JPH1114167A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1114167A
JPH1114167A JP16638697A JP16638697A JPH1114167A JP H1114167 A JPH1114167 A JP H1114167A JP 16638697 A JP16638697 A JP 16638697A JP 16638697 A JP16638697 A JP 16638697A JP H1114167 A JPH1114167 A JP H1114167A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
evaporator
compressor
decompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16638697A
Other languages
Japanese (ja)
Other versions
JP3936027B2 (en
Inventor
Noriho Okaza
典穂 岡座
Shozo Funakura
正三 船倉
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16638697A priority Critical patent/JP3936027B2/en
Publication of JPH1114167A publication Critical patent/JPH1114167A/en
Application granted granted Critical
Publication of JP3936027B2 publication Critical patent/JP3936027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

PROBLEM TO BE SOLVED: To attain a higher efficiency of an air conditioner in which R407C having a lower global warming coefficient than that of HCFC22 or R410A is applied in order to reduce influence to a global worming. SOLUTION: This air conditioner is constructed such that an auxiliary heat exchanger 5 is connecgted between a condenser 2 and a pressure reducing device 3, gas-liquid separator 6 is connected between the pressure reducing device 3 and an evaporator 4, gaseous refrigerant separated by the gas-liquid separator 6 is merged with the refrigerant passed through the evaporator 4 at a suction part of a compressor 1, and the liquid refrigerant separated at the gas-liquid separator 6 is fed into the evaporator 4. The auxiliary heat exchanger 5 is constructed such that the refrigerant between the condenser 2 and the pressure reducing device 3 is heat exchanged with the refrigerant at the suction part of the compressor 1. With such as arrangement as above, it is possible to improve an efficiency of an air conditioner and reduce a consumption power under both an efficient heat exchanging operation with the evaporator 4 and a reduction in pressure loss.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消費エネルギー低
減を実現する空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for reducing energy consumption.

【0002】[0002]

【従来の技術】従来より空気調和機の冷媒としてHCF
C22が広く用いられており、また減圧器入口での過冷
却度を増大するために図5に示すような空気調和機が提
案されている。
2. Description of the Related Art Conventionally, HCF has been used as a refrigerant for air conditioners.
C22 is widely used, and an air conditioner as shown in FIG. 5 has been proposed to increase the degree of supercooling at the inlet of the pressure reducer.

【0003】図5において21は圧縮機、22は凝縮
器、23は減圧器、24は蒸発器であり、これらを配管
接続することにより冷凍サイクルを構成している。また
凝縮器22と減圧器23との間の冷媒と、蒸発器24と
圧縮機21の吸入部との間の冷媒とを熱交換させる補助
熱交換器25が設けられている。さらに冷媒として一般
にはHCFC22が封入されている。
In FIG. 5, reference numeral 21 denotes a compressor, 22 denotes a condenser, 23 denotes a decompressor, and 24 denotes an evaporator. These are connected to a pipe to constitute a refrigeration cycle. An auxiliary heat exchanger 25 is provided for exchanging heat between the refrigerant between the condenser 22 and the decompressor 23 and the refrigerant between the evaporator 24 and the suction part of the compressor 21. Furthermore, HCFC22 is generally enclosed as a refrigerant.

【0004】このような構成の空気調和機における動作
を説明する。
The operation of the air conditioner having such a configuration will be described.

【0005】冷媒は圧縮機21で圧縮されて高温高圧と
なり、凝縮器22で放熱して凝縮液化して、補助熱交換
器25を経て、減圧器23に導入され、減圧器23で減
圧されて低温低圧の二相状態となり、蒸発器24で吸熱
して蒸発気化して再び圧縮機21に吸入される。ここで
凝縮器22で凝縮液化した冷媒は、補助熱交換器25で
蒸発器24と圧縮機21の吸入部との間の冷媒と熱交換
を行い、過冷却される。 ここで、補助熱交換器25で
冷媒を過冷却することにより、蒸発器24では、蒸発潜
熱を十分に利用できて同等の吸熱量を効率よく吸熱でき
るため蒸発圧力すなわち圧縮機21の吸入圧力が上昇し
て、圧縮機21における圧縮比が減少して空気調和機の
効率が向上して消費電力量を低減できる。これを図6の
圧力−エンタルピ線図を用いて説明すると、低温となる
圧縮機21の吸入部の冷媒から、比較的高温である外気
によって奪われる冷却効果(図6中のイに相当する)を
用いて、凝縮器22の出口部の液冷媒を過冷却(図6中
のロに相当する)することにより、蒸発器24に導入さ
れる冷媒は乾き度が小さい二相状態となるため、蒸発器
24の入口と出口でのエンタルピ差が増大(図6中のハ
に相当する)すなわち、蒸発潜熱を十分に利用できるも
のである。
The refrigerant is compressed by the compressor 21 to become high temperature and high pressure, radiates heat in the condenser 22 to be condensed and liquefied, is introduced into the decompressor 23 through the auxiliary heat exchanger 25, and is decompressed by the decompressor 23. It becomes a low-temperature, low-pressure two-phase state, absorbs heat in the evaporator 24, evaporates and evaporates, and is sucked into the compressor 21 again. Here, the refrigerant condensed and liquefied in the condenser 22 exchanges heat with the refrigerant between the evaporator 24 and the suction part of the compressor 21 in the auxiliary heat exchanger 25 and is supercooled. Here, by subcooling the refrigerant in the auxiliary heat exchanger 25, the evaporator 24 can sufficiently utilize the latent heat of evaporation and efficiently absorb the same amount of heat absorbed, so that the evaporation pressure, that is, the suction pressure of the compressor 21 is reduced. As a result, the compression ratio in the compressor 21 decreases, the efficiency of the air conditioner improves, and the power consumption can be reduced. This will be described with reference to the pressure-enthalpy diagram of FIG. 6. A cooling effect (corresponding to a in FIG. 6) taken from the refrigerant at the suction portion of the compressor 21 at a low temperature by the external air having a relatively high temperature. By super-cooling the liquid refrigerant at the outlet of the condenser 22 (corresponding to b in FIG. 6), the refrigerant introduced into the evaporator 24 becomes a two-phase state with a small dryness. The enthalpy difference between the inlet and the outlet of the evaporator 24 is increased (corresponding to c in FIG. 6), that is, the latent heat of evaporation can be sufficiently utilized.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、近年、
地球環境への関心が高まり、発電過程で大気中に放出さ
れる地球温暖化ガスである二酸化炭素の排出量削減が求
められており、家庭内で消費される電力量の約2割を占
める空気調和機の消費電力量の発電の際に排出される二
酸化炭素による間接的な地球温暖化への影響を低減させ
るために、空気調和機のさらなる高効率化を実現させな
ければならないという課題がある。
However, in recent years,
Interest in the global environment has increased, and there is a need to reduce the amount of carbon dioxide, a global warming gas released into the atmosphere during the power generation process. Air that accounts for about 20% of the amount of electricity consumed in homes There is a problem that air conditioners must be made even more efficient in order to reduce the indirect impact of global warming caused by the carbon dioxide emitted when power is consumed by the air conditioners. .

