JP3614330B2 - Supercritical vapor compression refrigeration cycle - Google Patents

Supercritical vapor compression refrigeration cycle Download PDF

Info

Publication number
JP3614330B2
JP3614330B2 JP29775399A JP29775399A JP3614330B2 JP 3614330 B2 JP3614330 B2 JP 3614330B2 JP 29775399 A JP29775399 A JP 29775399A JP 29775399 A JP29775399 A JP 29775399A JP 3614330 B2 JP3614330 B2 JP 3614330B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
heat exchanger
pressure
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29775399A
Other languages
Japanese (ja)
Other versions
JP2001116376A (en
Inventor
張  恒良
政和 宮本
雅昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29775399A priority Critical patent/JP3614330B2/en
Publication of JP2001116376A publication Critical patent/JP2001116376A/en
Application granted granted Critical
Publication of JP3614330B2 publication Critical patent/JP3614330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスインジェクションと内部熱交換器を備えた超臨界蒸気圧縮式冷凍サイクルに関するものである。
【0002】
【従来の技術】
今世紀30〜40年代にフロン冷媒が開発される前に、二酸化炭素(CO)はすでに冷媒として特に船舶の冷凍装置に使われていた。周知のように、特定フロン(CFC、HCFC)は、オゾン層破壊や地球温暖化などの問題があり、規制されている。新しく開発された代替冷媒(HFC)は、オゾン層を破壊しないが、地球温暖化係数が二酸化炭素の数百から数千倍となる。このような背景より、古い冷媒でもある二酸化炭素は蘇りつつあり、地球環境にやさしい冷媒として再び注目されている。
【0003】
しかし、二酸化炭素は、臨界温度が約31℃で、よく使われている冷媒R22(臨界温度が約96℃)と比べると、臨界温度がかなり低いことが分かる。このような物性特徴により、二酸化炭素を空調・冷凍機器の作動流体として使った場合、通常の温度範囲において圧縮された冷媒の温度と圧力が共にそれぞれ二酸化炭素の臨界温度と臨界圧力を超えるようになり、いわゆる超臨界蒸気圧縮式冷凍サイクルが形成されて作動する。
【0004】
超臨界蒸気圧縮式冷凍サイクルの放熱過程(従来冷凍サイクルの凝縮器における冷媒の熱力学過程に相当)においては、冷媒が超臨界圧力状態となっているため、従来冷媒のような潜熱ではなく顕熱の形で放熱が行われる。このように、従来の冷凍サイクルと比べると、サイクルの効率が低下してしまう。
【0005】
二酸化炭素のような冷媒を用いた超臨界蒸気圧縮式冷凍サイクルの効率を向上させるために、種々の提案が報告されてきていた。例えば、冷凍空調便覧(日本冷凍協会、1993年)に、ガスインジェクション(多効式サイクル)が、二酸化炭素のように膨張弁通過時、フラッシュガスの発生割合が大きい冷媒に有利であることが記述されている。この例として、図2にガスインジェクションを用いた超臨界蒸気圧縮式冷凍サイクルの概念図を示す。
【0006】
さらに、内部熱交換器が、非共沸混合冷媒のサイクルの効率改善、単純冷媒サイクルの液戻り防止や蒸発器から出た冷媒の油分離に用いられていたが、超臨界蒸気圧縮式冷凍サイクルに用いることにより、サイクルの効率が向上できることも知られている(例えば、Heyl, P.,Kraus,W.E., and Quack,H.:Expander−compressor for a more efficient use of COas refrigerant.Proceedings of the Joint Meeting of the lnternational lnstitute of Refrigeration,Sections B and E,June2−5,1998,Oslo,Norway, pp.195−201)。
【0007】
図3に内部熱交換器を用いた超臨界蒸気圧縮式冷凍サイクルの概念図を示す。このほかに膨張機の利用や二段圧縮・中間冷却による効率の改善方法も提案されている。
【0008】
上記説明したサイクルを混在させた、すなわちガスインジェクションと内部熱交換器を設けている超臨界蒸気圧縮式サイクルの構成が特開平11−63694号公報に開示されている。このサイクルは、図4に示すように、放熱器2と第1の膨張弁3との間には、高圧側ラインの冷媒と、第2の気液分離器(アキュムレータ)9によって分離された気相冷媒とを熱交換する補助熱交換器6が設けられており、放熱器2から流出される冷媒が蒸発器下流側の冷媒によってさらに冷却されるようになっている。
【0009】
このような構成によれば、上述したごとく、第1の気液分離器内に液相冷媒を確保することができると共に、放熱器2から流出した冷媒をさらに冷却してサイクルの冷却性能を高めることができ、運転効率を向上させることができることが記載されている。
【0010】
【発明が解決しようとする課題】
上述した超臨界蒸気圧縮式サイクルの効率改善方法の中で、コストや技術的可能性の視点から見ると、内部熱変換器とガスインジェクションは最も実現しやすい効率の改善方法と考えられる。
【0011】
しかしながら、特開平11−63694号公報に記載の方法によリガスインジェクションと内部熱交換器を組み合わせた場合には、各々の機能が十分に発揮されていない。
【0012】
すなわち、上記公報の方法では、内部熱交換器における熱交換によって、高圧放熱器出口側冷媒がさらに冷却されるが、第1の膨張装置を通過した後、冷媒の乾き度が下がり、ガスインジェクションの効果を弱めることになってしまう。その結果、冷凍サイクルの成績係数が内部熱交換器を有しない図2に示すガスインジェクションサイクルの場合に比べ劣ってしまう。
【0013】
本発明は、上記問題点に鑑み、ガスインジェクションの効果を弱めることなく内部熱交換器を加えることにより、冷凍サイクルの成績係数(COP:coefficient Of performance)を向上できる超臨界蒸気圧縮式冷凍サイクルを提供するものである。
【0014】
【課題を解決するための手段】
本発明者らは、上記課題について鋭意検討した結果、ガスインジェクションと内部熱交換器を用いた超臨界冷凍サイクルにおいて、ガスインジェクションと内部熱交換器の組み合わせ方を適切にすることで冷凍サイクルの成績係数(COP)が格段に良くなることを見い出した。具体的には、冷媒としてCO等を用いた超臨界冷凍サイクルとしては、内部熱交換器をガスインジェクションサイクルのバイパス経路より下流側に配置すれば冷凍サイクルのCOPが向上することを見出した。
