WO2022070828A1 - Refrigeration machine - Google Patents

Refrigeration machine Download PDF

Info

Publication number
WO2022070828A1
WO2022070828A1 PCT/JP2021/033176 JP2021033176W WO2022070828A1 WO 2022070828 A1 WO2022070828 A1 WO 2022070828A1 JP 2021033176 W JP2021033176 W JP 2021033176W WO 2022070828 A1 WO2022070828 A1 WO 2022070828A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
low
high temperature
temperature side
Prior art date
Application number
PCT/JP2021/033176
Other languages
French (fr)
Japanese (ja)
Inventor
悠輝 難波
隆英 伊藤
篤 塩谷
寿幸 石田
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP21875130.3A priority Critical patent/EP4198416A4/en
Publication of WO2022070828A1 publication Critical patent/WO2022070828A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a refrigerating machine capable of achieving both low GWP and high refrigerating capacity.
  • the refrigerating machine is an evaporator that exchanges heat between the air in the refrigerating chamber and the first refrigerant, and a first compressor that compresses and supplies the first refrigerant to the evaporator.
  • a low-temperature cycle having a low-temperature side expansion valve that lowers the pressure of the first refrigerant that has passed through the first compressor, a radiator that exchanges heat between the outside air and the second refrigerant, and the second refrigerant in the radiator.
  • a second compressor that compresses and supplies the The first refrigerant or the second refrigerant provided in at least one of the low temperature cycle and the high temperature cycle to exchange heat with the second refrigerant flowing from the high temperature side expansion valve, and before being compressed.
  • the first refrigerant includes a gas injection circuit for supplying a refrigerant to at least one of the first compressor and the second compressor, and the first refrigerant is a mixed refrigerant containing carbon dioxide and an R32 refrigerant.
  • the two refrigerants are carbon dioxide.
  • the refrigerating machine 100 includes a high temperature cycle CH, a low temperature cycle CL, an intermediate heat exchanger 10 connecting these high temperature cycle CH and a low temperature cycle CL, and a gas injection circuit 9. .. That is, the refrigerating machine 100 constitutes a cascade cycle type refrigerating circuit.
  • the refrigerant that has exchanged heat with the outside air in the high temperature cycle CH (second refrigerant described later) exchanges heat with another refrigerant (first refrigerant described later) on the low temperature cycle CL side in the intermediate heat exchanger 10.
  • heat exchange is performed between the indoor air and the refrigerant.
  • the high temperature cycle CH includes the high temperature side pipe P2, the second compressor 4, the radiator 5, the high temperature side expansion valve 6 (high temperature side first expansion valve 61, and the high temperature side second expansion valve 62), and the high temperature side. It has a receiver 82 and.
  • the high temperature side pipe P2 is a pipe line connected in an annular shape, and the inside thereof is filled with a second refrigerant.
  • the second refrigerant contains only carbon dioxide.
  • a second compressor 4 On the high temperature side pipe P2, from the upstream side to the downstream side in the flow direction of the second refrigerant, a second compressor 4, a radiator 5, a high temperature side first expansion valve 61, and a high temperature side receiver 82 are provided. , The second expansion valve 62 on the high temperature side are arranged in this order.
  • the second compressor 4 compresses the low-pressure gas-phase refrigerant supplied from the intermediate heat exchanger 10 to generate a high-temperature and high-pressure gas-phase refrigerant.
  • the second compressor 4 is a so-called scroll type two-stage compressor, in which the rotary compressor 41 is used as the low pressure side and the scroll compressor 42 is used as the high pressure side.
  • the rotary compressor 41 and the scroll compressor 42 are, as an exception, coaxially connected.
  • the high temperature and high pressure gas phase refrigerant generated by the second compressor 4 flows into the radiator 5.
  • the radiator 5 is provided outside the freezing room (room to be frozen). In the radiator 5, heat exchange is performed between the second refrigerant and the external air. It is desirable that outside air is forcibly sent to the radiator 5 by a fan (not shown). As a result, the gas phase refrigerant is condensed in the radiator 5, and a high pressure liquid phase refrigerant is generated.
  • the high-pressure liquid-phase refrigerant passes through the high-temperature side first expansion valve 61, the high-temperature side receiver 82, and the high-temperature side second expansion valve 62 in this order.
  • the pressure of the high-pressure liquid-phase refrigerant drops to a certain extent by passing through the high-temperature side first expansion valve 61, and becomes a medium-pressure medium-temperature liquid-phase refrigerant.
  • This liquid phase refrigerant is stored in the high temperature side receiver 82 and separated into gas and liquid.
  • the gas phase component is supplied to the second compressor 4 (specifically, the position on the upstream side of the scroll compressor 42 on the high pressure side) through the high temperature side circuit 92 as the gas injection circuit 9. That is, the low-temperature second refrigerant (gas phase component) before being compressed is sent to the second compressor 4 through the high-temperature side circuit 92.
  • the medium-temperature and medium-pressure liquid-phase refrigerant that has passed through the high-temperature side receiver 82 further drops in pressure by passing through the high-temperature side second expansion valve 62, and becomes a low-temperature low-pressure liquid-phase refrigerant.
  • heat exchange is performed between the second refrigerant in the high temperature cycle CH and the first refrigerant in the low temperature cycle described later. Specifically, heat exchange is performed between the high temperature and high pressure gas phase refrigerant (first refrigerant) flowing through the low temperature cycle CL and the low temperature and low pressure liquid phase refrigerant (second refrigerant) flowing through the high temperature cycle CH. ..
  • first refrigerant high temperature and high pressure gas phase refrigerant
  • second refrigerant liquid phase refrigerant
  • the low temperature cycle CL includes a low temperature side pipe P1, a first compressor 2, an evaporator 1, a low temperature side expansion valve 3 (low temperature side first expansion valve 31 and a low temperature side second expansion valve 32), and a low temperature side. It has a receiver 81 and.
  • the low temperature side pipe P1 is a pipe line connected in an annular shape, and the inside thereof is filled with the first refrigerant.
  • the first refrigerant is a mixed refrigerant of carbon dioxide and R32 refrigerant.
  • the R32 refrigerant is contained in the first refrigerant in the range of 16% by weight or more and 22% by weight or less.
  • the remaining component is carbon dioxide.
  • the first compressor 2 On the low temperature side pipe P1, from the upstream side to the downstream side in the flow direction of the first refrigerant, the first compressor 2, the low temperature side first expansion valve 31, the low temperature side receiver 81, and the low temperature side second The expansion valve 32 and the evaporator 1 are arranged in this order.
  • the first compressor 2 compresses the low-pressure gas-phase refrigerant supplied from the evaporator 1 to generate a high-temperature and high-pressure gas-phase refrigerant.
  • the first compressor 2 is a so-called scroll type two-stage compressor, in which the rotary compressor 21 is used as the low pressure side and the scroll compressor 22 is used as the high pressure side. ing.
  • the rotary compressor 41 and the scroll compressor 42 are, as an exception, coaxially connected.
  • the high temperature and high pressure gas phase refrigerant generated by the first compressor 2 flows into the intermediate heat exchanger 10.
  • heat exchange is performed between the second refrigerant in the high temperature cycle CH and the first refrigerant in the low temperature cycle.
  • heat exchange is performed between the high temperature and high pressure gas phase refrigerant (first refrigerant) flowing through the low temperature cycle CL and the low temperature and low pressure liquid phase refrigerant (second refrigerant) flowing through the high temperature cycle CH. ..
  • the gas phase refrigerant is condensed in the intermediate heat exchanger 10 to generate a high pressure liquid phase refrigerant.
  • the high-pressure liquid-phase refrigerant passes through the low-temperature side first expansion valve 31, the low-temperature side receiver 81, and the low-temperature side second expansion valve 32 in this order.
  • the high-pressure liquid-phase refrigerant passes through the low-temperature side first expansion valve 31 to reduce the pressure to a certain extent, and becomes a medium-pressure medium-temperature liquid-phase refrigerant.
  • This liquid phase refrigerant is stored in the low temperature side receiver 81 and separated into gas and liquid.
  • the gas phase component is supplied to the first compressor 2 (specifically, the position on the upstream side of the scroll compressor 22 on the high pressure side) through the low temperature side circuit 91 as the gas injection circuit 9. That is, the low-temperature first refrigerant (gas phase component) before compression is sent to the first compressor 2 through the low-temperature side circuit 91.
  • the medium-temperature and medium-pressure liquid-phase refrigerant that has passed through the low-temperature side receiver 81 further drops in pressure by passing through the low-temperature side second expansion valve 32, and becomes a low-temperature and low-pressure liquid-phase refrigerant.
