JP4543469B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4543469B2
JP4543469B2 JP36997399A JP36997399A JP4543469B2 JP 4543469 B2 JP4543469 B2 JP 4543469B2 JP 36997399 A JP36997399 A JP 36997399A JP 36997399 A JP36997399 A JP 36997399A JP 4543469 B2 JP4543469 B2 JP 4543469B2
Authority
JP
Japan
Prior art keywords
refrigerant
amount
less
weight
optimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36997399A
Other languages
Japanese (ja)
Other versions
JP2001183020A (en
Inventor
繁治 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP36997399A priority Critical patent/JP4543469B2/en
Publication of JP2001183020A publication Critical patent/JP2001183020A/en
Application granted granted Critical
Publication of JP4543469B2 publication Critical patent/JP4543469B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Description

【0001】
【発明の属する技術分野】
この発明は、R32(化学式CH22)冷媒を含む作動媒体を用いた冷凍装置に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
冷媒を用いたヒートポンプ方式の冷凍装置において、オゾン層破壊係数やGWP(地球温暖化係数)が大きいHCFC系冷媒がフロン規制の対象となったことから、その代替冷媒として、オゾン層を破壊しないGWPの高いHFC系冷媒としてR410A(R32:R125=50:50)冷媒が用いられている。このR410A冷媒を用いた冷凍装置では、R22と同等のCOP(成績係数)が得られるものが製品化されている。ところが、このR410A冷媒では、熱運搬能力が低いために十分な能力を得るために冷媒充填量を多くしなければならず、容積の大きなアキュームレータおよびレシーバが必要なため、コストが高くつくと共に、アキュームレータやレシーバの配置を考慮しなければならないため、小型化が容易にできないという問題がある。
【0003】
そこで、この発明の目的は、R32冷媒を含む作動媒体を用いて、コスト低減と小型化ができる冷凍装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するため、請求項1の冷凍装置は、
圧縮機,凝縮器,減圧手段および蒸発器が環状に接続された冷媒回路に、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
アキュームレータを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴としている。
【0005】
本出願人は、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を用いた冷凍装置において、R32冷媒がR410A冷媒よりも少ない冷媒充填量で高いCOPが得られ、さらに、冷房時の最適冷媒量と暖房時の最適冷媒量との差も小さいということを実験により見出した。
【0006】
したがって、上記請求項1の冷凍装置によれば、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、R410A冷媒に比べて熱搬送能力が高く、少ない冷媒充填量で十分な能力が得られると共に、R410A冷媒に比べて冷房時の最適冷媒量と暖房時の最適冷媒量との差が小さいので、熱交換器容量等のシステム全体の容量調整によりアキュームレータ自体がなくとも冷媒量を調整できる。これにより、アキュームレータを無くすことが可能となり、コスト低減と小型化ができる。(ここに、アキュームレータとは、圧縮機に付属しているアキュームではなく、冷媒調整用の低圧レシーバ型の製品側アキュームレータを言う。)
【0007】
また、請求項2の冷凍装置は、
圧縮機,凝縮器,減圧手段および蒸発器が環状に接続された冷媒回路に、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
レシーバを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴としている。
【0008】