【0015】
上記の理由を図2〜図5、および表1を用いて説明する。二酸化炭素冷媒を例として、図2に示す従来の内部熱交換器を有しないガスインジェクション、及び図4に示す従来のガスインジェクションと内部熱交換器の構成での超臨界蒸気圧縮式冷凍サイクルの成績係数(COP)を表1に示す条件でそれぞれ算出して比較した。
【0016】
【表1】

Figure 0003614330
【0017】
その結果を図5に示す。図5の縦軸に、図2で示した内部熱変換器を有しないガスインジェクションサイクルの最大COPに対する、図4のような内部熱交換器を用いた冷凍サイクルのCOPアップ率を表わす。図5の横軸に、サイクルの中間圧力、すなわち第1の膨張装置を通過した冷媒の圧力を表わす。
【0018】
図5で明らかなように、図4に示すガスインジェクションと内部熱交換器を併用した構成では、どのような中間圧力値に対しても図2で示したガスインジェクションサイクルより、冷凍サイクルのCOPが低下していることが分かる。
【0019】
勿論、サイクルの計算条件が違うと、具体的なCOP値の相違が生じてくるが、図5に示している傾向には変わりがない。すなわち、図5に示しているように、設定した中間圧力によってCOPアップ率が変わるが、マイナスの傾向が変わらないということである。また、高圧放熱器の冷媒圧力(以下、高圧側圧力)を変えても、図4のような構成では前記と同様に図2に示すガスインジェクションサイクルのCOPよりも低くなることを確認している。
【0020】
この現象の熱力学的な解釈としては、次のようなことが考えられる。まず、二酸化炭素のような作動流体を用いた超臨界蒸気圧縮式冷凍サイクルにおいて、内部熱交換器を第1の膨張装置の上流に設置すると、内部熱交換器高圧側出口の冷媒エンタルピが高圧放熱器出口の冷媒エンタルピより小さくなることで、第1の膨張装置を介して同じ中間圧力まで膨張した冷媒(二相状態)の乾き度が小さくなる。
【0021】
冷凍空調便覧(日本冷凍協会、1993年)に記述されているように、ガスインジェクションが膨張弁を通過した後の乾き度が大きい冷媒に有利であることから、一回目に膨張した冷媒の乾き度の低減がガスインジェクションの効果を弱めることになることが分かる。一方、Heylらによると、ガスインジェクションと内部熱交換器とによるそれぞれの効果は前者が後者の数倍であると結論されている。このことは、図4に示す構成は図2に示すガスインジェクションサイクルよりもCOPが低下する論拠になるものと考えられる。
【0022】
本発明者らは、以上の知見に基づいて、内部熱交換器とガスインジェクション配管とを用いた超臨界蒸気圧縮式冷凍サイクルにおいて、内部熱交換器を第1の膨張装置よりも下流側であって、かつガスインジェクションの効果を弱めることのない気液分離器よりも下流側、すなわち、冷媒の乾き度に直接に影響しない位置に配置する構成を採用してみたところ、サイクルのCOPが大幅に向上することを見出した。
【0023】
すなわち、本発明は、冷媒を圧縮する圧縮機と、圧縮され超臨界状態となった冷媒を冷却する高圧放熱器と、高圧放熱器から流出した冷媒を減圧する第1の膨張装置と、第1の膨張装置で減圧され気液共存状態となつた冷媒を気液分離する気液分離器と、気液分離器で分離された気体の冷媒を前記圧縮機に導入するガスインジェクション配管と、気液分離器で分離された液体の冷媒を再減圧する第2の膨張装置と、第2の膨張装置で減圧された冷媒を蒸発させる蒸発器と、高温の冷媒と低温の冷媒を熱交換させる内部熱交換器とを有する超臨界蒸気圧縮式冷凍サイクルにおいて、内部熱交換器を第1の膨張装置を通過した冷媒の乾き度に直接に影響しない位置に配置したことを特徴としている。
【0024】
ここで、第1の膨張装置を通過した冷媒の乾き度に直接に影響しない位置とは、例えば、内部熱交換器を冷凍サイクルの主経路において気液分離器よりも下流側に配置した構成が挙げられる。すなわち、上記圧縮機、高圧放熱器、第1の膨張装置、気液分離器、第2の膨張装置、蒸発器とを順次接続して冷凍サイクルの主経路を構成し、かつ気液分離器で分離された気体の冷媒を圧縮機に導入するガスインジェクション配管と内部熱交換器とを備えた超臨界蒸気圧縮式冷凍サイクルにおいて、内部熱交換器を主経路における気液分離器よりも下流側に配置した構成である。
【0025】
内部熱交換器は、同一サイクルを循環する冷媒同士(高温の冷媒と低温の冷媒)をサイクル内部において熱交換させる熱交換器をいい、そのサイクル内での配置は、第1の膨張装置を通過した冷媒の乾き度に直接影響しない位置、特に第1の気液分離器の下流側に配置する態様が好適である。この場合、高温の冷媒は第1の気液分離器で分離された液相冷媒となり、低温の冷媒は蒸発器で蒸発した低温の冷媒、又は蒸発器の下流側に第2の気液分離器が配置される場合は、第2の気液分離器で分離された気体の冷媒となる。この場合の高温の冷媒は、低温の冷媒と熱交換し、過冷却状態となって第2の膨張装置で減圧され、蒸発器に流れる。従って、蒸発器における冷凍効果が大きくなり、成績係数(COP)も向上することになる。この冷凍サイクルを循環する作動流体としては、比較的臨界点が低い二酸化炭素、エタン等の冷媒が用いられる。
【0026】
ところで、上記超臨界圧縮式冷凍サイクルの構成において、その最大効率を引き出すためには、高圧側圧力と中間圧力に最適な値を与えることが重要になる。そこで、本発明者らは、上記高圧側圧力と中間圧力の最適値について鋭意検討した結果、まず、高圧側圧力については、高圧放熱器の冷媒圧力を、内部熱交換器を有しないガスインジェクションサイクルの高圧放熱器の冷媒圧力より低く設定した場合、従来方式に比べてCOPを向上することを見出した。
【0027】
また、中間圧力については、第1の気液分離器内の冷媒圧力(第1の膨張装置を通過した冷媒の圧力:中間圧力)を、内部熱交換器を有しないガスインジェクションサイクルの第1の気液分離器内の冷媒圧力より高く設定した場合、サイクルのCOPを向上できることも見出した。
【0028】
これら超臨界圧縮式冷凍サイクルは、従来から利用されている種々の装置に適用可能であるが、特に、空気調和機に適用すれば、成績係数(COP)の向上に大いに寄与することができる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明に係わる超臨界蒸気圧縮式冷凍サイクルの構成要素および冷媒の流れを示す概念図である。
【0030】
この超臨界蒸気圧縮式冷凍サイクルは、図1のごとく、圧縮機1、高圧放熱器2、第1の膨張装置3、第1の気液分離器4、ガスインジェクション用配管5、内部熱交換器6、第2の膨張装置7、蒸発器8、第2の気液分離器(アキュムレータ)9から構成されている。
【0031】
この冷凍サイクルにおいては、作動流体として二酸化炭素等のような低い臨界温度をもつ冷媒が用いられている。圧縮機1はガスインジェクション機能付きの圧縮機(例えば、2シリンダーガスインジェクションコンプレッサ)とする。
【0032】
このような冷凍サイクルにおいては、図1のごとく、圧縮機1によつて圧縮された冷媒が、高温高圧の超臨界状態の流体として圧縮機1の吐出口から高圧放熱器2に入り、ここで放熱して冷却される。高圧放熱器3において、冷媒の圧力が冷媒の臨界圧力を超えており、従来の凝縮器における気液二相の変化は見られない。高圧放熱器3から流出した冷媒は、第1の膨張装置4を通過し、減圧されて気液共存状態(湿り蒸気)となり、第1の気液分離器4に入り、飽和蒸気と飽和液体に分離される。
【0033】