  • the evaporator 1 is provided inside the freezing chamber. In the evaporator 1, heat exchange is performed between the air in the freezing chamber and the first refrigerant. It is desirable to forcibly send the air in the freezing chamber to the evaporator 1 by a fan.
  • the heat in the freezing chamber is absorbed by the low-temperature liquid-phase refrigerant, and the temperature in the freezing chamber changes in the direction of lowering. That is, the freezing chamber is cooled.
  • the temperature of the liquid phase refrigerant flowing through the evaporator 1 rises, and at the same time, the temperature changes from the liquid phase to the gas phase.
  • the refrigerant that has passed through the evaporator 1 and becomes a gas phase is sucked into the first compressor 2 again. By performing such a cycle continuously, the temperature of the freezing chamber is adjusted to a desired value.
  • the refrigerating machine 100 constitutes a cascade cycle mainly including a low temperature cycle CL, a high temperature cycle CH, and an intermediate heat exchanger 10 provided between them.
  • the compression ratios required by the first compressor 2 and the second compressor 4 can be kept small.
  • the temperature (discharge temperature) of the refrigerant discharged from these compressors can be further lowered. That is, the refrigerating capacity of the refrigerating machine 100 can be further increased.
  • the cycle diagrams of the high temperature cycle CH and the low temperature cycle CL are superimposed on each other at an intermediate position (intermediate heat exchanger 10).
  • the temperature of the refrigerant can be lowered to a lower temperature as compared with the case where only the high temperature cycle CH is used.
  • the radiator outlet temperature of the high temperature cycle CH is 34 ° C.
  • the evaporation temperature can be set to an ultralow temperature of about ⁇ 68 ° C. in the low temperature cycle CL.
  • the cascade cycle it becomes possible to use different types of refrigerants in the low temperature cycle CL and the high temperature cycle CH.
  • a mixed refrigerant containing R32 is used as the first refrigerant while containing carbon dioxide as the main component.
  • Carbon dioxide is used as the second refrigerant in the high temperature cycle CH.
  • the high temperature cycle CH since only carbon dioxide is used as the second refrigerant, the density does not become excessively low as compared with the case where R32 is mixed. As a result, the compression ratio required by the second compressor 4 can be kept small.
  • the gas injection circuit 9 supplies at least one of the first compressor 2 and the second compressor 4 with a low-temperature first refrigerant or a second refrigerant before being compressed.
  • the low-temperature refrigerant is supplied to an intermediate position between the plurality of stages to finally discharge the refrigerant. It is possible to further lower the temperature.
  • the first refrigerant a mixed refrigerant with carbon dioxide containing R32 of 16% by weight or more and 22% by weight or less is used. This makes it possible to keep the GWP below 150 and below the international regulation value. As described above, according to the present embodiment, it is possible to provide the refrigerating machine 100 capable of achieving both low GWP and high refrigerating capacity.
  • the gas injection circuit 9 is configured to supply the refrigerant to the upstream side of the scroll compressors 22 and 42 on the high pressure side.
  • the scroll compressors 22 and 42 a configuration is adopted in which the refrigerant flowing inside the casing flows into the compression chamber without being severely restricted by the flow direction or the like. That is, it can be said that it is easier to add another refrigerant to the outside of the compression chamber in the scroll compressors 22 and 42 as compared with the rotary compressors 21 and 41. This makes it possible to add the refrigerant more easily and smoothly by the gas injection circuit 9.
  • the low temperature cycle CL and the high temperature cycle CH are provided with the low temperature side circuit 91 and the high temperature side circuit 92 as the gas injection circuit 9, respectively. This makes it possible to lower the discharge temperature of the compressors (first compressor 2 and second compressor 4) in both the low temperature cycle CL and the high temperature cycle CH.
  • the refrigerating machine 100 is an evaporator 1 that exchanges heat between the air in the refrigerating chamber and the first refrigerant, and a first compressor that compresses and supplies the first refrigerant to the evaporator 1.
  • a low-temperature cycle CL having a low-temperature side expansion valve 3 that lowers the pressure of the first refrigerant that has passed through the first compressor 2, a radiator 5 that exchanges heat between the outside air and the second refrigerant, and the radiator.
  • a second compressor 4 that compresses and supplies the second refrigerant to 5, a high temperature cycle CH having a high temperature side expansion valve 6 that lowers the pressure of the second refrigerant that has passed through the radiator 5, and the first compression.
  • the refrigerant is a mixed refrigerant containing carbon dioxide and an R32 refrigerant
  • the second refrigerant is carbon dioxide.
  • the refrigerating machine 100 constitutes a cascade cycle mainly including a low temperature cycle CL, a high temperature cycle CH, and an intermediate heat exchanger 10 provided between them.
  • the compression ratios required by the first compressor 2 and the second compressor 4 can be kept small.
  • the temperature (discharge temperature) of the refrigerant discharged from these compressors can be further lowered. That is, the refrigerating capacity of the refrigerating machine 100 can be further increased.
  • the cascade cycle it becomes possible to use different types of refrigerants in the low temperature cycle CL and the high temperature cycle CH.
  • a mixed refrigerant containing R32 is used as the first refrigerant while containing carbon dioxide as the main component.
  • Carbon dioxide is used as the second refrigerant in the high temperature cycle CH.
  • the gas injection circuit 9 supplies at least one of the first compressor 2 and the second compressor 4 with a low-temperature first refrigerant or a second refrigerant before being compressed.
  • the low-temperature refrigerant is supplied to an intermediate position between the plurality of stages to finally discharge the refrigerant. It is possible to further lower the temperature.
  • the first refrigerant is a mixed refrigerant containing 16% by weight or more and 22% by weight or less of R32 refrigerant.
  • the first refrigerant a mixed refrigerant with carbon dioxide containing R32 of 16% by weight or more and 22% by weight or less is used. This makes it possible to keep the GWP below 150 and below the international regulation value.
  • the first compressor 2 and the second compressor 4 are attached to the rotary compressors 21 and 41 on the low pressure side and the rotary compressors 21 and 41, respectively.
  • the gas injection circuit 9 includes the connected high-pressure side scroll compressors 22 and 42, and is configured to supply the first refrigerant or the second refrigerant to the upstream side of the scroll compressors 22 and 42. ing.
  • the gas injection circuit 9 is configured to supply the refrigerant to the upstream side of the scroll compressors 22 and 42 on the high pressure side.
  • the scroll compressors 22 and 42 a configuration is adopted in which the refrigerant flowing inside the casing flows into the compression chamber without being severely restricted by the flow direction or the like. That is, it can be said that it is easier to add another refrigerant to the outside of the compression chamber in the scroll compressors 22 and 42 as compared with the rotary compressors 21 and 41. This makes it possible to add the refrigerant more easily and smoothly by the gas injection circuit 9.
  • the low temperature side expansion valve 3 and the high temperature side expansion valve 6 each have two expansion valves, the low temperature cycle CL, and the high temperature cycle.
  • the CH further includes a low temperature side receiver 81 and a high temperature side receiver 82 respectively provided between the two expansion valves, and the gas injection circuit 9 uses the low temperature side receiver 81 to supply the first refrigerant. It has a low temperature side circuit 91 that supplies the compressor 2 and a high temperature side circuit 92 that supplies the second refrigerant from the high temperature side receiver 82 to the second compressor 4.
  • the low temperature cycle CL and the high temperature cycle CH are provided with the low temperature side circuit 91 and the high temperature side circuit 92 as the gas injection circuit 9, respectively. This makes it possible to lower the discharge temperature of the compressors (first compressor 2 and second compressor 4) in both the low temperature cycle CL and the high temperature cycle CH.
  • This disclosure relates to refrigeration machinery. According to the present disclosure, it is possible to provide a refrigerating machine capable of achieving both low GWP and high refrigerating capacity.
  • Refrigerating machine 1 Evaporator 2 First compressor 3 Low temperature side expansion valve 4 Second compressor 5 Radiator 6 High temperature side expansion valve 9 Gas injection circuit 10 Intermediate heat exchanger 21
  • Rotary compressor 22 Scroll compressor 31 Low temperature side first One expansion valve 32 Low temperature side second expansion valve 41
  • Rotary compressor 42 Scroll compressor 61 High temperature side first expansion valve 62 High temperature side second expansion valve 81 Low temperature side receiver 82 High temperature side receiver 91 Low temperature side circuit 92 High temperature side circuit CH High temperature side circuit CH Cycle CL Low temperature cycle P1 Low temperature side piping P2 High temperature side piping