上記請求項2の冷凍装置によれば、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、R410A冷媒に比べて熱搬送能力が高く、少ない冷媒充填量で十分な能力が得られると共に、R410A冷媒に比べて冷房時の最適冷媒量と暖房時の最適冷媒量との差が小さいので、熱交換器容量等のシステム全体の容量調整によりレシーバ自体がなくとも冷媒量を調整できる。これにより、レシーバを無くすことが可能となり、コスト低減と小型化ができる。
【0009】
また、請求項3の冷凍装置は、
圧縮機,凝縮器,減圧手段および蒸発器が環状に接続された冷媒回路に、R32を少なくとも70重量%以上含かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
アキュームレータおよびレシーバを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴としている。
【0010】
上記請求項3の冷凍装置によれば、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、R410A冷媒に比べて熱搬送能力が高く、少ない冷媒充填量で十分な能力が得られると共に、R410A冷媒に比べて冷房時の最適冷媒量と暖房時の最適冷媒量との差が小さいので、熱交換器容量等のシステム全体の容量調整によりアキュームレータおよびレシーバ自体がなくとも冷媒量を調整できる。これにより、アキュームレータおよびレシーバを無くすことが可能となり、コスト低減と小型化ができる。
【0011】
また、請求項4の冷凍装置は、請求項1乃至3のいずれか1つの冷凍装置において、冷凍能力が4kW以下であることを特徴としている。
【0012】
上記請求項4の冷凍装置によれば、冷凍能力が4kW以下であれば、確実にアキュームレータおよびレシーバ(空気調和機における冷房/暖房の調節用のモジュレータも含む)を無くすことができる。
【0013】
【発明の実施の形態】
以下、この発明の冷凍装置を図示の実施の形態により詳細に説明する。
【0014】
図1はこの発明の実施の一形態の冷凍装置としてのヒートポンプ式空気調和機の概略構成を示す回路図であり、1は圧縮機、2は上記圧縮機1の吐出側に一端が接続された四路切換弁、3は上記四路切換弁2の他端に一端が接続された室外熱交換器、4は上記室外熱交換器3の他端に一端が接続された電動膨張弁、5は上記電動膨張弁4の他端に一端が接続され、他端が四路切換弁2を介して圧縮機1の吸入側に接続された室内熱交換器である。上記空気調和機は、圧縮機1の吐出管温度を検出する温度センサ11と、室外熱交換器3の冷媒温度を検出する温度センサ12と、外気温度を検出する温度センサ13と、室内熱交換器5の冷媒温度を検出する温度センサ14と、室内温度を検出する温度センサ15と、上記圧縮機1の吸込側の冷媒温度を検出する温度センサ16と、上記温度センサ11〜16からの信号を受けて、圧縮機1,電動膨張弁4等を制御する制御装置7とを備えている。また、上記電動膨張弁4と室内熱交換器5との間に閉鎖弁21を配設すると共に、室内熱交換器5と四路切換弁2との間に閉鎖弁24を配設している。
【0015】
上記圧縮機1,四路切換弁2,室外熱交換器3,電動膨張弁4,制御装置7,閉鎖弁21,閉鎖弁24,温度センサ11〜13,温度センサ16および室外ファン(図示せず)で室外ユニット10を構成すると共に、室内熱交換器5,温度センサ14,温度センサ15および室内ファン(図示せず)で室内ユニット20を構成している。
【0016】
上記構成の空気調和機では、R32冷媒と冷凍機油とからなる作動媒体を用いている。そして、冷房運転時、四路切換弁2を実線の切換え位置に切り換えて、圧縮機1を起動すると、圧縮機1から吐出された高圧冷媒が四路切換弁2を通って室外熱交換器3に入る。そして、上記室外熱交換器3で凝縮した冷媒が電動膨張弁4で減圧された後、連絡配管22を通って室内熱交換器5に入る。上記室内熱交換器5で蒸発した冷媒が連絡配管23,四路切換弁2を介して圧縮機1の吸入側に戻る。こうして、上記圧縮機1,室外熱交換器3,電動膨張弁4および室内熱交換器5で構成された冷媒回路をR32冷媒を含む作動媒体が循環して、冷凍サイクルを実行する。そして、室内ファン(図示せず)により室内熱交換器5を介して室内空気を循環させることにより室内を冷房する。
【0017】
本出願人は、R410A,R32冷媒について冷媒充填量に対するCOPを実験により調べた。この実験は、JISC9612に準拠した冷房標準条件および暖房標準条件で行った。図2はその実験の結果を示しており、図2において、横軸が冷媒充填量であり、縦軸がCOP比(R410AのCOPに対するR32のCOPの比率)である。図2に示すように、R410A冷媒では、冷房時と暖房時でCOPが最大となる最適冷媒量が異なり、暖房時の冷媒充填量が少ない。一方、R32冷媒では、冷房時と暖房時でCOPが最大となる最適冷媒量が異なり、暖房時の冷媒充填量が少ないと共に、いずれの最適冷媒量もR410A冷媒より少なく、かつCOPが高くなった。さらに、R32冷媒は、冷房時と暖房時でCOPが最大となる最適冷媒量の差がR410A冷媒よりも小さいことが分かった。
【0018】