第1の気液分離器4で分離された飽和液体の冷媒は、内部熱交換器6に送られ、さらに冷却されて過冷却状態となる。過冷却状態となった液体の冷媒は、第2の膨張装置7を通過し、再減圧されて低温低圧の気液共存状態の冷媒となり、蒸発器8において、ここを通過する冷却媒体(空気等)と熱交換し、蒸発してほとんどが気相状態となり、第2の気液分離器(アキュムレータ)9で気液分離された後に低温の冷却流体として内部熱交換器6に送られる。この低温の気体の冷媒は、内部熱交換器6において、前述した第1の気液分離器4からの飽和液体の冷媒と熱交換して過熱状態の蒸気となり、圧縮機1の吸込口から圧縮機1に戻される。
【0034】
一方、図1のごとく、第1の気液分離器4で分離された飽和気体の冷媒は、第1の気液分離器4と圧縮機1との間に設けたガスインジェクション用配管5を介して圧縮機1のガスインジェクションポートから圧縮機1に導入される。ガスインジェクションポートから圧縮機1に導入された飽和気体の冷媒は、圧縮機1のシリンダーにおいて、前述した圧縮機1の吸込口から入ってほぼ中間圧力まで圧縮された過熱状態の蒸気と混合し、共に高圧側圧力まで圧縮される。
【0035】
[本発明と従来のサイクルのモリエール線図による比較]
上記冷凍サイクルにおける冷媒の熱力学状態の変化は、圧力Pを縦軸としエンタルピhを横軸としたモリエール線図で表わすと、図6の太い実線で示されるようになる。図6の水平の点線が冷媒の臨界圧力Pcを示し、細い曲線が冷媒の飽和蒸気曲線と飽和液体曲線を示す。また、より理解し易くするために、上記冷凍サイクルの各要素における熱力学過程を示す図6の太い実線にそれぞれ番号を付けており、その番号は図1に示した冷凍サイクルの各要素の番号と一致するようにしている。
【0036】
図6において、線ABと線CDがともに圧縮機1における断熱圧縮過程を示しているが、線ABは、内部熱交換器6からの冷媒をほぼ中間圧力まで圧縮する過程であり、線CDは、第1の気液分離器4からの気相冷媒と過程ABにおいて圧縮された冷媒との混合したものを圧縮する過程である。なお、圧縮過程CD前の混合過程は線BCと線HCで表わされると考えて良い。
【0037】
高圧放熱器2において、冷媒は、等圧でD点からE点まで冷却されるが、圧力が臨界圧力を超えていることで気液二相の変化が生じないことが分かる。高圧放熱器2からの冷媒は、第1の膨張装置3を通過し、E点からF点まで膨張する。G点とH点は、それぞれ第1の気液分離器4によって分離された飽和液体と飽和気体の状態を表わしている。
【0038】
内部熱交換器6における熱力学過程に関しては、線GIは第1の気液分離器4からの冷媒の放熱過程を、線KAは蒸発器8からの冷媒の受熱過程を示す。第2の膨張装置7による冷媒の再減圧過程は線IJに示される。蒸発器8における冷媒の蒸発過程が線JKに示される。
【0039】
一方、図2に示した内部熱交換器を有しない従来のガスインジェクションサイクルのモリエール線図は、図6において、線GIの放熱過程が存在せず、破線で示すGJ´の膨張過程のみをとる。
【0040】
また、図4に示した高圧放熱装置2と第1の膨張弁3との間に内部熱交換器6を設けたサイクルのモリエール線図は、図6において、EE´の放熱過程を経て、第1の膨張装置3による冷媒の減圧過程E´F´をとる。
【0041】
ここで、冷媒の乾き度について考察する。図6のモリエール線図中、冷媒の乾き度、すなわち、全冷媒量に対するガスインジェクションヘの気相冷媒の流入量は(線FG/線GH)で表され、この乾き度が大きいほどガスインジェクションを用いた場合のCOPの向上が期待できる。
【0042】
従来の内部熱交換器を用いない図2のガスインジェクションサイクルと従来の図4のサイクルとの比較では、両者の乾き度は、前者が線GF/線GHであるのに対し、後者が線GF´/線GHとなり、前者の方が乾き度が大きくなっている。その結果、前記図5で示したCOPの比較において、前者の方が良好な結果を得ているといえる。
【0043】
次に、本発明のように内部熱交換器6を第1の膨張装置3を通過した冷媒の乾き度に直接に影響しない位置に配置した場合と、内部熱交換器を用いない図2の冷凍サイクルとで比較すると、図6において、両者の乾き度(線FG/線GH)は同じであるが、内部熱交換器を用いている面積GIJJ´部分でのCOPの向上が期待できる。
【0044】
[本発明と従来のサイクルのシミュレーションによるCOPの比較]
ここで、図1に示す本発明の冷凍サイクルと、図2に示す内部熱交換器を有しない従来の冷凍サイクルを比較したシミュレーション結果を示す。シミュレーションは、前記に示した表1の条件で図7に示すフローチャートに従って冷凍サイクルの成績係数(COP)を算出し、両者を比較した。
【0045】
図7のCOP算出フローは、まず、表1の条件に従い高圧側圧力、蒸発温度、中間圧力、内部熱交換器ピンチポイント温度差などを入力し、高圧放熱器出口側冷媒のエンタルピを算出し、第1の膨張装置で一回目に膨張した冷媒ガスの乾き度、ガスインジェクション圧力における飽和気体と飽和液体との比、エンタルピ等を算出する。次に、内部熱交換器の出口冷媒の初期温度を設定し、内部熱交換器における熱収支を算出する。この場合、算出した熱収支が熱力学の第1法則(エネルギー保存の法則)を満たさなければならないので、これを満たすまで内部熱交換器の出口冷媒の初期温度を設定し直す。
【0046】
所望の初期温度設定が終了したならば、圧縮機の吸込側冷媒のエンタルピとエントロピを算出し、次いで、1段目圧縮後の冷媒エンタルピと、ガスインジェクションとの混合後の冷媒のエンタルピ並びにエントロピとを算出し、圧縮機の吐出冷媒のエンタルピを算出する。そして、これらの算出結果からサイクルのCOPを算出する。
【0047】
ところで、本発明による超臨界圧縮式冷凍サイクルの構成で、その最大効率を引き出すために、高圧側圧力と中間圧力に最適な値を与えることが重要となる。本発明による超臨界圧縮式冷凍サイクルと従来のサイクルとについて、図8に高圧側圧力を比較した結果を、また、図9に中間圧力を比較した結果を夫々示し、その詳細を以下に説明する。
【0048】
図8(a)は、内部熱交換器を有しない従来のインジェクションサイクルと本発明による冷凍サイクルの高圧側圧力のCOP挙動を示す。この結果、内部熱交換器を有しない従来のガスインジェクションサイクル(単独ガスインジェクションサイクル)の最適高圧側圧力は100barであるのに対し、本発明による冷凍サイクルの最適高圧側圧力は95barであった。したがって、最適高圧側の圧力は、内部熱交換器を有しない従来のサイクルに比べて低く設定した方がCOPの向上が期待できることが分かった。
【0049】
図8(b)は、図2に示したガスインジェクションサイクルの最大COPに対する本発明冷凍サイクルのCOPアップ率と高圧側圧力との関係を示している。図8(b)の結果からわかるように、何れの圧力においても内部熱交換器を有しない従来のサイクルに比べCOPが向上している。
【0050】
図9(a)は、内部熱変換器を有しない従来のインジェクションサイクルと本発明による冷凍サイクルの中間圧力のCOP挙動を示す。この結果、内部熱交換器を有しない従来のガスインジェクションサイクル(単独ガスインジェクションサイクル)の最適中間圧力は55barであるのに対し、本発明による冷凍サイクルの最適中間圧力は61barであつた。したがって、最適中間圧力は内部熱交換器を有しない従来のサイクルに比べ高く設定した方がCOPが向上することが分かった。
【0051】