Abstract

This refrigeration machine comprises: a low temperature cycle having an evaporator which performs heat exchange between air inside a refrigeration chamber and a first refrigerant, a first compressor which compresses the first refrigerant and supplies the compressed first refrigerant to the evaporator, and a low temperature-side expansion valve which lowers the pressure of the first refrigerant that has passed through the first compressor; a high temperature cycle having a heat dissipator which performs heat exchange between outside air and a second refrigerant, a second compressor which compresses a second refrigerant and supplies the compressed second refrigerant to the heat dissipator, and a high temperature-side expansion valve which lowers the pressure of the second refrigerant that has passed through the heat sink; an intermediate heat exchanger which performs heat exchange between the first refrigerant flowing from the first compressor and the second refrigerant flowing from the high-temperature side expansion valve; and a gas injection circuit which is provided to at least one of the low temperature cycle and the high temperature cycle, and which supplies the refrigerant before compression to at least one of the first compressor and the second compressor, wherein the first refrigerant is a mixed refrigerant containing carbon dioxide and R32 refrigerant, and the second refrigerant is carbon dioxide.

Description

冷凍機械Refrigeration machine
 本開示は、冷凍機械に関する。本願は、2020年9月29日に出願された特願2020-163122号に対して優先権を主張し、その内容をここに援用する。 This disclosure relates to refrigeration machinery. The present application claims priority to Japanese Patent Application No. 2020-163122 filed on September 29, 2020, the contents of which are incorporated herein by reference.
 近年、冷凍機械の分野では、GWP(温暖化係数)の値を小さく抑えることが求められている。このため、使用可能な冷媒の種類には制約がある場合が多い。低GWPを実現可能な冷媒として具体的には、R32と呼ばれる冷媒や二酸化炭素が挙げられる(下記特許文献1参照)。 In recent years, in the field of refrigeration machinery, it has been required to keep the value of GWP (global warming potential) small. Therefore, there are often restrictions on the types of refrigerants that can be used. Specific examples of the refrigerant capable of achieving low GWP include a refrigerant called R32 and carbon dioxide (see Patent Document 1 below).
 他方で、このような低GWP冷媒を用いた場合、冷凍機械の冷凍能力向上の妨げとなることがある。特に、-45~-70℃程度の超低温を目標温度とする冷凍機械ではその影響が顕著である。そこで、例えば冷凍機械に用いられる圧縮機の圧縮比を高める等の措置が考えられる。 On the other hand, when such a low GWP refrigerant is used, it may hinder the improvement of the refrigerating capacity of the refrigerating machine. In particular, the effect is remarkable in a refrigerating machine whose target temperature is an ultra-low temperature of about −45 to −70 ° C. Therefore, for example, measures such as increasing the compression ratio of the compressor used in the refrigerating machine can be considered.
特許第4543469号公報Japanese Patent No. 4543469
 しかしながら、上記のように圧縮比を単に高めた場合、圧縮機の吐出温度が過度に高くなってしまい、所望の冷凍能力を発揮できなくなる虞がある。このように、低GWP冷媒を用いながらも、超低温の冷凍能力を有する冷凍機械に対する要請が高まっている。 However, if the compression ratio is simply increased as described above, the discharge temperature of the compressor may become excessively high, and the desired refrigerating capacity may not be exhibited. As described above, there is an increasing demand for a refrigerating machine having an ultra-low temperature refrigerating capacity while using a low GWP refrigerant.
 本開示は上記課題を解決するためになされたものであって、低GWPと高い冷凍能力とを両立させることが可能な冷凍機械を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a refrigerating machine capable of achieving both low GWP and high refrigerating capacity.
 上記課題を解決するために、本開示に係る冷凍機械は、冷凍室内の空気と第一冷媒とを熱交換させる蒸発器、前記蒸発器に前記第一冷媒を圧縮して供給する第一圧縮機、及び該第一圧縮機を通過した前記第一冷媒の圧力を下げる低温側膨張弁を有する低温サイクルと、外気と第二冷媒とを熱交換させる放熱器、及び前記放熱器に前記第二冷媒を圧縮して供給する第二圧縮機、及び該放熱器を通過した前記第二冷媒の圧力を下げる高温側膨張弁を有する高温サイクルと、前記第一圧縮機から流通する前記第一冷媒と前記高温側膨張弁から流通する前記第二冷媒とを熱交換させる中間熱交換器と、前記低温サイクル、及び前記高温サイクルの少なくとも一方に設けられ、圧縮される前の前記第一冷媒又は前記第二冷媒を、前記第一圧縮機、及び前記第二圧縮機の少なくとも一方に供給するガスインジェクション回路と、を備え、前記第一冷媒は、二酸化炭素とR32冷媒とを含む混合冷媒であり、前記第二冷媒は、二酸化炭素である。 In order to solve the above problems, the refrigerating machine according to the present disclosure is an evaporator that exchanges heat between the air in the refrigerating chamber and the first refrigerant, and a first compressor that compresses and supplies the first refrigerant to the evaporator. A low-temperature cycle having a low-temperature side expansion valve that lowers the pressure of the first refrigerant that has passed through the first compressor, a radiator that exchanges heat between the outside air and the second refrigerant, and the second refrigerant in the radiator. A second compressor that compresses and supplies the The first refrigerant or the second refrigerant provided in at least one of the low temperature cycle and the high temperature cycle to exchange heat with the second refrigerant flowing from the high temperature side expansion valve, and before being compressed. The first refrigerant includes a gas injection circuit for supplying a refrigerant to at least one of the first compressor and the second compressor, and the first refrigerant is a mixed refrigerant containing carbon dioxide and an R32 refrigerant. The two refrigerants are carbon dioxide.
 本開示によれば、低GWPと高い冷凍能力とを両立させることが可能な冷凍機械を提供することができる。 According to the present disclosure, it is possible to provide a refrigerating machine capable of achieving both low GWP and high refrigerating capacity.
本開示の実施形態に係る冷凍機械の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the refrigerating machine which concerns on embodiment of this disclosure. 本開示の実施形態に係る冷凍機械のサイクル線図である。It is a cycle diagram of the refrigerating machine which concerns on embodiment of this disclosure.
(冷凍機械の構成)
 以下、本開示の実施形態に係る冷凍機械100について、図1と図2を参照して説明する。図1に示すように、冷凍機械100は、高温サイクルCHと、低温サイクルCLと、これら高温サイクルCHと低温サイクルCLを接続する中間熱交換器10と、ガスインジェクション回路9と、を備えている。つまり、この冷凍機械100は、カスケードサイクル型の冷凍回路を構成している。高温サイクルCHで外気と熱交換した冷媒(後述する第二冷媒)は、中間熱交換器10で低温サイクルCL側の他の冷媒(後述する第一冷媒)と熱交換する。低温サイクルCLでは、室内の空気と冷媒との間で熱交換が行われる。
(Structure of refrigeration machine)
Hereinafter, the refrigerating machine 100 according to the embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the refrigerating machine 100 includes a high temperature cycle CH, a low temperature cycle CL, an intermediate heat exchanger 10 connecting these high temperature cycle CH and a low temperature cycle CL, and a gas injection circuit 9. .. That is, the refrigerating machine 100 constitutes a cascade cycle type refrigerating circuit. The refrigerant that has exchanged heat with the outside air in the high temperature cycle CH (second refrigerant described later) exchanges heat with another refrigerant (first refrigerant described later) on the low temperature cycle CL side in the intermediate heat exchanger 10. In the low temperature cycle CL, heat exchange is performed between the indoor air and the refrigerant.
(高温サイクルの構成)
 高温サイクルCHは、高温側配管P2と、第二圧縮機4と、放熱器5と、高温側膨張弁6(高温側第一膨張弁61、及び高温側第二膨張弁62)と、高温側レシーバ82と、を有している。高温側配管P2は環状に接続された管路であり、その内部には第二冷媒が充填されている。第二冷媒は、二酸化炭素のみを含む。
(Structure of high temperature cycle)
The high temperature cycle CH includes the high temperature side pipe P2, the second compressor 4, the radiator 5, the high temperature side expansion valve 6 (high temperature side first expansion valve 61, and the high temperature side second expansion valve 62), and the high temperature side. It has a receiver 82 and. The high temperature side pipe P2 is a pipe line connected in an annular shape, and the inside thereof is filled with a second refrigerant. The second refrigerant contains only carbon dioxide.
 高温側配管P2上には、第二冷媒の流れ方向の上流側から下流側に向かって、第二圧縮機4と、放熱器5と、高温側第一膨張弁61と、高温側レシーバ82と、高温側第二膨張弁62と、がこの順番で配列されている。 On the high temperature side pipe P2, from the upstream side to the downstream side in the flow direction of the second refrigerant, a second compressor 4, a radiator 5, a high temperature side first expansion valve 61, and a high temperature side receiver 82 are provided. , The second expansion valve 62 on the high temperature side are arranged in this order.
 第二圧縮機4は、中間熱交換器10から供給された低圧の気相冷媒を圧縮して、高温高圧の気相冷媒を生成する。第二圧縮機4は、いわゆるスクロータリー型と呼ばれる二段圧縮機であり、低圧側としてロータリー圧縮機41が用いられ、高圧側としてスクロール圧縮機42が用いられている。これらロータリー圧縮機41とスクロール圧縮機42は、異例として同軸に連結されている。 The second compressor 4 compresses the low-pressure gas-phase refrigerant supplied from the intermediate heat exchanger 10 to generate a high-temperature and high-pressure gas-phase refrigerant. The second compressor 4 is a so-called scroll type two-stage compressor, in which the rotary compressor 41 is used as the low pressure side and the scroll compressor 42 is used as the high pressure side. The rotary compressor 41 and the scroll compressor 42 are, as an exception, coaxially connected.
 第二圧縮機4で生成された高温高圧の気相冷媒は、放熱器5に流入する。放熱器5は、冷凍室(冷凍対象となる部屋)の外部に設けられている。放熱器5では、第二冷媒と外部の空気との間で熱交換が行われる。なお、放熱器5には不図示のファンによって外気が強制的に送られることが望ましい。これにより、放熱器5では気相冷媒が凝縮し、高圧の液相冷媒が生成される。 The high temperature and high pressure gas phase refrigerant generated by the second compressor 4 flows into the radiator 5. The radiator 5 is provided outside the freezing room (room to be frozen). In the radiator 5, heat exchange is performed between the second refrigerant and the external air. It is desirable that outside air is forcibly sent to the radiator 5 by a fan (not shown). As a result, the gas phase refrigerant is condensed in the radiator 5, and a high pressure liquid phase refrigerant is generated.
 高圧の液相冷媒は、高温側第一膨張弁61、高温側レシーバ82、及び高温側第二膨張弁62をこの順で通過する。高圧の液相冷媒は、高温側第一膨張弁61を通過することで一定程度圧力が下がり、中圧中温の液相冷媒となる。この液相冷媒は、高温側レシーバ82に貯留されて気液分離される。このうち、気相成分はガスインジェクション回路9としての高温側回路92を通じて第二圧縮機4(具体的には、高圧側のスクロール圧縮機42の上流側の位置)に供給される。つまり、高温側回路92を通じて、圧縮される前の低温の第二冷媒(気相成分)が第二圧縮機4に送られる。 The high-pressure liquid-phase refrigerant passes through the high-temperature side first expansion valve 61, the high-temperature side receiver 82, and the high-temperature side second expansion valve 62 in this order. The pressure of the high-pressure liquid-phase refrigerant drops to a certain extent by passing through the high-temperature side first expansion valve 61, and becomes a medium-pressure medium-temperature liquid-phase refrigerant. This liquid phase refrigerant is stored in the high temperature side receiver 82 and separated into gas and liquid. Of these, the gas phase component is supplied to the second compressor 4 (specifically, the position on the upstream side of the scroll compressor 42 on the high pressure side) through the high temperature side circuit 92 as the gas injection circuit 9. That is, the low-temperature second refrigerant (gas phase component) before being compressed is sent to the second compressor 4 through the high-temperature side circuit 92.
 高温側レシーバ82を通過した中温中圧の液相冷媒は、高温側第二膨張弁62を通過することでさらに圧力が下がり、低温低圧の液相冷媒となる。 The medium-temperature and medium-pressure liquid-phase refrigerant that has passed through the high-temperature side receiver 82 further drops in pressure by passing through the high-temperature side second expansion valve 62, and becomes a low-temperature low-pressure liquid-phase refrigerant.
 高温側第二膨張弁62を経て低温低圧となった液相冷媒は、中間熱交換器10に流入する。中間熱交換器10では、高温サイクルCH中の第二冷媒と、後述する低温サイクル中の第一冷媒との間で熱交換が行われる。具体的には、低温サイクルCLを流通する高温高圧の気相冷媒(第一冷媒)と、高温サイクルCHを流通する低温低圧の液相冷媒(第二冷媒)との間で熱交換が行われる。これに伴って、高温サイクルCHでは、中間熱交換器10を流通する液相冷媒の温度が上昇するとともに、液相から気相に変化する。 The liquid phase refrigerant that has become low temperature and low pressure through the high temperature side second expansion valve 62 flows into the intermediate heat exchanger 10. In the intermediate heat exchanger 10, heat exchange is performed between the second refrigerant in the high temperature cycle CH and the first refrigerant in the low temperature cycle described later. Specifically, heat exchange is performed between the high temperature and high pressure gas phase refrigerant (first refrigerant) flowing through the low temperature cycle CL and the low temperature and low pressure liquid phase refrigerant (second refrigerant) flowing through the high temperature cycle CH. .. Along with this, in the high temperature cycle CH, the temperature of the liquid phase refrigerant flowing through the intermediate heat exchanger 10 rises, and at the same time, the temperature changes from the liquid phase to the gas phase.
 中間熱交換器10を経て気相となった冷媒は、再び第二圧縮機4に吸入される。高温サイクルCHではこのようなサイクルが連続的に行われる。 The refrigerant that became the gas phase through the intermediate heat exchanger 10 is sucked into the second compressor 4 again. In the high temperature cycle CH, such a cycle is continuously performed.
(低温サイクルの構成)
 低温サイクルCLは、低温側配管P1と、第一圧縮機2と、蒸発器1と、低温側膨張弁3(低温側第一膨張弁31、及び低温側第二膨張弁32)と、低温側レシーバ81と、を有している。低温側配管P1は環状に接続された管路であり、その内部には第一冷媒が充填されている。第一冷媒は、二酸化炭素と、R32冷媒との混合冷媒である。R32冷媒は、16重量%以上、22重量%以下の範囲で第一冷媒に含まれている。その残余の成分は二酸化炭素である。
(Composition of low temperature cycle)
The low temperature cycle CL includes a low temperature side pipe P1, a first compressor 2, an evaporator 1, a low temperature side expansion valve 3 (low temperature side first expansion valve 31 and a low temperature side second expansion valve 32), and a low temperature side. It has a receiver 81 and. The low temperature side pipe P1 is a pipe line connected in an annular shape, and the inside thereof is filled with the first refrigerant. The first refrigerant is a mixed refrigerant of carbon dioxide and R32 refrigerant. The R32 refrigerant is contained in the first refrigerant in the range of 16% by weight or more and 22% by weight or less. The remaining component is carbon dioxide.
 低温側配管P1上には、第一冷媒の流れ方向の上流側から下流側に向かって、第一圧縮機2と、低温側第一膨張弁31と、低温側レシーバ81と、低温側第二膨張弁32と、蒸発器1と、がこの順番で配列されている。 On the low temperature side pipe P1, from the upstream side to the downstream side in the flow direction of the first refrigerant, the first compressor 2, the low temperature side first expansion valve 31, the low temperature side receiver 81, and the low temperature side second The expansion valve 32 and the evaporator 1 are arranged in this order.
 第一圧縮機2は、蒸発器1から供給された低圧の気相冷媒を圧縮して、高温高圧の気相冷媒を生成する。第一圧縮機2は、第二圧縮機4と同様に、いわゆるスクロータリー型と呼ばれる二段圧縮機であり、低圧側としてロータリー圧縮機21が用いられ、高圧側としてスクロール圧縮機22が用いられている。これらロータリー圧縮機41とスクロール圧縮機42は、異例として同軸に連結されている。 The first compressor 2 compresses the low-pressure gas-phase refrigerant supplied from the evaporator 1 to generate a high-temperature and high-pressure gas-phase refrigerant. Like the second compressor 4, the first compressor 2 is a so-called scroll type two-stage compressor, in which the rotary compressor 21 is used as the low pressure side and the scroll compressor 22 is used as the high pressure side. ing. The rotary compressor 41 and the scroll compressor 42 are, as an exception, coaxially connected.
 第一圧縮機2で生成された高温高圧の気相冷媒は、中間熱交換器10に流入する。中間熱交換器10では、高温サイクルCH中の第二冷媒と、低温サイクル中の第一冷媒との間で熱交換が行われる。具体的には、低温サイクルCLを流通する高温高圧の気相冷媒(第一冷媒)と、高温サイクルCHを流通する低温低圧の液相冷媒(第二冷媒)との間で熱交換が行われる。これにより、中間熱交換器10では気相冷媒が凝縮し、高圧の液相冷媒が生成される。 The high temperature and high pressure gas phase refrigerant generated by the first compressor 2 flows into the intermediate heat exchanger 10. In the intermediate heat exchanger 10, heat exchange is performed between the second refrigerant in the high temperature cycle CH and the first refrigerant in the low temperature cycle. Specifically, heat exchange is performed between the high temperature and high pressure gas phase refrigerant (first refrigerant) flowing through the low temperature cycle CL and the low temperature and low pressure liquid phase refrigerant (second refrigerant) flowing through the high temperature cycle CH. .. As a result, the gas phase refrigerant is condensed in the intermediate heat exchanger 10 to generate a high pressure liquid phase refrigerant.
 高圧の液相冷媒は、低温側第一膨張弁31、低温側レシーバ81、及び低温側第二膨張弁32をこの順で通過する。高圧の液相冷媒は、低温側第一膨張弁31を通過することで一定程度圧力が下がり、中圧中温の液相冷媒となる。この液相冷媒は、低温側レシーバ81に貯留されて気液分離される。このうち、気相成分はガスインジェクション回路9としての低温側回路91を通じて第一圧縮機2(具体的には、高圧側のスクロール圧縮機22の上流側の位置)に供給される。つまり、低温側回路91を通じて、圧縮される前の低温の第一冷媒(気相成分)が第一圧縮機2に送られる。 The high-pressure liquid-phase refrigerant passes through the low-temperature side first expansion valve 31, the low-temperature side receiver 81, and the low-temperature side second expansion valve 32 in this order. The high-pressure liquid-phase refrigerant passes through the low-temperature side first expansion valve 31 to reduce the pressure to a certain extent, and becomes a medium-pressure medium-temperature liquid-phase refrigerant. This liquid phase refrigerant is stored in the low temperature side receiver 81 and separated into gas and liquid. Of these, the gas phase component is supplied to the first compressor 2 (specifically, the position on the upstream side of the scroll compressor 22 on the high pressure side) through the low temperature side circuit 91 as the gas injection circuit 9. That is, the low-temperature first refrigerant (gas phase component) before compression is sent to the first compressor 2 through the low-temperature side circuit 91.
 低温側レシーバ81を通過した中温中圧の液相冷媒は、低温側第二膨張弁32を通過することでさらに圧力が下がり、低温低圧の液相冷媒となる。 The medium-temperature and medium-pressure liquid-phase refrigerant that has passed through the low-temperature side receiver 81 further drops in pressure by passing through the low-temperature side second expansion valve 32, and becomes a low-temperature and low-pressure liquid-phase refrigerant.
