JPH06317358A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH06317358A
JPH06317358A JP10646093A JP10646093A JPH06317358A JP H06317358 A JPH06317358 A JP H06317358A JP 10646093 A JP10646093 A JP 10646093A JP 10646093 A JP10646093 A JP 10646093A JP H06317358 A JPH06317358 A JP H06317358A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
pressure
outlet
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10646093A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsushima
弘章 松嶋
Kazuhiro Endo
和広 遠藤
Masayuki Nonaka
正之 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10646093A priority Critical patent/JPH06317358A/en
Publication of JPH06317358A publication Critical patent/JPH06317358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve refrigerating capacity at the time of a low temperature by providing an auxiliary heat exchanger for heat exchanging refrigerant between a first pressure reducing unit and a second pressure reducing unit with refrigerant of an outlet of an evaporator. CONSTITUTION:An auxiliary heat exchanger 7 for heat exchanging refrigerant between a first pressure reducing unit (capillary tube) 3 and a second pressure reducing unit (motor-driven expansion valve) 4 with refrigerant of an outlet of an evaporator 5 thereby to cool the refrigerant between the unit 3 and the unit 4 with the refrigerant of the outlet of the evaporator 5, and an enthalpy is reduced. Accordingly, dryness of the refrigerant fed to the evaporator 5 is reduced. Further, since the refrigerant between the unit 3 and the unit 4 is used to cool the refrigerant of the outlet of the evaporator 5, mean dryness of the refrigerant of the outlet of the evaporator 5 having large dryness is reduced, and an evaporating pressure for obtaining the same temperature is raised. Thus, refrigerating capacity at the time of a low temperature is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非共沸の混合冷媒を用
いた冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】蒸気圧縮方式の冷凍装置に用いられてき
た冷媒、例えばR22,R502は、塩素分子を含んで
いるため大気中に放出されると、成層圏のオゾンを破壊
するという理由で規制されつつある。オゾン層を破壊し
ない冷媒には、例えば、R32,R134a等の塩素分
子を含まない冷媒が考えられるが、単一冷媒では従来使
用してきた冷媒と同等な特性を有するものは無く、例え
ば、特開平1−200153 号公報に記載されているように、
複数の高沸点冷媒と低沸点冷媒を混合して使用する冷凍
装置に適した特性を得る方法が知られている。
2. Description of the Related Art Refrigerants, such as R22 and R502, used in vapor compression refrigeration systems are regulated because they contain chlorine molecules and, if released into the atmosphere, destroy ozone in the stratosphere. It's starting. As a refrigerant that does not destroy the ozone layer, for example, a refrigerant that does not contain chlorine molecules such as R32 and R134a is conceivable. As described in Japanese Patent Publication No. 1-200153,
There is known a method of obtaining characteristics suitable for a refrigerating apparatus in which a plurality of high boiling point refrigerants and low boiling point refrigerants are mixed and used.

【0003】[0003]

【発明が解決しようとする課題】上記の従来例のよう
に、複数の冷媒を混合した非共沸混合冷媒を用いた場
合、蒸発温度が低下すると能力が著しく低下するという
問題点があった。すなわち、非共沸混合冷媒では、相変
化時に温度が変化し、同一温度で見た場合、冷媒の乾き
度が大きくなると、蒸発圧力が低くなる特徴がある。こ
のために、蒸発温度が低下すると凝縮温度の差が大きく
なり、減圧器を用いた冷凍装置では蒸発器入口の乾き度
が大きくなり、蒸発器の圧力が低下する。この結果、圧
縮機入口の比容積が増加し、冷凍能力が低下するという
問題点があった。
When a non-azeotropic mixed refrigerant in which a plurality of refrigerants are mixed is used as in the above-mentioned conventional example, there is a problem that the capacity is remarkably lowered when the evaporation temperature is lowered. That is, the non-azeotropic mixed refrigerant has a characteristic that the temperature changes at the time of phase change and, when viewed at the same temperature, the evaporation pressure decreases as the dryness of the refrigerant increases. For this reason, when the evaporation temperature decreases, the difference in the condensation temperature increases, and in a refrigerating apparatus using a pressure reducer, the dryness of the evaporator inlet increases, and the pressure of the evaporator decreases. As a result, there is a problem that the specific volume at the inlet of the compressor increases and the refrigerating capacity decreases.

【0004】さらに、非共沸混合冷媒としてR32とR
134aを用いた場合には、従来から用いられているR
22,R502等に比べ、冷媒物性面でも低温時の能力
が低下するという問題点があった。
Further, R32 and R are used as non-azeotropic mixed refrigerants.
When 134a is used, R which is conventionally used
22 and R502, there is a problem in that the ability of the refrigerant at a low temperature also deteriorates in terms of physical properties.

【0005】本発明の第1の目的は、蒸発温度が低下し
ても、蒸発器の乾き度を小さくし、蒸発圧力を高くし、
冷凍能力の低下が少ない冷凍装置を提供することにあ
る。
A first object of the present invention is to reduce the dryness of the evaporator and increase the evaporation pressure even if the evaporation temperature decreases.
An object of the present invention is to provide a refrigerating device in which a reduction in refrigerating capacity is small.

【0006】本発明の第2の目的は、蒸発温度が低下し
た場合、高沸点冷媒を滞留させ、冷凍装置内を循環する
冷媒組成を、低沸点冷媒成分を多くすることにより、冷
凍能力を増加させた冷凍装置を提供することにある。
A second object of the present invention is to increase the refrigerating capacity by allowing the high-boiling-point refrigerant to stay and increasing the refrigerant composition circulating in the refrigerating apparatus to contain the low-boiling-point refrigerant component when the evaporation temperature decreases. To provide such a refrigerating device.

【0007】[0007]

【課題を解決するための手段】上記第1の目的を達成す
るために、圧縮機,凝縮器,減圧器,蒸発器を接続し、
非共沸の混合冷媒を封入してなる冷凍装置において、減
圧器として第1の減圧器と第2の減圧器を設け、第1の
減圧器と第2の減圧器間の冷媒と、蒸発器出口の冷媒が
熱交換する補助熱交換器を設けたものである。
In order to achieve the above first object, a compressor, a condenser, a pressure reducer and an evaporator are connected,
In a refrigeration system in which a non-azeotropic mixed refrigerant is sealed, a first pressure reducer and a second pressure reducer are provided as pressure reducers, a refrigerant between the first pressure reducer and the second pressure reducer, and an evaporator. An auxiliary heat exchanger for exchanging heat with the refrigerant at the outlet is provided.

【0008】さらに、上記第2の目的は、蒸発器出口に
受液器を設けることによって達成される。
Further, the above second object is achieved by providing a liquid receiver at the outlet of the evaporator.

【0009】[0009]

【作用】冷凍装置において、減圧器として第1の減圧器
と第2の減圧器を設け、第1の減圧器と第2の減圧器間
の冷媒と、蒸発器出口の冷媒が熱交換する補助熱交換器
を設けることにより、第1の減圧器と第2の減圧器間の
冷媒が蒸発器出口の冷媒により冷却されエンタルピが低
下する。したがって、蒸発器に入る冷媒の乾き度が小さ
くなる。さらに、蒸発器出口の乾き度の大きい冷媒は第
1の減圧器と第2の減圧器間の冷媒が蒸発器出口の冷媒
の冷却に用いられるために、蒸発器の平均乾き度が低下
し、同一温度を得る蒸発圧力が高くなる。
In the refrigeration system, the first pressure reducer and the second pressure reducer are provided as pressure reducers to assist the heat exchange between the refrigerant between the first pressure reducer and the second pressure reducer and the refrigerant at the outlet of the evaporator. By providing the heat exchanger, the refrigerant between the first pressure reducer and the second pressure reducer is cooled by the refrigerant at the outlet of the evaporator, and the enthalpy is lowered. Therefore, the dryness of the refrigerant entering the evaporator is reduced. Furthermore, since the refrigerant with a high dryness at the evaporator outlet uses the refrigerant between the first pressure reducer and the second pressure reducer to cool the refrigerant at the evaporator outlet, the average dryness of the evaporator decreases, The evaporation pressure for obtaining the same temperature is higher.

【0010】また、蒸発器の出口に受液器を設けること
により、蒸発温度が低下するほど、受液器に流入する液
冷媒の高沸点冷媒の組成が増加し、冷凍装置内を循環す
る冷媒組成の低沸点成分が増加し、冷凍能力を増加す
る。
Further, by providing the liquid receiver at the outlet of the evaporator, the composition of the high boiling point refrigerant of the liquid refrigerant flowing into the liquid receiver increases as the evaporation temperature decreases, and the refrigerant circulating in the refrigerating apparatus. The low boiling point component of the composition is increased and the refrigeration capacity is increased.

【0011】[0011]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0012】図1は本発明の一実施例に係る冷凍装置の
ブロック図である。図2は本発明の冷凍装置の動作状態
をモリエル線図上に示したもので、実線で本実施例,破
線で従来例を示している。
FIG. 1 is a block diagram of a refrigerating apparatus according to an embodiment of the present invention. FIG. 2 shows the operating state of the refrigerating apparatus of the present invention on the Mollier diagram, in which the solid line shows the present embodiment and the broken line shows the conventional example.

【0013】図1において、1は冷媒を圧縮する圧縮
機、2は凝縮器、3は第1の減圧器としてのキャピラリ
チューブ、4は第2の減圧器としての電動膨張弁、5は
蒸発器、6は受液器、7は補助熱交換器でキャピラリチ
ューブ3と電動膨張弁4間の中間圧配管8と低圧配管9
を熱交換可能に設けられている。受液器6内の低圧配管
下部には、微細な油もどし孔が設けられている。電動膨
張弁4は蒸発器温度検出器10で検出される蒸発器冷媒
温度と圧縮機吸込冷媒温度検出器11で検出される圧縮
機吸込冷媒温度との差が制御器(図示せず)に記憶され
ている設定値になるように開度が制御される。圧縮機出
口冷媒温度検出器12で検出される温度が設定値以上に
なると、この設定値になるように電動膨張弁3が制御さ
れる。また、冷媒は高沸点冷媒としてR134a,低沸
点冷媒としてR32を7対3で封入したものである。
In FIG. 1, 1 is a compressor for compressing a refrigerant, 2 is a condenser, 3 is a capillary tube as a first pressure reducer, 4 is an electric expansion valve as a second pressure reducer, and 5 is an evaporator. , 6 is a liquid receiver, 7 is an auxiliary heat exchanger, an intermediate pressure pipe 8 and a low pressure pipe 9 between the capillary tube 3 and the electric expansion valve 4.
Is provided so that heat can be exchanged. A fine oil return hole is provided in the lower portion of the low-pressure pipe in the liquid receiver 6. The electric expansion valve 4 stores in the controller (not shown) the difference between the evaporator refrigerant temperature detected by the evaporator temperature detector 10 and the compressor suction refrigerant temperature detected by the compressor suction refrigerant temperature detector 11. The opening is controlled so as to reach the set value that is set. When the temperature detected by the compressor outlet refrigerant temperature detector 12 becomes equal to or higher than a set value, the electric expansion valve 3 is controlled so as to reach the set value. The refrigerant is R134a as a high-boiling-point refrigerant and R32 as a low-boiling-point refrigerant is sealed in a ratio of 7/3.

【0014】以上のように構成した冷凍装置の動作を図
1,図2を用いて説明する。圧縮機1で圧力P1,エン
タルピh1になった冷媒は、凝縮器2で放熱し圧力P
1,エンタルピh2の液冷媒となり、減圧器に送られ
る。キャピラリチューブ3で等エンタルピ変化で圧力P
2に減圧された後、補助熱交換器7で冷却され、エンタ
ルピh3になる。さらに、電動膨張弁4でP3に減圧さ
れ、蒸発器5に入る。蒸発器5で周囲より吸熱し、エン
タルピh4になった後、受液器6に入り、液冷媒の一部
は受液器に滞留する。ガス冷媒は開口部が受液器上部に
ある低圧配管9に流れ、液冷媒の一部は受液器の下部の
低圧配管9に設けた油もどし用の微細な孔より流出す
る。その後、冷媒は補助熱交換器7にはいり、中間圧配
管8より吸熱し、エンタルピh5になり圧縮機1に戻
る。したがって、蒸発器5に入る冷媒のエンタルピが小
さくなり、乾き度を小さくできる。さらに、エンタルピ
が大きく乾き度の大きい範囲は、補助熱交換器7での熱
交換に使用されるために、蒸発器の乾き度は小さくな
り、蒸発圧力を高くできる。図2に破線で示した従来例
と比較した場合、蒸発温度−40℃で、蒸発圧力が約1
0%高くできる。さらに、蒸発圧力が高くなることによ
り、圧縮仕事が減少し、冷凍装置の効率が向上する。
The operation of the refrigerating apparatus configured as described above will be described with reference to FIGS. The refrigerant having the pressure P1 and the enthalpy h1 in the compressor 1 radiates heat in the condenser 2 and the pressure P
1, becomes the liquid refrigerant of enthalpy h2 and is sent to the pressure reducer. Pressure P due to isenthalpic change in capillary tube 3
After the pressure is reduced to 2, it is cooled by the auxiliary heat exchanger 7 and becomes enthalpy h3. Further, the pressure is reduced to P3 by the electric expansion valve 4 and enters the evaporator 5. After absorbing heat from the surroundings in the evaporator 5 and becoming enthalpy h4, it enters the liquid receiver 6 and a part of the liquid refrigerant remains in the liquid receiver. The gas refrigerant flows into the low-pressure pipe 9 at the upper part of the receiver, and a part of the liquid refrigerant flows out from the fine holes for oil return provided in the low-pressure pipe 9 below the receiver. After that, the refrigerant enters the auxiliary heat exchanger 7, absorbs heat from the intermediate pressure pipe 8, becomes enthalpy h5, and returns to the compressor 1. Therefore, the enthalpy of the refrigerant entering the evaporator 5 is reduced, and the dryness can be reduced. Further, in the range where the enthalpy is large and the degree of dryness is large, the degree of dryness of the evaporator is reduced and the evaporation pressure can be increased because it is used for heat exchange in the auxiliary heat exchanger 7. When compared with the conventional example shown by the broken line in FIG. 2, the evaporation temperature is −40 ° C. and the evaporation pressure is about 1
Can be increased by 0%. Furthermore, the higher evaporation pressure reduces the work of compression and improves the efficiency of the refrigeration system.

【0015】また、受液器6に入る液冷媒の組成は非共
沸混合冷媒の特性から蒸発温度が低くなるほど高沸点冷
媒であるR134aの組成が多くなり、−40℃では、
本実施例の条件では約83%となり、冷凍装置内を循環
する低沸点冷媒であるR32の組成が大きくなり、例え
ば、受液器内の液冷媒量を冷凍装置内の冷媒封入量の3
割にすると、冷凍装置内を循環するR134aの冷媒組
成は約36%になり、冷凍能力が7%増加する。
Further, the composition of the liquid refrigerant entering the liquid receiver 6 is higher in composition of R134a, which is a high boiling point refrigerant, as the evaporation temperature becomes lower, due to the characteristics of the non-azeotropic mixed refrigerant, and at -40 ° C.
Under the conditions of the present embodiment, it is about 83%, and the composition of R32, which is a low boiling point refrigerant circulating in the refrigeration system, becomes large. For example, the amount of liquid refrigerant in the liquid receiver is 3 times the amount of refrigerant enclosed in the refrigeration system.
In comparison, the refrigerant composition of R134a circulating in the refrigeration system is about 36%, and the refrigerating capacity is increased by 7%.

【0016】さらに、冷凍装置内の冷媒が多く、凝縮器
2出口の過冷却度が大きくなると、キャピラリチューブ
3での減圧が小さくなり、中間圧配管8内の冷媒温度が
上昇し、補助熱交換器7での熱交換量が大きくなる。一
方、圧縮機1入口の過熱度は電動膨張弁4で適正な値に
制御されているために、補助熱交換器8での熱交換量の
増加分だけ蒸発器4での熱交換量が相対的に減少し、受
液器6に入る冷媒のエンタルピが減少し乾き度が低下す
る。したがって、受液器に入る液冷媒量が増加し、受液
器内に滞留する液冷媒が増加する。逆に、冷凍装置内の
冷媒量が少ない場合、中間配管8内の冷媒温度が低くな
り熱交換量が少なくなり、受液器6に入る液冷媒量が減
少し、受液器内の液冷媒が流出する。したがって、冷凍
装置内を循環する冷媒量は常に適正に制御される。
Further, when there is a large amount of refrigerant in the refrigerating apparatus and the degree of supercooling at the outlet of the condenser 2 becomes large, the pressure reduction in the capillary tube 3 becomes small, the temperature of the refrigerant in the intermediate pressure pipe 8 rises, and auxiliary heat exchange. The amount of heat exchange in the vessel 7 increases. On the other hand, since the degree of superheat at the inlet of the compressor 1 is controlled to an appropriate value by the electric expansion valve 4, the heat exchange amount in the evaporator 4 is relatively increased by the increase in the heat exchange amount in the auxiliary heat exchanger 8. Enthalpy of the refrigerant entering the liquid receiver 6 decreases and the dryness decreases. Therefore, the amount of the liquid refrigerant entering the receiver increases, and the amount of the liquid refrigerant retained in the receiver increases. On the contrary, when the amount of refrigerant in the refrigeration system is small, the temperature of the refrigerant in the intermediate pipe 8 is low, the amount of heat exchange is small, the amount of liquid refrigerant entering the liquid receiver 6 is reduced, and the liquid refrigerant in the liquid receiver is decreased. Is leaked. Therefore, the amount of refrigerant circulating in the refrigeration system is always controlled appropriately.

【0017】本発明の他の実施例を図3,図4を用いて
説明する。
Another embodiment of the present invention will be described with reference to FIGS.

【0018】図3は本発明の他の実施例の冷凍装置のブ
ロック図、図4は本発明の他の実施例の冷凍装置の動作
を示したモリエル線図である。
FIG. 3 is a block diagram of a refrigerating apparatus according to another embodiment of the present invention, and FIG. 4 is a Mollier diagram showing the operation of the refrigerating apparatus according to another embodiment of the present invention.

【0019】図3は、図1のキャピラリチューブの代わ
りに補助熱交換器7の中間圧配管8を細くし、抵抗を持
たせたものである。
In FIG. 3, the intermediate pressure pipe 8 of the auxiliary heat exchanger 7 is made thin in place of the capillary tube of FIG. 1 so as to have resistance.

【0020】このように構成することで、補助熱交換器
7の中間圧配管8内の冷媒は、図4に示すように、圧力
P1,エンタルピh2の状態から低圧配管9と熱交換し
ながら徐々に圧力が低下し圧力P2,エンタルピh3の
状態になり、実施例と同様の効果をもつ。さらに、本実
施例では、第1の減圧器が不要になり、中間圧配管8内
で減圧するため低圧配管9内の冷媒との温度差が高く、
補助熱交換器7を小さくできる。
With this structure, the refrigerant in the intermediate pressure pipe 8 of the auxiliary heat exchanger 7 gradually exchanges heat with the low pressure pipe 9 from the state of pressure P1 and enthalpy h2 as shown in FIG. The pressure drops to P2 and enthalpy h3, and the same effect as the embodiment is obtained. Further, in the present embodiment, the first pressure reducer is not necessary and the pressure in the intermediate pressure pipe 8 is reduced, so the temperature difference with the refrigerant in the low pressure pipe 9 is high,
The size of the auxiliary heat exchanger 7 can be reduced.

【0021】この実施例では、高沸点冷媒としてR13
4a,低沸点冷媒としてR32を用いて説明したが、他
の冷媒、更に3種以上の混合冷媒を用いても同等の効果
を有する。
In this embodiment, R13 is used as the high boiling point refrigerant.
4a, R32 is used as the low boiling point refrigerant, but the same effect can be obtained by using another refrigerant or a mixed refrigerant of three or more kinds.

【0022】[0022]

【発明の効果】本発明によれば、第1に、補助熱交換器
により蒸発器入口の乾き度を小さくでき、同じ蒸発温度
でも蒸発圧力を高くすることができ、低温時の能力を向
上できる。
According to the present invention, first, the dryness of the evaporator inlet can be reduced by the auxiliary heat exchanger, the evaporation pressure can be increased even at the same evaporation temperature, and the capacity at low temperature can be improved. .

【0023】第2に、蒸発器出口に受液器を設けること
により、蒸発温度が低下するほど高沸点冷媒の組成が大
きい液冷媒を滞留することができ、冷凍装置内の低沸点
冷媒の組成が大きくなり、冷凍能力を向上できる。
Secondly, by providing a liquid receiver at the evaporator outlet, the liquid refrigerant having a higher composition of the high boiling point refrigerant can be retained as the evaporation temperature lowers, and the composition of the low boiling point refrigerant in the refrigerating apparatus can be retained. And the refrigerating capacity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の冷凍装置のブロック図。FIG. 1 is a block diagram of a refrigerating apparatus according to an embodiment of the present invention.

【図2】本発明の実施例のモリエル線図。FIG. 2 is a Mollier diagram of an example of the present invention.

【図3】本発明の他の実施例の冷凍装置のブロック図。FIG. 3 is a block diagram of a refrigerating apparatus according to another embodiment of the present invention.

【図4】本発明の他の実施例のモリエル線図。FIG. 4 is a Mollier diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮器、3…キャピラリチューブ、4
…電動膨張弁、5…蒸発器、6…受液器、8…補助熱交
換器。
1 ... Compressor, 2 ... Condenser, 3 ... Capillary tube, 4
... electric expansion valve, 5 ... evaporator, 6 ... liquid receiver, 8 ... auxiliary heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,凝縮器,減圧器,蒸発器を接続
し、非共沸の混合冷媒を封入した冷凍装置において、前
記減圧器として第1の減圧器と第2の減圧器を設け、前
記第1の減圧器と前記第2の減圧器間の前記混合冷媒
と、前記蒸発器出口の前記混合冷媒が熱交換する補助熱
交換器を設けたことを特徴とする冷凍装置。
1. A refrigeration system in which a compressor, a condenser, a decompressor, and an evaporator are connected to each other and a non-azeotropic mixed refrigerant is enclosed, and a first decompressor and a second decompressor are provided as the decompressor. A refrigerating apparatus comprising: an auxiliary heat exchanger for exchanging heat between the mixed refrigerant between the first pressure reducer and the second pressure reducer and the mixed refrigerant at the evaporator outlet.
JP10646093A 1993-05-07 1993-05-07 Refrigerator Pending JPH06317358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646093A JPH06317358A (en) 1993-05-07 1993-05-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646093A JPH06317358A (en) 1993-05-07 1993-05-07 Refrigerator

Publications (1)

Publication Number Publication Date
JPH06317358A true JPH06317358A (en) 1994-11-15

Family

ID=14434199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646093A Pending JPH06317358A (en) 1993-05-07 1993-05-07 Refrigerator

Country Status (1)

Country Link
JP (1) JPH06317358A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077543A1 (en) * 1999-09-30 2002-10-03 Dairei Co.,Ltd. Freezing system using non-azeotropic type mixed refrigerant
US6679320B2 (en) * 1998-05-28 2004-01-20 Valeo Climatisation Vehicle air conditioning circuit using a refrigerant fluid in the supercritical state
JP2005214525A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Showcase with built-in freezer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679320B2 (en) * 1998-05-28 2004-01-20 Valeo Climatisation Vehicle air conditioning circuit using a refrigerant fluid in the supercritical state
WO2002077543A1 (en) * 1999-09-30 2002-10-03 Dairei Co.,Ltd. Freezing system using non-azeotropic type mixed refrigerant
JP2005214525A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Showcase with built-in freezer

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
EP1315938B1 (en) Method and arrangement for defrosting a vapor compression system
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
JP3365273B2 (en) Refrigeration cycle
JP2001133058A (en) Refrigeration cycle
JP3838008B2 (en) Refrigeration cycle equipment
KR100605797B1 (en) Air conditioner
WO1990007683A1 (en) Trans-critical vapour compression cycle device
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
AU2001286333A1 (en) Method and arrangement for defrosting a vapor compression system
JP2000161805A (en) Refrigerating apparatus
JP2005147456A (en) Air conditioner
JPH0875290A (en) Heat pump type air conditioner
JP2009281610A (en) Refrigerating cycle
WO2002077542A3 (en) Heating and refrigeration systems using refrigerant mass flow
JPH10318614A (en) Air conditioner
JPH03125863A (en) Refrigerating cycle unit with two stage compression
JPH06317358A (en) Refrigerator
JPH1114167A (en) Air conditioner
JPH06272998A (en) Refrigerator
JP2004061023A (en) Heat pump device
JP3248235B2 (en) Operating method of binary refrigeration apparatus and its apparatus
JPH08233386A (en) Heat exchanger
JPH10318613A (en) Freezing device
JPH10253171A (en) Air conditioner