【0007】また、オゾン層保護の観点からは、従来よ
り冷媒として一般に用いられているHCFC22が僅か
ながらオゾン層を破壊することから、HCFC22の代
替冷媒として有力視されているHFC32/HFC12
5/HFC134aの三種混合冷媒であるR407C
は、冷媒自身の漏洩や放出による直接的な地球温暖化へ
の影響を示す地球温暖化係数(GWP)がHCFC22
よりも小さい。しかし、1996年12月に神戸で行わ
れたHCFC22代替冷媒国際シンポジウムでの報告に
よると、HCFC22代替冷媒の有力候補であるR41
0A(HFC32/HFC125の二種混合冷媒)を用
いた空気調和機は蒸発器や吸入配管内での圧力損失が小
さいという特徴を持つため、ほぼ従来のHCFC22並
の性能が得られているが、R407Cを用いた空気調和
機は圧力損失はHCFC22とほぼ同等であるため、従
来のHCFC22を用いた空気調和機よりも若干性能が
低下している。したがって地球温暖化防止の観点から
は、直接的な地球温暖化への影響とともに、その冷媒を
用いた空気調和機の消費電力量を発電する際に排出され
る二酸化炭素による間接的な地球温暖化への影響を低減
させることが必要であり、HCFC22やR410Aよ
りもGWPの小さいR407Cを用いた空気調和機のさ
らなる高効率化を実現させなければならないという課題
がある。
[0007] From the viewpoint of protection of the ozone layer, HCFC22, which has been generally used as a refrigerant, slightly destroys the ozone layer.
5 / R407C which is a triple mixed refrigerant of HFC134a
Indicates that the global warming potential (GWP), which indicates the direct impact on global warming due to leakage or release of refrigerant itself, is HCFC22
Less than. However, according to a report at the International Symposium on HCFC22 Alternative Refrigerants held in Kobe in December 1996, R41, a leading candidate for HCFC22 alternative refrigerants, was
An air conditioner using 0A (a mixed refrigerant of two types of HFC32 / HFC125) has a feature that pressure loss in an evaporator or a suction pipe is small, and therefore, performance almost equal to that of a conventional HCFC22 is obtained. Since the pressure loss of the air conditioner using R407C is almost the same as that of the HCFC22, the performance is slightly lower than that of the air conditioner using the conventional HCFC22. Therefore, from the perspective of preventing global warming, in addition to the direct impact on global warming, indirect global warming due to carbon dioxide emitted when power consumption of air conditioners using the refrigerant is generated There is a problem that the air conditioner using R407C having a smaller GWP than HCFC22 or R410A must be further improved in efficiency.

【0008】本発明は、上記課題を解決するためになさ
れたもので、空気調和機のさらなる高効率化により、間
接的な地球温暖化への影響を低減することを目的とする
ものである。
The present invention has been made to solve the above problems, and has as its object to reduce the influence on indirect global warming by further improving the efficiency of an air conditioner.

【0009】また、R407CなどのHFC32/HF
C125/HFC134a三種混合冷媒を用いた空気調
和機のさらなる高効率化により、オゾン層保護と直接的
および間接的な地球温暖化への影響を低減することを目
的とするものである。
Further, HFC32 / HF such as R407C
An object of the present invention is to protect the ozone layer and reduce the direct and indirect effects on global warming by further improving the efficiency of an air conditioner using a C125 / HFC134a triple refrigerant mixture.

【0010】[0010]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、凝縮器2と減圧器3
の間に補助熱交換器5を接続し、減圧器3と蒸発器4の
間に気液分離器6を接続し、気液分離器6で分離された
ガス冷媒は圧縮機1の吸入部で蒸発器4を経た冷媒と合
流し、気液分離器6で分離された液冷媒は蒸発器4へと
導入されるように構成し、補助熱交換器5では、凝縮器
2と減圧器3との間の冷媒と圧縮機1の吸入部の冷媒と
を熱交換させるように構成することにより、蒸発器4で
の効率よい熱交換と圧力損失低減によって、空気調和機
の効率を向上できて消費電力量を低減できる。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a condenser 2 and a pressure reducer 3.
An auxiliary heat exchanger 5 is connected between them, a gas-liquid separator 6 is connected between the decompressor 3 and the evaporator 4, and the gas refrigerant separated by the gas-liquid separator 6 is supplied to a suction part of the compressor 1. The liquid refrigerant that has joined with the refrigerant that has passed through the evaporator 4 and that has been separated by the gas-liquid separator 6 is configured to be introduced into the evaporator 4. In the auxiliary heat exchanger 5, the condenser 2 and the decompressor 3 And heat exchange between the refrigerant in the compressor 1 and the refrigerant in the suction section of the compressor 1, the efficiency of the air conditioner can be improved by efficient heat exchange in the evaporator 4 and reduction of pressure loss. The amount of power can be reduced.

【0011】また、凝縮器2と第一減圧器8の間に補助
熱交換器5を接続し、第一減圧器8と蒸発器4の間に気
液分離器6を接続し、気液分離器6で分離されたガス冷
媒は圧縮機7の中間圧部にインジェクションされ、気液
分離器6で分離された液冷媒は第二減圧器9を経て蒸発
器4へ導入されるように構成し、補助熱交換器5では、
凝縮器2と第一減圧器8との間の冷媒と圧縮機7の吸入
部の冷媒とを熱交換させるように構成することにより、
蒸発器4での効率よい熱交換と圧力損失低減と凝縮器2
へ導入される冷媒流量増大によって、空気調和機の効率
が向上して消費電力量を低減できる。
An auxiliary heat exchanger 5 is connected between the condenser 2 and the first decompressor 8, and a gas-liquid separator 6 is connected between the first decompressor 8 and the evaporator 4. The gas refrigerant separated by the device 6 is injected into the intermediate pressure section of the compressor 7, and the liquid refrigerant separated by the gas-liquid separator 6 is introduced into the evaporator 4 through the second decompressor 9. In the auxiliary heat exchanger 5,
By performing a heat exchange between the refrigerant between the condenser 2 and the first decompressor 8 and the refrigerant at the suction part of the compressor 7,
Efficient heat exchange in evaporator 4, reduction of pressure loss, and condenser 2
By increasing the flow rate of the refrigerant introduced into the air conditioner, the efficiency of the air conditioner is improved, and the power consumption can be reduced.