また、R410A,R22およびR32冷媒において空気調和機の冷凍能力に対するアキュームレータおよびレシーバに必要な最小容積を実験により調べた。その実験の結果、図3に示すように、冷凍能力が小さくなるほど、必要な冷媒充填量が少なくなるので、R410A,R22およびR32冷媒のいずれもアキュームレータおよびレシーバの容積は小さくなるが、R410A,R22冷媒よりもR32冷媒の方がアキュームレータおよびレシーバの容積は小さくなった。そして、図3から明らかなように、R32冷媒を用いた空気調和機では、冷凍能力が4kW以上では、通常は小〜中型の空気調和機にアキュームレータおよびレシーバが要るが、熱交換器容量等のシステム全体の容量調整により、アキュームレータおよびレシーバ自体を備えなくても、冷媒量調整を可能にでき得る。つまり、空気調和機を可及的にアキュームレータ,レシーバレスの構成にすることができる。
【0019】
したがって、上記空気調和機によれば、R32冷媒を用いて、アキュームレータおよびレシーバを無くすことが可能となり、コスト低減と小型化が図ることができる。
【0020】
また、冷凍能力が4kW以下であれば、確実にアキュームレータおよびレシーバを無くすことができる。
【0021】
上記実施の形態では、冷凍装置として空気調和機について説明したが、他の冷凍装置にこの発明を適用してもよい。
【0022】
また、上記実施の形態では、冷凍装置としてR32冷媒を用いた空気調和機について説明したが、冷凍装置に用いられる冷媒はこれに限らず、R32を少なくとも70重量%以上含む混合冷媒でもよい。例えば、R32冷媒とCO2との混合冷媒であって、CO2に対してR32冷媒が70重量%以上かつ90重量%以下の混合冷媒でもよし、R32冷媒とR22冷媒との混合冷媒であって、R22冷媒に対してR32冷媒が70重量%以上かつ90重量%以下の混合冷媒でもよい。
【0023】
【発明の効果】
以上より明らかなように、この発明の冷凍装置によれば、熱搬送能力が高いR32冷媒またはR32を少なくとも70重量%以上含む混合冷媒を用いることによって、R410A冷媒に比べて少ない冷媒充填量で十分な能力が得られると共に、R410A冷媒に比べて冷房時の最適冷媒量と暖房時の最適冷媒量との差が少ないので、アキュームレータやレシーバを無くすことができ、コスト低減と小型化を図ることができる。また、冷媒充填量を低減できるため、直接的な地球温暖化の値も低減できるため、R32の低GWP化および省エネルギー化による地球環境対応が可能な冷凍装置を容易に提供できるメリットがある。
【0024】
また、冷凍能力が4kW以下にすることによって、確実にアキュームレータやレシーバを無くすことができる。
【図面の簡単な説明】
【図1】 図1はこの発明の実施の一形態の冷凍装置としての空気調和機の概略構成を示す回路図である。
【図2】 図2はR410A冷媒とR32冷媒についての冷房時と暖房時の冷媒充填量に対するCOPを示す図である。
【図3】 図3はR410A,R22冷媒とR32冷媒の冷凍能力に対するアキュームレータおよびレシーバの容積を示す図である。
【符号の説明】
1…圧縮機、2…四路切換弁、
3…室外熱交換器、4…電動膨張弁、
5…室外熱交換器、7…制御装置、
10…室外ユニット、20…室内ユニット。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus using a working medium containing an R32 (chemical formula CH 2 F 2 ) refrigerant.
[0002]
[Background Art and Problems to be Solved by the Invention]
HCFC refrigerants with large ozone depletion coefficient and GWP (global warming potential) are subject to CFC regulation in heat pump refrigeration systems using refrigerants, so GWP that does not destroy the ozone layer as an alternative refrigerant R410A (R32: R125 = 50: 50) refrigerant is used as a high HFC refrigerant. In the refrigeration apparatus using the R410A refrigerant, a product that can obtain a COP (coefficient of performance) equivalent to that of R22 has been commercialized. However, since the R410A refrigerant has a low heat carrying capacity, the refrigerant charging amount must be increased in order to obtain sufficient capacity, and a large-capacity accumulator and receiver are required. Since the arrangement of the receiver and the receiver must be taken into consideration, there is a problem that the size cannot be easily reduced.