 低温側第二膨張弁32を経て低温低圧となった液相冷媒は、蒸発器1に流入する。蒸発器1は、冷凍室の内部に設けられている。蒸発器1では、冷凍室内の空気と第一冷媒との間で熱交換が行われる。なお、蒸発器1には、ファンによって冷凍室内の空気を強制的に送ることが望ましい。低温の液相冷媒によって冷凍室内の熱が吸収されることで、冷凍室内の温度が低くなる方向に変化する。つまり、冷凍室内が冷却される。これに伴って、蒸発器1を流通する液相冷媒の温度が上昇するとともに、液相から気相に変化する。蒸発器1を経て気相となった冷媒は再び第一圧縮機2に吸入される。このようなサイクルが連続的に行われることで、冷凍室の温度が所望の値に調節される。 The liquid phase refrigerant that has become low temperature and low pressure through the low temperature side second expansion valve 32 flows into the evaporator 1. The evaporator 1 is provided inside the freezing chamber. In the evaporator 1, heat exchange is performed between the air in the freezing chamber and the first refrigerant. It is desirable to forcibly send the air in the freezing chamber to the evaporator 1 by a fan. The heat in the freezing chamber is absorbed by the low-temperature liquid-phase refrigerant, and the temperature in the freezing chamber changes in the direction of lowering. That is, the freezing chamber is cooled. Along with this, the temperature of the liquid phase refrigerant flowing through the evaporator 1 rises, and at the same time, the temperature changes from the liquid phase to the gas phase. The refrigerant that has passed through the evaporator 1 and becomes a gas phase is sucked into the first compressor 2 again. By performing such a cycle continuously, the temperature of the freezing chamber is adjusted to a desired value.
(作用効果)
 近年、冷凍機械の分野では、GWP(温暖化係数)の値を小さく抑えることが求められている。このため、使用可能な冷媒の種類には制約がある場合が多い。低GWP冷媒としては上述した二酸化炭素やR32冷媒が例として挙げられる。他方で、このような低GWP冷媒を用いた場合、冷凍機械の冷凍能力向上の妨げとなることがある。特に、-45~-70℃程度の超低温を目標温度とする冷凍機械ではその影響が顕著である。そこで、例えば冷凍機械に用いられる圧縮機の圧縮比を高める等の措置が考えられる。しかしながら、上記のように圧縮比を単に高めた場合、圧縮機の吐出温度が過度に高くなってしまい、所望の冷凍能力を発揮できなくなる虞がある。
(Action effect)
In recent years, in the field of refrigeration machinery, it has been required to keep the value of GWP (global warming potential) small. Therefore, there are often restrictions on the types of refrigerants that can be used. Examples of the low GWP refrigerant include the above-mentioned carbon dioxide and R32 refrigerant. On the other hand, when such a low GWP refrigerant is used, it may hinder the improvement of the refrigerating capacity of the refrigerating machine. In particular, the effect is remarkable in a refrigerating machine whose target temperature is an ultra-low temperature of about −45 to −70 ° C. Therefore, for example, measures such as increasing the compression ratio of the compressor used in the refrigerating machine can be considered. However, if the compression ratio is simply increased as described above, the discharge temperature of the compressor becomes excessively high, and there is a possibility that the desired refrigerating capacity cannot be exhibited.
 そこで、本実施形態では、冷凍機械100は、低温サイクルCL、及び高温サイクルCHと、これらの間に設けられた中間熱交換器10と、を主に備えるカスケードサイクルを構成している。これにより、第一圧縮機2、及び第二圧縮機4で必要とされる圧縮比をそれぞれ小さく抑えることができる。その結果、これら圧縮機から吐出される冷媒の温度(吐出温度)をさらに下げることができる。つまり、冷凍機械100の冷凍能力をさらに高めることができる。 Therefore, in the present embodiment, the refrigerating machine 100 constitutes a cascade cycle mainly including a low temperature cycle CL, a high temperature cycle CH, and an intermediate heat exchanger 10 provided between them. As a result, the compression ratios required by the first compressor 2 and the second compressor 4 can be kept small. As a result, the temperature (discharge temperature) of the refrigerant discharged from these compressors can be further lowered. That is, the refrigerating capacity of the refrigerating machine 100 can be further increased.
 具体的には図2に示すように、高温サイクルCHと低温サイクルCLのサイクル線図が互いに中間位置(中間熱交換器10)で重畳されている。これにより、高温サイクルCHのみを用いた場合に比べて、より低い温度にまで冷媒の温度を下げることができる。例えば、高温サイクルCHの放熱器出口温度が34℃である場合、低温サイクルCLでは蒸発温度を-68℃程度の超低温とすることができる。 Specifically, as shown in FIG. 2, the cycle diagrams of the high temperature cycle CH and the low temperature cycle CL are superimposed on each other at an intermediate position (intermediate heat exchanger 10). As a result, the temperature of the refrigerant can be lowered to a lower temperature as compared with the case where only the high temperature cycle CH is used. For example, when the radiator outlet temperature of the high temperature cycle CH is 34 ° C., the evaporation temperature can be set to an ultralow temperature of about −68 ° C. in the low temperature cycle CL.
 また、カスケードサイクルを用いることにより、低温サイクルCLと高温サイクルCHとで異なる種類の冷媒を用いることが可能となる。低温サイクルCLでは二酸化炭素を主成分としつつ、R32を含む混合冷媒が第一冷媒として用いられる。高温サイクルCHでは二酸化炭素が第二冷媒として用いられる。このように二酸化炭素を主として用いることにより、低GWPを実現しながらも、二酸化炭素のみを冷媒とした場合に比べて冷凍能力をさらに高めることが可能となる。また、高温サイクルCHでは、二酸化炭素のみを第二冷媒として用いることから、R32を混合した場合に比べて密度が過度に低くならない。これにより、第二圧縮機4で必要とされる圧縮比を小さく抑えることもできる。 Further, by using the cascade cycle, it becomes possible to use different types of refrigerants in the low temperature cycle CL and the high temperature cycle CH. In the low temperature cycle CL, a mixed refrigerant containing R32 is used as the first refrigerant while containing carbon dioxide as the main component. Carbon dioxide is used as the second refrigerant in the high temperature cycle CH. By mainly using carbon dioxide in this way, it is possible to further increase the refrigerating capacity as compared with the case where only carbon dioxide is used as a refrigerant, while achieving low GWP. Further, in the high temperature cycle CH, since only carbon dioxide is used as the second refrigerant, the density does not become excessively low as compared with the case where R32 is mixed. As a result, the compression ratio required by the second compressor 4 can be kept small.
 加えて、ガスインジェクション回路9によって、第一圧縮機2、及び第二圧縮機4の少なくとも一方に、圧縮される前の低温の第一冷媒又は第二冷媒が供給される。これにより、例えば第一圧縮機2、及び第二圧縮機4を複数段の圧縮機によって構成した場合に、これら複数段の中間位置に低温の冷媒を供給することで、最終的な冷媒の吐出温度をさらに下げることが可能となる。 In addition, the gas injection circuit 9 supplies at least one of the first compressor 2 and the second compressor 4 with a low-temperature first refrigerant or a second refrigerant before being compressed. As a result, for example, when the first compressor 2 and the second compressor 4 are configured by a plurality of stages of compressors, the low-temperature refrigerant is supplied to an intermediate position between the plurality of stages to finally discharge the refrigerant. It is possible to further lower the temperature.
 また、上記構成によれば、第一冷媒として、16重量%以上22重量%以下のR32を含む二酸化炭素との混合冷媒が用いられる。これにより、GWPを150以下に抑え、国際的な規制値以下とすることが可能となる。このように、本実施形態によれば、低GWPと高い冷凍能力とを両立させることが可能な冷凍機械100を提供することができる。 Further, according to the above configuration, as the first refrigerant, a mixed refrigerant with carbon dioxide containing R32 of 16% by weight or more and 22% by weight or less is used. This makes it possible to keep the GWP below 150 and below the international regulation value. As described above, according to the present embodiment, it is possible to provide the refrigerating machine 100 capable of achieving both low GWP and high refrigerating capacity.
 さらに、上記構成によれば、ガスインジェクション回路9は、高圧側のスクロール圧縮機22,42の上流側に冷媒を供給するように構成されている。ここで、スクロール圧縮機22,42では、ケーシングの内部を流通する冷媒が、流れ方向等の制約をあまり受けることなく圧縮室に向けて流入する構成が採られる。つまり、ロータリー圧縮機21,41に比べて、スクロール圧縮機22,42では圧縮室の外部に他の冷媒を追加しやすいと言える。これにより、ガスインジェクション回路9によってより容易かつ円滑に冷媒を追加することが可能となる。 Further, according to the above configuration, the gas injection circuit 9 is configured to supply the refrigerant to the upstream side of the scroll compressors 22 and 42 on the high pressure side. Here, in the scroll compressors 22 and 42, a configuration is adopted in which the refrigerant flowing inside the casing flows into the compression chamber without being severely restricted by the flow direction or the like. That is, it can be said that it is easier to add another refrigerant to the outside of the compression chamber in the scroll compressors 22 and 42 as compared with the rotary compressors 21 and 41. This makes it possible to add the refrigerant more easily and smoothly by the gas injection circuit 9.
 より具体的には、上記構成によれば、低温サイクルCL、及び高温サイクルCHにそれぞれガスインジェクション回路9としての低温側回路91、及び高温側回路92が設けられている。これにより、低温サイクルCLと高温サイクルCHの双方で、圧縮機(第一圧縮機2、及び第二圧縮機4)の吐出温度を下げることが可能となる。 More specifically, according to the above configuration, the low temperature cycle CL and the high temperature cycle CH are provided with the low temperature side circuit 91 and the high temperature side circuit 92 as the gas injection circuit 9, respectively. This makes it possible to lower the discharge temperature of the compressors (first compressor 2 and second compressor 4) in both the low temperature cycle CL and the high temperature cycle CH.
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
(Other embodiments)
Although the embodiments of the present disclosure have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment and includes design changes and the like within a range not deviating from the gist of the present disclosure.
<付記>
 各実施形態に記載の冷凍機械は、例えば以下のように把握される。
<Additional Notes>
The refrigerating machine described in each embodiment is grasped as follows, for example.