【0012】また、気液分離器6で分離されたガス冷媒
は補助熱交換器5を経て、圧縮機7の中間圧部にインジ
ェクションされ、気液分離器6で分離された液冷媒は第
二減圧器9を経て蒸発器4へ導入されるように構成し、
補助熱交換器5では、凝縮器2と第一減圧器8との間の
冷媒と気液分離器6のガス側出口部と圧縮機7の中間圧
部との間の冷媒とを熱交換させるように構成することに
より、蒸発器4での効率よい熱交換と圧力損失低減と凝
縮器2へ導入される冷媒流量増大によって、空気調和機
の効率が向上して消費電力量を低減できる。
The gas refrigerant separated by the gas-liquid separator 6 is injected into the intermediate pressure section of the compressor 7 through the auxiliary heat exchanger 5, and the liquid refrigerant separated by the gas-liquid separator 6 is supplied to the second refrigerant. It is configured to be introduced into the evaporator 4 through the pressure reducer 9,
The auxiliary heat exchanger 5 exchanges heat between the refrigerant between the condenser 2 and the first decompressor 8 and the refrigerant between the gas-side outlet of the gas-liquid separator 6 and the intermediate-pressure part of the compressor 7. With such a configuration, the efficiency of the air conditioner can be improved and the power consumption can be reduced by efficient heat exchange and pressure loss reduction in the evaporator 4 and increase in the flow rate of the refrigerant introduced into the condenser 2.

【0013】また、冷媒としてHFC32/HFC12
5/HFC134aからなる三種混合冷媒冷媒、特にH
FC32=23wt%、HFC125=25%、HFC
134a=52wt%の三種混合冷媒、あるいはHFC
32=25wt%、HFC125=15%、HFC13
4a=60wt%の三種混合冷媒、あるいはHFC32
=30wt%、HFC125=20%、HFC134a
=50wt%の三種混合冷媒などを用いることにより、
その冷媒を用いた空気調和機の消費電力量を発電するた
めに排出される二酸化炭素による間接的な地球温暖化へ
の影響の低減と、冷媒自身の漏洩や放出による直接的な
地球温暖化への影響の低減との両立が可能となり、地球
温暖化防止の観点からは、さらに望ましい空気調和機を
実現できる。
Further, HFC32 / HFC12 is used as a refrigerant.
5 / HFC134a triple mixed refrigerant refrigerant, especially H
FC32 = 23wt%, HFC125 = 25%, HFC
134a = 52 wt% of a triple mixed refrigerant or HFC
32 = 25 wt%, HFC125 = 15%, HFC13
4a = 60 wt% mixed refrigerant of three kinds, or HFC32
= 30 wt%, HFC125 = 20%, HFC134a
= 50 wt% by using a mixed refrigerant of three types
Reduction of indirect impact on global warming due to carbon dioxide emitted to generate power consumption of air conditioners using the refrigerant, and direct global warming due to leakage and release of refrigerant itself Thus, a more desirable air conditioner can be realized from the viewpoint of preventing global warming.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図4を用いて説明する。 (実施の形態1)図1に本発明にかかる実施の形態1の
空気調和機を示す。図1においては、1は圧縮機、2は
凝縮器、3は減圧器、4は蒸発器であり、これらを配管
接続することにより冷凍サイクルを構成している。また
凝縮器2と減圧器3との間に補助熱交換器5を接続し、
減圧器3と蒸発器4との間に気液分離器6を接続してい
る。気液分離器6で分離されたガス冷媒は圧縮機1の吸
入部で蒸発器4を経た冷媒と合流し、気液分離器6で分
離された液冷媒は蒸発器4へ導入されるように構成され
ている。補助熱交換器5では、凝縮器2と減圧器3との
間の冷媒と圧縮機1の吸入部の冷媒とを熱交換させるよ
うに構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS. (Embodiment 1) FIG. 1 shows an air conditioner according to Embodiment 1 of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a decompressor, 4 is an evaporator, and these are connected to a pipe to constitute a refrigeration cycle. Also, an auxiliary heat exchanger 5 is connected between the condenser 2 and the pressure reducer 3,
A gas-liquid separator 6 is connected between the pressure reducer 3 and the evaporator 4. The gas refrigerant separated by the gas-liquid separator 6 merges with the refrigerant that has passed through the evaporator 4 at the suction portion of the compressor 1, and the liquid refrigerant separated by the gas-liquid separator 6 is introduced into the evaporator 4. It is configured. The auxiliary heat exchanger 5 is configured to exchange heat between the refrigerant between the condenser 2 and the pressure reducer 3 and the refrigerant at the suction part of the compressor 1.

【0015】このような構成の空気調和機における動作
を説明する。
The operation of the air conditioner having such a configuration will be described.

【0016】冷媒は圧縮機1で圧縮されて、凝縮器2で
放熱して凝縮液化して、補助熱交換器5へ導入される。
凝縮器2で凝縮液化した冷媒は、補助熱交換器5で蒸発
器4と圧縮機1の吸入部との間の冷媒と熱交換を行い、
過冷却された後、減圧器3、気液分離器6を経て、蒸発
器4で吸熱して蒸発気化して再び圧縮機1に吸入され
る。
The refrigerant is compressed by the compressor 1, radiates heat in the condenser 2, condensed and liquefied, and is introduced into the auxiliary heat exchanger 5.
The refrigerant condensed and liquefied in the condenser 2 performs heat exchange with the refrigerant between the evaporator 4 and the suction part of the compressor 1 in the auxiliary heat exchanger 5,
After being supercooled, the heat is absorbed by the evaporator 4 through the decompressor 3 and the gas-liquid separator 6, evaporated and vaporized, and then sucked into the compressor 1 again.

【0017】ここで、補助熱交換器5で過冷却された冷
媒が減圧器3で減圧されるために、減圧器3を経た冷媒
は乾き度の小さい二相冷媒であり、また、気液分離器6
で分離された液冷媒は飽和液状態であるため、蒸発器4
に導入される冷媒は飽和液状態となる。すなわち、気液
分離器6で分離されたガス冷媒が蒸発器4をバイパスし
ても、蒸発器4では蒸発潜熱を十分に利用できて同等の
吸熱量を効率よく吸熱できるため、蒸発圧力すなわち圧
縮機1の吸入圧力が上昇して圧縮機1における圧縮比が
減少して空気調和機の効率が向上し、消費電力量を低減
できる。
Here, since the refrigerant supercooled by the auxiliary heat exchanger 5 is decompressed by the decompressor 3, the refrigerant passing through the decompressor 3 is a two-phase refrigerant having a small dryness. Vessel 6
Since the liquid refrigerant separated in the above is in a saturated liquid state, the evaporator 4
Becomes a saturated liquid state. That is, even if the gas refrigerant separated by the gas-liquid separator 6 bypasses the evaporator 4, the evaporator 4 can sufficiently utilize the latent heat of evaporation and efficiently absorb the same amount of heat absorbed. The suction pressure of the compressor 1 increases, the compression ratio in the compressor 1 decreases, the efficiency of the air conditioner improves, and the power consumption can be reduced.