[0003]
Therefore, an object of the present invention is to provide a refrigeration apparatus that can reduce cost and size by using a working medium containing an R32 refrigerant.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the refrigeration apparatus of claim 1 comprises:
Compressor, a condenser, a pressure reducing means and the refrigerant circuit evaporator are annularly connected, a refrigeration apparatus using a refrigerant mixture of R 32 contains at least less than 70% by weight or more and 100 wt%,
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation during the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation during the cooling operation,
In the refrigerant circuit having no accumulator, so that the small filling amount than the amount filled when using the R410 refrigerant, it was filled with refrigerant mixture over a Symbol R32 contains at least less than 70% by weight or more and 100 wt% It is characterized by.
[0005]
In the refrigeration apparatus using the mixed refrigerant containing at least 70% by weight and less than 100 % by weight of R 32 , the present applicant can obtain a high COP with a smaller refrigerant charge amount than that of the R410A refrigerant. It was found through experiments that the difference between the optimum refrigerant amount and the optimum refrigerant amount during heating was small.
[0006]
Therefore, according to the refrigeration apparatus of claim 1, the mixed refrigerant containing at least 70 wt% and less than 100 wt% of R 32 has a higher heat transfer capability than the R410A refrigerant, and a sufficient capacity with a small refrigerant charge amount. Since the difference between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating is small compared to the R410A refrigerant, the refrigerant amount can be reduced without adjusting the accumulator itself by adjusting the capacity of the entire system such as the capacity of the heat exchanger. Can be adjusted. As a result, the accumulator can be eliminated, and the cost can be reduced and the size can be reduced. (Here, the accumulator is not an accumulator attached to the compressor, but a low-pressure receiver type product-side accumulator for refrigerant adjustment.)
[0007]
The refrigeration apparatus according to claim 2 is:
Compressor, a condenser, a pressure reducing means and the refrigerant circuit evaporator is connected to an annular, a refrigeration apparatus using a refrigerant mixture of R 32 contains at least less than 70% by weight or more and 100 wt%,
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation during the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation during the cooling operation,
In the refrigerant circuit having no receiver, so that the small filling amount than the amount filled when using the R410 refrigerant, it was filled with refrigerant mixture over a Symbol R32 contains at least less than 70% by weight or more and 100 wt% It is characterized by.
[0008]
According to the refrigeration apparatus of the claim 2, mixed refrigerant R 32 contains at least less than 70% by weight or more and 100% by weight, high heat-carrying ability as compared with R410A refrigerant, obtained sufficient capacity with less refrigerant charge In addition, since the difference between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating is small compared to the R410A refrigerant, the refrigerant amount can be adjusted without the receiver itself by adjusting the capacity of the entire system such as the capacity of the heat exchanger. . As a result, the receiver can be eliminated, and the cost can be reduced and the size can be reduced.
[0009]
The refrigeration apparatus according to claim 3 is:
Compressor, a condenser, a pressure reducing means and the refrigerant circuit evaporator is connected to an annular, a refrigeration system using a mixed refrigerant containing less than a R 32 at least 70% by weight or more free and 100% by weight,
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation at the time of the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation at the time of the cooling operation,
In the refrigerant circuit having no accumulator and receiver filling, so that the small filling amount than the filling amount when using the R410 refrigerant, a mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100 wt% It is characterized in that the.
[0010]
According to the refrigeration apparatus of the third aspect, the mixed refrigerant of R 32 contains at least less than 70% by weight or more and 100% by weight, high heat-carrying ability as compared with R410A refrigerant, obtained sufficient capacity with less refrigerant charge In addition, since the difference between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating is small compared to the R410A refrigerant, the refrigerant amount can be reduced without adjusting the accumulator and receiver itself by adjusting the capacity of the entire system such as the heat exchanger capacity. Can be adjusted. As a result, it is possible to eliminate the accumulator and the receiver, and the cost can be reduced and the size can be reduced.
[0011]
A refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any one of the first to third aspects, wherein the refrigeration capacity is 4 kW or less.
[0012]
According to the refrigeration apparatus of the fourth aspect, if the refrigeration capacity is 4 kW or less, the accumulator and the receiver (including the modulator for adjusting the cooling / heating in the air conditioner) can be surely eliminated.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the refrigeration apparatus of the present invention will be described in detail with reference to the illustrated embodiments.
[0014]
FIG. 1 is a circuit diagram showing a schematic configuration of a heat pump type air conditioner as a refrigeration apparatus according to an embodiment of the present invention. 1 is a compressor, 2 is one end connected to the discharge side of the compressor 1 The four-way switching valve 3 is an outdoor heat exchanger having one end connected to the other end of the four-way switching valve 2, 4 is an electric expansion valve having one end connected to the other end of the outdoor heat exchanger 3, The indoor heat exchanger has one end connected to the other end of the electric expansion valve 4 and the other end connected to the suction side of the compressor 1 via the four-way switching valve 2. The air conditioner includes a temperature sensor 11 that detects a discharge pipe temperature of the compressor 1, a temperature sensor 12 that detects a refrigerant temperature of the outdoor heat exchanger 3, a temperature sensor 13 that detects an outdoor air temperature, and indoor heat exchange. A temperature sensor 14 for detecting the refrigerant temperature of the compressor 5, a temperature sensor 15 for detecting the indoor temperature, a temperature sensor 16 for detecting the refrigerant temperature on the suction side of the compressor 1, and signals from the temperature sensors 11 to 16. And a control device 7 for controlling the compressor 1, the electric expansion valve 4 and the like. In addition, a closing valve 21 is disposed between the electric expansion valve 4 and the indoor heat exchanger 5, and a closing valve 24 is disposed between the indoor heat exchanger 5 and the four-way switching valve 2. .
[0015]
The compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the electric expansion valve 4, the control device 7, the closing valve 21, the closing valve 24, the temperature sensors 11 to 13, the temperature sensor 16, and the outdoor fan (not shown) ) Constitutes the outdoor unit 10, and the indoor unit 20 is constituted by the indoor heat exchanger 5, the temperature sensor 14, the temperature sensor 15, and an indoor fan (not shown).
[0016]
The air conditioner having the above configuration uses a working medium composed of R32 refrigerant and refrigeration oil. During the cooling operation, when the four-way switching valve 2 is switched to the solid line switching position and the compressor 1 is started, the high-pressure refrigerant discharged from the compressor 1 passes through the four-way switching valve 2 and the outdoor heat exchanger 3. to go into. The refrigerant condensed in the outdoor heat exchanger 3 is decompressed by the electric expansion valve 4 and then enters the indoor heat exchanger 5 through the communication pipe 22. The refrigerant evaporated in the indoor heat exchanger 5 returns to the suction side of the compressor 1 through the connection pipe 23 and the four-way switching valve 2. Thus, the working medium containing the R32 refrigerant circulates in the refrigerant circuit constituted by the compressor 1, the outdoor heat exchanger 3, the electric expansion valve 4, and the indoor heat exchanger 5, and the refrigeration cycle is executed. And indoor air is circulated by circulating indoor air via the indoor heat exchanger 5 with an indoor fan (not shown).
[0017]
The present applicant examined the COP with respect to the refrigerant filling amount by experiment for the R410A and R32 refrigerants. This experiment was performed under the cooling standard condition and the heating standard condition according to JISC9612. FIG. 2 shows the result of the experiment. In FIG. 2, the horizontal axis represents the refrigerant charge amount, and the vertical axis represents the COP ratio (ratio of R32 COP to R410A COP). As shown in FIG. 2, in the R410A refrigerant, the optimum refrigerant amount that maximizes the COP differs between cooling and heating, and the refrigerant charging amount during heating is small. On the other hand, with the R32 refrigerant, the optimum refrigerant amount that maximizes the COP differs between cooling and heating, the refrigerant charging amount during heating is small, and the optimum refrigerant amount is less than the R410A refrigerant, and the COP is high. . Furthermore, it was found that the R32 refrigerant has a smaller difference in the optimum refrigerant amount that maximizes the COP during cooling and heating than the R410A refrigerant.
[0018]
Moreover, the minimum volume required for the accumulator and the receiver with respect to the refrigerating capacity of the air conditioner in the R410A, R22 and R32 refrigerants was examined by experiments. As a result of the experiment, as shown in FIG. 3, the smaller the refrigeration capacity, the smaller the required refrigerant charging amount. Therefore, the R410A, R22 and R32 refrigerants all have smaller accumulator and receiver volumes, but R410A, R22. The volume of the accumulator and receiver was smaller in the R32 refrigerant than in the refrigerant. As apparent from FIG. 3, in an air conditioner using R32 refrigerant, an accumulator and a receiver are usually required for a small to medium air conditioner when the refrigerating capacity is 4 kW or more. By adjusting the capacity of the entire system, it is possible to adjust the refrigerant amount without providing an accumulator and receiver itself. That is, the air conditioner can be configured as an accumulator and receiver-less as much as possible.
[0019]
Therefore, according to the air conditioner, it is possible to eliminate the accumulator and the receiver using the R32 refrigerant, and the cost can be reduced and the size can be reduced.
[0020]
Further, if the refrigerating capacity is 4 kW or less, the accumulator and the receiver can be surely eliminated.
[0021]
In the above embodiment, the air conditioner has been described as the refrigeration apparatus. However, the present invention may be applied to other refrigeration apparatuses.
[0022]
Moreover, although the said embodiment demonstrated the air conditioner using R32 refrigerant | coolant as a freezing apparatus, the refrigerant used for a freezing apparatus is not restricted to this, The mixed refrigerant | coolant containing at least 70 weight% or more of R32 may be sufficient. For example, it is a mixed refrigerant of R32 refrigerant and CO 2 , wherein the R32 refrigerant may be 70 wt% or more and 90 wt% or less of CO 2 , or a mixed refrigerant of R32 refrigerant and R22 refrigerant. A mixed refrigerant in which the R32 refrigerant is 70 wt% or more and 90 wt% or less with respect to the R22 refrigerant may be used.
[0023]
【The invention's effect】
As is clear from the above, according to the refrigeration apparatus of the present invention, by using an R32 refrigerant having a high heat transfer capability or a mixed refrigerant containing at least 70% by weight or more of R32, a smaller refrigerant charging amount than the R410A refrigerant is sufficient. As compared with the R410A refrigerant, the difference between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating is small, so accumulators and receivers can be eliminated, and cost reduction and downsizing can be achieved. it can. In addition, since the amount of refrigerant charged can be reduced, the value of direct global warming can also be reduced. Therefore, there is an advantage that it is possible to easily provide a refrigeration apparatus that can cope with the global environment by reducing the GWP of R32 and saving energy.
[0024]
Further, by setting the refrigeration capacity to 4 kW or less, the accumulator and the receiver can be surely eliminated.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a schematic configuration of an air conditioner as a refrigeration apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing COP with respect to the refrigerant charge amount during cooling and heating for R410A refrigerant and R32 refrigerant.
FIG. 3 is a diagram showing the volume of the accumulator and receiver with respect to the refrigerating capacity of R410A, R22 refrigerant and R32 refrigerant.
[Explanation of symbols]
1 ... compressor, 2 ... four-way switching valve,
3 ... outdoor heat exchanger, 4 ... electric expansion valve,
5 ... outdoor heat exchanger, 7 ... control device,
10: outdoor unit, 20: indoor unit.

Claims (4)

圧縮機(1),凝縮器(3),減圧手段(4)および蒸発器(5)が環状に接続された冷媒回路に、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
アキュームレータを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴とする冷凍装置。
Compressor (1), a condenser (3), the pressure reducing means (4) and an evaporator (5) is a refrigerant circuit connected to the annular, the mixed refrigerant of R 32 contains at least less than 70% by weight or more and 100 wt% A refrigeration unit used,
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation during the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation during the cooling operation,
In the refrigerant circuit having no accumulator, so that the small filling amount than the amount filled when using the R410 refrigerant, it was filled with refrigerant mixture over a Symbol R32 we contain at least less than 70% by weight or more and 100 wt% A refrigeration apparatus characterized by.
圧縮機(1),凝縮器(3),減圧手段(4)および蒸発器(5)が環状に接続された冷媒回路に、R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
レシーバを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴とする冷凍装置。
Compressor (1), a condenser (3), the pressure reducing means (4) and an evaporator (5) is a refrigerant circuit connected to the annular, the mixed refrigerant of R 32 contains at least less than 70% by weight or more and 100 wt% A refrigeration unit used,
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation during the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation during the cooling operation,
In the refrigerant circuit having no receiver, so that the small filling amount than the amount filled when using the R410 refrigerant, it was filled with refrigerant mixture over a Symbol R32 contains at least less than 70% by weight or more and 100 wt% A refrigeration apparatus characterized by.
圧縮機(1),凝縮器(3),減圧手段(4)および蒸発器(5)が環状に接続された冷媒回路に、R32を少なくとも70重量%以上含かつ100重量%未満含む混合冷媒を用いた冷凍装置であって、
上記冷媒回路は、冷房サイクルと暖房サイクルを切り換え可能な冷媒回路であり、
記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒は、上記R32とCO との混合冷媒であって、R410冷媒よりも熱運搬能力が高く、かつ、上記R410冷媒を用いたときの冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差よりも、冷房運転時の最適冷媒量と暖房運転時の最適冷媒量との差が小さい混合冷媒であり
アキュームレータおよびレシーバを有しない上記冷媒回路に、上記R410冷媒を用いたときの充填量よりも少ない充填量になるように、上記R32を少なくとも70重量%以上かつ100重量%未満含む混合冷媒を充填したことを特徴とする冷凍装置。
Compressor (1), a condenser (3), decompression means (4) and an evaporator (5) is a refrigerant circuit connected to the annular, mixed refrigerant containing less than a R 32 at least 70% by weight or more free and 100% by weight A refrigeration apparatus using
The refrigerant circuit is a refrigerant circuit capable of switching between a cooling cycle and a heating cycle,
Mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100% by weight, a mixed refrigerant of the R32 and CO 2, high thermal carrying capacity than R410 refrigerant, and, using the above R410 refrigerant than the difference between the optimum refrigerant amount and the optimum amount of refrigerant during the heating operation during the cooling operation time, an optimal amount of refrigerant and mixed refrigerant difference is less between the optimum amount of refrigerant during the heating operation during the cooling operation,
In the refrigerant circuit having no accumulator and receiver filling, so that the small filling amount than the filling amount when using the R410 refrigerant, a mixed refrigerant over Symbol R32 contains at least less than 70% by weight or more and 100 wt% A refrigeration apparatus characterized by that.
請求項1乃至3のいずれか1つに記載の冷凍装置において、
冷凍能力が4kW以下であることを特徴とする冷凍装置。
The refrigeration apparatus according to any one of claims 1 to 3,
A refrigeration apparatus having a refrigeration capacity of 4 kW or less.
JP36997399A 1999-12-27 1999-12-27 Refrigeration equipment Expired - Lifetime JP4543469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36997399A JP4543469B2 (en) 1999-12-27 1999-12-27 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36997399A JP4543469B2 (en) 1999-12-27 1999-12-27 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001183020A JP2001183020A (en) 2001-07-06
JP4543469B2 true JP4543469B2 (en) 2010-09-15

Family

ID=18495768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36997399A Expired - Lifetime JP4543469B2 (en) 1999-12-27 1999-12-27 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4543469B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044692A1 (en) 2017-08-31 2019-03-07 川崎重工業株式会社 Articulated robot
WO2022070828A1 (en) 2020-09-29 2022-04-07 三菱重工サーマルシステムズ株式会社 Refrigeration machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7080522B2 (en) * 2000-01-04 2006-07-25 Daikin Industries, Ltd. Car air conditioner and car with its conditioner
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP2006125789A (en) * 2004-11-01 2006-05-18 Fuji Electric Holdings Co Ltd Cooling device and automatic vending machine therewith
JP5759696B2 (en) 2010-09-28 2015-08-05 出光興産株式会社 Lubricating oil composition for compression refrigerator
JP5848903B2 (en) 2011-07-01 2016-01-27 出光興産株式会社 Lubricating oil composition for compression refrigerator
JP2013014673A (en) 2011-07-01 2013-01-24 Idemitsu Kosan Co Ltd Lubricant composition for compression type refrigerator
JP5536817B2 (en) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 Refrigeration cycle equipment
CN103868311A (en) * 2012-12-14 2014-06-18 无锡艾科瑞思产品设计与研究有限公司 Refrigerator anti-theft frame

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139833A (en) * 1993-11-17 1995-06-02 Daikin Ind Ltd Air conditioner
JPH07318179A (en) * 1994-05-26 1995-12-08 Toshiba Corp Sealed compressor, and freezer and air conditioner including the compressor
JPH10170081A (en) * 1996-12-11 1998-06-26 Toshiba Corp Air conditioner
JPH10267436A (en) * 1997-01-21 1998-10-09 Mitsubishi Electric Corp Refrigerating air-conditioning device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463754A (en) * 1987-09-01 1989-03-09 Nippon Denso Co Chilling unit for car
JPH08296912A (en) * 1995-04-24 1996-11-12 Matsushita Refrig Co Ltd Multi-chamber heating/cooling air-conditioner
JPH11201573A (en) * 1998-01-08 1999-07-30 Matsushita Electric Ind Co Ltd Multiroom type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07139833A (en) * 1993-11-17 1995-06-02 Daikin Ind Ltd Air conditioner
JPH07318179A (en) * 1994-05-26 1995-12-08 Toshiba Corp Sealed compressor, and freezer and air conditioner including the compressor
JPH10170081A (en) * 1996-12-11 1998-06-26 Toshiba Corp Air conditioner
JPH10267436A (en) * 1997-01-21 1998-10-09 Mitsubishi Electric Corp Refrigerating air-conditioning device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044692A1 (en) 2017-08-31 2019-03-07 川崎重工業株式会社 Articulated robot
KR20200040814A (en) 2017-08-31 2020-04-20 카와사키 주코교 카부시키 카이샤 Articulated robot
WO2022070828A1 (en) 2020-09-29 2022-04-07 三菱重工サーマルシステムズ株式会社 Refrigeration machine

Also Published As

Publication number Publication date
JP2001183020A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
US7302807B2 (en) Refrigerating cycle device
EP2813784B1 (en) Air conditioner
US8899067B2 (en) Refrigerating apparatus
US8984901B2 (en) Heat pump system
US9625187B2 (en) Combined air-conditioning and hot-water supply system
CN100419344C (en) Air conditioner
US20130233008A1 (en) Air-conditioning apparatus
JP4937244B2 (en) Heat pump device and heat pump water heater and air conditioner equipped with the same
JP5409715B2 (en) Air conditioner
JP4543469B2 (en) Refrigeration equipment
JP6289734B2 (en) Air conditioning and hot water supply complex system
JP3352469B2 (en) Air conditioner
JP3054564B2 (en) Air conditioner
JP4202505B2 (en) Vapor compression refrigeration cycle
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2001248922A (en) Refrigeration unit
JP3334601B2 (en) Air conditioner with natural circulation
JPH09273839A (en) Refrigerating cycle
WO2013088734A1 (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP3328594B2 (en) Thermal storage refrigeration cycle apparatus and control method thereof
JP2001183019A (en) Refrigerating device
CA2972210C (en) Mechanical subcooling of transcritical r744 refrigeration systems using separate r-744 or other refrigerants units for mechanical subcooling and as a heat pump for heat reclaim purposes
Feng et al. Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature With Low Pressure Low GWP Fluid
JPH06317358A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4543469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

EXPY Cancellation because of completion of term