図9(b)は、図2に示したガスインジェクションサイクルの最大COPに対する本発明による冷凍サイクルのCOPアップ率と中間圧力の関係を示している。図9(b)の結果からわかるように、何れの圧力においても内部熱交換器を有しない従来のサイクルに比べCOPが向上していることがわかる。なお、図5、図8、図9に示した結果はすべて同じ比較条件において得られたものである。
【0052】
本発明によるガスインジェクションと内部熱交換器との構成では、図1と図6に示すように、内部熱交換器6は冷媒の流れから見ると、ガスインジェクションの下流にあることで、第1の膨張装置3を通過した冷媒の乾き度(図6の点F)に直接に影響しない。従って、図8及び図9に示した結果の通り、本発明によるガスインジェクションと内部熱交換器との構成は、ガスインジェクションの効果を弱めることなく、超臨界蒸気圧縮式冷凍サイクルのCOPを向上させることができる。
【0053】
また、通常の冷凍サイクル(ガスインジェクションと内部熱交換器を有していない冷凍サイクル)と比べると、最大でCOPは約20%向上させることができる。また、本発明による間接的な効果としては、蒸発器において冷媒を過熱状態まで加熱しなくても、内部熱交換器6を付加して、この部分で高温の冷媒から受熱することにより、圧縮機に吸込まれる冷媒に十分な過熱度を持たせることができる。従って、蒸発器において冷媒の過熱受熱面を設ける必要がなく、熱伝達率がわりと低い蒸気の顕熱での熱交換を無くすことができる。単純な蒸発熱伝達と均一な伝熱温度差とにより、同じ外部条件では蒸発温度が上げられるようになり、すなわちCOPをさらに向上させることができる。例えば、蒸発器の蒸発温度を2℃程度上げると、COPをさらに約5%アップすることができる。従って、上記超臨界蒸気圧縮式冷凍サイクルを空気調和機の冷凍サイクルとして利用すれば、COPの向上に特に有効となり得る。
【0054】
なお、上記実施形態は、第2の気液分離器を設けて説明したが、この気液分離器は必須のものではない。例えば、液冷媒を蓄える機能を第1の気液分離器に兼務させるような構成にしても良く、また、蒸発器で完全に気相にする構成としても良い。さらに、図1に示していないが、ガスインジェクション量を制御する電磁弁をガスインジェクション配管に設けた構成を採用しても良い。
【0055】
【発明の効果】
以上の説明から明らかな通り、本発明によれば、ガスインジェクションの効果を弱めずに超臨界蒸気圧縮式冷凍サイクルに内部熱交換器を加えることにより、従来のガスインジェクションサイクルより高い成績係数(COP)を実現することができる。また、冷凍サイクルの高圧側圧力と中聞圧力の最適範囲を明確にし、ガスインジェクションと内部熱交換器を併用した超臨界蒸気圧縮式冷凍サイクルの設計や制御等に寄与できる。
【図面の簡単な説明】
【図1】本発明による超臨界蒸気圧縮式冷凍サイクルの構成要素と冷媒の流れを示すサイクル図
【図2】従来の内部熱交換器を用いないインジェクションサイクルのサイクル図である。
【図3】従来の内部熱交換器を用いた冷凍サイクルのサイクル図である。
【図4】従来のガスインジェクションと内部熱交換器を併用した超臨界蒸気圧縮式冷凍サイクルのサイクル図
【図5】ガスインジェクションと内部熱交換器を併用した従来の超臨界蒸気圧縮式冷凍サイクルのCOPと従来の内部熱交換器を用いないインジェクションサイクルのCOPとの比較図
【図6】本発明による超臨界蒸気圧縮式冷凍サイクルのモリエール線図
【図7】本発明に用いたシミュレーションのCOP算出フローチャート
【図8】(a)は本発明による超臨界蒸気圧縮式冷凍サイクルにおける高圧側圧力のCOP挙動と、従来のCOP挙動をシミュレーションにより比較した図、(b)は従来方式によるCOPの最適値に対する本発明における高圧側圧力のCOPアップ率を示す図
【図9】(a)は本発明による超臨界蒸気圧縮式冷凍サイクルにおける中間圧力のCOP挙動と従来のCOPの挙動をシミュレーションにより比較した図、(b)は従来方式によるCOPの最適値に対する本発明における中間圧力のCOPアップ率を示す図
【符号の説明】
1圧縮機
2高圧放熱器
3第1の膨張装置
4第1の気液分離器
5ガスインジェクション用配管
6内部熱交換器
7第2の膨張弁
8蒸発器
9第2の気液分離器
10気液分離器
11膨張装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a supercritical vapor compression refrigeration cycle equipped with gas injection and an internal heat exchanger.
[0002]
[Prior art]
Carbon dioxide (CO 2 ) was already used as a refrigerant, especially in ship refrigeration equipment, before the CFC refrigerant was developed in the 30s and 40s of this century. As is well known, specific chlorofluorocarbons (CFC, HCFC) are regulated due to problems such as ozone layer destruction and global warming. Newly developed alternative refrigerants (HFCs) do not destroy the ozone layer, but have a global warming potential several hundred to several thousand times that of carbon dioxide. Against this background, carbon dioxide, which is also an old refrigerant, is being revived and attracts attention as a refrigerant that is friendly to the global environment.
[0003]
However, it can be seen that carbon dioxide has a critical temperature of about 31 ° C. and is considerably lower than the commonly used refrigerant R22 (critical temperature is about 96 ° C.). Due to these physical properties, when carbon dioxide is used as a working fluid for air conditioning and refrigeration equipment, the temperature and pressure of the refrigerant compressed in the normal temperature range both exceed the critical temperature and critical pressure of carbon dioxide, respectively. Thus, a so-called supercritical vapor compression refrigeration cycle is formed and operated.
[0004]
In the heat release process of the supercritical vapor compression refrigeration cycle (equivalent to the thermodynamic process of the refrigerant in the condenser of the conventional refrigeration cycle), the refrigerant is in a supercritical pressure state, so it is not latent heat as in the conventional refrigerant. Heat is dissipated in the form of heat. Thus, the efficiency of the cycle is reduced as compared with the conventional refrigeration cycle.
[0005]
In order to improve the efficiency of the supercritical vapor compression refrigeration cycle using a refrigerant such as carbon dioxide, various proposals have been reported. For example, in the Refrigeration and Air Conditioning Handbook (Japan Refrigeration Association, 1993), it is described that gas injection (multi-effect cycle) is advantageous for refrigerants that generate a large amount of flash gas when passing through an expansion valve, such as carbon dioxide. Has been. As an example of this, FIG. 2 shows a conceptual diagram of a supercritical vapor compression refrigeration cycle using gas injection.
[0006]
Furthermore, the internal heat exchanger was used to improve the efficiency of the cycle of non-azeotropic refrigerant mixture, to prevent liquid return in the simple refrigerant cycle, and to separate the oil from the refrigerant from the evaporator. It is also known that the efficiency of the cycle can be improved (for example, Heyl, P., Kraus, WE, and Quack, H .: Expander-compressor for a more efficient use of CO 2 as refrigerant. Proceedings of the Joint Meeting of the International Institute of Refrigeration, Sections B and E, June 2-5, 1998, Oslo, Norway, pp. 195 201).
[0007]
FIG. 3 shows a conceptual diagram of a supercritical vapor compression refrigeration cycle using an internal heat exchanger. In addition, methods for improving efficiency by using an expander and two-stage compression / intercooling have been proposed.
[0008]
Japanese Laid-Open Patent Publication No. 11-63694 discloses a supercritical vapor compression cycle configuration in which the above-described cycles are mixed, that is, a gas injection and an internal heat exchanger are provided. In this cycle, as shown in FIG. 4, between the radiator 2 and the first expansion valve 3, the gas separated by the refrigerant in the high-pressure side line and the second gas-liquid separator (accumulator) 9 is used. An auxiliary heat exchanger 6 that exchanges heat with the phase refrigerant is provided, and the refrigerant flowing out of the radiator 2 is further cooled by the refrigerant on the downstream side of the evaporator.
[0009]
According to such a configuration, as described above, the liquid-phase refrigerant can be secured in the first gas-liquid separator, and the refrigerant flowing out of the radiator 2 is further cooled to improve the cooling performance of the cycle. It is described that the operation efficiency can be improved.
[0010]
[Problems to be solved by the invention]
Among the above-described methods for improving the efficiency of the supercritical vapor compression cycle, from the viewpoint of cost and technical feasibility, the internal heat converter and gas injection are considered to be the easiest efficiency improvement methods.
[0011]
However, when the regas injection and the internal heat exchanger are combined by the method described in JP-A-11-63694, the respective functions are not sufficiently exhibited.
[0012]
That is, in the method of the above publication, the high-pressure radiator outlet-side refrigerant is further cooled by heat exchange in the internal heat exchanger, but after passing through the first expansion device, the dryness of the refrigerant decreases, and the gas injection The effect will be weakened. As a result, the coefficient of performance of the refrigeration cycle is inferior to that of the gas injection cycle shown in FIG. 2 having no internal heat exchanger.
[0013]
In view of the above problems, the present invention provides a supercritical vapor compression refrigeration cycle that can improve the coefficient of performance (COP) of a refrigeration cycle by adding an internal heat exchanger without weakening the effect of gas injection. It is to provide.
[0014]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the inventors of the present invention have achieved results of the refrigeration cycle by appropriately combining the gas injection and the internal heat exchanger in the supercritical refrigeration cycle using the gas injection and the internal heat exchanger. We found that the coefficient (COP) is much better. Specifically, as a supercritical refrigeration cycle using CO 2 or the like as a refrigerant, it has been found that the COP of the refrigeration cycle is improved if the internal heat exchanger is arranged downstream of the bypass path of the gas injection cycle.
[0015]
The above reason will be described with reference to FIGS. As an example of carbon dioxide refrigerant, the performance of the supercritical vapor compression refrigeration cycle with the conventional gas injection and internal heat exchanger configuration shown in FIG. 4 and the gas injection without the conventional internal heat exchanger shown in FIG. Coefficients (COP) were calculated and compared under the conditions shown in Table 1, respectively.
[0016]
[Table 1]
Figure 0003614330
[0017]
The result is shown in FIG. The vertical axis of FIG. 5 represents the COP increase rate of the refrigeration cycle using the internal heat exchanger as shown in FIG. 4 with respect to the maximum COP of the gas injection cycle without the internal heat converter shown in FIG. The horizontal axis of FIG. 5 represents the intermediate pressure of the cycle, that is, the pressure of the refrigerant that has passed through the first expansion device.
[0018]
As apparent from FIG. 5, in the configuration in which the gas injection and the internal heat exchanger shown in FIG. 4 are used in combination, the COP of the refrigeration cycle is higher than the gas injection cycle shown in FIG. It turns out that it has fallen.
[0019]
Of course, if the cycle calculation conditions are different, a specific difference in COP value occurs, but the tendency shown in FIG. 5 is not changed. That is, as shown in FIG. 5, the COP increase rate changes depending on the set intermediate pressure, but the negative tendency does not change. Further, even when the refrigerant pressure of the high pressure radiator (hereinafter referred to as the high pressure side pressure) is changed, it is confirmed that the configuration as shown in FIG. 4 is lower than the COP of the gas injection cycle shown in FIG. .
[0020]
The following can be considered as the thermodynamic interpretation of this phenomenon. First, in a supercritical vapor compression refrigeration cycle using a working fluid such as carbon dioxide, when the internal heat exchanger is installed upstream of the first expansion device, the refrigerant enthalpy at the high-pressure side outlet of the internal heat exchanger is subjected to high-pressure heat dissipation. By being smaller than the refrigerant enthalpy at the outlet of the vessel, the dryness of the refrigerant (two-phase state) expanded to the same intermediate pressure through the first expansion device is reduced.
[0021]
As described in the Refrigeration and Air Conditioning Handbook (Japan Refrigeration Association, 1993), the dryness of the refrigerant expanded at the first time because gas injection is advantageous for a refrigerant having a high dryness after passing through the expansion valve. It can be seen that the reduction in the pressure will weaken the effect of gas injection. On the other hand, according to Heyl et al., It is concluded that the respective effects of the gas injection and the internal heat exchanger are several times that of the latter. This is considered to be the reason why the configuration shown in FIG. 4 has a lower COP than the gas injection cycle shown in FIG.
[0022]
Based on the above knowledge, the present inventors, in the supercritical vapor compression refrigeration cycle using the internal heat exchanger and the gas injection pipe, placed the internal heat exchanger downstream from the first expansion device. In addition, I tried to adopt a configuration that is arranged downstream of the gas-liquid separator that does not weaken the effect of gas injection, that is, at a position that does not directly affect the dryness of the refrigerant. I found it to improve.
[0023]
That is, the present invention includes a compressor that compresses a refrigerant, a high-pressure radiator that cools the refrigerant that has been compressed and is in a supercritical state, a first expansion device that depressurizes the refrigerant flowing out of the high-pressure radiator, A gas-liquid separator that gas-liquid separates the refrigerant that has been decompressed and coexisting with the expansion device, a gas injection pipe that introduces the gaseous refrigerant separated by the gas-liquid separator into the compressor, and a gas-liquid A second expansion device that decompresses the liquid refrigerant separated by the separator; an evaporator that evaporates the refrigerant decompressed by the second expansion device; and internal heat that exchanges heat between the high-temperature refrigerant and the low-temperature refrigerant. In a supercritical vapor compression refrigeration cycle having an exchanger, the internal heat exchanger is arranged at a position that does not directly affect the dryness of the refrigerant that has passed through the first expansion device.
[0024]
Here, the position that does not directly affect the dryness of the refrigerant that has passed through the first expansion device is, for example, a configuration in which the internal heat exchanger is arranged downstream of the gas-liquid separator in the main path of the refrigeration cycle. Can be mentioned. That is, the compressor, the high-pressure radiator, the first expansion device, the gas-liquid separator, the second expansion device, and the evaporator are sequentially connected to form the main path of the refrigeration cycle, and the gas-liquid separator In a supercritical vapor compression refrigeration cycle having a gas injection pipe for introducing the separated gaseous refrigerant into the compressor and an internal heat exchanger, the internal heat exchanger is located downstream of the gas-liquid separator in the main path. It is the arranged configuration.
[0025]
The internal heat exchanger refers to a heat exchanger that exchanges heat (high temperature refrigerant and low temperature refrigerant) circulating in the same cycle inside the cycle, and the arrangement in the cycle passes through the first expansion device. A position that does not directly affect the dryness of the refrigerant, particularly the downstream side of the first gas-liquid separator is preferable. In this case, the high-temperature refrigerant is the liquid-phase refrigerant separated by the first gas-liquid separator, and the low-temperature refrigerant is the low-temperature refrigerant evaporated by the evaporator, or the second gas-liquid separator downstream of the evaporator. Is arranged, it becomes a gaseous refrigerant separated by the second gas-liquid separator. In this case, the high-temperature refrigerant exchanges heat with the low-temperature refrigerant, becomes a supercooled state, is decompressed by the second expansion device, and flows to the evaporator. Therefore, the refrigeration effect in the evaporator is increased and the coefficient of performance (COP) is also improved. As the working fluid circulating in the refrigeration cycle, a refrigerant such as carbon dioxide and ethane having a relatively low critical point is used.
[0026]
By the way, in the configuration of the supercritical compression refrigeration cycle, it is important to give optimum values to the high-pressure side pressure and the intermediate pressure in order to extract the maximum efficiency. Therefore, the present inventors diligently studied the optimum values of the high pressure side pressure and the intermediate pressure, and as a result, first, for the high pressure side pressure, the refrigerant pressure of the high pressure radiator was changed to a gas injection cycle without an internal heat exchanger. It was found that the COP is improved as compared with the conventional method when the refrigerant pressure is set lower than the refrigerant pressure of the high pressure radiator.
[0027]
As for the intermediate pressure, the refrigerant pressure in the first gas-liquid separator (pressure of the refrigerant that has passed through the first expansion device: intermediate pressure) is used as the first pressure in the gas injection cycle that does not have the internal heat exchanger. It has also been found that the COP of the cycle can be improved when the pressure is set higher than the refrigerant pressure in the gas-liquid separator.
[0028]
These supercritical compression refrigeration cycles can be applied to various devices that have been used in the past. Particularly, when applied to an air conditioner, the supercritical compression refrigeration cycle can greatly contribute to an improvement in coefficient of performance (COP).
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing the components of the supercritical vapor compression refrigeration cycle and the refrigerant flow according to the present invention.
[0030]
As shown in FIG. 1, the supercritical vapor compression refrigeration cycle includes a compressor 1, a high-pressure radiator 2, a first expansion device 3, a first gas-liquid separator 4, a gas injection pipe 5, and an internal heat exchanger. 6, a second expansion device 7, an evaporator 8, and a second gas-liquid separator (accumulator) 9.
[0031]
In this refrigeration cycle, a refrigerant having a low critical temperature such as carbon dioxide is used as a working fluid. The compressor 1 is a compressor with a gas injection function (for example, a two-cylinder gas injection compressor).
[0032]
In such a refrigeration cycle, as shown in FIG. 1, the refrigerant compressed by the compressor 1 enters the high-pressure radiator 2 from the discharge port of the compressor 1 as a high-temperature and high-pressure supercritical fluid. Heat is released and cooled. In the high-pressure radiator 3, the pressure of the refrigerant exceeds the critical pressure of the refrigerant, and no gas-liquid two-phase change in the conventional condenser is observed. The refrigerant that has flowed out of the high-pressure radiator 3 passes through the first expansion device 4 and is decompressed to be in a gas-liquid coexistence state (wet steam), enters the first gas-liquid separator 4, and becomes saturated vapor and saturated liquid. To be separated.
[0033]
The saturated liquid refrigerant separated by the first gas-liquid separator 4 is sent to the internal heat exchanger 6 and further cooled to be in a supercooled state. The supercooled liquid refrigerant passes through the second expansion device 7 and is decompressed again to become a low-temperature low-pressure gas-liquid coexistent refrigerant. In the evaporator 8, the cooling medium (air or the like) passing therethrough ) And evaporate to almost the gas phase, and after being gas-liquid separated by the second gas-liquid separator (accumulator) 9, it is sent to the internal heat exchanger 6 as a low-temperature cooling fluid. This low-temperature gaseous refrigerant exchanges heat with the saturated liquid refrigerant from the first gas-liquid separator 4 described above in the internal heat exchanger 6 to become superheated steam, and is compressed from the suction port of the compressor 1. Returned to machine 1.
[0034]
On the other hand, as shown in FIG. 1, the saturated gas refrigerant separated by the first gas-liquid separator 4 passes through a gas injection pipe 5 provided between the first gas-liquid separator 4 and the compressor 1. Then, it is introduced into the compressor 1 from the gas injection port of the compressor 1. Saturated gas refrigerant introduced into the compressor 1 from the gas injection port is mixed with superheated steam that has been compressed through the suction port of the compressor 1 and compressed to approximately the intermediate pressure in the cylinder of the compressor 1. Both are compressed to the high pressure side pressure.
[0035]
[Comparison of the present invention and the conventional cycle by the Mollier chart]
The change in the thermodynamic state of the refrigerant in the refrigeration cycle is represented by a thick solid line in FIG. 6 when represented by a Mollier chart with the pressure P as the vertical axis and the enthalpy h as the horizontal axis. The horizontal dotted line in FIG. 6 shows the critical pressure Pc of the refrigerant, and the thin curve shows the saturated vapor curve and saturated liquid curve of the refrigerant. For easier understanding, the thick solid lines in FIG. 6 showing the thermodynamic processes in the elements of the refrigeration cycle are respectively numbered, and the numbers are the numbers of the elements of the refrigeration cycle shown in FIG. To match.
[0036]
In FIG. 6, both line AB and line CD indicate the adiabatic compression process in the compressor 1, but the line AB is a process of compressing the refrigerant from the internal heat exchanger 6 to almost the intermediate pressure, and the line CD is This is a process of compressing a mixture of the gas-phase refrigerant from the first gas-liquid separator 4 and the refrigerant compressed in the process AB. It can be considered that the mixing process before the compression process CD is represented by a line BC and a line HC.
[0037]
In the high-pressure radiator 2, the refrigerant is cooled from point D to point E at the same pressure, but it can be seen that the gas-liquid two-phase change does not occur when the pressure exceeds the critical pressure. The refrigerant from the high-pressure radiator 2 passes through the first expansion device 3 and expands from the point E to the point F. G point and H point respectively represent the state of the saturated liquid and saturated gas separated by the first gas-liquid separator 4.
[0038]
Regarding the thermodynamic process in the internal heat exchanger 6, the line GI indicates the heat release process of the refrigerant from the first gas-liquid separator 4, and the line KA indicates the heat reception process of the refrigerant from the evaporator 8. The refrigerant re-depressurization process by the second expansion device 7 is shown by a line IJ. The refrigerant evaporation process in the evaporator 8 is shown by a line JK.
[0039]
On the other hand, the Mollier diagram of the conventional gas injection cycle having no internal heat exchanger shown in FIG. 2 does not have the heat release process of line GI in FIG. 6, and only takes the expansion process of GJ ′ shown by the broken line. .
[0040]
Also, the Mollier chart of the cycle in which the internal heat exchanger 6 is provided between the high-pressure heat dissipation device 2 and the first expansion valve 3 shown in FIG. 4 is shown in FIG. The refrigerant decompression process E′F ′ by the expansion device 3 is taken.
[0041]
Here, the dryness of the refrigerant will be considered. In the Mollier chart of FIG. 6, the dryness of the refrigerant, that is, the inflow amount of the gas phase refrigerant to the gas injection with respect to the total refrigerant amount is represented by (line FG / line GH), and the larger the dryness, the more the gas injection. An improvement in COP when used can be expected.
[0042]
In the comparison between the gas injection cycle of FIG. 2 that does not use the conventional internal heat exchanger and the conventional cycle of FIG. 4, the dryness of both is the line GF / line GH while the latter is the line GF. '/ Line GH, and the former has a higher degree of dryness. As a result, in the comparison of the COP shown in FIG. 5, it can be said that the former has a better result.
[0043]
Next, the case where the internal heat exchanger 6 is arranged at a position that does not directly affect the dryness of the refrigerant that has passed through the first expansion device 3 as in the present invention, and the refrigeration shown in FIG. 2 without using the internal heat exchanger. In comparison with the cycle, in FIG. 6, the dryness (line FG / line GH) of both is the same, but an improvement in COP can be expected in the area GIJJ ′ where the internal heat exchanger is used.
[0044]
[Comparison of COP by simulation of present invention and conventional cycle]
Here, simulation results comparing the refrigeration cycle of the present invention shown in FIG. 1 and the conventional refrigeration cycle having no internal heat exchanger shown in FIG. 2 are shown. In the simulation, the coefficient of performance (COP) of the refrigeration cycle was calculated according to the flowchart shown in FIG. 7 under the conditions shown in Table 1, and the two were compared.
[0045]
The COP calculation flow in FIG. 7 first inputs the high pressure side pressure, the evaporation temperature, the intermediate pressure, the internal heat exchanger pinch point temperature difference, etc. according to the conditions in Table 1, and calculates the high pressure radiator outlet side refrigerant enthalpy, The dryness of the refrigerant gas expanded for the first time by the first expansion device, the ratio of the saturated gas to the saturated liquid at the gas injection pressure, the enthalpy and the like are calculated. Next, an initial temperature of the outlet refrigerant of the internal heat exchanger is set, and a heat balance in the internal heat exchanger is calculated. In this case, since the calculated heat balance must satisfy the first law of thermodynamics (law of energy conservation), the initial temperature of the outlet refrigerant of the internal heat exchanger is reset until this is satisfied.
[0046]
When the desired initial temperature setting is completed, the enthalpy and entropy of the refrigerant on the suction side of the compressor are calculated. And the enthalpy of the refrigerant discharged from the compressor is calculated. Then, the COP of the cycle is calculated from these calculation results.
[0047]
By the way, in the configuration of the supercritical compression refrigeration cycle according to the present invention, it is important to give optimum values to the high-pressure side pressure and the intermediate pressure in order to extract the maximum efficiency. For the supercritical compression refrigeration cycle according to the present invention and the conventional cycle, FIG. 8 shows the result of comparing the high-pressure side pressure, and FIG. 9 shows the result of comparing the intermediate pressure. The details will be described below. .
[0048]
FIG. 8 (a) shows the COP behavior of the high pressure side pressure of a conventional injection cycle without an internal heat exchanger and a refrigeration cycle according to the present invention. As a result, the optimum high-pressure side pressure of the conventional gas injection cycle (single gas injection cycle) having no internal heat exchanger is 100 bar, whereas the optimum high-pressure side pressure of the refrigeration cycle according to the present invention is 95 bar. Therefore, it was found that the COP can be expected to be improved if the pressure on the optimum high pressure side is set lower than the conventional cycle having no internal heat exchanger.
[0049]
FIG. 8B shows the relationship between the COP increase rate of the refrigeration cycle of the present invention and the high pressure side pressure with respect to the maximum COP of the gas injection cycle shown in FIG. As can be seen from the results in FIG. 8B, the COP is improved at any pressure as compared to the conventional cycle having no internal heat exchanger.
[0050]
FIG. 9 (a) shows the COP behavior of intermediate pressure between a conventional injection cycle without an internal heat converter and a refrigeration cycle according to the present invention. As a result, the optimum intermediate pressure of the conventional gas injection cycle (single gas injection cycle) having no internal heat exchanger is 55 bar, whereas the optimum intermediate pressure of the refrigeration cycle according to the present invention is 61 bar. Therefore, it has been found that the COP is improved when the optimum intermediate pressure is set higher than in the conventional cycle having no internal heat exchanger.
[0051]
FIG. 9B shows the relationship between the COP increase rate of the refrigeration cycle according to the present invention and the intermediate pressure with respect to the maximum COP of the gas injection cycle shown in FIG. As can be seen from the result of FIG. 9B, it can be seen that COP is improved at any pressure as compared with the conventional cycle having no internal heat exchanger. The results shown in FIGS. 5, 8, and 9 are all obtained under the same comparison conditions.
[0052]
In the configuration of the gas injection and the internal heat exchanger according to the present invention, as shown in FIGS. 1 and 6, the internal heat exchanger 6 is located downstream of the gas injection when viewed from the refrigerant flow. This does not directly affect the dryness of the refrigerant that has passed through the expansion device 3 (point F in FIG. 6). Therefore, as shown in FIGS. 8 and 9, the configuration of the gas injection and the internal heat exchanger according to the present invention improves the COP of the supercritical vapor compression refrigeration cycle without weakening the effect of the gas injection. be able to.