【0018】さらに気液分離器6で分離されたガス冷媒
は蒸発器4をバイパスして圧縮機1吸入部へ導入される
ため、減圧器3あるいは気液分離器6〜蒸発器4〜圧縮
機1吸入部間の圧力損失を低減でき、圧縮機1の吸入圧
力が上昇して圧縮機1における圧縮比が減少して、さら
に空気調和機の効率を向上できて消費電力量を低減でき
るものである。
Further, the gas refrigerant separated by the gas-liquid separator 6 is introduced into the suction portion of the compressor 1 by bypassing the evaporator 4, so that the decompressor 3 or the gas-liquid separator 6 to the evaporator 4 to the compressor It is possible to reduce the pressure loss between the suction sections, increase the suction pressure of the compressor 1 and reduce the compression ratio in the compressor 1, and further improve the efficiency of the air conditioner and reduce the power consumption. is there.

【0019】なお、図1では、気液分離器6で分離され
たガス冷媒を、蒸発器4と補助熱交換器5との間で、蒸
発器4を経た冷媒と合流する構成としたが、これに限る
ものではなく、補助熱交換器5と圧縮機1の吸入部間で
合流する構成としてもよい。ただし、蒸発器4出口で冷
媒が過熱ガスとなる場合には、気液分離器6で分離され
たガス冷媒を、蒸発器4と補助熱交換器5との間で、蒸
発器4を経た冷媒と合流する構成とした方が、補助熱交
換器5へ導入される冷媒の温度を飽和ガス温度近くに下
げることができ、補助熱交換器5での熱交換量が増大す
るため、望ましい。 (実施の形態2)図2に本発明にかかる実施の形態2の
空気調和機を示す。図2においては、図1と同じ構成要
素については同じ符号を付す。図2においては、7は中
間圧部へのインジェクション機構を備えた圧縮機、8は
第一減圧器、9は第二減圧器である。気液分離器6で分
離されたガス冷媒は圧縮機7の中間圧部にインジェクシ
ョンされ、気液分離器6で分離された液冷媒は第二減圧
器9を経て蒸発器4へ導入されるように構成されてい
る。補助熱交換器5では、凝縮器2と第一減圧器8との
間の冷媒と圧縮機7の吸入部の冷媒とを熱交換させるよ
うに構成されている。
In FIG. 1, the gas refrigerant separated by the gas-liquid separator 6 is configured to join the refrigerant passing through the evaporator 4 between the evaporator 4 and the auxiliary heat exchanger 5. The configuration is not limited to this, and a configuration may be adopted in which the auxiliary heat exchanger 5 and the suction section of the compressor 1 merge. However, when the refrigerant becomes superheated gas at the outlet of the evaporator 4, the gas refrigerant separated by the gas-liquid separator 6 is transferred between the evaporator 4 and the auxiliary heat exchanger 5 by the refrigerant passing through the evaporator 4. Is preferable because the temperature of the refrigerant introduced into the auxiliary heat exchanger 5 can be reduced to near the saturated gas temperature, and the amount of heat exchange in the auxiliary heat exchanger 5 increases. (Embodiment 2) FIG. 2 shows an air conditioner according to Embodiment 2 of the present invention. 2, the same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, 7 is a compressor provided with an injection mechanism for the intermediate pressure section, 8 is a first decompressor, and 9 is a second decompressor. The gas refrigerant separated by the gas-liquid separator 6 is injected into the intermediate pressure section of the compressor 7, and the liquid refrigerant separated by the gas-liquid separator 6 is introduced into the evaporator 4 via the second decompressor 9. Is configured. The auxiliary heat exchanger 5 is configured to exchange heat between the refrigerant between the condenser 2 and the first decompressor 8 and the refrigerant at the suction part of the compressor 7.

【0020】このような構成の空気調和機における動作
を説明する。
The operation of the air conditioner having such a configuration will be described.

【0021】凝縮器2で凝縮液化した冷媒は、補助熱交
換器5で蒸発器4と圧縮機7の吸入部との間の冷媒と熱
交換を行い、過冷却された後、第一減圧器8に導入され
る。第一減圧器8で減圧されて低温中間圧の二相状態と
なった冷媒は、気液分離器6でガス冷媒と液冷媒に分離
され、ガス冷媒は蒸発器4をバイパスして圧縮機7の中
間圧部にインジェクションされ、液冷媒は第二減圧器9
で低圧に減圧されて蒸発器4へ導入される。
The refrigerant condensed and liquefied in the condenser 2 exchanges heat with the refrigerant between the evaporator 4 and the suction part of the compressor 7 in the auxiliary heat exchanger 5 and is supercooled. 8 is introduced. The refrigerant that has been decompressed by the first decompressor 8 and has become a low-temperature intermediate-pressure two-phase state is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 6, and the gas refrigerant bypasses the evaporator 4 and passes through the compressor 7. The liquid refrigerant is injected into the intermediate pressure section of the
, And is introduced into the evaporator 4.

【0022】ここで、補助熱交換器5で過冷却された冷
媒が第一減圧器8で減圧されるために、第一減圧器8を
経た冷媒は乾き度の小さい二相冷媒となり、また気液分
離器6で分離された液冷媒は第二減圧器9で中間圧の飽
和液状態から低圧に減圧されるため乾き度の小さい二相
冷媒となるため、蒸発器4に導入される冷媒は乾き度が
非常に小さい二相状態となる。すなわち、気液分離器6
で分離されたガス冷媒が蒸発器4をバイパスしても、蒸
発器4では蒸発潜熱を十分に利用できて同等の吸熱量を
効率よく吸熱できるため、蒸発圧力すなわち圧縮機7の
吸入圧力が上昇して圧縮機7における圧縮比が減少して
空気調和機の効率が向上して消費電力量を低減できる。
Here, since the refrigerant supercooled by the auxiliary heat exchanger 5 is decompressed by the first decompressor 8, the refrigerant that has passed through the first decompressor 8 becomes a two-phase refrigerant having a low dryness. Since the liquid refrigerant separated by the liquid separator 6 is reduced in pressure from the saturated liquid state at the intermediate pressure to a low pressure in the second decompressor 9, it becomes a two-phase refrigerant having a small dryness. A two-phase state where the dryness is very small. That is, the gas-liquid separator 6
Even if the gas refrigerant separated in step (1) bypasses the evaporator 4, the evaporator 4 can sufficiently utilize the latent heat of evaporation and efficiently absorb the same amount of heat absorbed, so that the evaporation pressure, that is, the suction pressure of the compressor 7, rises. As a result, the compression ratio in the compressor 7 decreases, the efficiency of the air conditioner improves, and the power consumption can be reduced.

【0023】さらに気液分離器6で分離されたガス冷媒
は蒸発器4をバイパスして圧縮機7中間圧部へインジェ
クションされるため、第一減圧器8あるいは気液分離器
6〜蒸発器4〜圧縮機7吸入部間の圧力損失を低減でき
るため圧縮機7の吸入圧力が上昇して圧縮機7における
圧縮比が減少してさらに空気調和機の効率を向上できて
消費電力量を低減できるだけでなく、凝縮器2へ導入さ
れる冷媒流量を増大できるため、凝縮器2での放熱が効
率よく行われて空気調和機の効率が向上して消費電力量
をさらに低減できるものである。 (実施の形態3)図3に本発明にかかる実施の形態3の
空気調和機を示す。図3においては、図1と同じ構成要
素については同じ符号を付す。図3においては、気液分
離器6で分離されたガス冷媒は補助熱交換器5を経て、
圧縮機7の中間圧部にインジェクションされ、気液分離
器6で分離された液冷媒は第二減圧器9を経て蒸発器4
へ導入されるように構成されている。補助熱交換器5で
は、凝縮器2と第一減圧器8との間の冷媒と気液分離器
6のガス側出口部と圧縮機7の中間圧部との間の冷媒と
を熱交換させるように構成されている。
Further, the gas refrigerant separated by the gas-liquid separator 6 is injected into the intermediate pressure section of the compressor 7 by bypassing the evaporator 4, so that the first pressure reducer 8 or the gas-liquid separator 6 to the evaporator 4 -Since the pressure loss between the suction portions of the compressor 7 can be reduced, the suction pressure of the compressor 7 increases, the compression ratio in the compressor 7 decreases, the efficiency of the air conditioner can be further improved, and the power consumption can be reduced. In addition, since the flow rate of the refrigerant introduced into the condenser 2 can be increased, the heat radiation in the condenser 2 is efficiently performed, the efficiency of the air conditioner is improved, and the power consumption can be further reduced. Third Embodiment FIG. 3 shows an air conditioner according to a third embodiment of the present invention. 3, the same components as those in FIG. 1 are denoted by the same reference numerals. In FIG. 3, the gas refrigerant separated by the gas-liquid separator 6 passes through the auxiliary heat exchanger 5,
The liquid refrigerant injected into the intermediate pressure section of the compressor 7 and separated by the gas-liquid separator 6 passes through the second decompressor 9 to the evaporator 4.
It is configured to be introduced to The auxiliary heat exchanger 5 exchanges heat between the refrigerant between the condenser 2 and the first decompressor 8 and the refrigerant between the gas-side outlet of the gas-liquid separator 6 and the intermediate-pressure part of the compressor 7. It is configured as follows.

【0024】このような構成の空気調和機における動作
を説明する。
The operation of the air conditioner having such a configuration will be described.

【0025】凝縮器2で凝縮液化した冷媒は、補助熱交
換器5で気液分離器6のガス側出口部と圧縮機7の中間
圧部との間の冷媒と熱交換を行い、過冷却された後、第
一減圧器8に導入される。
The refrigerant condensed and liquefied in the condenser 2 exchanges heat with the refrigerant between the gas-side outlet of the gas-liquid separator 6 and the intermediate-pressure part of the compressor 7 in the auxiliary heat exchanger 5 and is supercooled. After that, it is introduced into the first decompressor 8.

【0026】第一減圧器8で減圧されて低温中間圧の二
相状態となった冷媒は、気液分離器6でガス冷媒と液冷
媒に分離され、ガス冷媒は蒸発器4をバイパスして、補
助熱交換器5で、凝縮器2と第一減圧器8との間の液冷
媒を過冷却した後、圧縮機7の中間圧部にインジェクシ
ョンされ、他方、液冷媒は第二減圧器9で低圧に減圧さ
れて蒸発器4へ導入される。
The refrigerant which has been decompressed by the first decompressor 8 and has become a low-temperature intermediate-pressure two-phase state is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 6, and the gas refrigerant bypasses the evaporator 4. After subcooling the liquid refrigerant between the condenser 2 and the first decompressor 8 in the auxiliary heat exchanger 5, the liquid refrigerant is injected into the intermediate pressure section of the compressor 7, while the liquid refrigerant is supplied to the second decompressor 9 , And is introduced into the evaporator 4.

【0027】ここで、補助熱交換器5で過冷却された冷
媒が第一減圧器8で減圧されるために、第一減圧器8を
経た冷媒は乾き度の小さい二相冷媒となり、また気液分
離器6で分離された液冷媒は第二減圧器9で中間圧の飽
和液状態から低圧に減圧されるため乾き度の小さい二相
冷媒となるため、蒸発器4に導入される冷媒は乾き度が
非常に小さい二相状態となる。すなわち、気液分離器6
で分離されたガス冷媒が蒸発器4をバイパスしても、蒸
発器4では蒸発潜熱を十分に利用できて同等の吸熱量を
効率よく吸熱できるため、蒸発圧力すなわち圧縮機7の
吸入圧力が上昇して圧縮機7における圧縮比が減少して
空気調和機の効率が向上して消費電力量を低減できる。
Here, since the refrigerant supercooled by the auxiliary heat exchanger 5 is depressurized by the first decompressor 8, the refrigerant passing through the first decompressor 8 becomes a two-phase refrigerant having a small dryness, and Since the liquid refrigerant separated by the liquid separator 6 is reduced in pressure from the saturated liquid state at the intermediate pressure to a low pressure in the second decompressor 9, it becomes a two-phase refrigerant having a small dryness. A two-phase state where the dryness is very small. That is, the gas-liquid separator 6
Even if the gas refrigerant separated in step (1) bypasses the evaporator 4, the evaporator 4 can sufficiently utilize the latent heat of evaporation and efficiently absorb the same amount of heat absorbed, so that the evaporation pressure, that is, the suction pressure of the compressor 7, rises. As a result, the compression ratio in the compressor 7 decreases, the efficiency of the air conditioner improves, and the power consumption can be reduced.

【0028】さらに気液分離器6で分離されたガス冷媒
は蒸発器4をバイパスして圧縮機7中間圧部へインジェ
クションされるため、第一減圧器8あるいは気液分離器
6〜蒸発器4〜圧縮機7吸入部間の圧力損失を低減でき
るため圧縮機7の吸入圧力が上昇して圧縮機7における
圧縮比が減少してさらに空気調和機の効率を向上できて
消費電力量を低減できるだけでなく、凝縮器2へ導入さ
れる冷媒流量を増大できるため、凝縮器2での放熱が効
率よく行われて空気調和機の効率が向上して消費電力量
をさらに低減できるものである。 (実施の形態4)図4に本発明にかかる実施の形態4の
空気調和機を示す。図4においては、図1から図3と同
じ構成要素については同じ符号を付す。図4において
は、(実施の形態1)を冷暖房兼用に応用するために、
冷房と暖房を切り替える四方弁10と、冷房時には凝縮
器あるいは暖房時には蒸発器として作用する室外熱交換
器11と、冷房時には蒸発器あるいは暖房時には凝縮器
として作用する室内熱交換器12と、冷媒の流れ方向を
制限する逆止弁13、14、15、16が接続された構
成となっている。すなわち冷房時には図4中の実線矢印
のように、暖房時には図4中の破線矢印のように冷媒が
流れて、冷房時にも暖房時にも(実施の形態1)で説明
したように消費電力量を低減できるものである。
Further, the gas refrigerant separated by the gas-liquid separator 6 is injected into the intermediate pressure section of the compressor 7 by bypassing the evaporator 4, so that the first pressure reducer 8 or the gas-liquid separator 6 to the evaporator 4 -Since the pressure loss between the suction portions of the compressor 7 can be reduced, the suction pressure of the compressor 7 increases, the compression ratio in the compressor 7 decreases, the efficiency of the air conditioner can be further improved, and the power consumption can be reduced. In addition, since the flow rate of the refrigerant introduced into the condenser 2 can be increased, the heat radiation in the condenser 2 is efficiently performed, the efficiency of the air conditioner is improved, and the power consumption can be further reduced. (Embodiment 4) FIG. 4 shows an air conditioner according to Embodiment 4 of the present invention. 4, the same components as those in FIGS. 1 to 3 are denoted by the same reference numerals. In FIG. 4, in order to apply (Embodiment 1) to both cooling and heating,
A four-way valve 10 for switching between cooling and heating, an outdoor heat exchanger 11 acting as a condenser during cooling or as an evaporator during heating, an indoor heat exchanger 12 acting as an evaporator during cooling or as a condenser during heating, The check valves 13, 14, 15, 16 for restricting the flow direction are connected. That is, the refrigerant flows as shown by the solid arrow in FIG. 4 during cooling, and as shown by the dashed arrow in FIG. 4 during heating, and the power consumption is reduced both during cooling and during heating as described in the first embodiment. It can be reduced.

【0029】なお、上記(実施の形態2)あるいは(実
施の形態3)では、気液分離器で分離されたガスを一台
の圧縮機の中間圧部にインジェクションさせるものとし
て説明したがこれにこだわるものではなく、例えば二台
の圧縮機を直列に接続した二段圧縮における低段側圧縮
機の吐出部と高段側圧縮機の吸入部の間に合流させた場
合にも同様の効果が得られるものである。本明細書では
このような場合を含めて、圧縮機の中間圧部という。
In the above (Embodiment 2) or (Embodiment 3), it has been described that the gas separated by the gas-liquid separator is injected into the intermediate pressure section of one compressor. The same effect can be obtained, for example, when two compressors are connected in series and the two compressors are connected in series between the discharge part of the low-stage compressor and the suction part of the high-stage compressor in two-stage compression. It is obtained. In this specification, including such a case, it is referred to as an intermediate pressure portion of the compressor.

【0030】また、上記(実施の形態4)では、(実施
の形態1)を冷暖房兼用に応用するように説明したが、
これにこだわるものではなく、(実施の形態2)、(実
施の形態3)についても四方弁と逆止弁等を適切に接続
することにより、(実施の形態4)と同様の空気調和機
を実現できることは明らかである。
In the above (Embodiment 4), (Embodiment 1) has been described as being applied to both cooling and heating.
The present invention is not limited to this. For the second embodiment and the third embodiment, the same air conditioner as the fourth embodiment can be obtained by appropriately connecting the four-way valve and the check valve. It is clear that this can be achieved.

【0031】また、上記実施の形態のいずれにおいて
も、冷媒としてHFC32/HFC125/HFC13
4aからなる三種混合冷媒、特にHFC32=23wt
%、HFC125=25%、HFC134a=52wt
%の三種混合冷媒(R407C)、あるいはHFC32
=25wt%、HFC125=15%、HFC134a
=60wt%の三種混合冷媒、あるいはHFC32=3
0wt%、HFC125=20%、HFC134a=5
0wt%の三種混合冷媒などを用いた場合には、上記実
施の形態で説明した圧力損失低減などによる消費電力量
低減に加えて、表1(IPCC1995年12月第11
回会合WG1報告書をもとに算出)に示すようにGWP
がHCFC22よりも小さくできる。
In any of the above embodiments, the refrigerant is HFC32 / HFC125 / HFC13.
4a, especially HFC32 = 23wt
%, HFC125 = 25%, HFC134a = 52wt
% Mixed refrigerant (R407C) or HFC32
= 25 wt%, HFC125 = 15%, HFC134a
= 60 wt% of a triple mixed refrigerant, or HFC32 = 3
0 wt%, HFC125 = 20%, HFC134a = 5
When 0 wt% of a three-component mixed refrigerant is used, in addition to the reduction in power consumption due to the reduction in pressure loss and the like described in the above embodiment, Table 1 (IPCC December 11, 1995)
(Calculated based on the WG1 report)
Can be made smaller than HCFC22.

【0032】すなわち、その冷媒を用いた空気調和機の
消費電力量を発電するために排出される二酸化炭素によ
る間接的な地球温暖化への影響の低減と、冷媒自身の漏
洩や放出による直接的な地球温暖化への影響の低減との
両立が可能となり、地球温暖化防止の観点からは、さら
に望ましい空気調和機を実現できるものである。
That is, the influence of carbon dioxide discharged to generate the power consumption of the air conditioner using the refrigerant on indirect global warming is reduced, and the leakage and discharge of the refrigerant itself are directly performed. Thus, it is possible to realize a more desirable air conditioner from the viewpoint of preventing global warming.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上述べたことから明らかなように、本
発明による空気調和機では、凝縮器と減圧器の間に補助
熱交換器を接続し、減圧器と蒸発器の間に気液分離器を
接続し、気液分離器で分離されたガス冷媒は圧縮機の吸
入部で蒸発器を経た冷媒と合流し、気液分離器で分離さ
れた液冷媒は蒸発器へと導入されるように構成し、補助
熱交換器では、凝縮器と減圧器との間の冷媒と圧縮機の
吸入部の冷媒とを熱交換させるように構成することによ
り、蒸発器での効率よい熱交換と圧力損失低減によっ
て、空気調和機の効率を向上できて消費電力量を低減で
きる。
As is apparent from the above description, in the air conditioner according to the present invention, the auxiliary heat exchanger is connected between the condenser and the decompressor, and the gas-liquid separation is performed between the decompressor and the evaporator. The gas refrigerant separated by the gas-liquid separator joins the refrigerant that has passed through the evaporator at the suction part of the compressor, and the liquid refrigerant separated by the gas-liquid separator is introduced into the evaporator. In the auxiliary heat exchanger, the heat exchange between the refrigerant between the condenser and the decompressor and the refrigerant at the suction part of the compressor is performed, so that efficient heat exchange and pressure in the evaporator are achieved. By reducing the loss, the efficiency of the air conditioner can be improved and the power consumption can be reduced.

【0035】また、凝縮器と減圧器の間に補助熱交換器
を接続し、減圧器と蒸発器の間に気液分離器を接続し、
気液分離器で分離されたガス冷媒は圧縮機の中間圧部に
インジェクションされ、気液分離器で分離された液冷媒
は第二減圧器を経て蒸発器へ導入されるように構成し、
補助熱交換器では、凝縮器と第一減圧器との間の冷媒と
圧縮機の吸入部の冷媒とを熱交換させるように構成する
ことにより、蒸発器での効率よい熱交換と圧力損失低減
と凝縮器へ導入される冷媒流量増大によって、空気調和
機の効率が向上して消費電力量を低減できる。
In addition, an auxiliary heat exchanger is connected between the condenser and the pressure reducer, and a gas-liquid separator is connected between the pressure reducer and the evaporator.
The gas refrigerant separated by the gas-liquid separator is injected into the intermediate pressure part of the compressor, and the liquid refrigerant separated by the gas-liquid separator is configured to be introduced into the evaporator through the second decompressor,
In the auxiliary heat exchanger, heat is exchanged between the refrigerant between the condenser and the first decompressor and the refrigerant at the suction part of the compressor, so that efficient heat exchange and pressure loss reduction in the evaporator are achieved. By increasing the flow rate of the refrigerant introduced into the condenser, the efficiency of the air conditioner can be improved and the power consumption can be reduced.

【0036】また、気液分離器で分離されたガス冷媒は
補助熱交換器を経て、圧縮機の中間圧部にインジェクシ
ョンされ、気液分離器で分離された液冷媒は第二減圧器
を経て蒸発器へ導入されるように構成し、補助熱交換器
では、凝縮器と第一減圧器との間の冷媒と気液分離器の
ガス側出口部と圧縮機の中間圧部との間の冷媒とを熱交
換させるように構成することにより、蒸発器での効率よ
い熱交換と圧力損失低減と凝縮器へ導入される冷媒流量
増大によって、空気調和機の効率が向上して消費電力量
を低減できる。
The gas refrigerant separated by the gas-liquid separator is injected into the intermediate pressure section of the compressor through the auxiliary heat exchanger, and the liquid refrigerant separated by the gas-liquid separator is transmitted through the second decompressor. It is configured to be introduced into the evaporator, and in the auxiliary heat exchanger, between the refrigerant between the condenser and the first decompressor and the gas side outlet of the gas-liquid separator and the intermediate pressure part of the compressor. By configuring to exchange heat with the refrigerant, efficient heat exchange in the evaporator, reduction of pressure loss, and increase in the flow rate of refrigerant introduced into the condenser increase the efficiency of the air conditioner and reduce power consumption. Can be reduced.

【0037】また、冷媒としてHFC32/HFC12
5/HFC134aからなる三種混合冷媒冷媒、特にH
FC32=23wt%、HFC125=25%、HFC
134a=52wt%の三種混合冷媒、あるいはHFC
32=25wt%、HFC125=15%、HFC13
4a=60wt%の三種混合冷媒、あるいはHFC32
=30wt%、HFC125=20%、HFC134a
=50wt%の三種混合冷媒などを用いることにより、
その冷媒を用いた空気調和機の消費電力量を発電するた
めに排出される二酸化炭素による間接的な地球温暖化へ
の影響の低減と、冷媒自身の漏洩や放出による直接的な
地球温暖化への影響の低減との両立が可能となり、地球
温暖化防止の観点からは、さらに望ましい空気調和機を
実現できる。
As a refrigerant, HFC32 / HFC12
5 / HFC134a triple mixed refrigerant refrigerant, especially H
FC32 = 23wt%, HFC125 = 25%, HFC
134a = 52 wt% of a triple mixed refrigerant or HFC
32 = 25 wt%, HFC125 = 15%, HFC13
4a = 60 wt% mixed refrigerant of three kinds, or HFC32
= 30 wt%, HFC125 = 20%, HFC134a
= 50 wt% by using a mixed refrigerant of three types
Reduction of indirect impact on global warming due to carbon dioxide emitted to generate power consumption of air conditioners using the refrigerant, and direct global warming due to leakage and release of the refrigerant itself Thus, a more desirable air conditioner can be realized from the viewpoint of preventing global warming.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1による空気調和機の冷凍
サイクル図。
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2による空気調和機の冷凍
サイクル図。
FIG. 2 is a refrigeration cycle diagram of an air conditioner according to Embodiment 2 of the present invention.

【図3】本発明の実施の形態3による空気調和機の冷凍
サイクル図。
FIG. 3 is a refrigeration cycle diagram of an air conditioner according to Embodiment 3 of the present invention.

【図4】本発明の実施の形態4による空気調和機の冷凍
サイクル図。
FIG. 4 is a refrigeration cycle diagram of an air conditioner according to Embodiment 4 of the present invention.

【図5】従来の空気調和機の冷凍サイクル図。FIG. 5 is a refrigeration cycle diagram of a conventional air conditioner.

【図6】従来の空気調和機の圧力−エンタルピ線図。FIG. 6 is a pressure-enthalpy diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 減圧器 4 蒸発器 5 補助熱交換器 6 気液分離器 7 中間圧インジェクション機構付き圧縮機 8 第一減圧器 9 第二減圧器 10 四方弁 11 室外熱交換器 12 室内熱交換器 13、14、15、16 逆止弁 REFERENCE SIGNS LIST 1 compressor 2 condenser 3 decompressor 4 evaporator 5 auxiliary heat exchanger 6 gas-liquid separator 7 compressor with intermediate pressure injection mechanism 8 first decompressor 9 second decompressor 10 four-way valve 11 outdoor heat exchanger 12 indoor Heat exchanger 13, 14, 15, 16 Check valve

フロントページの続き (51)Int.Cl.6 識別記号 FI F25B 13/00 331 F25B 13/00 331A Continued on the front page (51) Int.Cl. 6 Identification code FI F25B 13/00 331 F25B 13/00 331A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、凝縮器、減圧器、蒸
発器を配管接続した空気調和機において、前記凝縮器と
前記減圧器間に補助熱交換器が接続され、前記減圧器と
前記蒸発器間に気液分離器が接続され、前記気液分離器
のガス側出口が前記蒸発器と前記圧縮機吸入部間に接続
され、前記気液分離器の液側出口が前記蒸発器に接続さ
れ、前記補助熱交換器により、前記凝縮器と前記減圧器
間の冷媒と前記蒸発器と前記圧縮機吸入部間の冷媒が熱
交換することを特徴とする空気調和機。
1. An air conditioner in which at least a compressor, a condenser, a decompressor, and an evaporator are connected by piping, an auxiliary heat exchanger is connected between the condenser and the decompressor, and the decompressor and the evaporator are connected. A gas-liquid separator is connected therebetween, a gas-side outlet of the gas-liquid separator is connected between the evaporator and the compressor suction unit, and a liquid-side outlet of the gas-liquid separator is connected to the evaporator. An air conditioner, wherein the auxiliary heat exchanger exchanges heat between a refrigerant between the condenser and the decompressor and a refrigerant between the evaporator and the compressor suction section.
【請求項2】 少なくとも圧縮機、凝縮器、第一減圧
器、蒸発器を配管接続した空気調和機において、前記凝
縮器と前記第一減圧器間に補助熱交換器が接続され、前
記第一減圧器と前記蒸発器間に気液分離器が接続され、
前記気液分離器のガス側出口が前記圧縮機の中間圧部に
接続され、前記気液分離器の液側出口が第二減圧器を介
して前記蒸発器に接続され、前記補助熱交換器により、
前記凝縮器と前記第一減圧器間の冷媒と前記蒸発器と前
記圧縮機吸入部間の冷媒が熱交換することを特徴とする
空気調和機。
2. An air conditioner in which at least a compressor, a condenser, a first decompressor, and an evaporator are connected by piping, an auxiliary heat exchanger is connected between the condenser and the first decompressor, A gas-liquid separator is connected between the pressure reducer and the evaporator,
A gas-side outlet of the gas-liquid separator is connected to an intermediate pressure portion of the compressor, a liquid-side outlet of the gas-liquid separator is connected to the evaporator via a second decompressor, and the auxiliary heat exchanger By
An air conditioner wherein the refrigerant between the condenser and the first decompressor and the refrigerant between the evaporator and the suction part of the compressor exchange heat.
【請求項3】 少なくとも圧縮機、凝縮器、第一減圧
器、蒸発器を配管接続した空気調和機において、前記凝
縮器と前記第一減圧器間に補助熱交換器が接続され、前
記第一減圧器と前記蒸発器間に気液分離器が接続され、
前記気液分離器のガス側出口が前記補助熱交換器を介し
て前記圧縮機の中間圧部に接続され、前記気液分離器の
液側出口が第二減圧器を介して前記蒸発器に接続され、
前記補助熱交換器により、前記凝縮器と前記第一減圧器
間の冷媒と前記気液分離器のガス側出口部と前記圧縮機
中間圧部間の冷媒が熱交換することを特徴とする空気調
和機。
3. An air conditioner in which at least a compressor, a condenser, a first decompressor, and an evaporator are connected by piping, an auxiliary heat exchanger is connected between the condenser and the first decompressor, A gas-liquid separator is connected between the pressure reducer and the evaporator,
The gas-side outlet of the gas-liquid separator is connected to the intermediate pressure section of the compressor via the auxiliary heat exchanger, and the liquid-side outlet of the gas-liquid separator is connected to the evaporator via a second decompressor. Connected
The auxiliary heat exchanger exchanges heat between a refrigerant between the condenser and the first decompressor and a refrigerant between a gas-side outlet of the gas-liquid separator and the compressor intermediate pressure section. Harmony machine.
【請求項4】 冷媒としてHFC32、HFC125、
HFC134aからなる3種混合冷媒を用いたことを特
徴とする請求項1から請求項3のいずれかに記載の空気
調和機。
4. HFC32, HFC125,
The air conditioner according to any one of claims 1 to 3, wherein a three-type mixed refrigerant comprising HFC134a is used.
JP16638697A 1997-06-23 1997-06-23 Air conditioner Expired - Fee Related JP3936027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16638697A JP3936027B2 (en) 1997-06-23 1997-06-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16638697A JP3936027B2 (en) 1997-06-23 1997-06-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1114167A true JPH1114167A (en) 1999-01-22
JP3936027B2 JP3936027B2 (en) 2007-06-27

Family

ID=15830466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16638697A Expired - Fee Related JP3936027B2 (en) 1997-06-23 1997-06-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP3936027B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214525A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Showcase with built-in freezer
EP2153139A1 (en) * 2007-05-23 2010-02-17 Carrier Corporation Refrigerant injection above critical point in a transcritical refrigerant system
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
CN102954631A (en) * 2012-11-26 2013-03-06 海信科龙电器股份有限公司 Refrigerating system
JP2014126323A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Refrigeration device
JP2014132217A (en) * 2014-04-17 2014-07-17 Topre Corp Refrigeration device using triple tube heat exchanger
JP2015148406A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
CN106403412A (en) * 2016-10-25 2017-02-15 珠海格力电器股份有限公司 Refrigerant circulatory system and refrigeration equipment
CN106595115A (en) * 2015-10-19 2017-04-26 艾力股份公司-卡皮贾尼集团 Thermodynamic system for thermal treatment and machine comprising the system, for making liquid and semi-liquid products
CN111492185A (en) * 2017-12-18 2020-08-04 大金工业株式会社 Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214525A (en) * 2004-01-30 2005-08-11 Mitsubishi Electric Corp Showcase with built-in freezer
JP2010526985A (en) * 2007-05-14 2010-08-05 キャリア コーポレイション Refrigerant vapor compression system with flash tank economizer
US8671703B2 (en) 2007-05-14 2014-03-18 Carrier Corporation Refrigerant vapor compression system with flash tank economizer
EP2153139A1 (en) * 2007-05-23 2010-02-17 Carrier Corporation Refrigerant injection above critical point in a transcritical refrigerant system
EP2153139A4 (en) * 2007-05-23 2012-10-10 Carrier Corp Refrigerant injection above critical point in a transcritical refrigerant system
CN102954631A (en) * 2012-11-26 2013-03-06 海信科龙电器股份有限公司 Refrigerating system
JP2014126323A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Refrigeration device
JP2015148406A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Refrigeration device
JP2014132217A (en) * 2014-04-17 2014-07-17 Topre Corp Refrigeration device using triple tube heat exchanger
CN106595115A (en) * 2015-10-19 2017-04-26 艾力股份公司-卡皮贾尼集团 Thermodynamic system for thermal treatment and machine comprising the system, for making liquid and semi-liquid products
CN106403412A (en) * 2016-10-25 2017-02-15 珠海格力电器股份有限公司 Refrigerant circulatory system and refrigeration equipment
CN111492185A (en) * 2017-12-18 2020-08-04 大金工业株式会社 Air conditioner

Also Published As

Publication number Publication date
JP3936027B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3614330B2 (en) Supercritical vapor compression refrigeration cycle
US20100147006A1 (en) Refrigerant system with cascaded circuits and performance enhancement features
US20100313582A1 (en) High efficiency r744 refrigeration system and cycle
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JPH10318614A (en) Air conditioner
JP2001133058A (en) Refrigeration cycle
JP2001221517A (en) Supercritical refrigeration cycle
US20120234026A1 (en) High efficiency refrigeration system and cycle
EP1564507A2 (en) Refrigerant cycle apparatus
JP6554156B2 (en) Multistage heat pump having a two-stage expansion structure using CO2 refrigerant and its circulation method
JP5049889B2 (en) Refrigeration equipment
JP2001241780A (en) Refrigerating air conditioner
JPH10332212A (en) Refrigeration cycle of air conditioner
JP3936027B2 (en) Air conditioner
JP2011214753A (en) Refrigerating device
JP2712644B2 (en) Two-stage compression refrigeration cycle device
JP2023116735A (en) Refrigeration system and method
JP4999531B2 (en) Air conditioner
JP4326004B2 (en) Air conditioner
KR20160005471A (en) Ejector refrigeration system with expanded vapor entrainment
JP2005226927A (en) Refrigerant cycle device
Baek et al. Theoretical performance of transcritical carbon dioxide cycle with two-stage compression and intercooling
JPH04268165A (en) Double-stage compression and freezing cycle device
JP2000257974A (en) Refrigerating system
JPH08303879A (en) Refrigerating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees