JPH03125863A - Refrigerating cycle unit with two stage compression - Google Patents

Refrigerating cycle unit with two stage compression

Info

Publication number
JPH03125863A
JPH03125863A JP26240489A JP26240489A JPH03125863A JP H03125863 A JPH03125863 A JP H03125863A JP 26240489 A JP26240489 A JP 26240489A JP 26240489 A JP26240489 A JP 26240489A JP H03125863 A JPH03125863 A JP H03125863A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
condenser
liquid
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26240489A
Other languages
Japanese (ja)
Other versions
JP2712644B2 (en
Inventor
Mitsuhiro Ikoma
生駒 光博
Kazuo Nakatani
和生 中谷
Minoru Tagashira
田頭 實
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1262404A priority Critical patent/JP2712644B2/en
Publication of JPH03125863A publication Critical patent/JPH03125863A/en
Application granted granted Critical
Publication of JP2712644B2 publication Critical patent/JP2712644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make the total compression ratio small and improve an achievement coefficient by a method wherein at the outlet side of the first condenser a gas and liquid separator is installed and the outlet at the gas side of the separator is connected to the second condenser and the outlet at the liquid side is connected to an intermediate cooler through an auxiliary throttle device. CONSTITUTION:The refrigerant gas in high temp. and pressure discharged from a compressor 8 at the high pressure stage side is cooled by the first condenser 9 and after the easily condensable high boiling point gas in a mixed gas is mainly condensed and liquefied, the refrigerant is introduced into a gas and liquid separator 15. From the outlet at the gas side installed at the upper part of the separator 15 the gas refrigerant with a highly concentrated low boiling point refrigerant flows into the second condenser 10 and is completely condensed and liquefied here. On the other hand, from the outlet at the liquid side installed at the bottom of the separator 15 the liquid refrigerant with a highly concentrated high boiling point refrigerant is expanded in a low pressure to an intermediate pressure by an auxiliary throttle device 16 and introduced into an intermediate cooler 11. Here, the liquid refrigerant exchanges heat with a pipe 17 to cool the liquid refrigerant with the highly concentrated low boiling point refrigerant condensed in the second condenser and simultaneously exchanges heat with the gas refrigerant discharged from a compressor 14 at the low pressure stage side and is evaporated and gasified and in a mixed condition sucked into the compressor 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機等に用いられる冷凍サイクルに関し
 特に2段圧縮冷凍サイクル装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigeration cycle used in an air conditioner or the like, and particularly relates to an improvement in a two-stage compression refrigeration cycle device.

従来の技術 従来 圧縮機を2台直列に接続して冷媒を2段階に圧縮
する2段圧縮冷凍サイクル1よ 圧縮比が高くなる運転
条件における圧縮効率の向上を目的として採用されてい
も 第2図は従来の2段圧縮冷凍サイクルを示すものであり
、低段側圧縮機1より吐出された冷媒と、凝縮器3を経
て補助絞り装置7を出た冷媒とは中間冷却器5で直接接
触による熱交換を行うとともへ 凝縮器3より、中間冷
却器5内を貫通し 主絞り装置6を介して蒸発器4に液
冷媒を導く配管と熱交換して冷却作用をなし ガス化し
た冷媒は高段側圧縮機2の吸入側に導かれる。
Conventional technology Conventional Two-stage compression refrigeration cycle 1, in which two compressors are connected in series to compress the refrigerant in two stages, is adopted for the purpose of improving compression efficiency under operating conditions where the compression ratio is high. shows a conventional two-stage compression refrigeration cycle, in which the refrigerant discharged from the low-stage compressor 1 and the refrigerant exiting the auxiliary throttling device 7 via the condenser 3 come into direct contact with each other in the intercooler 5. The gasified refrigerant performs a cooling effect by exchanging heat with the pipe that leads the liquid refrigerant from the condenser 3 through the intercooler 5 to the evaporator 4 via the main throttling device 6. It is guided to the suction side of the high-stage compressor 2.

このように 2段圧縮冷凍サイクルを採用して中間冷却
を行うことにより、低外気温時の暖房や給湯運転時等の
圧縮比が大きくなる運転条件において、高段側圧縮機の
吐出冷媒ガス温度の異常上昇を防止するととも鳳 冷媒
の圧縮に要する動力を節約することができるものであム
 また このような2段圧縮冷凍サイクルの性能をさら
に向上させるた人 高沸点冷媒(R11、R114など
)と低沸点冷媒(R12、R22など)を混合した非共
沸混合冷媒を用いる提案もされている。
In this way, by adopting a two-stage compression refrigeration cycle to perform intermediate cooling, the temperature of the refrigerant gas discharged from the high-stage compressor can be reduced under operating conditions where the compression ratio is high, such as during heating or hot water supply operations at low outside temperatures. It is possible to prevent an abnormal rise in refrigerant and to save the power required to compress the refrigerant.It is also possible to further improve the performance of such two-stage compression refrigeration cycles. It has also been proposed to use a non-azeotropic mixed refrigerant, which is a mixture of a low boiling point refrigerant (R12, R22, etc.) and a low boiling point refrigerant.

発明が解決しようとする課題 しかしながら上記従来例のようへ 単に2段圧縮冷凍サ
イクルに非共沸混合冷媒を用いただけで(友 高沸点冷
媒は高温でも圧力が比較的低く、低沸点冷媒は低温でも
圧力がそれほど低くならないといった 各冷媒の特長的
な性質を活かすことができ哄 性能改善の効果が小さい
という問題があつ九 課題を解決するための手段 本発明の2段圧縮冷凍サイクル装置(よ 高段側圧縮風
 第1凝縮銖 第2凝縮麻 中間冷却銖主絞り装置 蒸
発器 低段側圧縮機から非共沸混合冷媒を封入する主回
路を構成し 前記第1凝縮器の出口側に気液分離器を設
け、この気液分離器のガス側出口は前記第21縮器に接
続し また液側出口は補助絞り装置を介して中間冷却器
に接続し 高段側圧縮機に吸入される低段側圧縮機の吐
出冷風 および第2凝縮器で凝縮された液冷媒を冷却で
きる構成としたものである。
Problems to be Solved by the Invention However, if a non-azeotropic mixed refrigerant is simply used in a two-stage compression refrigeration cycle as in the conventional example described above, high boiling point refrigerants have relatively low pressure even at high temperatures, and low boiling point refrigerants have relatively low pressure even at low temperatures. The two-stage compression refrigeration cycle device of the present invention (high-stage compression refrigeration cycle device) Side compression air 1st condensing tube 2nd condensing tube Intercooled condenser main throttling device Evaporator Configures the main circuit that encloses the non-azeotropic mixed refrigerant from the low-stage compressor, and separates gas and liquid at the outlet side of the first condenser. The gas-side outlet of this gas-liquid separator is connected to the 21st condenser, and the liquid-side outlet is connected to the intercooler via an auxiliary throttling device, and the low-stage gas is sucked into the high-stage compressor. It is configured to cool the cold air discharged from the side compressor and the liquid refrigerant condensed in the second condenser.

作用 第1凝縮器の出口に設けた気液分離器よって、封入され
た非共沸混合冷媒のうち凝縮し易い高沸点冷媒を液側出
口から抽出し 中間冷却器で蒸発させて高段側圧縮機に
吸入させることにより、高温となる凝縮器側には圧力を
低くできる高沸点冷媒を多くすることができ、逆風 低
温となる蒸発器側には圧力がそれほど低くならなμ 高
沸点冷媒を抽出されて低沸点冷媒の濃度が高くなった混
合冷媒を循環させることができるので、 2段圧縮冷凍
サイクル全体の圧縮比を小さくし 高段側および低段側
圧縮機での消費動力を低減することができ、成績係数の
向上が図れるものであ一実施例 以上 本発明の一実施例を添付図面に基づいて説明する
。第1図は本発明の一実施例における2段圧縮冷凍サイ
クル装置を示すものであり、 8は高段側圧縮風 9は
第1凝縮銖 10は第2凝縮銖 11は中間冷却器 1
2は主絞り装置 13は蒸発器 14は低段側圧縮機で
あり、これらを順次配管接続することにより、 2段圧
縮冷凍サイクルの主回路を構成している。また 第1凝
縮器9の出口側には気液分離器15が設けられ この気
液分離器15のガス側出口は第2凝縮器へ また液側出
口は補助絞り装置16を介して中間冷却器llへ それ
ぞれ接続されていも 中間冷却器11は低段側圧縮機1
4の吐出側および高段側圧縮機8の吸入側とも接続され
ており、高段側圧縮機8に吸入されるガス冷媒を冷却で
きる構成としている。また この中間冷却器11の内部
を第2凝縮器10出口と主絞り装置12を接続する配管
17が貫通しており、第2凝縮器10で凝縮された液冷
媒をさらに冷却できる構成としていもこのような2段圧
縮冷凍サイクル装置において、高沸点冷媒として例えば
R114、低沸点冷媒冷媒として例えばR22を混合し
た非共沸混合冷媒を封入して、運転する場合の動作につ
いて説明する。
The gas-liquid separator installed at the outlet of the first condenser extracts the high-boiling refrigerant that is easily condensed from the enclosed non-azeotropic mixed refrigerant from the liquid side outlet, evaporates it in the intercooler, and compresses it on the high stage side. By inhaling it into the machine, it is possible to increase the high boiling point refrigerant that can lower the pressure to the condenser side, where the temperature is high, and the high boiling point refrigerant can be extracted to the evaporator side, where the temperature is high, so that the pressure will not be so low. This allows the refrigerant mixture with a high concentration of low-boiling point refrigerant to be circulated, reducing the compression ratio of the entire two-stage compression refrigeration cycle and reducing power consumption in the high-stage and low-stage compressors. EMBODIMENT OF THE INVENTION One embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 shows a two-stage compression refrigeration cycle device according to an embodiment of the present invention, in which 8 is a high-stage compressed air, 9 is a first condensing tank, 10 is a second condensing tank, 11 is an intercooler 1
2 is a main throttling device, 13 is an evaporator, and 14 is a low-stage compressor, which are connected in sequence through piping to constitute a main circuit of a two-stage compression refrigeration cycle. Further, a gas-liquid separator 15 is provided on the outlet side of the first condenser 9, and the gas-side outlet of this gas-liquid separator 15 is connected to the second condenser, and the liquid-side outlet is connected to the intercooler via an auxiliary throttling device 16. Even if they are connected to ll, the intercooler 11 is connected to the lower stage compressor 1.
4 and the suction side of the high-stage compressor 8, so that the gas refrigerant sucked into the high-stage compressor 8 can be cooled. In addition, a pipe 17 that connects the outlet of the second condenser 10 and the main throttling device 12 passes through the interior of the intercooler 11, so that the liquid refrigerant condensed in the second condenser 10 can be further cooled. In such a two-stage compression refrigeration cycle device, the operation will be described when a non-azeotropic mixed refrigerant mixture of R114 as a high boiling point refrigerant and R22 as a low boiling point refrigerant is sealed and operated.

運転開始前は冷凍サイクル内の混合冷媒の組成C戴  
封入されたままの組成となっており、運転を開始するこ
とにより、高段側圧縮機8より吐出された高温高圧の冷
媒ガス?1  第1凝縮器9で冷却され 混合冷媒のへ
 凝縮し易い高沸点冷媒(R114)が主に凝縮液化し
たの叙 気液分離器15に導かれる。この気液分離器1
5の上部に設けたガス側出口より、低沸点冷媒(R22
)の濃度の高いガス冷媒が第2凝縮器10に入り、ここ
で完全に凝縮液化する。
Before starting operation, the composition of the mixed refrigerant in the refrigeration cycle is C.
It has the same composition as the sealed one, and when the operation starts, high-temperature, high-pressure refrigerant gas is discharged from the high-stage compressor 8. 1. The high boiling point refrigerant (R114), which is easily condensed, is cooled in the first condenser 9 and is led to the gas-liquid separator 15, where it is mainly condensed and liquefied. This gas-liquid separator 1
A low boiling point refrigerant (R22
) enters the second condenser 10 where it is completely condensed and liquefied.

一方、気液分離器15の底部に設けた液側出口より、抽
出された高沸点冷媒(R,114)の濃度の高い液冷媒
(よ 補助絞り装置16で中間圧力まで減圧膨張して、
中間冷却器11に導かれる。ここで、配管17と熱交換
して第2凝縮器で凝縮された低沸点冷媒(R22)の濃
度の高い液冷媒を冷却すると同時に 低段側圧縮機14
より吐出されたガス冷媒と直接接触による熱交換により
、蒸発気化して混合された状態で高段側圧縮機8に吸入
されも さらに 配管17で十分過冷却された低沸点冷媒(R2
2)の濃度の高い冷媒Cヨ  主絞り装置12により、
蒸発圧力まで減圧膨張し 蒸発器13に導かれる。ここ
で、外部の熱源により蒸発気化したの坂 低段側圧縮機
14に吸入され 中間圧力まで圧縮されて、前述したよ
うに中間冷却器llに導かれるのである。
On the other hand, from the liquid side outlet provided at the bottom of the gas-liquid separator 15, the extracted high-boiling point refrigerant (R, 114) is decompressed and expanded to an intermediate pressure by the auxiliary throttling device 16.
It is guided to an intercooler 11. Here, the liquid refrigerant with a high concentration of low boiling point refrigerant (R22) condensed in the second condenser by exchanging heat with the pipe 17 is cooled, and at the same time, the low-stage compressor 14
Through heat exchange through direct contact with the gas refrigerant discharged from the gas refrigerant, the evaporated and mixed state is sucked into the high stage compressor 8, and the low boiling point refrigerant (R2
2) Highly concentrated refrigerant C
It expands under reduced pressure to the evaporation pressure and is led to the evaporator 13. Here, the gas that has been evaporated by an external heat source is sucked into the low-stage compressor 14, compressed to an intermediate pressure, and guided to the intercooler 11 as described above.

このように 本実施例の2段圧縮冷凍サイクルで(上 
中間冷却器11において低段側圧縮機13の吐出冷媒ガ
スの中間冷却を行うことにより、低外気温時の暖房や給
湯運転時等の圧縮比が大きくなる運転条件において、高
段側圧縮機8の吐出冷媒ガス温度の異常上昇を防止する
ことができるととも番ヘ  第1凝縮器9の出口側に設
けられた気液分離器15の作用により、封入された非共
沸混合冷媒を高沸点冷媒(R114)と低沸点冷媒(R
22)とに分離し 高温となる凝縮器側には圧力を低く
できる高沸点冷媒(R114)を、低温となる蒸発器側
には圧力がそれほど低くならない低沸点冷媒(R22)
を多くすることができ、そのため2段圧縮冷凍サイクル
全体の圧縮比を小さくでき、高段側および低段側圧縮機
8、14での消費動力を低減することができ、成績係数
の向上が図れるものである。
In this way, in the two-stage compression refrigeration cycle of this example (upper
By performing intercooling of the refrigerant gas discharged from the low-stage compressor 13 in the intercooler 11, the high-stage compressor 8 can be used under operating conditions where the compression ratio is high, such as during heating or hot water supply operation at low outside temperatures. By the action of the gas-liquid separator 15 provided on the outlet side of the first condenser 9, the enclosed non-azeotropic mixed refrigerant can be separated from the high boiling point. Refrigerant (R114) and low boiling point refrigerant (R
22) The high boiling point refrigerant (R114), which can lower the pressure, is placed on the condenser side, where the temperature is high, and the low boiling point refrigerant (R22), which does not lower the pressure so much, on the evaporator side, where the temperature is low.
Therefore, the compression ratio of the entire two-stage compression refrigeration cycle can be reduced, the power consumption in the high-stage and low-stage compressors 8 and 14 can be reduced, and the coefficient of performance can be improved. It is something.

な耘 本実施例では 高沸点冷媒としてR114、低沸
点冷媒としてR22を用いて説明したカミ本発明はこれ
に限らず、他の非共沸混合冷媒系を用いる場合にも適応
できることは明かである。
In this embodiment, R114 is used as the high boiling point refrigerant and R22 is used as the low boiling point refrigerant.It is clear that the present invention is not limited to this, but can also be applied to cases where other non-azeotropic mixed refrigerant systems are used. .

また 本実施例で(上 高段側圧線区 低段側圧縮機の
2台の圧縮機を用いて説明したカミ 本発明はこれに限
らず、 2つの圧縮機構を内蔵する1台の圧縮機を高段
(1tlL  低段側に使い分ける場合にも適応できる
ことは明らかである。
In addition, in this embodiment, the explanation is made using two compressors (upper high stage side pressure line section and low stage side compressor). It is clear that it can also be applied to the case where it is used separately for the high stage (1tlL and low stage side).

発明の効果 以上の説明より明らかなようζへ 本発明の2段圧縮冷
凍サイクル装置(よ 低段側圧縮機の吐出冷媒ガスの中
間冷却を行うことができるので、低外気温時の暖房や給
湯運転時等の圧縮比が大きくなる運転条件において、高
段側圧縮機の吐出冷媒ガス温度の異常上昇を防止するこ
とができるととも顛 高温となる凝縮器側には圧力を低
くできる高沸点冷媒を、低温となる蒸発器側には圧力が
それほど低くならない低沸点冷媒をそれぞれ多くするこ
とができるので、 2段圧縮冷凍サイクル全体の圧縮比
を小さくよ 高段側および低段側圧縮機での消費動力を
低減することができ、成績係数の向上が図れるものであ
る。
Effects of the Invention As is clear from the above explanation, the two-stage compression refrigeration cycle device of the present invention (as shown in Fig. Under operating conditions such as when the compression ratio is high during operation, it is possible to prevent an abnormal rise in the temperature of the refrigerant gas discharged from the high-stage compressor. Since it is possible to increase the amount of low-boiling point refrigerant whose pressure does not become so low on the evaporator side, where the temperature is low, the compression ratio of the entire two-stage compression refrigeration cycle can be reduced. Power consumption can be reduced and the coefficient of performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の2段圧縮冷凍サイクルの構
成@ 第2図は従来例の2段圧縮冷凍サイクルの構成図
である。 8・・・高段側圧縮11i19・・・第1凝縮鳳 10
・・・第2凝縮鳳 11・・・中間冷却lL12・・・
主絞り装置13・・・蒸発器 14・・・低段側圧縮機
 15・・・気液分離縁 16・・・補助絞り装置
FIG. 1 is a configuration diagram of a two-stage compression refrigeration cycle according to an embodiment of the present invention; FIG. 2 is a configuration diagram of a conventional two-stage compression refrigeration cycle. 8...High stage side compression 11i19...1st condensation holder 10
...Second condensation 11...Intermediate cooling 1L12...
Main throttling device 13... Evaporator 14... Low stage compressor 15... Gas-liquid separation edge 16... Auxiliary throttling device

Claims (1)

【特許請求の範囲】[Claims] 高段側圧縮機、第1凝縮器、第2凝縮器、中間冷却器、
主絞り装置、蒸発器、低段側圧縮機から非共沸混合冷媒
を封入する主回路を構成し、前記第1凝縮器の出口側に
気液分離器を設け、この気液分離器のガス側出口は前記
第2凝縮器に接続し、液側出口は補助絞り装置を介して
前記中間冷却器に接続し、前記高段側圧縮機に吸入され
る前記低段側圧縮機の吐出冷媒および前記第2凝縮器で
凝縮された液冷媒を冷却できる構成としたことを特徴と
する2段圧縮冷凍サイクル装置。
High-stage compressor, first condenser, second condenser, intercooler,
A main circuit is configured in which a non-azeotropic mixed refrigerant is sealed from the main throttling device, evaporator, and low-stage compressor, and a gas-liquid separator is provided on the outlet side of the first condenser. The side outlet is connected to the second condenser, and the liquid side outlet is connected to the intercooler via an auxiliary throttling device, and the refrigerant discharged from the low stage compressor and the refrigerant discharged from the low stage compressor are sucked into the high stage compressor. A two-stage compression refrigeration cycle device characterized by having a configuration capable of cooling the liquid refrigerant condensed in the second condenser.
JP1262404A 1989-10-06 1989-10-06 Two-stage compression refrigeration cycle device Expired - Fee Related JP2712644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1262404A JP2712644B2 (en) 1989-10-06 1989-10-06 Two-stage compression refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1262404A JP2712644B2 (en) 1989-10-06 1989-10-06 Two-stage compression refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH03125863A true JPH03125863A (en) 1991-05-29
JP2712644B2 JP2712644B2 (en) 1998-02-16

Family

ID=17375310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262404A Expired - Fee Related JP2712644B2 (en) 1989-10-06 1989-10-06 Two-stage compression refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2712644B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248589A1 (en) * 2019-06-14 2020-12-17 李华玉 Reverse single working medium steam combined cycle
WO2020248591A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle
WO2020248588A1 (en) * 2019-06-14 2020-12-17 李华玉 Reverse single working medium steam combined cycle
WO2020248590A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle
WO2021047125A1 (en) * 2019-09-10 2021-03-18 李华玉 Reverse single-working-medium steam combined cycle
WO2021068431A1 (en) * 2019-10-08 2021-04-15 李华玉 Single-working-medium combined cycle heat pump device
WO2021072988A1 (en) * 2019-10-16 2021-04-22 李华玉 Reverse single-working-medium steam combined cycle and single-working-medium combined cycle heat pump device
WO2021072992A1 (en) * 2019-10-17 2021-04-22 李华玉 Single working medium combined circulation heat pump device
WO2021072990A1 (en) * 2019-10-17 2021-04-22 李华玉 Single-working medium combined cycle heat pump device
WO2021072991A1 (en) * 2019-10-15 2021-04-22 李华玉 Single-working medium combined cycle heat pump device
WO2022062272A1 (en) * 2020-09-27 2022-03-31 李华玉 Regenerative thermodynamic cycle and novel regenerative mechanical compression-type heat pump
WO2022062270A1 (en) * 2020-09-22 2022-03-31 李华玉 Recuperative thermodynamic cycle and recuperative gas thermal power apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213554U (en) * 1975-07-18 1977-01-31
JPS5885066A (en) * 1981-11-16 1983-05-21 松下電器産業株式会社 Heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213554U (en) * 1975-07-18 1977-01-31
JPS5885066A (en) * 1981-11-16 1983-05-21 松下電器産業株式会社 Heat pump device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2599865B (en) * 2019-06-13 2023-03-29 Li Huayu Reversed single-working-medium vapor combined cycle
WO2020248591A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle
GB2599865A (en) * 2019-06-13 2022-04-13 Li Huayu Reverse single-working-media steam combined cycle
WO2020248590A1 (en) * 2019-06-13 2020-12-17 李华玉 Reverse single-working-media steam combined cycle
GB2601642A (en) * 2019-06-13 2022-06-08 Li Huayu Reverse single-working-media steam combined cycle
GB2601642B (en) * 2019-06-13 2023-03-29 Li Huayu Reverse single-working-media steam combined cycle
GB2599866B (en) * 2019-06-14 2023-03-29 Li Huayu Reversed single-working-medium vapor combined cycle
GB2599867A (en) * 2019-06-14 2022-04-13 Li Huayu Reverse single working medium steam combined cycle
WO2020248589A1 (en) * 2019-06-14 2020-12-17 李华玉 Reverse single working medium steam combined cycle
US20220364774A1 (en) * 2019-06-14 2022-11-17 Huayu Li Reversed single-working-medium vapor combined cycle
US20220282890A1 (en) * 2019-06-14 2022-09-08 Huayu Li Reversed single-working-medium vapor combined cycle
GB2599866A (en) * 2019-06-14 2022-04-13 Li Huayu Reverse single working medium steam combined cycle
WO2020248588A1 (en) * 2019-06-14 2020-12-17 李华玉 Reverse single working medium steam combined cycle
WO2021047125A1 (en) * 2019-09-10 2021-03-18 李华玉 Reverse single-working-medium steam combined cycle
WO2021068431A1 (en) * 2019-10-08 2021-04-15 李华玉 Single-working-medium combined cycle heat pump device
WO2021072991A1 (en) * 2019-10-15 2021-04-22 李华玉 Single-working medium combined cycle heat pump device
WO2021072988A1 (en) * 2019-10-16 2021-04-22 李华玉 Reverse single-working-medium steam combined cycle and single-working-medium combined cycle heat pump device
WO2021072990A1 (en) * 2019-10-17 2021-04-22 李华玉 Single-working medium combined cycle heat pump device
WO2021072992A1 (en) * 2019-10-17 2021-04-22 李华玉 Single working medium combined circulation heat pump device
WO2022062270A1 (en) * 2020-09-22 2022-03-31 李华玉 Recuperative thermodynamic cycle and recuperative gas thermal power apparatus
WO2022062272A1 (en) * 2020-09-27 2022-03-31 李华玉 Regenerative thermodynamic cycle and novel regenerative mechanical compression-type heat pump

Also Published As

Publication number Publication date
JP2712644B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US6460371B2 (en) Multistage compression refrigerating machine for supplying refrigerant from subcooler to cool rotating machine and lubricating oil
US9243827B2 (en) Chiller system including an oil separator and ejector connection
JPH03164664A (en) Refrigeration system
JP2001221517A (en) Supercritical refrigeration cycle
JPH03125863A (en) Refrigerating cycle unit with two stage compression
US4528823A (en) Heat pump apparatus
TWI564524B (en) Refrigeration cycle
JP2001235245A (en) Freezer
JP2002188865A (en) Multiple stage compression type refrigerating machine
JP2007051788A (en) Refrigerating device
JPH1114167A (en) Air conditioner
JP2789661B2 (en) Two-stage compression refrigeration cycle and heat pump type air conditioner
JPH05340619A (en) Low pressure stage refrigerant system in double-pressure type freezer device
JP2615496B2 (en) Two-stage compression refrigeration cycle
JPH05302763A (en) Method and device for operating binary refrigerating apparatus
JP2003314908A (en) Low-temperature refrigerating machine
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JPH04268165A (en) Double-stage compression and freezing cycle device
JPH0432663A (en) Refrigeration cycle arrangement
JP2001201194A (en) Cold storage system with deep freezer
JP2005226927A (en) Refrigerant cycle device
JPH028660A (en) Freezer
JPS59225259A (en) Refrigerator
RU1776939C (en) Compression refracting machine
JPH07180927A (en) Multi-chamber type cooling and heating device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees