冷媒回路の構成が複雑になる。また、逆サイクルの除霜運転時には電磁弁を開くなどの操作が必要であり、制御も複雑になる。このように、特許文献1の技術では、装置構成や制御が複雑になることもあった。 Further, in the technique of Patent Document 1, since the bypass pipe provided with an electromagnetic valve and a capillary tube is provided in the refrigerant circuit, the configuration of the refrigerant circuit becomes complicated. Further, an operation such as opening a solenoid valve is required during the reverse cycle defrosting operation, and the control becomes complicated. As described above, in the technique of Patent Document 1, the device configuration and control may be complicated.
 本発明は、このような問題点に鑑みてなされたものであり、その目的は、逆サイクルの除霜運転時に、着霜した熱交換器の下部で霜が溶け残るのを抑制すことである。 This invention is made | formed in view of such a problem, The objective is to suppress that frost remains at the lower part of the frosted heat exchanger at the time of defrost operation of a reverse cycle. .
 本開示の第1の態様は、1台または複数台の圧縮機(21a,21b)と第1熱交換器(23)と膨張機構(53)と第2熱交換器(51)とを備えて第1熱交換器(23)が放熱器となり第2熱交換器(51)が蒸発器となる正サイクルの冷却運転を行う冷媒回路(15)を備え、第2熱交換器(51)に着霜すると圧縮機(21a,21b)の吐出冷媒を該第2熱交換器(51)に供給して逆サイクルの除霜運転を行い、上記第2熱交換器(51)が上方から下方にわたって複数の冷媒パス(51a~51n)を有し、上記膨張機構(53)と第2熱交換器(51)との間に設けられた分流器(55)と冷媒パス(51a~51n)とがキャピラリチューブ(56)で接続された冷凍装置を前提としている。 The first aspect of the present disclosure includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51). The first heat exchanger (23) serves as a radiator and the second heat exchanger (51) serves as an evaporator, and includes a refrigerant circuit (15) that performs a cooling operation in a positive cycle, and is attached to the second heat exchanger (51). When frost is formed, the refrigerant discharged from the compressor (21a, 21b) is supplied to the second heat exchanger (51) to perform a reverse cycle defrosting operation, and a plurality of the second heat exchangers (51) are arranged from above to below. The refrigerant path (51a to 51n) and the flow divider (55) and the refrigerant path (51a to 51n) provided between the expansion mechanism (53) and the second heat exchanger (51) are capillary. It assumes a refrigeration system connected by a tube (56).
 そして、この冷凍装置は、上記第2熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パス(51a~51n)に接続されたキャピラリチューブ(56)が、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成されていることを特徴としている。 The refrigeration apparatus includes a capillary connected to a refrigerant path (51a to 51n) positioned at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the second heat exchanger (51). The tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). It is said.
 この第1の態様では、上記第2熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パス(51a~51n)に接続されたキャピラリチューブ(56)が、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成されている。従来の冷凍装置では、分流器(55)より下方に位置する冷媒パス(51a~51n)に接続されたキャピラリチューブ(56)は、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも小さな動圧抵抗を有している。したがって、除霜運転時には、熱交換器の下方のパスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒が流れにくく、熱交換器の下方の冷媒パス(51a~51n)に液冷媒が溜まったままになって霜が溶け残る原因になっていたが、この第1の態様では、動圧抵抗を上記のように設定したことにより、流速が速くなって上記ヘッド差に打ち勝ち、熱交換器の下方のパスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒が流れて行くので、熱交換器の下方の冷媒パス(51a~51n)に液冷媒が残らない。したがって、熱交換器の下部における霜の溶け残りを抑えられる。 In this first aspect, among the refrigerant paths (51a to 51n) of the second heat exchanger (51), at least the capillary connected to the refrigerant path (51a to 51n) located below the flow divider (55). The tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). In the conventional refrigeration system, the capillary tube (56) connected to the refrigerant path (51a to 51n) located below the flow divider (55) is connected to the refrigerant path (51a to 51n) to which the capillary tube (56) is connected. ) And the shunt (55) have a smaller dynamic pressure resistance than the head difference. Therefore, during the defrosting operation, the refrigerant hardly flows to the flow divider (55) through the capillary tube (56) connected to the path below the heat exchanger, and the refrigerant path (51a to 51n) below the heat exchanger. However, in this first aspect, since the dynamic pressure resistance is set as described above, the flow velocity is increased and the head difference is reduced. The refrigerant flows to the flow divider (55) through the capillary tube (56) connected to the lower path of the heat exchanger, so the liquid refrigerant flows into the refrigerant path (51a to 51n) below the heat exchanger. Does not remain. Therefore, the unmelted frost in the lower part of the heat exchanger can be suppressed.
 本開示の第2の態様は、第1の態様において、上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)が、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成され、すべてのキャピラリチューブ(56)が同一内径且つ同一長さであることを特徴としている。 According to a second aspect of the present disclosure, in the first aspect, a capillary tube (56) that connects the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) includes: It is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the lowermost refrigerant path (51n) and the flow divider (55), and all capillary tubes (56) have the same inner diameter and the same length. It is a feature.
 この第2の態様では、上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)を、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成し、すべてのキャピラリチューブ(56)を同一内径且つ同一長さにすることにより、熱交換器の下方のパスに液冷媒が溜まったままになるのを防止できるから、熱交換器の下部における霜の溶け残りを抑えられる。 In this second embodiment, the capillary tube (56) connecting the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path (51n). ) And the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all capillary tubes (56) have the same inner diameter and the same length, so that the path below the heat exchanger Therefore, it is possible to prevent liquid refrigerant from remaining in the refrigeration, so that frost remaining in the lower portion of the heat exchanger can be suppressed.
 本開示の第3の態様は、第2の態様において、上記除霜運転時に、上記分流器(55)の下流側の配管を流れる冷媒の温度を検出する温度センサ(75)を備えていることを特徴としている。 According to a third aspect of the present disclosure, in the second aspect, a temperature sensor (75) that detects a temperature of a refrigerant flowing through a pipe on the downstream side of the flow divider (55) during the defrosting operation is provided. It is characterized by.
 この第3の態様では、逆サイクルの除霜運転時に、第2熱交換器(51)の各冷媒パス(51a~51n)から分流器(55)を通過した冷媒の温度が温度センサ(75)で検出される。この温度センサ(75)の部分には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れており、冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。 In this third aspect, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the second heat exchanger (51) is determined by the temperature sensor (75). Is detected. In this temperature sensor (75), the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and when the refrigerant temperature exceeds a predetermined value, the lowermost refrigerant path It can be judged that (51n) frost has melted.
 本開示の第4の態様は、第1から第3の態様において、上記分流器(55)と上記第2熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56)が、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を備えた形状に形成されていることを特徴としている。 According to a fourth aspect of the present disclosure, in the first to third aspects, a capillary tube (51) connected to the flow path (51a to 51n) of the flow divider (55) and the second heat exchanger (51). 56) is characterized in that it is formed in a shape having a refrigerant trap (59) passing through the height below the lowermost refrigerant path (51n).
 ここで、一般に、逆サイクルの除霜運転を開始したときには、熱交換器の下部のパスに液冷媒が溜まっているので、圧縮機(21a,21b)から吐出されたガス冷媒が熱交換器の上部のパスを流れていく。そして、そのまま除霜運転を続けると、熱交換器の上部のパスに付着した霜は除去されるものの、下部のパスに付着した霜は除去されずに残ってしまうおそれがある。そのため、除霜運転が終了しても、熱交換器の下部には霜が残った状態になってしまうことが考えられる。 Here, generally, when the reverse cycle defrosting operation is started, the liquid refrigerant is accumulated in the lower path of the heat exchanger, so that the gas refrigerant discharged from the compressor (21a, 21b) Follow the upper path. If the defrosting operation is continued as it is, frost attached to the upper path of the heat exchanger is removed, but frost attached to the lower path may remain without being removed. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
 これに対して、上記第4の態様では、上記キャピラリチューブ(56)に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a~51n)についても冷媒トラップ(59)に溜まった液冷媒が抵抗になるため、上記第2熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れる。したがって、通常の運転から除霜運転に切り換えたときに、各パスをガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できるので、下方のパスに付着した霜も確実に除去できる。 On the other hand, in the fourth aspect, by providing the capillary tube (56) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant. In the upper refrigerant path (51a to 51n), the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance, so that the refrigerant passes through each refrigerant path (51a to 51n) of the second heat exchanger (51). It flows evenly. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant flows easily through each path, and only the upper refrigerant path (51a to 51n) is prevented from flowing through the lower refrigerant path. In addition, since the gas refrigerant can be supplied, the frost attached to the lower path can be surely removed.
 本開示の第5の態様は、1台または複数台の圧縮機(21a,21b)と第1熱交換器(23)と膨張機構(53)と第2熱交換器(51)とを備えて第1熱交換器(23)が放熱器となり第2熱交換器(51)が蒸発器となる正サイクルの冷却運転を行う冷媒回路を備え、第2熱交換器(51)に着霜すると圧縮機(21a,21b)の吐出冷媒を該第2熱交換器(51)に供給して逆サイクルの除霜運転を行い、上記第2熱交換器(51)が上方から下方にわたって複数の冷媒パス(51a~51n)を有し、上記膨張機構(53)と第2熱交換器(51)との間に設けられた分流器(55)と冷媒パス(51a~51n)とがキャピラリチューブ(56)で接続された冷凍装置を前提としている。 A fifth aspect of the present disclosure includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51). The first heat exchanger (23) serves as a radiator and the second heat exchanger (51) serves as an evaporator, and includes a refrigerant circuit that performs a cooling operation in the positive cycle. When the second heat exchanger (51) is frosted, the refrigerant is compressed. The refrigerant discharged from the machine (21a, 21b) is supplied to the second heat exchanger (51) to perform a defrosting operation in the reverse cycle, and the second heat exchanger (51) has a plurality of refrigerant paths extending from above to below. (51a to 51n), and a flow divider (55) and a refrigerant path (51a to 51n) provided between the expansion mechanism (53) and the second heat exchanger (51) include a capillary tube (56 ) Is assumed to be connected to the refrigeration system.
 そして、この冷凍装置は、上記分流器(55)と上記第2熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56)が、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を備えた形状に形成されていることを特徴としている。 In this refrigeration apparatus, the capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the second heat exchanger (51) has a lower refrigerant path (51n ) It is formed in the shape provided with the refrigerant | coolant trap (59) which passes the following height.
 ここで、上述したように、一般に、逆サイクルの除霜運転を開始したときには、熱交換器の下部のパスに液冷媒が溜まっていてガス冷媒の通過抵抗が大きいので、圧縮機(21a,21b)から吐出されたガス冷媒が熱交換器の上部のパスを流れていく。そして、そのまま除霜運転を続けると、熱交換器の上部のパスに付着した霜は除去されるものの、下部のパスに付着した霜は除去されずに残ってしまうおそれがある。そのため、除霜運転が終了しても、熱交換器の下部には霜が残った状態になってしまうことが考えられる。 Here, as described above, generally, when the reverse cycle defrosting operation is started, the liquid refrigerant is accumulated in the lower path of the heat exchanger and the passage resistance of the gas refrigerant is large, so that the compressor (21a, 21b The gas refrigerant discharged from the gas flows through the upper path of the heat exchanger. If the defrosting operation is continued as it is, frost attached to the upper path of the heat exchanger is removed, but frost attached to the lower path may remain without being removed. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
 これに対して、上記第5の態様では、上記キャピラリチューブ(56)に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a~51n)についても冷媒トラップ(59)に溜まった液冷媒が抵抗になるため、上記第2熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようになる。したがって、通常の運転から除霜運転に切り換えたときに、各パスをガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できるので、下方のパスに付着した霜も確実に除去できる。 On the other hand, in the fifth aspect, by providing the capillary tube (56) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant. In the upper refrigerant path (51a to 51n), the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance, so that the refrigerant passes through each refrigerant path (51a to 51n) of the second heat exchanger (51). It will flow evenly. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant flows easily through each path, and only the upper refrigerant path (51a to 51n) is prevented from flowing through the lower refrigerant path. In addition, since the gas refrigerant can be supplied, the frost attached to the lower path can be surely removed.
 本開示の第6の態様は、第5の態様において、上記分流器(55)が、上記キャピラリチューブ(56)の接続部を下向きにして配置されていることを特徴としている。 A sixth aspect of the present disclosure is characterized in that, in the fifth aspect, the flow divider (55) is arranged with the connection portion of the capillary tube (56) facing downward.
 この第6の態様では、上記分流器(55)が上記キャピラリチューブ(56)の接続部を下向きにして配置されている構成において、上記第5の態様と同様に、通常の運転から除霜運転に切り換えたときに各パスをガス冷媒が均等に流れやすくなる。したがって、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できるので、下方のパスに付着した霜も確実に除去できる。 In the sixth aspect, in the configuration in which the flow divider (55) is arranged with the connecting portion of the capillary tube (56) facing downward, the normal operation is defrosted as in the fifth aspect. When switching to, the gas refrigerant easily flows through each path evenly. Accordingly, since the gas refrigerant can be supplied to the lower path by preventing the gas refrigerant from flowing only through the upper refrigerant path (51a to 51n), the frost attached to the lower path can be surely removed.
 本開示の第7の態様は、第5または第6の態様において、上記キャピラリチューブ(56)のすべての冷媒トラップ(59)の形状が、キャピラリチューブ(56)の下端の高さが同じになるように定められていることを特徴としている。 In a seventh aspect of the present disclosure, in the fifth or sixth aspect, the shape of all the refrigerant traps (59) of the capillary tube (56) is the same as the height of the lower end of the capillary tube (56). It is characterized by that.
 この第7の態様では、キャピラリチューブ(56)のすべての冷媒トラップ(59)の形状を、キャピラリチューブ(56)の下端の高さが同じになるように定めた構成において、上記第5,第6の態様と同様に、通常の運転から除霜運転に切り換えたときに各パスをガス冷媒が均等に流れやすくなる。したがって、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できるので、下方のパスに付着した霜も確実に除去できる。 In the seventh aspect, in the configuration in which all the refrigerant traps (59) of the capillary tube (56) are defined so that the lower ends of the capillary tubes (56) have the same height, As in the sixth aspect, the gas refrigerant easily flows through each path even when the normal operation is switched to the defrosting operation. Accordingly, since the gas refrigerant can be supplied to the lower path by preventing the gas refrigerant from flowing only through the upper refrigerant path (51a to 51n), the frost attached to the lower path can be surely removed.
 本開示の第8の態様は、第1または第5の態様において、上記第2熱交換器(51)の下部に過冷却コイル(57)が設けられ、上記過冷却コイル(57)は、正サイクルの冷却運転時の冷媒流入側の端部(57a)が冷媒回路の液ライン(15L)と直接に連通するとともに、逆サイクルの除霜運転時の冷媒流入側の端部(57b)が上記第2熱交換器(51)の冷媒パス(51a~51n)に上記分流器(55)を介して連通していることを特徴としている。 According to an eighth aspect of the present disclosure, in the first or fifth aspect, a supercooling coil (57) is provided below the second heat exchanger (51), and the supercooling coil (57) The refrigerant inflow side end (57a) during the cycle cooling operation communicates directly with the liquid line (15L) of the refrigerant circuit, and the refrigerant inflow side end (57b) during the reverse cycle defrosting operation The refrigerant path (51a to 51n) of the second heat exchanger (51) is communicated with the flow divider (55).
 この第8の態様では、逆サイクルの除霜運転時には、着霜している第2熱交換器(51)に圧縮機(21a,21b)から吐出された高温のガス冷媒が供給される。このとき、第2熱交換器(51)の下部の冷媒パス(51a~51n)に液冷媒が溜まっていると、ガス冷媒は上方のパスを流れてから分流器(55)を通り、さらに上記過冷却コイル(57)を流れていく。この結果、除霜運転の開始時には、過冷却コイル(57)を流れる冷媒は高温のガス冷媒が流量の多くを占め、液冷媒はほとんど流れない。したがって、冷媒流量の多くを占める高温のガス冷媒が過冷却コイルを流れるので、該過冷却コイルの温度が上昇し、第2熱交換器(51)が下部から暖められる。また、除霜運転を継続していくと、高温のガス冷媒が流れる冷媒パス(51a~51n)が最上部の冷媒パス(51a~51n)から下方へ拡がっていくので、第2熱交換器(51)は上部から下方へも暖められていく。このように、第8の態様では第2熱交換器(51)が上方と下方の両方から暖められるので、上方の冷媒パス(51a~51n)に付着した霜だけでなく、下方の冷媒パス(51a~51n)に付着した霜も除去される。 In the eighth aspect, during the reverse cycle defrosting operation, the high-temperature gas refrigerant discharged from the compressor (21a, 21b) is supplied to the frosted second heat exchanger (51). At this time, if the liquid refrigerant is accumulated in the lower refrigerant path (51a to 51n) of the second heat exchanger (51), the gas refrigerant flows through the upper path and then passes through the flow divider (55), and further It flows through the supercooling coil (57). As a result, at the start of the defrosting operation, the high-temperature gas refrigerant occupies most of the refrigerant flowing through the supercooling coil (57), and the liquid refrigerant hardly flows. Therefore, since the high-temperature gas refrigerant that occupies most of the refrigerant flow flows through the supercooling coil, the temperature of the supercooling coil rises, and the second heat exchanger (51) is warmed from the bottom. As the defrosting operation is continued, the refrigerant path (51a to 51n) through which the high-temperature gas refrigerant flows expands downward from the uppermost refrigerant path (51a to 51n), so the second heat exchanger ( 51) is also warmed from top to bottom. Thus, in the eighth aspect, the second heat exchanger (51) is heated from both above and below, so that not only frost adhering to the upper refrigerant path (51a to 51n) but also the lower refrigerant path ( Frost adhering to 51a-51n) is also removed.
 本開示の第9の態様は、第8の態様において、上記除霜運転時に上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度を検出する温度センサ(75)を備えていることを特徴としている。 According to a ninth aspect of the present disclosure, in the eighth aspect, the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) are connected during the defrosting operation. A temperature sensor (75) for detecting the temperature of the refrigerant flowing through the capillary tube (56) is provided.
 この第9の態様では、逆サイクルの除霜運転時に、第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度が温度センサ(75)で検出される。そして、この温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。つまり、利用側熱交換器の霜が全体的に溶けたと判断できる。 In the ninth aspect, during the reverse cycle defrosting operation, the capillary tube (56) connected to the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected. The temperature of the flowing refrigerant is detected by the temperature sensor (75). And when this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. That is, it can be determined that the frost on the use side heat exchanger has melted as a whole.
 本開示の第10の態様は、第8の態様において、上記除霜運転時に上記第2熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度を検出する温度センサ(75)を備えていることを特徴としている。 According to a tenth aspect of the present disclosure, in the eighth aspect, the temperature sensor (75) detects the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) during the defrosting operation. It is characterized by having.
 この第10の態様では、逆サイクルの除霜運転時に、第2熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度が温度センサ(75)で検出される。第2熱交換器(51)の過冷却コイル(57)には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れており、この冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。具体的には、逆サイクルの除霜運転を開始したときには上記過冷却コイル(57)にはほぼガス冷媒のみが流れていて高温になっているが、利用側熱交換器の霜が溶け出すと冷媒の温度が一旦下がり、さらに霜が溶けていくと冷媒の温度が上昇していく。そこで、この上昇したときの冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)に付着した霜が溶けたと判断できる。 In the tenth aspect, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) is detected by the temperature sensor (75). In the supercooling coil (57) of the second heat exchanger (51), the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and the temperature of the refrigerant reaches a predetermined value or more. If so, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. Specifically, when the reverse cycle defrosting operation is started, almost only the gas refrigerant flows through the supercooling coil (57) and is at a high temperature, but when the frost of the use side heat exchanger starts to melt. When the temperature of the refrigerant once decreases and the frost melts further, the temperature of the refrigerant increases. Therefore, when the temperature of the refrigerant when rising is equal to or higher than a predetermined value, it can be determined that the frost attached to the lowermost refrigerant path (51n) has melted.
 本開示の第11の態様は、第9または第10の態様において、上記膨張機構(53)と第2熱交換器(51)とを備えた庫内ユニット(12)を備え、上記温度センサ(75)が上記庫内ユニット(12)の内部に設けられていることを特徴としている。 An eleventh aspect of the present disclosure includes the internal unit (12) including the expansion mechanism (53) and the second heat exchanger (51) in the ninth or tenth aspect, and the temperature sensor ( 75) is provided in the interior unit (12).
 この第11の態様では、膨張機構(53)と第2熱交換器(51)とを備えた庫内ユニット(12)に設けた温度センサ(75)を利用して除霜運転が終了したかどうかを検知することができる。 In the eleventh aspect, has the defrosting operation been completed using the temperature sensor (75) provided in the internal unit (12) having the expansion mechanism (53) and the second heat exchanger (51)? Whether it can be detected.
 本開示の第1の態様によれば、上記第2熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パス(51a~51n)に接続されたキャピラリチューブ(56)が、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成したことにより、冷媒の流速が速くなって上記ヘッド差に打ち勝ち、熱交換器の下方のパスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒が流れて行くので、熱交換器の下方の冷媒パス(51a~51n)に液冷媒が滞留しない。したがって、除霜運転時に、着霜した熱交換器の下部で霜が溶け残るのを抑制することができる。 According to the first aspect of the present disclosure, among the refrigerant paths (51a to 51n) of the second heat exchanger (51), at least the refrigerant paths (51a to 51n) positioned below the flow divider (55). The connected capillary tube (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). As a result, the flow rate of the refrigerant is increased, the head difference is overcome, and the refrigerant flows through the capillary tube (56) connected to the path below the heat exchanger to the flow divider (55). The liquid refrigerant does not stay in the refrigerant path (51a to 51n) below. Therefore, it is possible to suppress frost from being melted at the lower part of the frosted heat exchanger during the defrosting operation.
 また、第1の態様によれば、冷媒回路(15)に電磁弁やキャピラリチューブ(56)を設けたバイパス配管を接続したり、逆サイクルの除霜運転時には電磁弁を開く操作をしたりする必要がないので、構成や制御が複雑になるのも防止できる。 Further, according to the first aspect, a bypass pipe provided with an electromagnetic valve or a capillary tube (56) is connected to the refrigerant circuit (15), or an operation of opening the electromagnetic valve during a reverse cycle defrosting operation is performed. Since it is not necessary, the configuration and control can be prevented from becoming complicated.
 本開示の第2の態様によれば、上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)を、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成し、すべてのキャピラリチューブ(56)を同一内径且つ同一長さにすることにより、熱交換器の下方のパスに液冷媒が溜まったままになるのを防止できるから、装置構成をより簡単にすることができるとともに、熱交換器の下部における霜の溶け残りも抑えられる。 According to the second aspect of the present disclosure, the capillary tube (56) that connects the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected to the lowermost heat exchanger (51). The heat exchanger is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51n) and the flow divider (55), and all capillary tubes (56) have the same inner diameter and the same length. Since the liquid refrigerant can be prevented from remaining in the lower path, the configuration of the apparatus can be simplified, and frost remaining in the lower part of the heat exchanger can be suppressed.
 本開示の第3の態様によれば、逆サイクルの除霜運転時に、第2熱交換器(51)の各冷媒パス(51a~51n)から分流器(55)を通過した冷媒の温度が温度センサ(75)で検出され、この冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。この温度センサ(75)の部分には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れているので、除霜運転が終了したかどうかを正確に判断することができる。 According to the third aspect of the present disclosure, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the second heat exchanger (51) is the temperature. If it is detected by the sensor (75) and the temperature of the refrigerant is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. In this temperature sensor (75), since the entire amount of refrigerant after passing through the flow divider (55) flows during the reverse cycle operation, it can be accurately determined whether or not the defrosting operation has ended.
 本開示の第4の態様によれば、上記キャピラリチューブ(56)に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a~51n)についても冷媒トラップ(59)に溜まった液冷媒が抵抗になるため、上記第2熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようにしている。したがって、各パスをガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できる。そのため、通常の運転から除霜運転に切り換えたときに、冷媒がガス相と液相とに分離することに起因する偏流を抑えることができるから、着霜した熱交換器において液相冷媒が溜まった下方の冷媒パス(51a~51n)の部分に霜の溶け残りが生じてしまうのを抑制することができる。 According to the fourth aspect of the present disclosure, by providing the capillary tube (56) with the refrigerant trap (59), not only the liquid refrigerant in the lowermost refrigerant path (51n) becomes the passage resistance of the gas refrigerant. In the upper refrigerant path (51a to 51n), the liquid refrigerant accumulated in the refrigerant trap (59) becomes resistance, so that the refrigerant is evenly distributed in each refrigerant path (51a to 51n) of the second heat exchanger (51). To flow into. Therefore, the gas refrigerant can easily flow through each path, and the gas refrigerant can be supplied to the lower paths by preventing the gas refrigerant from flowing only through the upper refrigerant paths (51a to 51n). Therefore, when switching from the normal operation to the defrosting operation, it is possible to suppress the drift caused by the separation of the refrigerant into the gas phase and the liquid phase, so that the liquid phase refrigerant accumulates in the frosted heat exchanger. In addition, it is possible to prevent frost from remaining unmelted in the refrigerant path (51a to 51n) below.
 本開示の第5から第7の態様によれば、上記キャピラリチューブ(56)に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a~51n)についてもトラップ(59)に溜まった液冷媒が抵抗になるようにしているため、上記第2熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようになる。したがって、各パスをガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a~51n)ばかりをガス冷媒が流れることを防止して下方のパスにもガス冷媒を供給できる。そのため、通常の運転から除霜運転に切り換えたときに、ガス冷媒が熱交換器の上部の冷媒パスばかりを流れる偏流を抑えることができるから、着霜した熱交換器において液冷媒が溜まりやすい下方の冷媒パス(51a~51n)の部分に霜の溶け残りが生じてしまうのを抑制することができる。 According to the fifth to seventh aspects of the present disclosure, by providing the capillary tube (56) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) becomes the passage resistance of the gas refrigerant. In addition to the upper refrigerant paths (51a to 51n), the liquid refrigerant accumulated in the trap (59) becomes resistance, so that the refrigerant paths (51a to 51a) of the second heat exchanger (51) 51n) refrigerant flows evenly. Therefore, the gas refrigerant can easily flow through each path, and the gas refrigerant can be supplied to the lower paths by preventing the gas refrigerant from flowing only through the upper refrigerant paths (51a to 51n). Therefore, when switching from the normal operation to the defrosting operation, it is possible to suppress the drift that the gas refrigerant flows through only the refrigerant path at the upper part of the heat exchanger, so that the liquid refrigerant tends to accumulate in the frosted heat exchanger. It is possible to prevent frost from remaining unmelted in the refrigerant paths (51a to 51n).
 本開示の第8の態様によれば、除霜運転時には、第2熱交換器(51)が上方と下方の両方から暖められるので、該第2熱交換器(51)の上部に付着した霜だけでなく、該第2熱交換器(51)の下部に付着した霜も除去できる。つまり、霜の溶け残りを防止できる。 According to the eighth aspect of the present disclosure, during the defrosting operation, the second heat exchanger (51) is warmed from both above and below, so frost adhering to the upper part of the second heat exchanger (51). In addition, frost attached to the lower portion of the second heat exchanger (51) can be removed. That is, it is possible to prevent frost from remaining unmelted.
 また、第8の態様によれば、冷媒回路に電磁弁やキャピラリチューブ(56)を設けたバイパス配管を接続したり、逆サイクルの除霜運転時には電磁弁を開く操作をしたりする必要がないので、構成や制御が複雑になるのも防止できる。 Moreover, according to the 8th aspect, it is not necessary to connect the bypass piping which provided the solenoid valve and the capillary tube (56) to the refrigerant circuit, or to open the solenoid valve during the reverse cycle defrosting operation. Therefore, it is possible to prevent the configuration and control from becoming complicated.
 本開示の第9の態様によれば、逆サイクルの除霜運転時に、第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度が温度センサ(75)で検出され、この温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できるから、除霜運転が終了したかどうかを検知することができる。 According to the ninth aspect of the present disclosure, the capillary tube connected to the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) during the defrosting operation in the reverse cycle. Since the temperature of the refrigerant flowing through (56) is detected by the temperature sensor (75) and this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. It can be detected whether or not.
 本開示の第10の態様によれば、逆サイクルの除霜運転時に、第2熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度が温度センサ(75)で検出され、この温度が除霜運転の開始から所定時間後に所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できるから、除霜運転が終了したかどうかを検知することができる。また、過冷却コイル(57)を通過した後の位置に温度センサ(75)を設けると、冷媒の全流量から温度を検知できるので、除霜運転の終了検知をより正確に行うことができる。 According to the tenth aspect of the present disclosure, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) is detected by the temperature sensor (75), If this temperature exceeds a predetermined value after a predetermined time from the start of the defrosting operation, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. Can do. Further, if the temperature sensor (75) is provided at a position after passing through the supercooling coil (57), the temperature can be detected from the total flow rate of the refrigerant, so that the end of the defrosting operation can be detected more accurately.
 本開示の第11の態様によれば、膨張機構(53)と第2熱交換器(51)とを備えた庫内ユニット(12)に設けた温度センサ(75)を利用して除霜運転が終了したかどうかを検知することができるから、除霜運転の終了検知を庫内ユニット(12)だけで完結させることができる。 According to the eleventh aspect of the present disclosure, the defrosting operation is performed using the temperature sensor (75) provided in the internal unit (12) including the expansion mechanism (53) and the second heat exchanger (51). Therefore, it is possible to detect whether or not the defrosting operation has ended, by using only the in-compartment unit (12).
図1は、本発明の実施形態1に係る冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. 図2は、利用側熱交換器周りの配管の詳細を示す回路構成図である。FIG. 2 is a circuit configuration diagram showing details of piping around the use side heat exchanger. 図3は、分流器キャピラリチューブの長さと管径の比率と冷媒循環量との管径を示すグラフである。FIG. 3 is a graph showing the pipe diameters of the ratio of the length and pipe diameter of the flow divider capillary tube and the refrigerant circulation amount. 図4は、図1の冷媒回路における冷却運転の冷媒の流れを示す図である。FIG. 4 is a diagram illustrating a refrigerant flow in the cooling operation in the refrigerant circuit of FIG. 1. 図5は、図1の冷媒回路における逆サイクルの除霜運転の冷媒の流れを示す図である。FIG. 5 is a diagram illustrating a refrigerant flow in a reverse cycle defrosting operation in the refrigerant circuit of FIG. 1. 図6は、その他の実施形態に係る冷凍装置の利用側熱交換器周りの配管の詳細を示す回路構成図である。FIG. 6 is a circuit configuration diagram showing details of piping around the use side heat exchanger of the refrigeration apparatus according to another embodiment. 図7は、実施形態2の利用側熱交換器周りの配管の詳細を示す回路構成図である。FIG. 7 is a circuit configuration diagram illustrating details of piping around the use-side heat exchanger according to the second embodiment. 図8は、実施形態2の利用側熱交換器と分流器の接続形態の変形例を示す図である。FIG. 8 is a diagram illustrating a modification of the connection form between the use-side heat exchanger and the flow divider in the second embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 《発明の実施形態1》
 本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.
 図1は、この実施形態1に係る冷凍装置(10)の構成例を示している。冷凍装置(10)は、庫外に設けられる熱源側ユニット(11)と、冷蔵庫や冷凍庫などの庫内に設けられる利用側ユニット(12)と、コントローラ(80)とを備えている。熱源側ユニット(11)には、熱源側回路(16)と熱源側ファン(17)とが設けられ、利用側ユニット(12)には、利用側回路(18)と利用側ファン(19)とが設けられている。この冷凍装置(10)では、熱源側ユニット(11)の熱源側回路(16)と利用側ユニット(12)の利用側回路(18)とが液側連絡配管(13)およびガス側連絡配管(14)によって接続されて、冷媒が循環して蒸気圧縮式の冷凍サイクルが行われる冷媒回路(15)が構成されている。具体的には、熱源側回路(16)の液端およびガス端に液閉鎖弁(V1)およびガス閉鎖弁(V2)がそれぞれ設けられ、液閉鎖弁(V1)およびガス閉鎖弁(V2)に液側連絡配管(13)の一端およびガス側連絡配管(14)の一端がそれぞれ接続され、液側連絡配管(13)およびガス側連絡配管(14)の他端に利用側回路(18)の液端およびガス端がそれぞれ接続されている。 FIG. 1 shows a configuration example of the refrigeration apparatus (10) according to the first embodiment. The refrigeration apparatus (10) includes a heat source side unit (11) provided outside the storage, a use side unit (12) provided in a storage such as a refrigerator or a freezer, and a controller (80). The heat source side unit (11) includes a heat source side circuit (16) and a heat source side fan (17), and the usage side unit (12) includes a usage side circuit (18), a usage side fan (19), and Is provided. In this refrigeration system (10), the heat source side circuit (16) of the heat source side unit (11) and the usage side circuit (18) of the usage side unit (12) are connected to the liquid side communication pipe (13) and the gas side communication pipe ( 14), a refrigerant circuit (15) in which a refrigerant circulates and a vapor compression refrigeration cycle is performed is configured. Specifically, a liquid closing valve (V1) and a gas closing valve (V2) are provided at the liquid end and the gas end of the heat source side circuit (16), respectively, and the liquid closing valve (V1) and the gas closing valve (V2) One end of the liquid side connecting pipe (13) and one end of the gas side connecting pipe (14) are connected to the other end of the liquid side connecting pipe (13) and the gas side connecting pipe (14). The liquid end and the gas end are connected to each other.
  〈熱源側回路〉
 熱源側回路(16)は、第1圧縮機(21a)および第2圧縮機(21b)と、四方切換弁(22)と、熱源側熱交換器(23)と、過冷却熱交換器(24)と、過冷却膨張弁(31)と、中間膨張弁(32)と、中間開閉弁(33)と、中間逆止弁(34)と、レシーバ(35)と、熱源側膨張弁(36)と、第1逆止弁(CV1),第2逆止弁(CV2),第3逆止弁(CV3)と、第1油分離器(OSa)および第2油分離器(OSb)と、第1吐出逆止弁(CVa)および第2吐出逆止弁(CVb)と、第1キャピラリチューブ(CTa)および第2キャピラリチューブ(CTb)と、油分離逆止弁(CVc)とを有している。
<Heat source side circuit>
The heat source side circuit (16) includes a first compressor (21a) and a second compressor (21b), a four-way switching valve (22), a heat source side heat exchanger (23), and a supercooling heat exchanger (24 ), Supercooling expansion valve (31), intermediate expansion valve (32), intermediate on-off valve (33), intermediate check valve (34), receiver (35), and heat source side expansion valve (36) A first check valve (CV1), a second check valve (CV2), a third check valve (CV3), a first oil separator (OSa) and a second oil separator (OSb), 1 discharge check valve (CVa) and 2nd discharge check valve (CVb), 1st capillary tube (CTa) and 2nd capillary tube (CTb), and oil separation check valve (CVc) Yes.
 また、熱源側回路(16)には、吐出冷媒配管(41)と、吸入冷媒配管(42)と、熱源側液冷媒配管(43)と、インジェクション配管(44)と、第1接続配管(45)および第2接続配管(46)と、油戻し配管(47)とが設けられている。 The heat source side circuit (16) includes a discharge refrigerant pipe (41), an intake refrigerant pipe (42), a heat source side liquid refrigerant pipe (43), an injection pipe (44), and a first connection pipe (45). ) And a second connection pipe (46), and an oil return pipe (47).
 第1圧縮機(21a)は、吸入した冷媒を圧縮して吐出するように構成されている。また、第1圧縮機(21a)には、吸入ポートと、中間ポートと、吐出ポートとが設けられている。吸入ポートは、第1圧縮機(21a)の吸入行程において圧縮室(すなわち、低圧の圧縮室)と連通するように形成されている。中間ポートは、第1圧縮機(21a)の圧縮行程の途中において圧縮室(すなわち、中間圧の圧縮室)と連通するように形成されている。吐出ポートは、第1圧縮機(21a)の吐出行程において圧縮室(すなわち、高圧の圧縮室)と連通するように構成されている。例えば、第1圧縮機(21a)は、互いに歯合する固定スクロールおよび可動スクロールの間に圧縮室が構成されるスクロール式の圧縮機によって構成されている。第2圧縮機(21b)は、第1圧縮機(21a)の構成と同様の構成を有している。 The first compressor (21a) is configured to compress and discharge the sucked refrigerant. The first compressor (21a) is provided with a suction port, an intermediate port, and a discharge port. The suction port is formed so as to communicate with the compression chamber (that is, the low-pressure compression chamber) in the suction stroke of the first compressor (21a). The intermediate port is formed so as to communicate with the compression chamber (that is, the compression chamber of intermediate pressure) during the compression stroke of the first compressor (21a). The discharge port is configured to communicate with the compression chamber (that is, the high-pressure compression chamber) in the discharge stroke of the first compressor (21a). For example, the first compressor (21a) is configured by a scroll compressor in which a compression chamber is formed between a fixed scroll and a movable scroll that mesh with each other. The second compressor (21b) has a configuration similar to that of the first compressor (21a).
 なお、第1圧縮機(21a)は、その運転周波数(容量)が可変に構成されている。すなわち、第1圧縮機(21a)は、インバータ(図示を省略)の出力周波数を変化させることで、その内部に設けられた電動機の回転数が変化し、その運転周波数が変化するように構成されている。一方、第2圧縮機(21b)は、その運転周波数(容量)が固定されている。すなわち、第2圧縮機(21b)は、その内部に設けられた電動機の回転数が一定であり、その運転周波数が一定となっている。 The first compressor (21a) has a variable operating frequency (capacity). In other words, the first compressor (21a) is configured such that by changing the output frequency of the inverter (not shown), the rotational speed of the motor provided therein changes, and the operating frequency changes. ing. On the other hand, the operating frequency (capacity) of the second compressor (21b) is fixed. That is, as for the 2nd compressor (21b), the rotation speed of the electric motor provided in the inside is constant, and the operating frequency is constant.
 四方切換弁(22)は、第1ポートと第3ポートとが連通し且つ第2ポートと第4ポートとが連通する第1状態(図1の実線で示された状態)と、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第2状態(図1の破線で示された状態)とに切り換え可能に構成されている。 The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other, And the fourth port are in communication with each other and the second port and the third port are in communication with each other (a state indicated by a broken line in FIG. 1).
 四方切換弁(22)の第1ポートは、吐出冷媒配管(41)によって第1および第2圧縮機(21a,21b)の吐出ポートに接続され、四方切換弁(22)の第2ポートは、吸入冷媒配管(42)によって第1および第2圧縮機(21a,21b)の吸入ポートに接続されている。四方切換弁(22)の第3ポートは、熱源側熱交換器(23)のガス端に接続され、四方切換弁(22)の第4ポートは、ガス閉鎖弁(V2)に接続されている。 The first port of the four-way switching valve (22) is connected to the discharge ports of the first and second compressors (21a, 21b) by the discharge refrigerant pipe (41), and the second port of the four-way switching valve (22) is The suction refrigerant pipe (42) is connected to the suction ports of the first and second compressors (21a, 21b). The third port of the four-way switching valve (22) is connected to the gas end of the heat source side heat exchanger (23), and the fourth port of the four-way switching valve (22) is connected to the gas closing valve (V2). .
 吐出冷媒配管(41)は、一端が第1および第2圧縮機(21a,21b)の吐出ポートに接続される第1および第2吐出管(41a,41b)と、第1および第2吐出管(41a,41b)の他端と四方切換弁(22)の第1ポートとを接続する吐出主管(41c)とによって構成されている。 The discharge refrigerant pipe (41) has first and second discharge pipes (41a, 41b) whose one ends are connected to discharge ports of the first and second compressors (21a, 21b), and first and second discharge pipes. It is comprised by the discharge main pipe (41c) which connects the other end of (41a, 41b) and the 1st port of the four-way selector valve (22).
 吸入冷媒配管(42)は、一端が第1および第2圧縮機(21a,21b)の吸入ポートにそれぞれ接続される第1および第2吸入管(42a,42b)と、第1および第2吸入管(42a,42b)の他端と四方切換弁(22)の第2ポートとを接続する吸入主管(42c)とによって構成されている。 The suction refrigerant pipe (42) has first and second suction pipes (42a, 42b) connected at one end to the suction ports of the first and second compressors (21a, 21b), respectively, and the first and second suction pipes. The suction main pipe (42c) connects the other end of the pipe (42a, 42b) and the second port of the four-way selector valve (22).
 熱源側熱交換器(23)は、その液端が熱源側液冷媒配管(43)の一端に接続され、そのガス端が四方切換弁(22)の第3ポートに接続されている。また、熱源側熱交換器(23)の近傍には、熱源側ファン(17)が配置されている。そして、熱源側熱交換器(23)は、冷媒と熱源側ファン(17)によって搬送された熱源側空気(すなわち、庫外空気)とを熱交換させるように構成されている。例えば、熱源側熱交換器(23)は、クロスフィン式のフィン・アンド・チューブ型熱交換器によって構成されている。 The liquid end of the heat source side heat exchanger (23) is connected to one end of the heat source side liquid refrigerant pipe (43), and the gas end is connected to the third port of the four-way switching valve (22). Moreover, the heat source side fan (17) is arrange | positioned in the vicinity of the heat source side heat exchanger (23). The heat source side heat exchanger (23) is configured to exchange heat between the refrigerant and the heat source side air (that is, outside air) conveyed by the heat source side fan (17). For example, the heat source side heat exchanger (23) is configured by a cross-fin type fin-and-tube heat exchanger.
 熱源側液冷媒配管(43)は、その一端が熱源側熱交換器(23)に接続され、その他端が液閉鎖弁(V1)に接続されている。この例では、熱源側液冷媒配管(43)は、熱源側熱交換器(23)の液端とレシーバ(35)とを接続する第1熱源側液管(43a)と、レシーバ(35)と過冷却熱交換器(24)とを接続する第2熱源側液管(43b)と、過冷却熱交換器(24)と液閉鎖弁(V1)とを接続する第3熱源側液管(43c)とによって構成されている。 The heat source side liquid refrigerant pipe (43) has one end connected to the heat source side heat exchanger (23) and the other end connected to the liquid closing valve (V1). In this example, the heat source side liquid refrigerant pipe (43) includes a first heat source side liquid pipe (43a) that connects the liquid end of the heat source side heat exchanger (23) and the receiver (35), and a receiver (35). A second heat source side liquid pipe (43b) connecting the supercooling heat exchanger (24), and a third heat source side liquid pipe (43c) connecting the supercooling heat exchanger (24) and the liquid shut-off valve (V1). ) And.
 インジェクション配管(44)は、熱源側液冷媒配管(43)の第1中途部(Q1)と第1および第2圧縮機(21a,21b)の中間ポートとを接続している。この例では、インジェクション配管(44)は、熱源側液冷媒配管(43)の第1中途部(Q1)と過冷却熱交換器(24)とを接続する第1インジェクション主管(44m)と、一端が過冷却熱交換器(24)に接続される第2インジェクション主管(44n)と、第2インジェクション主管(44n)の他端と第1および第2圧縮機(21a,21b)の中間ポートとをそれぞれ接続する第1および第2インジェクション分岐管(44a,44b)とによって構成されている。 The injection pipe (44) connects the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the intermediate ports of the first and second compressors (21a, 21b). In this example, the injection pipe (44) includes a first injection main pipe (44m) that connects the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the supercooling heat exchanger (24), and one end. The second injection main pipe (44n) connected to the supercooling heat exchanger (24), the other end of the second injection main pipe (44n), and the intermediate ports of the first and second compressors (21a, 21b). The first and second injection branch pipes (44a, 44b) are connected to each other.
 過冷却熱交換器(24)は、熱源側液冷媒配管(43)とインジェクション配管(44)とに接続され、熱源側液冷媒配管(43)を流れる冷媒とインジェクション配管(44)を流れる冷媒とを熱交換させるように構成されている。この例では、過冷却熱交換器(24)は、第2熱源側液管(43b)と第3熱源側液管(43c)との間に接続される第1流路(24a)と、第1インジェクション主管(44m)と第2インジェクション主管(44n)との間に接続される第2流路(24b)とを有し、第1流路(24a)を流れる冷媒と第2流路(24b)を流れる冷媒とを熱交換させるように構成されている。例えば、過冷却熱交換器(24)は、プレート型熱交換器によって構成されている。 The supercooling heat exchanger (24) is connected to the heat source side liquid refrigerant pipe (43) and the injection pipe (44), and includes a refrigerant flowing through the heat source side liquid refrigerant pipe (43) and a refrigerant flowing through the injection pipe (44). Are configured to exchange heat. In this example, the supercooling heat exchanger (24) includes a first flow path (24a) connected between the second heat source side liquid pipe (43b) and the third heat source side liquid pipe (43c), The second flow path (24b) connected between the 1 injection main pipe (44m) and the second injection main pipe (44n), and the refrigerant flowing through the first flow path (24a) and the second flow path (24b ) To exchange heat. For example, the supercooling heat exchanger (24) is configured by a plate heat exchanger.
 過冷却膨張弁(31)は、インジェクション配管(44)において熱源側液冷媒配管(43)の第1中途部(Q1)と過冷却熱交換器(24)との間(この例では、第1インジェクション主管(44m))に設けられている。また、過冷却膨張弁(31)は、その開度を調節可能に構成されている。例えば、過冷却膨張弁(31)は、電子膨張弁(電動弁)によって構成されている。 The supercooling expansion valve (31) is located between the first intermediate part (Q1) of the heat source side liquid refrigerant pipe (43) and the supercooling heat exchanger (24) in the injection pipe (44) (in this example, the first It is provided in the injection main pipe (44m). Further, the supercooling expansion valve (31) is configured such that its opening degree can be adjusted. For example, the supercooling expansion valve (31) is constituted by an electronic expansion valve (motorized valve).
 中間膨張弁(32)は、インジェクション配管(44)において過冷却熱交換器(24)と第1圧縮機(21a)の中間ポートとの間(この例では、第1インジェクション分岐管(44a))に設けられている。また、中間膨張弁(32)は、その開度を調節可能に構成されている。例えば、中間膨張弁(32)は、電子膨張弁(電動弁)によって構成されている。 The intermediate expansion valve (32) is located between the supercooling heat exchanger (24) and the intermediate port of the first compressor (21a) in the injection pipe (44) (in this example, the first injection branch pipe (44a)). Is provided. Further, the intermediate expansion valve (32) is configured so that its opening degree can be adjusted. For example, the intermediate expansion valve (32) is configured by an electronic expansion valve (motorized valve).
 中間開閉弁(33)および中間逆止弁(34)は、インジェクション配管(44)において過冷却熱交換器(24)と第2圧縮機(21b)の中間ポートとの間(この例では、第2インジェクション分岐管(44b))に設けられている。第2インジェクション分岐管(44b)では、第2インジェクション分岐管(44b)の入口側から出口側へ向けて中間開閉弁(33)と中間逆止弁(34)とが順に配置されている。 The intermediate on-off valve (33) and the intermediate check valve (34) are disposed between the supercooling heat exchanger (24) and the intermediate port of the second compressor (21b) in the injection pipe (44) (in this example, the first 2 injection branch pipe (44b)). In the second injection branch pipe (44b), an intermediate on-off valve (33) and an intermediate check valve (34) are sequentially arranged from the inlet side to the outlet side of the second injection branch pipe (44b).
 中間開閉弁(33)は、その開閉を切り換え可能に構成されている。例えば、中間開閉弁(33)は、電磁弁によって構成されている。中間逆止弁(34)は、第2インジェクション分岐管(44b)の入口側から出口側へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The intermediate on-off valve (33) is configured to be switchable. For example, the intermediate opening / closing valve (33) is constituted by a solenoid valve. The intermediate check valve (34) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second injection branch pipe (44b) and to block the refrigerant flow in the reverse direction.
 レシーバ(35)は、熱源側液冷媒配管(43)において熱源側熱交換器(23)と過冷却熱交換器(24)との間に接続され、凝縮器(具体的には、熱源側熱交換器(第1熱交換器)(23)または後述の利用側熱交換器(第2熱交換器)(51))において凝縮した冷媒を一時的に貯留することができるように構成されている。この例では、レシーバ(35)は、その入口に第1熱源側液管(43a)が接続され、その出口に第2熱源側液管(43b)が接続されている。 The receiver (35) is connected between the heat source side heat exchanger (23) and the supercooling heat exchanger (24) in the heat source side liquid refrigerant pipe (43), and is connected to a condenser (specifically, heat source side heat In the exchanger (first heat exchanger) (23) or a later-described use side heat exchanger (second heat exchanger) (51)), the condensed refrigerant can be temporarily stored. . In this example, the receiver (35) has a first heat source side liquid pipe (43a) connected to the inlet and a second heat source side liquid pipe (43b) connected to the outlet.
 第1接続配管(45)は、熱源側液冷媒配管(43)の第2中途部(Q2)と第3中途部(Q3)とを接続している。第2中途部(Q2)は、熱源側液冷媒配管(43)において第1中途部(Q1)と液閉鎖弁(V1)との間に位置し、第3中途部(Q3)は、熱源側液冷媒配管(43)において熱源側熱交換器(23)の液端とレシーバ(35)との間に位置する。 The first connection pipe (45) connects the second midway part (Q2) and the third midway part (Q3) of the heat source side liquid refrigerant pipe (43). The second halfway part (Q2) is located between the first halfway part (Q1) and the liquid shut-off valve (V1) in the heat source side liquid refrigerant pipe (43), and the third halfway part (Q3) is located on the heat source side It is located between the liquid end of the heat source side heat exchanger (23) and the receiver (35) in the liquid refrigerant pipe (43).
 第2接続配管(46)は、熱源側液冷媒配管(43)の第4中途部(Q4)と第5中途部(Q5)とを接続している。第4中途部(Q4)は、熱源側液冷媒配管(43)において第1中途部(Q1)と第2中途部(Q2)の間に位置し、第5中途部(Q5)は、熱源側液冷媒配管(43)において熱源側熱交換器(23)の液端と第3中途部(Q3)との間に位置する。 The second connection pipe (46) connects the fourth midway part (Q4) and the fifth midway part (Q5) of the heat source side liquid refrigerant pipe (43). The fourth midway part (Q4) is located between the first halfway part (Q1) and the second halfway part (Q2) in the heat source side liquid refrigerant pipe (43), and the fifth halfway part (Q5) is located on the heat source side The liquid refrigerant pipe (43) is located between the liquid end of the heat source side heat exchanger (23) and the third midway part (Q3).
 熱源側膨張弁(36)は、第2接続配管(46)に設けられている。また、熱源側膨張弁(36)は、その開度を調節可能に構成されている。例えば、熱源側膨張弁(36)は、電子膨張弁(電動弁)によって構成されている。 The heat source side expansion valve (36) is provided in the second connection pipe (46). Moreover, the heat source side expansion valve (36) is comprised so that the opening degree can be adjusted. For example, the heat source side expansion valve (36) is configured by an electronic expansion valve (motorized valve).
 第1逆止弁(CV1)は、熱源側液冷媒配管(43)の第3中途部(Q3)と第5中途部(Q5)との間に設けられ、第5中途部(Q5)から第3中途部(Q3)へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The first check valve (CV1) is provided between the third midway part (Q3) and the fifth midway part (Q5) of the heat source side liquid refrigerant pipe (43), and the first check valve (CV1) 3. The refrigerant flow toward the middle part (Q3) is allowed and the refrigerant flow in the opposite direction is blocked.
 第2逆止弁(CV2)は、熱源側液冷媒配管(43)の第2中途部(Q2)と第4中途部(Q4)との間に設けられ、第4中途部(Q4)から第2中途部(Q2)へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The second check valve (CV2) is provided between the second midway part (Q2) and the fourth midway part (Q4) of the heat source side liquid refrigerant pipe (43), and the second midway part (Q4) to the second midway part (Q4). 2 The refrigerant flow toward the middle part (Q2) is allowed and the refrigerant flow in the opposite direction is blocked.
 第3逆止弁(CV3)は、第1接続配管(45)に設けられ、熱源側液冷媒配管(43)の第2中途部(Q2)から第3中途部(Q3)へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The third check valve (CV3) is provided in the first connection pipe (45), and the refrigerant flows from the second midway part (Q2) to the third midway part (Q3) of the heat source side liquid refrigerant pipe (43). And the refrigerant flow in the opposite direction is blocked.
 第1油分離器(OSa)および第1吐出逆止弁(CVa)は、吐出冷媒配管(41)において第1圧縮機(21a)と四方切換弁(22)の第1ポートとの間(具体的には、第1吐出管(41a))に設けられている。第1吐出管(41a)では、第1吐出管(41a)の入口側から出口側へ向けて第1油分離器(OSa)と第1吐出逆止弁(CVa)とが順に配置されている。第1油分離器(OSa)は、第1圧縮機(21a)から吐出された冷媒から冷凍機油を分離して内部に貯留することができるように構成されている。第1吐出逆止弁(CVa)は、第1吐出管(41a)の入口側から出口側へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The first oil separator (OSa) and the first discharge check valve (CVa) are disposed between the first compressor (21a) and the first port of the four-way switching valve (22) in the discharge refrigerant pipe (41) (specifically Specifically, it is provided in the first discharge pipe (41a). In the first discharge pipe (41a), a first oil separator (OSa) and a first discharge check valve (CVa) are sequentially arranged from the inlet side to the outlet side of the first discharge pipe (41a). . The first oil separator (OSa) is configured to separate the refrigerating machine oil from the refrigerant discharged from the first compressor (21a) and store it inside. The first discharge check valve (CVa) is configured to allow the flow of the refrigerant from the inlet side to the outlet side of the first discharge pipe (41a) and prevent the refrigerant flow in the reverse direction.
 第2油分離器(OSb)は、吐出冷媒配管(41)において第2圧縮機(21b)と四方切換弁(22)の第1ポートとの間(具体的には、第2吐出管(41b))に設けられている。第2吐出管(41b)では、第2吐出管(41b)の入口側から出口側へ向けて第2油分離器(OSb)と第2吐出逆止弁(CVb)とが順に配置されている。第2油分離器(OSb)は、第2圧縮機(21b)から吐出された冷媒から冷凍機油を分離して内部に貯留することができるように構成されている。第2吐出逆止弁(CVb)は、第2吐出管(41b)の入口側から出口側へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The second oil separator (OSb) is disposed between the second compressor (21b) and the first port of the four-way switching valve (22) in the discharge refrigerant pipe (41) (specifically, the second discharge pipe (41b )). In the second discharge pipe (41b), a second oil separator (OSb) and a second discharge check valve (CVb) are sequentially arranged from the inlet side to the outlet side of the second discharge pipe (41b). . The second oil separator (OSb) is configured so that the refrigeration oil can be separated from the refrigerant discharged from the second compressor (21b) and stored inside. The second discharge check valve (CVb) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second discharge pipe (41b) and to block the refrigerant flow in the reverse direction.
 油戻し配管(47)は、第1および第2油分離器(OSa,OSb)に貯留された冷凍機油をインジェクション配管(44)に供給するための配管である。この例では、油戻し配管(47)は、一端が第1および第2油分離器(OSa,OSb)に接続される第1および第2油戻し管(47a,47b)と、第1および第2油戻し管(47a,47b)の他端とインジェクション配管(44)の中途部(具体的には、第2インジェクション主管(44n)の中途部(Q6))とを接続する油戻し主管(47c)とによって構成されている。 The oil return pipe (47) is a pipe for supplying the refrigeration oil stored in the first and second oil separators (OSa, OSb) to the injection pipe (44). In this example, the oil return pipe (47) includes first and second oil return pipes (47a, 47b) whose one ends are connected to the first and second oil separators (OSa, OSb), and the first and second oil return pipes (47). 2. Oil return main pipe (47c) connecting the other end of the oil return pipe (47a, 47b) and the middle part of the injection pipe (44) (specifically, the middle part (Q6) of the second injection main pipe (44n)) ) And.
 第1キャピラリチューブ(CTa)は、油戻し配管(47)において第1油分離器(OSa)とインジェクション配管(44)の中途部(Q6)との間(具体的には、第1油戻し管(47a))に設けられている。 The first capillary tube (CTa) is located between the first oil separator (OSa) and the middle part (Q6) of the injection pipe (44) in the oil return pipe (47) (specifically, the first oil return pipe). (47a)).
 第2キャピラリチューブ(CTb)および油戻し逆止弁(CVc)は、油戻し配管(47)において第2油分離器(OSb)とインジェクション配管(44)の中途部(Q6)との間(具体的には、第2油戻し管(47b))に設けられている。第2油戻し管(47b)では、第2油戻し管(47b)の入口側から出口側へ向けて油戻し逆止弁(CVc)と第2キャピラリチューブ(CTb)とが順に配置されている。油戻し逆止弁(CVc)は、第2油戻し管(47b)の入口側から出口側へ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The second capillary tube (CTb) and oil return check valve (CVc) are located between the second oil separator (OSb) and the middle part (Q6) of the injection pipe (44) in the oil return pipe (47). Specifically, the second oil return pipe (47b) is provided. In the second oil return pipe (47b), an oil return check valve (CVc) and a second capillary tube (CTb) are sequentially arranged from the inlet side to the outlet side of the second oil return pipe (47b). . The oil return check valve (CVc) is configured to allow the refrigerant flow from the inlet side to the outlet side of the second oil return pipe (47b) and to block the refrigerant flow in the reverse direction.
  〈利用側回路〉
 利用側回路(18)は、利用側熱交換器(51)と、利用側開閉弁(52)と、利用側膨張弁(膨張機構)(53)と、利用側逆止弁(54)とを有している。また、利用側回路(18)には、利用側液冷媒配管(61)と、利用側ガス冷媒配管(62)と、バイパス配管(63)とが設けられている。なお、図1は、利用側熱交換器(51)と、利用側熱交換器(51)に接続されている配管を簡略化して示している。
<User side circuit>
The utilization side circuit (18) includes a utilization side heat exchanger (51), a utilization side on-off valve (52), a utilization side expansion valve (expansion mechanism) (53), and a utilization side check valve (54). Have. Further, the use side circuit (18) is provided with a use side liquid refrigerant pipe (61), a use side gas refrigerant pipe (62), and a bypass pipe (63). In addition, FIG. 1 has simplified and shown the utilization side heat exchanger (51) and piping connected to the utilization side heat exchanger (51).
 利用側熱交換器(51)は、その液端が利用側液冷媒配管(61)によって液側連絡配管(13)に接続され、そのガス端が利用側ガス冷媒配管(62)によってガス側連絡配管(14)に接続されている。また、利用側熱交換器(51)の近傍には、利用側ファン(19)が配置されている。そして、利用側熱交換器(51)は、冷媒と利用側ファン(19)によって搬送された利用側空気(すなわち、庫内空気)とを熱交換させるように構成されている。例えば、利用側熱交換器(51)は、クロスフィン式のフィン・アンド・チューブ型熱交換器によって構成されている。 The liquid end of the use side heat exchanger (51) is connected to the liquid side connection pipe (13) by the use side liquid refrigerant pipe (61), and the gas end is connected to the gas side by the use side gas refrigerant pipe (62). Connected to pipe (14). Moreover, the utilization side fan (19) is arrange | positioned in the vicinity of the utilization side heat exchanger (51). The use side heat exchanger (51) is configured to exchange heat between the refrigerant and the use side air (that is, the internal air) conveyed by the use side fan (19). For example, the use side heat exchanger (51) is configured by a cross-fin type fin-and-tube heat exchanger.
 利用側液冷媒配管(61)は、その一端が液側連絡配管(13)に接続され、その他端が利用側熱交換器(51)の液端に接続されている。利用側ガス冷媒配管(62)は、その一端が利用側熱交換器(51)のガス端に接続され、その他端がガス側連絡配管(14)に接続されている。 The use side liquid refrigerant pipe (61) has one end connected to the liquid side communication pipe (13) and the other end connected to the liquid end of the use side heat exchanger (51). The use side gas refrigerant pipe (62) has one end connected to the gas end of the use side heat exchanger (51) and the other end connected to the gas side communication pipe (14).
 利用側開閉弁(52)および利用側膨張弁(53)は、利用側液冷媒配管(61)に設けられている。利用側液冷媒配管(61)では、利用側液冷媒配管(61)の一端側から他端側へ向けて利用側開閉弁(52)と利用側膨張弁(53)とが順に配置されている。 The use side opening / closing valve (52) and the use side expansion valve (53) are provided in the use side liquid refrigerant pipe (61). In the use side liquid refrigerant pipe (61), a use side on-off valve (52) and a use side expansion valve (53) are arranged in this order from one end side to the other end side of the use side liquid refrigerant pipe (61). .
 利用側開閉弁(52)は、その開閉を切り換え可能に構成されている。例えば、利用側開閉弁(52)は、電磁弁によって構成されている。利用側膨張弁(53)は、その開度を調節可能に構成されている。この例では、利用側膨張弁(53)は、外部均圧形温度自動膨張弁によって構成されている。すなわち、利用側膨張弁(53)は、利用側ガス冷媒配管(62)に設けられる感温筒(53a)と、利用側ガス冷媒配管(62)の中途部に接続される均圧管(図示を省略)とを有し、感温筒(53a)の温度と均圧管の冷媒圧力とに応じて開度が調節される。 The use side on-off valve (52) is configured to be switchable. For example, the use side on-off valve (52) is constituted by a solenoid valve. The use side expansion valve (53) is configured such that its opening degree can be adjusted. In this example, the use side expansion valve (53) is constituted by an external pressure equalization type temperature automatic expansion valve. That is, the use side expansion valve (53) includes a temperature sensing cylinder (53a) provided in the use side gas refrigerant pipe (62) and a pressure equalizing pipe (not shown) connected to the middle part of the use side gas refrigerant pipe (62). The opening degree is adjusted according to the temperature of the temperature sensing cylinder (53a) and the refrigerant pressure of the pressure equalizing pipe.
 バイパス配管(63)は、その一端が利用側液冷媒配管(61)における利用側膨張弁(53)と利用側熱交換器(51)との間の中途部に接続され、その他端が利用側液冷媒配管(61)における液側連絡配管(13)と利用側開閉弁(52)との間の中途部に接続されている。 One end of the bypass pipe (63) is connected to a midway part between the use side expansion valve (53) and the use side heat exchanger (51) in the use side liquid refrigerant pipe (61), and the other end is used. The liquid refrigerant pipe (61) is connected to a midway part between the liquid side connecting pipe (13) and the use side on-off valve (52).
 利用側逆止弁(54)は、バイパス配管(63)に設けられ、利用側熱交換器(51)側から液側連絡配管(13)側への冷媒の流れを許容し、その逆方向の冷媒の流れを阻止するように構成されている。 The use-side check valve (54) is provided in the bypass pipe (63) and allows the refrigerant to flow from the use-side heat exchanger (51) side to the liquid-side connecting pipe (13) side, and in the opposite direction. It is configured to block the flow of the refrigerant.
 次に、利用側熱交換器(51)の詳細と、該利用側熱交換器(51)に対する冷媒配管接続の詳細について説明する。図1では省略しているが、利用側熱交換器(51)は、図2に示すように上方から下方にわたって配置された複数の冷媒パス(51a~51n)を有している。また、利用側膨張弁(53)と利用側熱交換器(51)との間には分流器(55)が接続され、この分流器(55)と各冷媒パス(51a~51n)とがキャピラリチューブ(56(56a~56n))で接続されている。 Next, details of the usage-side heat exchanger (51) and details of refrigerant pipe connection to the usage-side heat exchanger (51) will be described. Although omitted in FIG. 1, the use side heat exchanger (51) has a plurality of refrigerant paths (51a to 51n) arranged from the top to the bottom as shown in FIG. Further, a flow divider (55) is connected between the use side expansion valve (53) and the use side heat exchanger (51), and the flow divider (55) and each refrigerant path (51a to 51n) are connected to the capillary. They are connected by tubes (56 (56a to 56n)).
 この冷凍装置(10)では、上記利用側熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パスに接続されたキャピラリチューブ(56)が、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成されている。具体的には、図3に示すように、キャピラリチューブ(56)と冷却管(冷媒パス)(51a~51n)の動圧抵抗を加えた値が、分流器(55)と最下部の冷媒パス(51n)のヘッド差(ΔPHi)よりも大きくなるように、キャピラリチューブ(56)の長さと管径が定められている。このことにより、冷媒の流速が速くなり、上記ヘッド差に打ち勝って冷媒がキャピラリチューブ(56)を流れるようになる。 In this refrigeration apparatus (10), a capillary tube (56) connected to a refrigerant path located at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the use side heat exchanger (51). However, it is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). Specifically, as shown in FIG. 3, the value obtained by adding the dynamic pressure resistances of the capillary tube (56) and the cooling pipes (refrigerant paths) (51a to 51n) is the shunt (55) and the lowermost refrigerant path. The length and the diameter of the capillary tube (56) are determined so as to be larger than the head difference (ΔPHi) of (51n). As a result, the flow rate of the refrigerant increases, and the refrigerant flows through the capillary tube (56) by overcoming the head difference.
 特に、本実施形態では、上記利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56n)が、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成され、かつ、すべてのキャピラリチューブ(56a~56n)を同一内径且つ同一長さにしている。 In particular, in this embodiment, the capillary tube (56n) that connects the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) includes the lowermost refrigerant path (51n). ) And the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all the capillary tubes (56a to 56n) have the same inner diameter and the same length.
 上記利用側回路(18)には、上記除霜運転時に上記分流器(55)の下流側の配管を流れる冷媒の温度を検出する温度センサ(75)が設けられている。また、この冷凍装置(10)は、上述したように、上記利用側膨張弁(53)と利用側熱交換器(51)とを備えた利用側ユニット(庫内ユニット)(12)を有する冷凍装置であり、上記温度センサ(75)は、上記利用側ユニット(12)の内部に設けられている。 The use side circuit (18) is provided with a temperature sensor (75) for detecting the temperature of the refrigerant flowing in the downstream pipe of the flow divider (55) during the defrosting operation. Further, as described above, the refrigeration apparatus (10) is a refrigeration having a use side unit (internal unit) (12) including the use side expansion valve (53) and a use side heat exchanger (51). The temperature sensor (75) is a device, and is provided inside the use side unit (12).
  〈各種センサ〉
 また、冷凍装置(10)には、吸入温度センサ(71)や吸入圧力センサ(72)や庫内温度センサ(73)などの各種センサが設けられている。
<Various sensors>
The refrigeration apparatus (10) is provided with various sensors such as an intake temperature sensor (71), an intake pressure sensor (72), and an internal temperature sensor (73).
 吸入温度センサ(71)は、第1および第2圧縮機(21a,21b)に吸入される冷媒の温度(以下、「吸入温度」と記載)を検出するように構成されている。この例では、吸入温度センサ(71)は、吸入主管(42c)に設置され、設置場所の冷媒温度を吸入温度として検出する。 The suction temperature sensor (71) is configured to detect the temperature of the refrigerant sucked into the first and second compressors (21a, 21b) (hereinafter referred to as “suction temperature”). In this example, the suction temperature sensor (71) is installed in the suction main pipe (42c) and detects the refrigerant temperature at the installation location as the suction temperature.
 吸入圧力センサ(72)は、第1および第2圧縮機(21a,21b)に吸入される冷媒の圧力(以下、「吸入圧力」と記載)を検出するように構成されている。この例では、吸入圧力センサ(72)は、吸入主管(42c)に設置され、設置場所の冷媒圧力を吸入圧力として検出する。 The suction pressure sensor (72) is configured to detect the pressure of the refrigerant sucked into the first and second compressors (21a, 21b) (hereinafter referred to as “suction pressure”). In this example, the suction pressure sensor (72) is installed in the suction main pipe (42c) and detects the refrigerant pressure at the installation location as the suction pressure.
 庫内温度センサ(73)は、庫内の空気の温度(以下、「庫内温度(Tr)」と記載)を検出するように構成されている。この例では、庫内温度センサ(73)は、利用側ユニット(12)において利用側ファン(19)の空気流れの上流側に設置され、設置場所の空気温度を庫内温度(Tr)として検出する。 The internal temperature sensor (73) is configured to detect the temperature of air in the internal space (hereinafter referred to as “internal temperature (Tr)”). In this example, the internal temperature sensor (73) is installed upstream of the air flow of the usage-side fan (19) in the usage-side unit (12) and detects the air temperature at the installation location as the internal temperature (Tr). To do.
  〈コントローラ〉
 コントローラ(80)は、各種センサの検出値に基づいて冷凍装置(10)の各部を制御して冷凍装置(10)の運転動作を制御する。この例では、コントローラ(80)は、熱源側ユニット(11)に設けられる主制御器(81)と、利用側ユニット(12)に設けられる利用側制御器(82)とによって構成されている。
<controller>
The controller (80) controls the operation of the refrigeration apparatus (10) by controlling each part of the refrigeration apparatus (10) based on the detection values of the various sensors. In this example, the controller (80) includes a main controller (81) provided in the heat source side unit (11) and a use side controller (82) provided in the use side unit (12).
 主制御器(81)は、熱源側ユニット(11)に設けられた構成部品を制御する。この例では、熱源側ユニット(11)に設けられた熱源側ファン(17)、各種弁(この例では、四方切換弁(22)と過冷却膨張弁(31)と中間膨張弁(32)と中間開閉弁(33)と熱源側膨張弁(36))、第1圧縮機(21a)および第2圧縮機(21b)などを制御し、目標蒸発温度の設定も行う。 The main controller (81) controls the components provided in the heat source side unit (11). In this example, the heat source side fan (17) provided in the heat source side unit (11), various valves (in this example, a four-way switching valve (22), a supercooling expansion valve (31), an intermediate expansion valve (32), The intermediate on-off valve (33), the heat source side expansion valve (36)), the first compressor (21a), the second compressor (21b), and the like are controlled, and the target evaporation temperature is also set.
 利用側制御器(82)は、利用側ユニット(12)に設けられた構成部品(この例では、利用側ファン(19)と利用側開閉弁(52))を制御する。 The usage side controller (82) controls the components (in this example, the usage side fan (19) and the usage side on-off valve (52)) provided in the usage side unit (12).
 また、利用側制御器(82)は、冷凍装置(10)の運転を開始すべきか否かを判定し、冷凍装置(10)の運転を開始すべきと判定すると、冷却運転(庫内を冷却するための運転)のための動作を開始するとともに、運転開始信号を主制御器(81)に送信する。また、利用側制御器(82)は、冷凍装置(10)の運転を終了すべきか否かを判定し、冷凍装置(10)の運転を終了すべきと判定すると、冷却運転のための動作を終了するとともに、運転終了信号を主制御器(81)に送信する。例えば、利用側制御器(82)は、ユーザによる操作(運転開始および運転終了を指示するための操作)に応答して、冷凍装置(10)の運転開始および運転終了を判定する。 Further, the use side controller (82) determines whether or not the operation of the refrigeration apparatus (10) should be started, and if it determines that the operation of the refrigeration apparatus (10) should be started, the cooling operation (cools the inside of the refrigerator) For starting the operation) and an operation start signal is transmitted to the main controller (81). Further, the use side controller (82) determines whether or not the operation of the refrigeration apparatus (10) should be terminated, and when determining that the operation of the refrigeration apparatus (10) should be terminated, the operation for the cooling operation is performed. At the same time, an operation end signal is transmitted to the main controller (81). For example, the use side controller (82) determines the operation start and operation end of the refrigeration apparatus (10) in response to an operation by the user (operation for instructing operation start and operation end).
 また、利用側制御器(82)は、冷却運転が行われている期間において除霜運転(利用側熱交換器(51)の除霜のための運転)を開始すべきか否かを判定し、除霜運転を開始すべきと判定すると、除霜運転のための動作を開始するとともに、除霜開始信号を主制御器(81)に送信する。また、利用側制御器(82)は、除霜運転が行われている期間において除霜運転を終了すべきか否かを判定し、除霜運転を終了すべきと判定すると、除霜運転のための動作を終了して冷却運転のための動作を開始するとともに、除霜終了信号を主制御器(81)に送信する。例えば、利用側制御器(82)は、冷却運転を開始した時点から予め定められた所定時間(冷却運転時間)が経過すると、除霜運転を開始すべきと判定し、例えば温度センサ(75)の検出温度が所定温度に達すると、除霜運転を終了すべきと判定する。なお、除霜運転を開始した時点から予め定めた所定時間(除霜運転時間)が経過すると、除霜運転が終了したと判定してもよい。 In addition, the use side controller (82) determines whether or not to start the defrosting operation (operation for defrosting the use side heat exchanger (51)) during the period during which the cooling operation is performed, When it is determined that the defrosting operation should be started, an operation for the defrosting operation is started and a defrosting start signal is transmitted to the main controller (81). Further, the use side controller (82) determines whether or not the defrosting operation should be terminated during the period during which the defrosting operation is being performed. And the operation for cooling operation is started, and a defrosting end signal is transmitted to the main controller (81). For example, the use-side controller (82) determines that the defrosting operation should be started when a predetermined time (cooling operation time) elapses from the time when the cooling operation is started, for example, the temperature sensor (75). When the detected temperature reaches a predetermined temperature, it is determined that the defrosting operation should be terminated. It should be noted that when a predetermined time (defrosting operation time) has elapsed since the start of the defrosting operation, it may be determined that the defrosting operation has ended.
 以上のように、本実施形態の冷凍装置(10)は、圧縮機(21a,21b)と熱源側熱交換器(第1熱交換器)(23)と利用側膨張弁(膨張機構)(53)と利用側熱交換器(第2熱交換器)(51)とを備えて熱源側熱交換器(23)が放熱器となり利用側熱交換器(51)が蒸発器となる正サイクルの冷却運転を行う冷媒回路(15)を備えた冷凍装置である。そして、この冷凍装置(10)は、利用側熱交換器(51)に着霜すると圧縮機(21a,21b)の吐出冷媒を該利用側熱交換器(51)に供給して逆サイクルの除霜運転を行うように構成されている。 As described above, the refrigeration apparatus (10) of the present embodiment includes the compressor (21a, 21b), the heat source side heat exchanger (first heat exchanger) (23), and the use side expansion valve (expansion mechanism) (53 ) And the use side heat exchanger (second heat exchanger) (51), the heat source side heat exchanger (23) becomes a radiator and the use side heat exchanger (51) becomes an evaporator. The refrigeration apparatus includes a refrigerant circuit (15) for operation. The refrigeration apparatus (10) supplies the refrigerant discharged from the compressor (21a, 21b) to the use side heat exchanger (51) when the use side heat exchanger (51) is frosted, thereby removing the reverse cycle. It is configured to perform frost operation.
  -運転動作-
 次に、冷凍装置(10)の運転動作について説明する。
-Driving operation-
Next, the operation of the refrigeration apparatus (10) will be described.
  〈冷却運転中の冷媒の流れ〉
 次に、図4を参照して、冷却運転中の冷媒回路(15)における冷媒の流れについて説明する。冷却運転では、四方切換弁(22)が第1状態に設定され、第1および第2圧縮機(21a,21b)の吐出ポートと熱源側熱交換器(23)のガス端とが連通し、第1および第2圧縮機(21a,21b)の吸入ポートとガス側連絡配管(14)とが連通する。
<Flow of refrigerant during cooling operation>
Next, the refrigerant flow in the refrigerant circuit (15) during the cooling operation will be described with reference to FIG. In the cooling operation, the four-way selector valve (22) is set to the first state, and the discharge ports of the first and second compressors (21a, 21b) communicate with the gas ends of the heat source side heat exchanger (23), The suction ports of the first and second compressors (21a, 21b) communicate with the gas side communication pipe (14).
 第1および第2圧縮機(21a,21b)から吐出された冷媒は、吐出冷媒配管(41)において第1および第2油分離器(OSa,OSb)と第1および第2吐出逆止弁(CVa,CVb)とを通過した後に、四方切換弁(22)を通過して熱源側熱交換器(23)に流入し、熱源側熱交換器(23)において熱源側空気(すなわち、庫外空気)に放熱して凝縮する。熱源側熱交換器(23)から流出した冷媒(高圧冷媒)は、第1熱源側液管(43a)において第1逆止弁(CV1)を通過した後に、レシーバ(35)と第2熱源側液管(43b)と順に通過して過冷却熱交換器(24)の第1流路(24a)に流入し、過冷却熱交換器(24)の第2流路(24b)を流れる冷媒(中間圧冷媒)に吸熱されて過冷却される。過冷却熱交換器(24)の第1流路(24a)から流出した冷媒は、第3熱源側液管(43c)に流入し、その一部が第1インジェクション主管(44m)に流入し、その残部が第3熱源側液管(43c)において第2逆止弁(CV2)を通過した後に液閉鎖弁(V1)を通過して液側連絡配管(13)に流入する。 The refrigerant discharged from the first and second compressors (21a, 21b) is discharged from the first and second oil separators (OSa, OSb) and the first and second discharge check valves (41) in the discharge refrigerant pipe (41). CVa, CVb), and then passes through the four-way switching valve (22) and flows into the heat source side heat exchanger (23). In the heat source side heat exchanger (23), the heat source side air (that is, outside air) ) To dissipate heat and condense. The refrigerant (high-pressure refrigerant) flowing out from the heat source side heat exchanger (23) passes through the first check valve (CV1) in the first heat source side liquid pipe (43a), and then the receiver (35) and the second heat source side. A refrigerant (passing through the liquid pipe (43b) in order and flowing into the first flow path (24a) of the supercooling heat exchanger (24) and flowing through the second flow path (24b) of the supercooling heat exchanger (24) ( The refrigerant is absorbed by the intermediate pressure refrigerant) and supercooled. The refrigerant flowing out of the first flow path (24a) of the supercooling heat exchanger (24) flows into the third heat source side liquid pipe (43c), and part of it flows into the first injection main pipe (44m), The remaining portion passes through the second check valve (CV2) in the third heat source side liquid pipe (43c), then passes through the liquid closing valve (V1) and flows into the liquid side connecting pipe (13).
 第1インジェクション主管(44m)に流入した冷媒は、過冷却膨張弁(31)において減圧されて過冷却熱交換器(24)の第2流路(24b)に流入し、過冷却熱交換器(24)の第1流路(24a)を流れる冷媒(高圧冷媒)から吸熱する。過冷却熱交換器(24)の第2流路(24b)から流出した冷媒は、第2インジェクション主管(44n)を通過し、その一部が第1インジェクション分岐管(44a)に流入し、その残部が第2インジェクション分岐管(44b)に流入する。第1インジェクション分岐管(44a)に流入した冷媒は、中間膨張弁(32)において減圧されて第1圧縮機(21a)の中間ポートに流入する。第2インジェクション分岐管(44b)に流入した冷媒は、中間開閉弁(33)と中間逆止弁(34)とを順に通過して第2圧縮機(21b)の中間ポートに流入する。中間ポートを通過して第1および第2圧縮機(21a,21b)内に流入した冷媒は、第1および第2圧縮機(21a,21b)内の冷媒(具体的には、圧縮室内の冷媒)と混合される。すなわち、第1および第2圧縮機(21a,21b)内の冷媒が冷却されながら圧縮される。 The refrigerant flowing into the first injection main pipe (44m) is depressurized in the supercooling expansion valve (31), flows into the second flow path (24b) of the supercooling heat exchanger (24), and then enters the supercooling heat exchanger ( Heat is absorbed from the refrigerant (high-pressure refrigerant) flowing through the first flow path (24a) of 24). The refrigerant flowing out from the second flow path (24b) of the supercooling heat exchanger (24) passes through the second injection main pipe (44n), and part of it flows into the first injection branch pipe (44a). The remaining part flows into the second injection branch pipe (44b). The refrigerant flowing into the first injection branch pipe (44a) is decompressed by the intermediate expansion valve (32) and flows into the intermediate port of the first compressor (21a). The refrigerant flowing into the second injection branch pipe (44b) sequentially passes through the intermediate opening / closing valve (33) and the intermediate check valve (34) and flows into the intermediate port of the second compressor (21b). The refrigerant that has passed through the intermediate port and has flowed into the first and second compressors (21a, 21b) is the refrigerant in the first and second compressors (21a, 21b) (specifically, the refrigerant in the compression chamber). ). That is, the refrigerant in the first and second compressors (21a, 21b) is compressed while being cooled.
 一方、液側連絡配管(13)に流入した冷媒は、利用側ユニット(12)の利用側液冷媒配管(61)において開状態の利用側開閉弁(52)を通過して利用側膨張弁(53)において減圧されて利用側熱交換器(51)に流入し、利用側熱交換器(51)において利用側空気(すなわち、庫内空気)から吸熱して蒸発する。これにより、利用側空気が冷却される。利用側熱交換器(51)から流出した冷媒は、利用側ガス冷媒配管(62)とガス側連絡配管(14)と熱源側ユニット(11)のガス閉鎖弁(V2)と四方切換弁(22)と吸入冷媒配管(42)とを順に通過して第1および第2圧縮機(21a,21b)の吸入ポートに吸入される。 On the other hand, the refrigerant flowing into the liquid side communication pipe (13) passes through the open use side on-off valve (52) in the use side liquid refrigerant pipe (61) of the use side unit (12) and passes through the use side expansion valve (52). 53), the pressure is reduced and flows into the use-side heat exchanger (51), and the use-side heat exchanger (51) absorbs heat from the use-side air (that is, the internal air) to evaporate. Thereby, utilization side air is cooled. The refrigerant flowing out of the use side heat exchanger (51) is divided into the use side gas refrigerant pipe (62), the gas side connecting pipe (14), the gas shutoff valve (V2) and the four-way switching valve (22) of the heat source side unit (11). ) And the suction refrigerant pipe (42) in order, and is sucked into the suction ports of the first and second compressors (21a, 21b).
 また、第1および第2油分離器(OSa,OSb)では、冷媒(すなわち、第1および第2圧縮機(21a,21b)から吐出された冷媒)から冷凍機油が分離され、その冷凍機油が第1および第2油分離器(OSa,OSb)に貯留される。第1油分離器(OSa)に貯留された冷凍機油は、第1油戻し管(47a)において第1キャピラリチューブ(CTa)を通過した後に、油戻し主管(47c)に流入する。第2油分離器(OSb)に貯留された冷凍機油は、第2油戻し管(47b)において油戻し逆止弁(CVc)と第2キャピラリチューブ(CTb)とを順に通過した後に、油戻し主管(47c)に流入する。油戻し主管(47c)に流入した冷凍機油は、第2インジェクション主管(44n)に流入して第2インジェクション主管(44n)を流れる冷媒と合流する。 In the first and second oil separators (OSa, OSb), the refrigeration oil is separated from the refrigerant (that is, the refrigerant discharged from the first and second compressors (21a, 21b)). It is stored in the first and second oil separators (OSa, OSb). The refrigerating machine oil stored in the first oil separator (OSa) flows into the oil return main pipe (47c) after passing through the first capillary tube (CTa) in the first oil return pipe (47a). The refrigerating machine oil stored in the second oil separator (OSb) passes through the oil return check valve (CVc) and the second capillary tube (CTb) in order in the second oil return pipe (47b), and then returns to the oil. It flows into the main pipe (47c). The refrigeration oil that has flowed into the oil return main pipe (47c) flows into the second injection main pipe (44n) and merges with the refrigerant flowing through the second injection main pipe (44n).
  〈除霜運転中の冷媒の流れ〉
 次に、図5を参照して、除霜運転中の冷媒回路(15)における冷媒の流れについて説明する。除霜運転では、四方切換弁(22)が第2状態に設定され、第1および第2圧縮機(21a,21b)の吐出ポートとガス側連絡配管(14)とが連通し、第1および第2圧縮機(21a,21b)の吸入ポートと熱源側熱交換器(23)のガス端とが連通する。
<Flow of refrigerant during defrosting operation>
Next, with reference to FIG. 5, the flow of the refrigerant in the refrigerant circuit (15) during the defrosting operation will be described. In the defrosting operation, the four-way switching valve (22) is set to the second state, the discharge ports of the first and second compressors (21a, 21b) and the gas side communication pipe (14) communicate with each other. The suction port of the second compressor (21a, 21b) and the gas end of the heat source side heat exchanger (23) communicate with each other.
 第1および第2圧縮機(21a,21b)から吐出された冷媒は、吐出冷媒配管(41)において第1および第2油分離器(OSa,OSb)と第1および第2吐出逆止弁(CVa,CVb)を通過した後に、四方切換弁(22)とガス閉鎖弁(V2)とを順に通過してガス側連絡配管(14)に流入する。ガス側連絡配管(14)に流入した冷媒は、利用側ユニット(12)の利用側ガス冷媒配管(62)を通過して利用側熱交換器(51)に流入し、利用側熱交換器(51)において放熱して凝縮する。これにより、利用側熱交換器(51)に付着した霜が加熱されて融解する。利用側熱交換器(51)から流出した冷媒は、その一部が利用側液冷媒配管(61)において開状態の利用側膨張弁(53)と開状態の利用側開閉弁(52)とを順に通過し、その残部がバイパス配管(63)において利用側逆止弁(54)を通過する。利用側液冷媒配管(61)において開状態の利用側開閉弁(52)を通過した冷媒は、バイパス配管(63)において利用側逆止弁(54)を通過した冷媒と合流して液側連絡配管(13)に流入する。 The refrigerant discharged from the first and second compressors (21a, 21b) is discharged from the first and second oil separators (OSa, OSb) and the first and second discharge check valves (41) in the discharge refrigerant pipe (41). After passing through CVa, CVb), the gas passes through the four-way switching valve (22) and the gas shut-off valve (V2) in order, and flows into the gas side connecting pipe (14). The refrigerant that has flowed into the gas side communication pipe (14) passes through the use side gas refrigerant pipe (62) of the use side unit (12) and flows into the use side heat exchanger (51). In 51), it dissipates heat and condenses. Thereby, the frost adhering to the use side heat exchanger (51) is heated and melted. A part of the refrigerant flowing out of the use side heat exchanger (51) passes between the open use side expansion valve (53) and the open use side on-off valve (52) in the use side liquid refrigerant pipe (61). Passing in order, the remainder passes through the use side check valve (54) in the bypass pipe (63). The refrigerant that has passed through the open-side use-side on-off valve (52) in the use-side liquid refrigerant pipe (61) joins the refrigerant that has passed through the use-side check valve (54) in the bypass pipe (63), and communicates with the liquid side. It flows into the pipe (13).
 液側連絡配管(13)を通過した冷媒は、熱源側ユニット(11)の液閉鎖弁(V1)を通過して第1接続配管(45)に流入し、第1接続配管(45)において第3逆止弁(CV3)を通過して第1熱源側液管(43a)の中途部(第3中途部(Q3))に流入する。第1熱源側液管(43a)の中途部に流入した冷媒は、レシーバ(35)と第2熱源側液管(43b)と過冷却熱交換器(24)の第1流路(24a)とを順に通過して第3熱源側液管(43c)に流入する。第3熱源側液管(43c)に流入した冷媒は、第4中途部(Q4)において第2接続配管(46)に流入し、熱源側膨張弁(36)において減圧されて第1熱源側液管(43a)の中途部(第5中途部(Q5))に流入する。第1熱源側液管(43a)の中途部に流入した冷媒は、熱源側熱交換器(23)に流入し、熱源側熱交換器(23)において熱源側空気(すなわち、庫外空気)から吸熱して蒸発する。熱源側熱交換器(23)から流出した冷媒は、四方切換弁(22)と吸入冷媒配管(42)とを順に通過して第1および第2圧縮機(21a,21b)の吸入ポートに吸入される。 The refrigerant that has passed through the liquid side connection pipe (13) passes through the liquid shut-off valve (V1) of the heat source side unit (11), flows into the first connection pipe (45), and enters the first connection pipe (45). 3 It passes through the check valve (CV3) and flows into the middle part (third middle part (Q3)) of the first heat source side liquid pipe (43a). The refrigerant that has flown into the middle of the first heat source side liquid pipe (43a) passes through the receiver (35), the second heat source side liquid pipe (43b), and the first flow path (24a) of the supercooling heat exchanger (24). And then flows into the third heat source side liquid pipe (43c). The refrigerant that has flowed into the third heat source side liquid pipe (43c) flows into the second connection pipe (46) in the fourth midway portion (Q4), and is depressurized in the heat source side expansion valve (36) to be first heat source side liquid. It flows into the middle part (5th middle part (Q5)) of the pipe (43a). The refrigerant that has flown into the middle part of the first heat source side liquid pipe (43a) flows into the heat source side heat exchanger (23), and from the heat source side air (that is, outside air) in the heat source side heat exchanger (23). It absorbs heat and evaporates. The refrigerant flowing out of the heat source side heat exchanger (23) passes through the four-way switching valve (22) and the suction refrigerant pipe (42) in order, and is sucked into the suction ports of the first and second compressors (21a, 21b). Is done.
 除霜運転中の利用側熱交換器(51)における具体的な動作について説明する。 The specific operation in the use side heat exchanger (51) during the defrosting operation will be described.
 この実施形態では、上述したように、上記利用側熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)よりも下方に位置する冷媒パスに接続されたキャピラリチューブ(56)が、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成されている。従来の冷凍装置では、分流器(55)より下方に位置する冷媒パス(51a~51n)に接続されたキャピラリチューブ(56)は、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも小さな動圧抵抗を生じるものである。したがって、除霜運転時には、利用側熱交換器(51)の下方の冷媒パスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒が流れて行かず、利用側熱交換器(51)の下方の冷媒パスに液冷媒が溜まったままになって霜が溶け残る原因になっていた。これに対して、本実施形態では、動圧抵抗を上記のように設定したことにより、冷媒の流速が速くなって上記ヘッド差に打ち勝ち、利用側熱交換器(51)の下方のパスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒が流れて行くから、利用側熱交換器(51)の下方の冷媒パスに液冷媒が滞留しない。したがって、利用側熱交換器(51)の下部における霜の溶け残りを抑えられる。 In this embodiment, as described above, the capillary tube connected to the refrigerant path located at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the use side heat exchanger (51). (56) is configured as a throttle that generates a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). In the conventional refrigeration system, the capillary tube (56) connected to the refrigerant path (51a to 51n) located below the flow divider (55) is connected to the refrigerant path (51a to 51n) to which the capillary tube (56) is connected. ) And the shunt (55) produce a smaller dynamic pressure resistance than the head difference. Therefore, during the defrosting operation, the refrigerant does not flow to the flow divider (55) through the capillary tube (56) connected to the refrigerant path below the user side heat exchanger (51), and the user side heat exchanger. Liquid refrigerant remains in the refrigerant path below (51), causing frost to remain undissolved. On the other hand, in this embodiment, since the dynamic pressure resistance is set as described above, the flow velocity of the refrigerant is increased, the head difference is overcome, and the connection is made to the path below the use-side heat exchanger (51). Since the refrigerant flows through the capillary tube (56) to the flow divider (55), the liquid refrigerant does not stay in the refrigerant path below the use side heat exchanger (51). Therefore, the unmelted frost in the lower part of the use side heat exchanger (51) can be suppressed.
 特に、本実施形態では、上記利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)を、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成するとともに、すべてのキャピラリチューブ(56)を同一内径且つ同一長さにしている。したがって、構成を簡素化することが可能であり、なおかつ、利用側熱交換器(51)の下方の冷媒パスに液冷媒が溜まったままになるのを防止して利用側熱交換器(51)の下部における霜の溶け残りを抑えられる。 In particular, in this embodiment, the capillary tube (56) connecting the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path (51n). ) And the flow divider (55) as a throttle that generates a dynamic pressure resistance larger than the head difference, and all the capillary tubes (56) have the same inner diameter and the same length. Therefore, it is possible to simplify the configuration, and it is possible to prevent liquid refrigerant from remaining in the refrigerant path below the usage-side heat exchanger (51), thereby preventing the usage-side heat exchanger (51). Frost at the bottom of the frost can be suppressed.
 また、逆サイクルの除霜運転時には、利用側熱交換器(51)の各冷媒パスから分流器(55)を通過した冷媒の温度が温度センサ(75)で検出される。この温度センサ(75)が設けられている部分には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れており、この冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。 In the reverse cycle defrosting operation, the temperature sensor (75) detects the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path of the use side heat exchanger (51). In the portion where the temperature sensor (75) is provided, the entire amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows, and when the temperature of the refrigerant is equal to or higher than a predetermined value, It can be determined that the frost in the lowermost refrigerant path (51n) has melted.
  -実施形態1の効果-
 本実施形態によれば、上記利用側熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パスに接続されたキャピラリチューブ(56)を、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成したことにより、冷媒の流速が速くなって上記ヘッド差に打ち勝ち、利用側熱交換器(51)の下方の冷媒パスに接続されたキャピラリチューブ(56)を通って分流器(55)へ冷媒を流すことができる。したがって、利用側熱交換器(51)の下方の冷媒パスに液冷媒が滞留しないので、除霜運転時に、着霜した利用側熱交換器(51)の下部の霜が溶け残るのを抑制することができる。
-Effect of Embodiment 1-
According to the present embodiment, the capillary tube (56) connected to the refrigerant path positioned at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the use side heat exchanger (51) is provided. The flow rate of the refrigerant is increased by configuring the throttle as a dynamic pressure resistance larger than the head difference between the refrigerant path (51a to 51n) to which the capillary tube (56) is connected and the flow divider (55). The head difference is overcome, and the refrigerant can flow to the flow divider (55) through the capillary tube (56) connected to the refrigerant path below the use side heat exchanger (51). Therefore, since the liquid refrigerant does not stay in the refrigerant path below the use side heat exchanger (51), it is possible to suppress the frost in the lower part of the frosted use side heat exchanger (51) from remaining unmelted during the defrosting operation. be able to.
 特に、上記実施形態によれば、上記利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)を、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成し、すべてのキャピラリチューブ(56)を同一内径且つ同一長さにしているので、装置構成をより簡単にすることができる効果を得たうえで、利用側熱交換器(51)の下方の冷媒パスに液冷媒が溜まったままになるのを防止できる。 In particular, according to the above embodiment, the capillary tube (56) that connects the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path. (51n) and the flow divider (55) are configured as a throttle that generates a dynamic pressure resistance larger than the head difference, and all capillary tubes (56) have the same inner diameter and length, making the system configuration simpler In addition, it is possible to prevent liquid refrigerant from remaining in the refrigerant path below the use side heat exchanger (51).
 また、本実施形態によれば、冷媒回路(18)に電磁弁やキャピラリチューブを設けたバイパス配管を接続したり、逆サイクルの除霜運転時には電磁弁を開く操作をしたりする必要がないので、構成や制御が複雑になるのも防止できる。 Further, according to the present embodiment, there is no need to connect a bypass pipe provided with an electromagnetic valve or a capillary tube to the refrigerant circuit (18), or to open the electromagnetic valve during a reverse cycle defrosting operation. It is also possible to prevent the configuration and control from becoming complicated.
 また、上記実施形態によれば、逆サイクルの除霜運転時に、利用側熱交換器(51)の各冷媒パス(51a~51n)から分流器(55)を通過した冷媒の温度が温度センサ(75)で検出され、この冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。この温度センサ(75)の部分には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れているので、除霜運転が終了したかどうかを正確に判断することができる。また、利用側ユニット(12)に設けた温度センサ(75)を利用して除霜運転が終了したかどうかを検知することができるから、除霜運転の終了検知を利用側ユニットだけで完結させることができる。 Further, according to the above embodiment, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the flow divider (55) from each refrigerant path (51a to 51n) of the usage-side heat exchanger (51) is measured by the temperature sensor ( If it is detected at 75) and the temperature of the refrigerant is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path (51n) has melted. In this temperature sensor (75), since the entire amount of refrigerant after passing through the flow divider (55) flows during the reverse cycle operation, it can be accurately determined whether or not the defrosting operation has ended. Further, since it is possible to detect whether or not the defrosting operation has been completed using the temperature sensor (75) provided in the use side unit (12), the end detection of the defrosting operation is completed only by the use side unit. be able to.
  -実施形態1の変形例-
 上記温度センサ(75)は、図2に仮想線で示すように、上記除霜運転時に上記利用側熱交換器(51)の最下部の冷媒パス(51a)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度を検出する位置に設けてもよい。
-Modification of Embodiment 1-
The temperature sensor (75) is connected to the lowermost refrigerant path (51a) and the flow divider (55) of the use side heat exchanger (51) during the defrosting operation, as indicated by a virtual line in FIG. You may provide in the position which detects the temperature of the refrigerant | coolant which flows through the connected capillary tube (56).
 この変形例では、逆サイクルの除霜運転時に、利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度が温度センサ(75)で検出される。そして、この変形例においても、この温度が所定値以上になっていると、最下部の冷媒パスの霜が溶けたと判断できるから、除霜運転が終了したかどうかを判断することができる。 In this modification, during the reverse cycle defrosting operation, the refrigerant flows through the capillary tube (56) connected to the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55). Is detected by the temperature sensor (75). Also in this modified example, if this temperature is equal to or higher than a predetermined value, it can be determined that the frost in the lowermost refrigerant path has melted, so it can be determined whether or not the defrosting operation has ended.
 また、上記実施形態は、以下のような構成としてもよい。 Further, the above embodiment may be configured as follows.
 例えば、図6に示すように、上記分流器(55)と上記利用側熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56)に、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を形成するとよい。 For example, as shown in FIG. 6, the lowermost refrigerant path is connected to the capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the use side heat exchanger (51). (51n) A refrigerant trap (59) passing through the height below may be formed.
 キャピラリチューブ(56)にトラップ(59)を設けると、利用側熱交換器(51)の下方の冷媒パスに付着した霜を確実に除去できる。この点について説明する。一般に、逆サイクルの除霜運転を開始すると、利用側熱交換器(51)の下部のパスに液冷媒が溜まっていてガス冷媒の通過抵抗が大きいので、圧縮機(21a,21b)から吐出されたガス冷媒が利用側熱交換器(51)の上部の冷媒パスだけを流れていく。そして、そのまま除霜運転を続けると、利用側熱交換器(51)の上部の冷媒パスに付着した霜は除去されるものの、下部の冷媒パスに付着した霜は除去されずに残ってしまうおそれがある。そのため、除霜運転が終了しても、熱交換器の下部には霜が残った状態になってしまうことが考えられる。 When the capillary tube (56) is provided with the trap (59), frost attached to the refrigerant path below the use side heat exchanger (51) can be surely removed. This point will be described. Generally, when a reverse cycle defrosting operation is started, liquid refrigerant accumulates in the lower path of the use-side heat exchanger (51) and the gas refrigerant has a high resistance to passage, so that it is discharged from the compressor (21a, 21b). The gas refrigerant flows only through the refrigerant path at the top of the use side heat exchanger (51). If the defrosting operation is continued as it is, the frost attached to the upper refrigerant path of the use side heat exchanger (51) is removed, but the frost attached to the lower refrigerant path may remain without being removed. There is. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
 これに対して、本実施形態では、上記キャピラリチューブ(56)にトラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a側の冷媒パス)についてもトラップ(59)に溜まった液冷媒が抵抗になるため、上記利用側熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようになる。したがって、通常の運転から除霜運転に切り換えたときに、各冷媒パス(51a~51n)をガス冷媒が均等に流れやすくなり(偏流が生じにくくなり)、上方の冷媒パスばかりをガス冷媒が流れることを防止して下方の冷媒パスにもガス冷媒を供給できるので、下方のパスに付着した霜も確実に除去できる。つまり、着霜した利用側熱交換器(51)において液相冷媒が溜まった下方の冷媒パスの部分に霜の溶け残りが生じてしまうのを確実に抑制することができる。 On the other hand, in the present embodiment, by providing a trap (59) in the capillary tube (56), the liquid refrigerant in the lowermost refrigerant path (51n) not only becomes a passage resistance of the gas refrigerant, but also the upper part. In the refrigerant path (51a side refrigerant path), the liquid refrigerant collected in the trap (59) becomes resistance, so that the refrigerant is evenly distributed in each refrigerant path (51a to 51n) of the use side heat exchanger (51). It begins to flow. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant easily flows through each refrigerant path (51a to 51n) evenly (difficult to cause a drift), and the gas refrigerant flows only through the upper refrigerant path. Therefore, the gas refrigerant can be supplied also to the lower refrigerant path, so that frost adhering to the lower path can also be reliably removed. That is, it is possible to reliably suppress the frost from remaining unmelted in the lower refrigerant path portion where the liquid-phase refrigerant is accumulated in the frosted use side heat exchanger (51).
 また、上記実施形態では、利用側熱交換器(51)と分流器(55)の間の複数のキャピラリチューブ(56)をすべて同じ長さで同じ管径にしているが、利用側熱交換器(51)の上方の冷媒パスから下方の冷媒パスに向かって連続的にあるいは段階的に動圧抵抗が大きくなるように、上記キャピラリチューブ(56)の長さや管径を設定してもよい。上記キャピラリチューブ(56)は、冷却運転時に冷媒の圧力損失が大きくなりすぎない範囲で長さや管径が定められる。 In the above embodiment, the plurality of capillary tubes (56) between the use side heat exchanger (51) and the flow divider (55) are all the same length and have the same tube diameter, but the use side heat exchanger The length and diameter of the capillary tube (56) may be set so that the dynamic pressure resistance increases continuously or stepwise from the refrigerant path above (51) toward the refrigerant path below. The capillary tube (56) has a length and a tube diameter within a range in which the pressure loss of the refrigerant does not become excessive during the cooling operation.
 《発明の実施形態2》
 本発明の実施形態2について説明する。実施形態2の冷媒回路は実施形態1と同じであるため説明を省略する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described. Since the refrigerant circuit of Embodiment 2 is the same as Embodiment 1, description is abbreviate | omitted.
 図7に示すように、この実施形態2の利用側熱交換器(51)の下部には、該利用側熱交換器(51)が蒸発器になるときに過冷却熱交換器として機能する過冷却コイル(57)が設けられている。この過冷却コイル(57)は、正サイクルの冷却運転時の冷媒流入側の端部(57a)が冷媒回路(15)の液ライン(15L)と直接に連通している。また、この過冷却コイル(57)は、逆サイクルの除霜運転時の冷媒流入側の端部(57b)が上記利用側熱交換器(51)の冷媒パス(51a~51n)に、上記利用側逆止弁(54)、上記分流器(55)および上記キャピラリチューブ(56(56a~56n))を介して連通している。なお、利用側熱交換器(51)のガス側には各冷媒パス(51a~51n)が合流するヘッダ(58)が設けられている。 As shown in FIG. 7, in the lower part of the use side heat exchanger (51) of the second embodiment, there is a supercooling heat exchanger that functions as a supercooling heat exchanger when the use side heat exchanger (51) becomes an evaporator. A cooling coil (57) is provided. In the subcooling coil (57), the end portion (57a) on the refrigerant inflow side during the cooling operation in the positive cycle is in direct communication with the liquid line (15L) of the refrigerant circuit (15). The supercooling coil (57) has the end portion (57b) on the refrigerant inflow side in the defrosting operation in the reverse cycle connected to the refrigerant path (51a to 51n) of the use side heat exchanger (51). The side check valve (54), the flow divider (55), and the capillary tube (56 (56a to 56n)) communicate with each other. A header (58) where the refrigerant paths (51a to 51n) join is provided on the gas side of the use side heat exchanger (51).
 上記利用側回路(18)には、上記除霜運転時に上記利用側熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度を検出する温度センサ(75)が設けられている。また、この冷凍装置(10)は、上述したように、上記利用側膨張弁(53)と利用側熱交換器(51)とを備えた利用側ユニット(庫内ユニット)(12)を有する冷凍装置であり、上記温度センサ(75)は、上記利用側ユニット(12)の内部に設けられている。 The usage side circuit (18) is provided with a temperature sensor (75) for detecting the temperature of the refrigerant that has passed through the supercooling coil (57) of the usage side heat exchanger (51) during the defrosting operation. . Further, as described above, the refrigeration apparatus (10) is a refrigeration having a use side unit (internal unit) (12) including the use side expansion valve (53) and a use side heat exchanger (51). The temperature sensor (75) is a device, and is provided inside the use side unit (12).
 また、この冷凍装置(10)の利用側回路(18)においては、上記分流器(55)と上記利用側熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56(56a~56n))が、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を備えた形状に形成されている。 In the utilization side circuit (18) of the refrigeration apparatus (10), capillary tubes (51a to 51n) connected to the flow divider (55) and the refrigerant paths (51a to 51n) of the utilization side heat exchanger (51) 56 (56a to 56n)) is formed in a shape having a refrigerant trap (59) passing through the height below the lowermost refrigerant path (51n).
  -運転動作-
 冷媒回路における冷媒の流れは実施形態1と同じであるため、説明を省略し、除霜運転中の利用側熱交換器(51)における具体的な動作について説明する。
-Driving operation-
Since the flow of the refrigerant in the refrigerant circuit is the same as that in the first embodiment, a description thereof will be omitted, and a specific operation in the use side heat exchanger (51) during the defrosting operation will be described.
 逆サイクルの除霜運転時には、図7に破線の矢印で示すように、着霜している利用側熱交換器(51)に圧縮機(21a,21b)から吐出された高温のガス冷媒が供給される。このとき、利用側熱交換器(51)の下部の冷媒パス(51n側の冷媒パス)に液冷媒が溜まっていると、ガス冷媒は上方の冷媒パス(51a側の冷媒パス)を流れてから分流器(55)を通り、さらに上記過冷却コイル(57)を流れていく。除霜運転の開始時には、過冷却コイル(57)を流れる冷媒は高温のガス冷媒が流量のほとんどを占め、液冷媒はほとんど流れない。したがって、冷媒流量のほとんどを占める高温のガス冷媒が過冷却コイル(57)を流れるので、該過冷却コイル(57)の温度が上昇し、利用側熱交換器(51)が下部から暖められる。また、除霜運転を継続していくと、高温のガス冷媒が流れる冷媒パスが上部の冷媒パス(51a側の冷媒パス)から下方へ拡がっていくので、利用側熱交換器(51)は上部から下方へも暖められていく。このように、本実施形態では利用側熱交換器(51)が上方と下方の両方から暖められるので、上方の冷媒パス(51a側の冷媒パス)に付着した霜だけでなく、下方の冷媒パス(51n側の冷媒パス)に付着した霜も除去できる。 During the reverse cycle defrosting operation, as shown by the broken arrow in FIG. 7, the high-temperature gas refrigerant discharged from the compressor (21a, 21b) is supplied to the frosting use side heat exchanger (51). Is done. At this time, if liquid refrigerant is accumulated in the lower refrigerant path (51n side refrigerant path) of the use side heat exchanger (51), the gas refrigerant flows through the upper refrigerant path (51a side refrigerant path). It passes through the flow divider (55) and further flows through the supercooling coil (57). At the start of the defrosting operation, the refrigerant flowing through the supercooling coil (57) occupies most of the flow rate, and the liquid refrigerant hardly flows. Therefore, since the high-temperature gas refrigerant that occupies most of the refrigerant flow flows through the supercooling coil (57), the temperature of the supercooling coil (57) rises, and the usage-side heat exchanger (51) is warmed from below. As the defrosting operation continues, the refrigerant path through which the high-temperature gas refrigerant flows expands downward from the upper refrigerant path (51a-side refrigerant path), so the use-side heat exchanger (51) It will be warmed down from the bottom. Thus, in this embodiment, since the use side heat exchanger (51) is warmed from both above and below, not only the frost adhering to the upper refrigerant path (51a side refrigerant path) but also the lower refrigerant path. Frost adhering to the (51n-side refrigerant path) can also be removed.
 また、逆サイクルの除霜運転時には、利用側熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度が、利用側ユニット(12)の内部に設けられた温度センサ(75)で検出される。このとき、利用側熱交換器(51)の過冷却コイル(57)には、逆サイクル運転時に分流器(55)を通過した後の冷媒全量が流れており、この冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できる。具体的には、逆サイクルの除霜運転を開始したときには上記過冷却コイル(57)にはほぼガス冷媒のみが流れていて高温になっているが、利用側熱交換器(51)の霜が溶け出すと冷媒の温度が一旦下がり、さらに霜が溶けていくと冷媒の温度が上昇していく。そこで、この上昇したときの冷媒の温度が所定値以上になっていると、最下部の冷媒パス(51n)まで霜が溶けたと判断できる。 Further, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the supercooling coil (57) of the use side heat exchanger (51) is the temperature sensor (75) provided inside the use side unit (12). Is detected. At this time, the total amount of refrigerant after passing through the flow divider (55) during reverse cycle operation flows through the supercooling coil (57) of the use side heat exchanger (51), and the temperature of the refrigerant is equal to or higher than a predetermined value. It can be determined that the frost in the lowermost refrigerant path (51n) has melted. Specifically, when the reverse cycle defrosting operation is started, only the gas refrigerant flows through the supercooling coil (57) and the temperature is high. When it begins to melt, the temperature of the refrigerant once decreases, and when the frost further melts, the temperature of the refrigerant increases. Therefore, when the temperature of the refrigerant when rising is equal to or higher than a predetermined value, it can be determined that frost has melted up to the lowermost refrigerant path (51n).
 そして、本実施形態では、キャピラリチューブ(56(56a~56n))に冷媒トラップ(59)を設けているので、利用側熱交換器(51)の下方の冷媒パス(51n側の冷媒パス)に付着した霜を確実に除去できる。この点について説明する。 In this embodiment, since the refrigerant trap (59) is provided in the capillary tube (56 (56a to 56n)), the refrigerant path (51n side refrigerant path) below the use side heat exchanger (51) is provided. Adhering frost can be removed reliably. This point will be described.
 一般に、逆サイクルの除霜運転を開始すると、利用側熱交換器(51)の下部の冷媒パス(51n側の冷媒パス)に液冷媒が溜まっていてガス冷媒の通過抵抗が大きいので、圧縮機(21a,21b)から吐出されたガス冷媒が利用側熱交換器(51)の上部の冷媒パス(51a側の冷媒パス)を流れていく。そして、そのまま除霜運転を続けると、利用側熱交換器(51)の上部の冷媒パス(51a側の冷媒パス)に付着した霜は除去されるものの、下部の冷媒パス(51n側の冷媒パス)に付着した霜は除去されずに残ってしまうおそれがある。そのため、除霜運転が終了しても、熱交換器の下部には霜が残った状態になってしまうことが考えられる。 Generally, when a reverse cycle defrosting operation is started, liquid refrigerant accumulates in the refrigerant path (51n side refrigerant path) at the lower part of the use side heat exchanger (51) and the passage resistance of the gas refrigerant is large. The gas refrigerant discharged from (21a, 21b) flows through the upper refrigerant path (51a side refrigerant path) of the use side heat exchanger (51). If the defrosting operation is continued as it is, frost attached to the upper refrigerant path (51a side refrigerant path) of the use side heat exchanger (51) is removed, but the lower refrigerant path (51n side refrigerant path). There is a risk that frost adhering to) may remain without being removed. Therefore, even if the defrosting operation is completed, it is considered that frost remains in the lower part of the heat exchanger.
 これに対して、本実施形態では、上記キャピラリチューブ(56(56a~56n))に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a側の冷媒パス)についても冷媒トラップ(59)に溜まった液冷媒が抵抗になるため、上記利用側熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようになる。したがって、通常の運転から除霜運転に切り換えたときに、各冷媒パス(51a~51n)をガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a側の冷媒パス)ばかりをガス冷媒が流れることを防止して下方の冷媒パス(51n側の冷媒パス)にもガス冷媒を供給できるので、下方の冷媒パス(51n側の冷媒パス)に付着した霜も確実に除去できる。 On the other hand, in the present embodiment, by providing a refrigerant trap (59) in the capillary tube (56 (56a to 56n)), the liquid refrigerant in the lowermost refrigerant path (51n) has a resistance to passage of gas refrigerant. In addition, since the liquid refrigerant accumulated in the refrigerant trap (59) becomes a resistance in the upper refrigerant path (51a side refrigerant path), each refrigerant path (51a to 51a) of the use side heat exchanger (51) 51n) refrigerant flows evenly. Therefore, when switching from the normal operation to the defrosting operation, the gas refrigerant flows easily through each refrigerant path (51a to 51n), and the gas refrigerant flows only through the upper refrigerant path (51a side refrigerant path). Therefore, the gas refrigerant can also be supplied to the lower refrigerant path (51n-side refrigerant path), so that frost attached to the lower refrigerant path (51n-side refrigerant path) can also be reliably removed.
  -実施形態2の効果-
 本実施形態によれば、上記キャピラリチューブ(56(56a~56n))に冷媒トラップ(59)を設けることにより、最下部の冷媒パス(51n)の液冷媒がガス冷媒の通過抵抗になるだけでなく、上部の冷媒パス(51a側の冷媒パス)についても冷媒トラップ(59)に溜まった液冷媒が抵抗になるようにしているため、上記利用側熱交換器(51)の各冷媒パス(51a~51n)を冷媒が均等に流れるようになる。したがって、各冷媒パス(51a~51n)をガス冷媒が均等に流れやすくなり、上方の冷媒パス(51a側の冷媒パス)ばかりをガス冷媒が流れることを防止して下方の冷媒パス(51n側の冷媒パス)にもガス冷媒を供給できる。そのため、通常の運転から除霜運転に切り換えたときに、利用側熱交換器(51)において、ガス冷媒が熱交換器の上方の冷媒パスばかりを流れる偏流が生じるのを抑えることができる。したがって、着霜した利用側熱交換器(51)において液冷媒が溜まった下方の冷媒パス(51n側の冷媒パス)の部分に霜の溶け残りが生じてしまうのを確実に抑制することができる。
-Effect of Embodiment 2-
According to the present embodiment, by providing the capillary tube (56 (56a to 56n)) with the refrigerant trap (59), the liquid refrigerant in the lowermost refrigerant path (51n) only becomes the passage resistance of the gas refrigerant. In addition, since the liquid refrigerant accumulated in the refrigerant trap (59) becomes resistance also in the upper refrigerant path (51a side refrigerant path), each refrigerant path (51a) of the use side heat exchanger (51) Through 51n), the refrigerant flows evenly. Therefore, the gas refrigerant easily flows through each refrigerant path (51a to 51n), and only the upper refrigerant path (51a side refrigerant path) is prevented from flowing, and the lower refrigerant path (51n side Gas refrigerant can also be supplied to the refrigerant path. Therefore, when the normal operation is switched to the defrosting operation, it is possible to suppress the occurrence of a drift in which the gas refrigerant flows only in the refrigerant path above the heat exchanger in the use side heat exchanger (51). Therefore, it is possible to reliably suppress the frost from remaining in the lower refrigerant path (51n side refrigerant path) where the liquid refrigerant has accumulated in the frosted use side heat exchanger (51). .
 また、本実施形態によれば、除霜運転には、利用側熱交換器(51)が上方と下方の両方から暖められるので、該利用側熱交換器(51)の上部に付着した霜だけでなく、該利用側熱交換器(51)の下部に付着した霜も除去できる効果を得ることもできる。 Moreover, according to this embodiment, since the use side heat exchanger (51) is warmed from both the upper side and the lower side in the defrosting operation, only the frost adhering to the upper part of the use side heat exchanger (51) is obtained. In addition, it is possible to obtain an effect of removing frost attached to the lower portion of the use side heat exchanger (51).
 また、本実施形態によれば、冷媒回路(18)に電磁弁やキャピラリチューブを設けたバイパス配管を接続したり、逆サイクルの除霜運転時には電磁弁を開く操作をしたりする必要がないので、構成や制御が複雑になるのも防止できる。 Further, according to the present embodiment, there is no need to connect a bypass pipe provided with an electromagnetic valve or a capillary tube to the refrigerant circuit (18), or to open the electromagnetic valve during a reverse cycle defrosting operation. It is also possible to prevent the configuration and control from becoming complicated.
 さらに、上記実施形態によれば、逆サイクルの除霜運転時に、利用側熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度が利用側ユニット(12)の内部に設けられている温度センサ(75)で検出され、除霜運転を開始してから所定時間が経過してこの温度が所定値以上になっていると、最下部の冷媒パス(51n)の霜が溶けたと判断できるから、除霜運転が終了したかどうかを検知することができる。このように、過冷却コイル(57)を通過した後の位置に温度センサ(75)を設けると、冷媒の全流量から温度を検知できるので、除霜運転の終了検知を正確に行うことができる。また、利用側ユニット(12)に設けた温度センサ(75)を利用して除霜運転が終了したかどうかを検知することができるから、除霜運転の終了検知を利用側ユニット(12)だけで完結させることができる。 Furthermore, according to the above embodiment, during the reverse cycle defrosting operation, the temperature of the refrigerant that has passed through the supercooling coil (57) of the use side heat exchanger (51) is provided inside the use side unit (12). The temperature sensor (75) detects that the frost in the lowermost refrigerant path (51n) has melted when a predetermined time has elapsed since the start of the defrosting operation and this temperature has exceeded a predetermined value. Since it can be determined, it can be detected whether the defrosting operation has been completed. As described above, when the temperature sensor (75) is provided at the position after passing through the supercooling coil (57), the temperature can be detected from the total flow rate of the refrigerant, so that the completion of the defrosting operation can be accurately detected. . In addition, since it is possible to detect whether or not the defrosting operation has been completed using the temperature sensor (75) provided in the usage side unit (12), only the usage side unit (12) can detect the completion of the defrosting operation. Can be completed with.
  -実施形態2の変形例-
 上記温度センサ(75)は、図7に仮想線で示すように、上記除霜運転時に上記利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56n)を流れる冷媒の温度を検出する位置に設けてもよい。
-Modification of Embodiment 2-
The temperature sensor (75) is connected to the lowermost refrigerant path (51n) and the flow divider (55) of the use side heat exchanger (51) during the defrosting operation, as indicated by a virtual line in FIG. You may provide in the position which detects the temperature of the refrigerant | coolant which flows through the connected capillary tube (56n).
 この変形例では、逆サイクルの除霜運転時に、利用側熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56n)を流れる冷媒の温度が温度センサ(75)で検出される。そして、この変形例においても、この温度が所定値以上になっていると、最下部の冷媒パス(56n)の霜が溶けた(利用側熱交換器(51)の全体の霜が溶けた)と判断できるから、除霜運転が終了したかどうかを検知することができる。 In this modification, during the reverse cycle defrosting operation, the refrigerant flows through the capillary tube (56n) connected to the lowermost refrigerant path (51n) of the use side heat exchanger (51) and the flow divider (55). Is detected by the temperature sensor (75). And also in this modified example, when this temperature is equal to or higher than a predetermined value, the frost in the lowermost refrigerant path (56n) has melted (the entire frost in the use side heat exchanger (51) has melted). Therefore, it can be detected whether or not the defrosting operation has been completed.
 また、例えば、図8に示すように、分流器(55)を、上記キャピラリチューブ(56a~56n)の接続部が下向きになるように配置してもよい。この構成においても、図7の例と同様に、上記キャピラリチューブ(56a~56n)には、最下部の冷媒パス(51n)以下の高さを通るトラップ(59)が設けられる。また、利用側熱交換器(51)の下部には、図7の例と同様に構成された過冷却コイル(57)が設けられる。 Further, for example, as shown in FIG. 8, the flow divider (55) may be arranged so that the connection portion of the capillary tube (56a to 56n) faces downward. Also in this configuration, as in the example of FIG. 7, the capillary tube (56a to 56n) is provided with the trap (59) passing through the height below the lowermost refrigerant path (51n). Moreover, the subcooling coil (57) comprised similarly to the example of FIG. 7 is provided in the lower part of the utilization side heat exchanger (51).
 このように構成しても、上記実施形態と同様の効果を奏することができる。 Even with this configuration, the same effects as in the above embodiment can be obtained.
 また、図7,図8の例では、利用側熱交換器(51)の下部に過冷却コイル(57)を設けて、利用側熱交換器(51)の下部に付着した霜を上部の冷媒パス(51a側の冷媒パス)を流れた冷媒ガスで暖めて除去するようにしているが、この過冷却コイル(57)は必ずしも設けなくてもよい。過冷却コイル(57)を設けなくても、キャピラリチューブ(56a~56n)に冷媒トラップ(59)を設けることにより、通常の冷却運転から逆サイクルの除霜運転に切り換えたときの冷媒の偏流を防止することができるので、ガス冷媒を利用側熱交換器(51)に均一に流すことで除霜効果を高めることは可能である。 Moreover, in the example of FIG. 7, FIG. 8, the supercooling coil (57) is provided in the lower part of the utilization side heat exchanger (51), and the frost adhering to the lower part of the utilization side heat exchanger (51) is made into an upper refrigerant | coolant. The refrigerant gas flowing through the path (51a side refrigerant path) is heated and removed, but the supercooling coil (57) is not necessarily provided. Even if the supercooling coil (57) is not provided, by providing the refrigerant trap (59) in the capillary tube (56a to 56n), the refrigerant drift when switching from the normal cooling operation to the reverse cycle defrosting operation is reduced. Therefore, it is possible to enhance the defrosting effect by causing the gas refrigerant to flow uniformly to the use side heat exchanger (51).
 なお、図7,図8の例では、上記キャピラリチューブ(56a~56n)に、最下部の冷媒パス(51n)以下の高さを通るトラップ(59)を設けており、通常の冷却運転から逆サイクルの除霜運転に切り換えたときに冷媒の偏流が生じるのを抑制して下方の冷媒パス(51n側の冷媒パス)に液冷媒が溜まり込むのを防止するようにしているが、上記トラップ(59)は必ず設ける必要があるわけではなく、トラップ(59)を設けなくても上記過冷却コイル(57)を設けることにより、利用側熱交換器(51)における霜の溶け残りを防止する効果を従来よりも高めることは可能である。 In the example of FIGS. 7 and 8, the capillary tube (56a to 56n) is provided with a trap (59) passing through the height below the lowermost refrigerant path (51n), which is the reverse of the normal cooling operation. The refrigerant is prevented from drifting when switching to the defrosting operation of the cycle to prevent liquid refrigerant from accumulating in the lower refrigerant path (51n side refrigerant path). 59) is not necessarily provided, and the provision of the above supercooling coil (57) without the provision of the trap (59) prevents the frost from remaining in the use side heat exchanger (51). Can be increased as compared with the conventional case.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
 例えば、上記実施形態は、庫内を冷却する冷凍装置に本発明を適用した例であるが、本発明は、室内を暖房する空気調和装置の室外熱交換器に適用してもよい。 For example, although the said embodiment is an example which applied this invention to the freezing apparatus which cools the inside of a store | warehouse | chamber, this invention may be applied to the outdoor heat exchanger of the air conditioning apparatus which heats a room | chamber interior.
 また、実施形態2において過冷却コイルを設けなくてもよいし、実施形態1において実施形態2の過冷却コイル(57)を設けてもよい。 In the second embodiment, the supercooling coil may not be provided, and in the first embodiment, the supercooling coil (57) of the second embodiment may be provided.
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
 以上説明したように、本発明は、逆サイクルの除霜運転が行われる冷媒回路を有する冷凍装置において、除霜運転時に、着霜した熱交換器の下部で霜が溶け残るのを抑制する技術について有用である。 As described above, the present invention, in a refrigeration apparatus having a refrigerant circuit in which a reverse cycle defrosting operation is performed, suppresses frost from remaining in the lower part of the frosted heat exchanger during the defrosting operation. Useful for.
 10  冷凍装置
 12  利用側ユニット(庫内ユニット)
 15  冷媒回路
 15L  液ライン
 21a  第1圧縮機
 21b  第2圧縮機
 23  熱源側熱交換器(第1熱交換器)
 51  利用側熱交換器(第2熱交換器)
 51a  冷媒パス
 51n  冷媒パス
 53  利用側膨張弁(膨張機構)
 55  分流器
 56  キャピラリチューブ
 57  過冷却コイル
 59  冷媒トラップ
 75  温度センサ
10 Refrigeration equipment 12 User-side unit (inside unit)
15 Refrigerant circuit 15L Liquid line 21a 1st compressor 21b 2nd compressor 23 Heat source side heat exchanger (1st heat exchanger)
51 User side heat exchanger (second heat exchanger)
51a Refrigerant path 51n Refrigerant path 53 User-side expansion valve (expansion mechanism)
55 Shunt 56 Capillary tube 57 Supercooling coil 59 Refrigerant trap 75 Temperature sensor

Claims (11)

  1.  1台または複数台の圧縮機(21a,21b)と第1熱交換器(23)と膨張機構(53)と第2熱交換器(51)とを備えて第1熱交換器(23)が放熱器となり第2熱交換器(51)が蒸発器となる正サイクルの冷却運転を行う冷媒回路(15)を備え、第2熱交換器(51)に着霜すると圧縮機(21a,21b)の吐出冷媒を該第2熱交換器(51)に供給して逆サイクルの除霜運転を行い、
     上記第2熱交換器(51)が上方から下方にわたって複数の冷媒パス(51a~51n)を有し、
     上記膨張機構(53)と第2熱交換器(51)との間に設けられた分流器(55)と上記冷媒パス(51a~51n)とがキャピラリチューブ(56)で接続された冷凍装置であって、
     上記第2熱交換器(51)の冷媒パス(51a~51n)のうち少なくとも上記分流器(55)より下方に位置する冷媒パスに接続されたキャピラリチューブ(56)は、そのキャピラリチューブ(56)が接続された冷媒パス(51a~51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成されていることを特徴とする冷凍装置。
    The first heat exchanger (23) includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51). It has a refrigerant circuit (15) that performs cooling operation in the positive cycle in which the second heat exchanger (51) becomes an evaporator and becomes a radiator. When the second heat exchanger (51) is frosted, the compressor (21a, 21b) To supply the second refrigerant to the second heat exchanger (51) for reverse cycle defrosting operation,
    The second heat exchanger (51) has a plurality of refrigerant paths (51a to 51n) from above to below,
    A refrigeration apparatus in which a flow divider (55) provided between the expansion mechanism (53) and the second heat exchanger (51) and the refrigerant path (51a to 51n) are connected by a capillary tube (56). There,
    The capillary tube (56) connected to the refrigerant path positioned at least below the flow divider (55) among the refrigerant paths (51a to 51n) of the second heat exchanger (51) is the capillary tube (56). A refrigeration apparatus configured as a throttle that generates a dynamic pressure resistance larger than a head difference between the refrigerant path (51a to 51n) and the flow divider (55) connected to each other.
  2.  請求項1において、
     上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とを繋ぐキャピラリチューブ(56)が、該最下部の冷媒パス(51n)と分流器(55)とのヘッド差よりも大きな動圧抵抗を生じる絞りとして構成され、
     すべてのキャピラリチューブ(56)が同一内径且つ同一長さであることを特徴とする冷凍装置。
    In claim 1,
    The capillary tube (56) connecting the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) is connected to the lowermost refrigerant path (51n) and the flow divider (55). It is configured as a diaphragm that generates a dynamic pressure resistance larger than the head difference with
    All the capillary tubes (56) are the same internal diameter and the same length, The freezing apparatus characterized by the above-mentioned.
  3.  請求項2において、
     上記除霜運転時に、上記分流器(55)の下流側の配管を流れる冷媒の温度を検出する温度センサ(75)を備えていることを特徴とする冷凍装置。
    In claim 2,
    A refrigeration apparatus comprising a temperature sensor (75) for detecting a temperature of a refrigerant flowing in a pipe downstream of the flow divider (55) during the defrosting operation.
  4.  請求項1から3の何れか1つにおいて、
     上記分流器(55)と上記第2熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56)は、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を備えた形状に形成されていることを特徴とする冷凍装置。
    In any one of Claims 1-3,
    The capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the second heat exchanger (51) passes through the height below the lowermost refrigerant path (51n). A refrigeration apparatus having a shape with a refrigerant trap (59).
  5.  1台または複数台の圧縮機(21a,21b)と第1熱交換器(23)と膨張機構(53)と第2熱交換器(51)とを備えて第1熱交換器(23)が放熱器となり第2熱交換器(51)が蒸発器となる正サイクルの冷却運転を行う冷媒回路を備え、第2熱交換器(51)に着霜すると圧縮機(21a,21b)の吐出冷媒を該第2熱交換器(51)に供給して逆サイクルの除霜運転を行い、
     上記第2熱交換器(51)が上方から下方にわたって複数の冷媒パス(51a~51n)を有し、
     上記膨張機構(53)と第2熱交換器(51)との間に設けられた分流器(55)と上記冷媒パス(51a~51n)とがキャピラリチューブ(56)で接続された冷凍装置であって、
     上記分流器(55)と上記第2熱交換器(51)の冷媒パス(51a~51n)とに接続されたキャピラリチューブ(56)は、最下部の冷媒パス(51n)以下の高さを通る冷媒トラップ(59)を備えた形状に形成されていることを特徴とする冷凍装置。
    The first heat exchanger (23) includes one or more compressors (21a, 21b), a first heat exchanger (23), an expansion mechanism (53), and a second heat exchanger (51). A refrigerant circuit that performs a cooling operation in a positive cycle in which the second heat exchanger (51) serves as a radiator and serves as a radiator. When frosted on the second heat exchanger (51), refrigerant discharged from the compressor (21a, 21b) Is supplied to the second heat exchanger (51) to perform a reverse cycle defrosting operation,
    The second heat exchanger (51) has a plurality of refrigerant paths (51a to 51n) from above to below,
    A refrigeration apparatus in which a flow divider (55) provided between the expansion mechanism (53) and the second heat exchanger (51) and the refrigerant path (51a to 51n) are connected by a capillary tube (56). There,
    The capillary tube (56) connected to the flow divider (55) and the refrigerant path (51a to 51n) of the second heat exchanger (51) passes through the height below the lowermost refrigerant path (51n). A refrigeration apparatus having a shape with a refrigerant trap (59).
  6.  請求項4または5において、
     上記分流器(55)は、上記キャピラリチューブ(56)の接続部が下向きに配置されていることを特徴とする冷凍装置。
    In claim 4 or 5,
    The flow divider (55) is a refrigeration apparatus in which a connection portion of the capillary tube (56) is disposed downward.
  7.  請求項4,5または6において、
     上記キャピラリチューブ(56)のすべての冷媒トラップ(59)の形状は、キャピラリチューブ(56)の下端の高さが同じになるように定められていることを特徴とする冷凍装置。
    In claim 4, 5 or 6,
    The refrigeration apparatus characterized in that the shape of all the refrigerant traps (59) of the capillary tube (56) is determined so that the lower ends of the capillary tubes (56) have the same height.
  8.  請求項1または5において、
     上記第2熱交換器(51)の下部に過冷却コイル(57)が設けられ、
     上記過冷却コイル(57)は、正サイクルの冷却運転時の冷媒流入側の端部(57a)が冷媒回路の液ライン(15L)と直接に連通するとともに、逆サイクルの除霜運転時の冷媒流入側の端部(57b)が上記第2熱交換器(51)の冷媒パス(51a~51n)に上記分流器(55)を介して連通していることを特徴とする冷凍装置。
    In claim 1 or 5,
    A subcooling coil (57) is provided at the lower part of the second heat exchanger (51),
    The supercooling coil (57) has a refrigerant inflow side end (57a) directly communicating with the liquid line (15L) of the refrigerant circuit during the forward cycle cooling operation and a refrigerant during the reverse cycle defrosting operation. An inflow side end (57b) communicates with the refrigerant path (51a to 51n) of the second heat exchanger (51) via the flow divider (55).
  9.  請求項8において、
     上記除霜運転時に上記第2熱交換器(51)の最下部の冷媒パス(51n)と上記分流器(55)とに接続されたキャピラリチューブ(56)を流れる冷媒の温度を検出する温度センサ(75)を備えていることを特徴とする冷凍装置。
    In claim 8,
    A temperature sensor that detects the temperature of the refrigerant flowing through the capillary tube (56) connected to the lowermost refrigerant path (51n) of the second heat exchanger (51) and the flow divider (55) during the defrosting operation. (75) The freezing apparatus characterized by the above-mentioned.
  10.  請求項8において、
     上記除霜運転時に上記第2熱交換器(51)の過冷却コイル(57)を通過した冷媒の温度を検出する温度センサ(75)を備えていることを特徴とする冷凍装置。
    In claim 8,
    A refrigeration apparatus comprising a temperature sensor (75) for detecting the temperature of the refrigerant that has passed through the supercooling coil (57) of the second heat exchanger (51) during the defrosting operation.
  11.  請求項9または10において、
     上記膨張機構(53)と第2熱交換器(51)とを備えた庫内ユニット(12)を備え、
     上記温度センサ(75)が上記庫内ユニット(12)の内部に設けられていることを特徴とする冷凍装置。
     
    In claim 9 or 10,
    An internal unit (12) including the expansion mechanism (53) and the second heat exchanger (51);
    The refrigeration apparatus characterized in that the temperature sensor (75) is provided inside the internal unit (12).
PCT/JP2016/084858 2015-11-30 2016-11-24 Refrigeration device WO2017094594A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-233956 2015-11-30
JP2015233957A JP2017101857A (en) 2015-11-30 2015-11-30 Freezing device
JP2015233956A JP2017101856A (en) 2015-11-30 2015-11-30 Freezing device
JP2015233958A JP2017101858A (en) 2015-11-30 2015-11-30 Freezing device
JP2015-233957 2015-11-30
JP2015-233958 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094594A1 true WO2017094594A1 (en) 2017-06-08

Family

ID=58796699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084858 WO2017094594A1 (en) 2015-11-30 2016-11-24 Refrigeration device

Country Status (1)

Country Link
WO (1) WO2017094594A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093249A1 (en) * 2017-11-07 2019-05-16 ダイキン工業株式会社 Refrigeration cycle device
JP2019132513A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326693Y2 (en) * 1973-05-28 1978-07-07
JPS53107767A (en) * 1978-02-28 1978-09-20 Daikin Ind Ltd Air-cooled heat pump type cooling/heating device
JPS5422257U (en) * 1977-07-18 1979-02-14
JP2555307Y2 (en) * 1990-04-02 1997-11-19 三菱重工業株式会社 Heat pump refrigeration cycle
JPH11304222A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2007198711A (en) * 2006-01-30 2007-08-09 Daikin Ind Ltd Air conditioner
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326693Y2 (en) * 1973-05-28 1978-07-07
JPS5422257U (en) * 1977-07-18 1979-02-14
JPS53107767A (en) * 1978-02-28 1978-09-20 Daikin Ind Ltd Air-cooled heat pump type cooling/heating device
JP2555307Y2 (en) * 1990-04-02 1997-11-19 三菱重工業株式会社 Heat pump refrigeration cycle
JPH11304222A (en) * 1998-04-20 1999-11-05 Fujitsu General Ltd Air conditioner
JP2007198711A (en) * 2006-01-30 2007-08-09 Daikin Ind Ltd Air conditioner
JP2008256304A (en) * 2007-04-06 2008-10-23 Daikin Ind Ltd Refrigerating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093249A1 (en) * 2017-11-07 2019-05-16 ダイキン工業株式会社 Refrigeration cycle device
JP2019132513A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
JP7078841B2 (en) 2018-01-31 2022-06-01 ダイキン工業株式会社 Refrigeration equipment

Similar Documents

Publication Publication Date Title
AU2008208346B2 (en) Air conditioner
AU2005268121B2 (en) Refrigerating apparatus
KR101250100B1 (en) Refrigerant system and method for controlling the same
JP6652424B2 (en) Air conditioner
JP6390688B2 (en) Refrigeration equipment
JP6379769B2 (en) Air conditioner
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
JP5062039B2 (en) Refrigeration equipment
JP2009293899A (en) Refrigerating device
JP2017101857A (en) Freezing device
WO2017094594A1 (en) Refrigeration device
JP6515902B2 (en) Heat source unit of refrigeration system
WO2016046927A1 (en) Refrigeration cycle device and air-conditioning device
JP6337924B2 (en) Refrigeration equipment
JP6142896B2 (en) Refrigeration equipment
JP6458895B2 (en) Gas-liquid separation unit of refrigeration apparatus and refrigeration apparatus
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP2011158144A (en) Refrigeration device
JP2009293887A (en) Refrigerating device
JP2018173195A (en) Refrigerator
JP2012037130A (en) Refrigeration cycle device
JP2017101856A (en) Freezing device
JP2017101858A (en) Freezing device
JP2008164205A (en) Refrigerating device
JP2013036650A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870531

Country of ref document: EP

Kind code of ref document: A1