(1)第1の態様に係る冷凍機械100は、冷凍室内の空気と第一冷媒とを熱交換させる蒸発器1、前記蒸発器1に前記第一冷媒を圧縮して供給する第一圧縮機2、及び該第一圧縮機2を通過した前記第一冷媒の圧力を下げる低温側膨張弁3を有する低温サイクルCLと、外気と第二冷媒とを熱交換させる放熱器5、及び前記放熱器5に前記第二冷媒を圧縮して供給する第二圧縮機4、及び該放熱器5を通過した前記第二冷媒の圧力を下げる高温側膨張弁6を有する高温サイクルCHと、前記第一圧縮機2から流通する前記第一冷媒と前記高温側膨張弁6から流通する前記第二冷媒とを熱交換させる中間熱交換器10と、前記低温サイクルCL、及び前記高温サイクルCHの少なくとも一方に設けられ、圧縮される前の前記第一冷媒又は前記第二冷媒を、前記第一圧縮機2、及び前記第二圧縮機4の少なくとも一方に供給するガスインジェクション回路9と、を備え、前記第一冷媒は、二酸化炭素とR32冷媒とを含む混合冷媒であり、前記第二冷媒は、二酸化炭素である。 (1) The refrigerating machine 100 according to the first aspect is an evaporator 1 that exchanges heat between the air in the refrigerating chamber and the first refrigerant, and a first compressor that compresses and supplies the first refrigerant to the evaporator 1. 2. A low-temperature cycle CL having a low-temperature side expansion valve 3 that lowers the pressure of the first refrigerant that has passed through the first compressor 2, a radiator 5 that exchanges heat between the outside air and the second refrigerant, and the radiator. A second compressor 4 that compresses and supplies the second refrigerant to 5, a high temperature cycle CH having a high temperature side expansion valve 6 that lowers the pressure of the second refrigerant that has passed through the radiator 5, and the first compression. Provided in at least one of the intermediate heat exchanger 10, the low temperature cycle CL, and the high temperature cycle CH for heat exchange between the first refrigerant flowing from the machine 2 and the second refrigerant flowing from the high temperature side expansion valve 6. A gas injection circuit 9 for supplying the first refrigerant or the second refrigerant before being compressed to at least one of the first compressor 2 and the second compressor 4 is provided. The refrigerant is a mixed refrigerant containing carbon dioxide and an R32 refrigerant, and the second refrigerant is carbon dioxide.
 上記構成によれば、冷凍機械100は、低温サイクルCL、及び高温サイクルCHと、これらの間に設けられた中間熱交換器10と、を主に備えるカスケードサイクルを構成している。これにより、第一圧縮機2、及び第二圧縮機4で必要とされる圧縮比をそれぞれ小さく抑えることができる。その結果、これら圧縮機から吐出される冷媒の温度(吐出温度)をさらに下げることができる。つまり、冷凍機械100の冷凍能力をさらに高めることができる。
 また、カスケードサイクルを用いることにより、低温サイクルCLと高温サイクルCHとで異なる種類の冷媒を用いることが可能となる。低温サイクルCLでは二酸化炭素を主成分としつつ、R32を含む混合冷媒が第一冷媒として用いられる。高温サイクルCHでは二酸化炭素が第二冷媒として用いられる。このように二酸化炭素を主として用いることにより、低GWPを実現しながらも、二酸化炭素のみを冷媒とした場合に比べて冷凍能力をさらに高めることが可能となる。また、高温サイクルCHでは、二酸化炭素のみを第二冷媒として用いることから、R32を混合した場合に比べて密度が過度に低くならない。これにより、第二圧縮機4で必要とされる圧縮比を小さく抑えることもできる。
 加えて、ガスインジェクション回路9によって、第一圧縮機2、及び第二圧縮機4の少なくとも一方に、圧縮される前の低温の第一冷媒又は第二冷媒が供給される。これにより、例えば第一圧縮機2、及び第二圧縮機4を複数段の圧縮機によって構成した場合に、これら複数段の中間位置に低温の冷媒を供給することで、最終的な冷媒の吐出温度をさらに下げることが可能となる。
According to the above configuration, the refrigerating machine 100 constitutes a cascade cycle mainly including a low temperature cycle CL, a high temperature cycle CH, and an intermediate heat exchanger 10 provided between them. As a result, the compression ratios required by the first compressor 2 and the second compressor 4 can be kept small. As a result, the temperature (discharge temperature) of the refrigerant discharged from these compressors can be further lowered. That is, the refrigerating capacity of the refrigerating machine 100 can be further increased.
Further, by using the cascade cycle, it becomes possible to use different types of refrigerants in the low temperature cycle CL and the high temperature cycle CH. In the low temperature cycle CL, a mixed refrigerant containing R32 is used as the first refrigerant while containing carbon dioxide as the main component. Carbon dioxide is used as the second refrigerant in the high temperature cycle CH. By mainly using carbon dioxide in this way, it is possible to further increase the refrigerating capacity as compared with the case where only carbon dioxide is used as a refrigerant while achieving low GWP. Further, in the high temperature cycle CH, since only carbon dioxide is used as the second refrigerant, the density is not excessively lowered as compared with the case where R32 is mixed. As a result, the compression ratio required by the second compressor 4 can be kept small.
In addition, the gas injection circuit 9 supplies at least one of the first compressor 2 and the second compressor 4 with a low-temperature first refrigerant or a second refrigerant before being compressed. As a result, for example, when the first compressor 2 and the second compressor 4 are configured by a plurality of stages of compressors, the low-temperature refrigerant is supplied to an intermediate position between the plurality of stages to finally discharge the refrigerant. It is possible to further lower the temperature.
(2)第2の態様に係る冷凍機械100では、前記第一冷媒は、16重量%以上22重量%以下のR32冷媒を含む混合冷媒である。 (2) In the refrigerating machine 100 according to the second aspect, the first refrigerant is a mixed refrigerant containing 16% by weight or more and 22% by weight or less of R32 refrigerant.
 上記構成によれば、第一冷媒として、16重量%以上22重量%以下のR32を含む二酸化炭素との混合冷媒が用いられる。これにより、GWPを150以下に抑え、国際的な規制値以下とすることが可能となる。 According to the above configuration, as the first refrigerant, a mixed refrigerant with carbon dioxide containing R32 of 16% by weight or more and 22% by weight or less is used. This makes it possible to keep the GWP below 150 and below the international regulation value.
(3)第3の態様に係る冷凍機械100では、前記第一圧縮機2、及び前記第二圧縮機4は、それぞれ低圧側のロータリー圧縮機21,41と、該ロータリー圧縮機21,41に連結された高圧側のスクロール圧縮機22,42とを含み、前記ガスインジェクション回路9は、前記スクロール圧縮機22,42の上流側に前記第一冷媒又は前記第二冷媒を供給するように構成されている。 (3) In the refrigerating machine 100 according to the third aspect, the first compressor 2 and the second compressor 4 are attached to the rotary compressors 21 and 41 on the low pressure side and the rotary compressors 21 and 41, respectively. The gas injection circuit 9 includes the connected high-pressure side scroll compressors 22 and 42, and is configured to supply the first refrigerant or the second refrigerant to the upstream side of the scroll compressors 22 and 42. ing.
 上記構成によれば、ガスインジェクション回路9は、高圧側のスクロール圧縮機22,42の上流側に冷媒を供給するように構成されている。ここで、スクロール圧縮機22,42では、ケーシングの内部を流通する冷媒が、流れ方向等の制約をあまり受けることなく圧縮室に向けて流入する構成が採られる。つまり、ロータリー圧縮機21,41に比べて、スクロール圧縮機22,42では圧縮室の外部に他の冷媒を追加しやすいと言える。これにより、ガスインジェクション回路9によってより容易かつ円滑に冷媒を追加することが可能となる。 According to the above configuration, the gas injection circuit 9 is configured to supply the refrigerant to the upstream side of the scroll compressors 22 and 42 on the high pressure side. Here, in the scroll compressors 22 and 42, a configuration is adopted in which the refrigerant flowing inside the casing flows into the compression chamber without being severely restricted by the flow direction or the like. That is, it can be said that it is easier to add another refrigerant to the outside of the compression chamber in the scroll compressors 22 and 42 as compared with the rotary compressors 21 and 41. This makes it possible to add the refrigerant more easily and smoothly by the gas injection circuit 9.
(4)第4の態様に係る冷凍機械100では、前記低温側膨張弁3、及び前記高温側膨張弁6は、それぞれ2つずつの膨張弁を有し、前記低温サイクルCL、及び前記高温サイクルCHは、前記2つの膨張弁の間にそれぞれ設けられた低温側レシーバ81、及び高温側レシーバ82をさらに備え、前記ガスインジェクション回路9は、前記低温側レシーバ81から前記第一冷媒を前記第一圧縮機2に供給する低温側回路91と、前記高温側レシーバ82から前記第二冷媒を前記第二圧縮機4に供給する高温側回路92と、を有する。 (4) In the refrigerating machine 100 according to the fourth aspect, the low temperature side expansion valve 3 and the high temperature side expansion valve 6 each have two expansion valves, the low temperature cycle CL, and the high temperature cycle. The CH further includes a low temperature side receiver 81 and a high temperature side receiver 82 respectively provided between the two expansion valves, and the gas injection circuit 9 uses the low temperature side receiver 81 to supply the first refrigerant. It has a low temperature side circuit 91 that supplies the compressor 2 and a high temperature side circuit 92 that supplies the second refrigerant from the high temperature side receiver 82 to the second compressor 4.
 上記構成によれば、低温サイクルCL、及び高温サイクルCHにそれぞれガスインジェクション回路9としての低温側回路91、及び高温側回路92が設けられている。これにより、低温サイクルCLと高温サイクルCHの双方で、圧縮機(第一圧縮機2、及び第二圧縮機4)の吐出温度を下げることが可能となる。 According to the above configuration, the low temperature cycle CL and the high temperature cycle CH are provided with the low temperature side circuit 91 and the high temperature side circuit 92 as the gas injection circuit 9, respectively. This makes it possible to lower the discharge temperature of the compressors (first compressor 2 and second compressor 4) in both the low temperature cycle CL and the high temperature cycle CH.
 本開示は、冷凍機械に関する。本開示によれば、低GWPと高い冷凍能力とを両立させることが可能な冷凍機械を提供することができる。 This disclosure relates to refrigeration machinery. According to the present disclosure, it is possible to provide a refrigerating machine capable of achieving both low GWP and high refrigerating capacity.
100 冷凍機械
1 蒸発器
2 第一圧縮機
3 低温側膨張弁
4 第二圧縮機
5 放熱器
6 高温側膨張弁
9 ガスインジェクション回路
10 中間熱交換器
21 ロータリー圧縮機
22 スクロール圧縮機
31 低温側第一膨張弁
32 低温側第二膨張弁
41 ロータリー圧縮機
42 スクロール圧縮機
61 高温側第一膨張弁
62 高温側第二膨張弁
81 低温側レシーバ
82 高温側レシーバ
91 低温側回路
92 高温側回路
CH 高温サイクル
CL 低温サイクル
P1 低温側配管
P2 高温側配管
100 Refrigerating machine 1 Evaporator 2 First compressor 3 Low temperature side expansion valve 4 Second compressor 5 Radiator 6 High temperature side expansion valve 9 Gas injection circuit 10 Intermediate heat exchanger 21 Rotary compressor 22 Scroll compressor 31 Low temperature side first One expansion valve 32 Low temperature side second expansion valve 41 Rotary compressor 42 Scroll compressor 61 High temperature side first expansion valve 62 High temperature side second expansion valve 81 Low temperature side receiver 82 High temperature side receiver 91 Low temperature side circuit 92 High temperature side circuit CH High temperature side circuit CH Cycle CL Low temperature cycle P1 Low temperature side piping P2 High temperature side piping

Claims (4)

  1.  冷凍室内の空気と第一冷媒とを熱交換させる蒸発器、前記蒸発器に前記第一冷媒を圧縮して供給する第一圧縮機、及び該第一圧縮機を通過した前記第一冷媒の圧力を下げる低温側膨張弁を有する低温サイクルと、
     外気と第二冷媒とを熱交換させる放熱器、及び前記放熱器に前記第二冷媒を圧縮して供給する第二圧縮機、及び該放熱器を通過した前記第二冷媒の圧力を下げる高温側膨張弁を有する高温サイクルと、
     前記第一圧縮機から流通する前記第一冷媒と前記高温側膨張弁から流通する前記第二冷媒とを熱交換させる中間熱交換器と、
     前記低温サイクル、及び前記高温サイクルの少なくとも一方に設けられ、圧縮される前の前記第一冷媒又は前記第二冷媒を、前記第一圧縮機、及び前記第二圧縮機の少なくとも一方に供給するガスインジェクション回路と、
    を備え、
     前記第一冷媒は、二酸化炭素とR32冷媒とを含む混合冷媒であり、前記第二冷媒は、二酸化炭素である冷凍機械。
    An evaporator that exchanges heat between the air in the freezer and the first refrigerant, a first compressor that compresses and supplies the first refrigerant to the evaporator, and the pressure of the first refrigerant that has passed through the first compressor. With a low temperature cycle with a low temperature expansion valve that lowers
    A radiator that exchanges heat between the outside air and the second refrigerant, a second compressor that compresses and supplies the second refrigerant to the radiator, and a high temperature side that lowers the pressure of the second refrigerant that has passed through the radiator. With a high temperature cycle with an expansion valve,
    An intermediate heat exchanger that exchanges heat between the first refrigerant flowing from the first compressor and the second refrigerant flowing from the high temperature side expansion valve.
    A gas provided in at least one of the low temperature cycle and the high temperature cycle to supply the first refrigerant or the second refrigerant before compression to at least one of the first compressor and the second compressor. With the injection circuit,
    Equipped with
    The first refrigerant is a mixed refrigerant containing carbon dioxide and an R32 refrigerant, and the second refrigerant is carbon dioxide, which is a refrigerating machine.
  2.  前記第一冷媒は、16重量%以上22重量%以下のR32冷媒を含む混合冷媒である請求項1に記載の冷凍機械。 The refrigerating machine according to claim 1, wherein the first refrigerant is a mixed refrigerant containing 16% by weight or more and 22% by weight or less of R32 refrigerant.
  3.  前記第一圧縮機、及び前記第二圧縮機は、それぞれ低圧側のロータリー圧縮機と、該ロータリー圧縮機に連結された高圧側のスクロール圧縮機とを含み、前記ガスインジェクション回路は、前記スクロール圧縮機の上流側に前記第一冷媒又は前記第二冷媒を供給するように構成されている請求項1又は2に記載の冷凍機械。 The first compressor and the second compressor each include a rotary compressor on the low pressure side and a scroll compressor on the high pressure side connected to the rotary compressor, and the gas injection circuit includes the scroll compression. The refrigerating machine according to claim 1 or 2, which is configured to supply the first refrigerant or the second refrigerant to the upstream side of the machine.
  4.  前記低温側膨張弁、及び前記高温側膨張弁は、それぞれ2つずつの膨張弁を有し、
     前記低温サイクル、及び前記高温サイクルは、前記2つの膨張弁の間にそれぞれ設けられた低温側レシーバ、及び高温側レシーバをさらに備え、
     前記ガスインジェクション回路は、
     前記低温側レシーバから前記第一冷媒を前記第一圧縮機に供給する低温側回路と、
     前記高温側レシーバから前記第二冷媒を前記第二圧縮機に供給する高温側回路と、
    を有する請求項1から3のいずれか一項に記載の冷凍機械。
    The low temperature side expansion valve and the high temperature side expansion valve each have two expansion valves.
    The low temperature cycle and the high temperature cycle further include a low temperature side receiver and a high temperature side receiver provided between the two expansion valves, respectively.
    The gas injection circuit is
    A low-temperature side circuit that supplies the first refrigerant from the low-temperature side receiver to the first compressor,
    A high-temperature side circuit that supplies the second refrigerant from the high-temperature side receiver to the second compressor,
    The refrigerating machine according to any one of claims 1 to 3.
PCT/JP2021/033176 2020-09-29 2021-09-09 Refrigeration machine WO2022070828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21875130.3A EP4198416A4 (en) 2020-09-29 2021-09-09 Refrigeration machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163122 2020-09-29
JP2020163122A JP7391811B2 (en) 2020-09-29 2020-09-29 refrigeration machine

Publications (1)

Publication Number Publication Date
WO2022070828A1 true WO2022070828A1 (en) 2022-04-07

Family

ID=80950385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033176 WO2022070828A1 (en) 2020-09-29 2021-09-09 Refrigeration machine

Country Status (3)

Country Link
EP (1) EP4198416A4 (en)
JP (1) JP7391811B2 (en)
WO (1) WO2022070828A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543469B2 (en) 1999-12-27 2010-09-15 ダイキン工業株式会社 Refrigeration equipment
US20110120179A1 (en) * 2009-11-20 2011-05-26 Sim Won Chin Heat pump type cooling/heating apparatus
JP2012007825A (en) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd Heat pump water heater
WO2014080436A1 (en) * 2012-11-20 2014-05-30 三菱電機株式会社 Refrigeration device
JP2017044420A (en) * 2015-08-27 2017-03-02 三菱重工業株式会社 Two-stage compression freezing system
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
JP2020163122A (en) 2020-03-10 2020-10-08 株式会社大一商会 Game machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643988B1 (en) * 2017-06-23 2022-03-30 Daikin Industries, Ltd. Heat transfer system
JP7193706B2 (en) * 2018-10-02 2022-12-21 ダイキン工業株式会社 refrigeration cycle equipment
JP7189423B2 (en) * 2018-10-02 2022-12-14 ダイキン工業株式会社 refrigeration cycle equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543469B2 (en) 1999-12-27 2010-09-15 ダイキン工業株式会社 Refrigeration equipment
US20110120179A1 (en) * 2009-11-20 2011-05-26 Sim Won Chin Heat pump type cooling/heating apparatus
JP2012007825A (en) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd Heat pump water heater
WO2014080436A1 (en) * 2012-11-20 2014-05-30 三菱電機株式会社 Refrigeration device
JP2017044420A (en) * 2015-08-27 2017-03-02 三菱重工業株式会社 Two-stage compression freezing system
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device
JP2020163122A (en) 2020-03-10 2020-10-08 株式会社大一商会 Game machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4198416A4

Also Published As

Publication number Publication date
EP4198416A4 (en) 2024-01-10
JP7391811B2 (en) 2023-12-05
JP2022055607A (en) 2022-04-08
EP4198416A1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP5627417B2 (en) Dual refrigeration equipment
US20100147006A1 (en) Refrigerant system with cascaded circuits and performance enhancement features
JP4833330B2 (en) Supercritical vapor compression refrigeration cycle, air conditioning equipment and heat pump water heater using the same
US20110094259A1 (en) Multi-stage refrigerant system with different compressor types
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2009204244A (en) Refrigerating device
JP2011214753A (en) Refrigerating device
TWI564524B (en) Refrigeration cycle
JP2007263488A (en) Refrigerating device
WO2015063837A1 (en) Refrigeration cycle device
WO2022070828A1 (en) Refrigeration machine
JP7189423B2 (en) refrigeration cycle equipment
JP5195302B2 (en) Refrigeration air conditioner
JP2007263487A (en) Refrigerating device
US11927371B2 (en) Two stage single gas cooler HVAC cycle
JP6765086B2 (en) Refrigeration equipment
JP2012107805A (en) Refrigerating device
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JP2017129320A (en) Freezer
JP3894222B2 (en) Refrigeration equipment
WO2022013975A1 (en) Cold heat source unit and refrigeration cycle device
US7722780B2 (en) Refrigerant composition and process for preparation thereof
JP2010112618A (en) Air conditioning device
WO2020211184A1 (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021875130

Country of ref document: EP

Effective date: 20230315

NENP Non-entry into the national phase

Ref country code: DE