[0053]
Further, compared to a normal refrigeration cycle (a refrigeration cycle having no gas injection and an internal heat exchanger), the COP can be improved by about 20% at the maximum. Further, as an indirect effect according to the present invention, the internal heat exchanger 6 is added and heat is received from the high-temperature refrigerant in this portion without heating the refrigerant to an overheated state in the evaporator, so that the compressor The refrigerant sucked in can be given a sufficient degree of superheat. Therefore, it is not necessary to provide an overheat receiving surface of the refrigerant in the evaporator, and heat exchange with sensible heat of steam with a rather low heat transfer coefficient can be eliminated. Simple evaporation heat transfer and uniform heat transfer temperature difference allow the evaporation temperature to be increased under the same external conditions, ie, COP can be further improved. For example, if the evaporation temperature of the evaporator is increased by about 2 ° C., the COP can be further increased by about 5%. Therefore, if the supercritical vapor compression refrigeration cycle is used as a refrigeration cycle of an air conditioner, it can be particularly effective in improving COP.
[0054]
In addition, although the said embodiment provided and demonstrated the 2nd gas-liquid separator, this gas-liquid separator is not essential. For example, the first gas-liquid separator may have a function of storing the liquid refrigerant, or may be configured to be completely in a gas phase with an evaporator. Furthermore, although not shown in FIG. 1, you may employ | adopt the structure which provided the solenoid valve which controls a gas injection amount in gas injection piping.
[0055]
【The invention's effect】
As is apparent from the above description, according to the present invention, by adding an internal heat exchanger to the supercritical vapor compression refrigeration cycle without weakening the effect of gas injection, a coefficient of performance (COP) higher than that of the conventional gas injection cycle is obtained. ) Can be realized. In addition, the optimum range of the high-pressure side pressure and the intermediate pressure of the refrigeration cycle can be clarified to contribute to the design and control of a supercritical vapor compression refrigeration cycle using both gas injection and an internal heat exchanger.
[Brief description of the drawings]
FIG. 1 is a cycle diagram showing components of a supercritical vapor compression refrigeration cycle and the flow of refrigerant according to the present invention. FIG. 2 is a cycle diagram of an injection cycle without using a conventional internal heat exchanger.
FIG. 3 is a cycle diagram of a refrigeration cycle using a conventional internal heat exchanger.
FIG. 4 is a cycle diagram of a supercritical vapor compression refrigeration cycle using a conventional gas injection and an internal heat exchanger. FIG. 5 is a diagram of a conventional supercritical vapor compression refrigeration cycle using a gas injection and an internal heat exchanger. FIG. 6 is a comparison chart of COP and COP of an injection cycle that does not use a conventional internal heat exchanger. FIG. 6 is a Mollier diagram of a supercritical vapor compression refrigeration cycle according to the present invention. Flowchart [FIG. 8] (a) is a diagram comparing the COP behavior of the high pressure side pressure in the supercritical vapor compression refrigeration cycle according to the present invention with the conventional COP behavior by simulation, and (b) is the optimum value of COP by the conventional method. FIG. 9A is a graph showing the COP-up rate of the high-pressure side pressure in the present invention with respect to FIG. Of comparison of COP behavior of intermediate pressure in conventional refrigeration cycle and conventional COP by simulation, (b) is a diagram showing the COP increase rate of intermediate pressure in the present invention relative to the optimum value of COP by the conventional method ]
1 compressor 2 high pressure radiator 3 first expansion device 4 first gas-liquid separator 5 gas injection pipe 6 internal heat exchanger 7 second expansion valve 8 evaporator 9 second gas-liquid separator 10 gas Liquid separator 11 expansion device

Claims (4)

冷媒を圧縮する圧縮機と、圧縮され超臨界状態となつた冷媒を冷却する高圧放熱器と、前記高圧放熱器から流出した冷媒を減圧する第1の膨張装置と、前記第1の膨張装置で減圧され気液共存状態となつた冷媒を気液分離する第1の気液分離器と、前記第1の気液分離器で分離された液相冷媒をさらに冷却する内部熱交換器と、前記内部熱交換器で冷却され過冷却状態となつた冷媒を減圧する第2の膨張装置と、前記第2の膨張装置で減圧された冷媒を蒸発させる蒸発器と、前記蒸発器から流出した冷媒に混在する液相冷媒を分離する第2の気液分離器とが配管で順次接続され、前記第2の気液分離器で分離された気相冷媒を前記内部熱交換器に導入し、前記内部熱交換器にて前記第1の気液分離器からの液相冷媒と熱交換させ、受熱した気相冷媒を前記圧縮機に戻す冷凍サイクルの主経路が構成され、
前記第1の気液分離器と前記圧縮機との間にガスインジェクション配管が設けられ、前記第1の気液分離器で分離された気相冷媒を前記ガスインジェクション配管を介して前記圧縮機に導入するようにしたことを特徴とする超臨界蒸気圧縮式冷凍サイクル。
A compressor that compresses the refrigerant; a high-pressure radiator that cools the refrigerant that has been compressed to a supercritical state; a first expansion device that depressurizes the refrigerant flowing out of the high-pressure radiator; and the first expansion device. A first gas-liquid separator that gas-liquid separates the refrigerant that has been decompressed and coexisting with the gas and liquid; an internal heat exchanger that further cools the liquid-phase refrigerant separated by the first gas-liquid separator; A second expansion device that depressurizes the refrigerant that has been cooled by the internal heat exchanger and is in a supercooled state, an evaporator that evaporates the refrigerant depressurized by the second expansion device, and a refrigerant that has flowed out of the evaporator A second gas-liquid separator that separates the mixed liquid-phase refrigerant is sequentially connected by a pipe, and the gas-phase refrigerant separated by the second gas-liquid separator is introduced into the internal heat exchanger, Heat exchanged with the liquid refrigerant from the first gas-liquid separator in the heat exchanger and received heat The main path of the refrigeration cycle for returning refrigerant to the compressor is configured,
A gas injection pipe is provided between the first gas-liquid separator and the compressor, and the gas-phase refrigerant separated by the first gas-liquid separator is supplied to the compressor via the gas injection pipe. A supercritical vapor compression refrigeration cycle characterized by being introduced.
記高圧放熱器の冷媒圧力は、内部熱交換器を有しないガスインジェクションサイクルの高圧放熱器の冷媒圧力より低く設定されていることを特徴とする請求項1に記載の超臨界蒸気圧縮式冷凍サイクル。Refrigerant pressure before Symbol pressure radiator, supercritical vapor compression refrigeration according to claim 1, characterized in that it is set lower than the refrigerant pressure of the high-pressure radiator having no gas injection cycle internal heat exchanger cycle. 記第1の気液分離器内の冷媒圧力は、内部熱交換器を有しないガスインジェクションサイクルの第1の気液分離器内の冷媒圧力より高く設定されていることを特徴とする請求項1又は2に記載の超臨界蒸気圧縮式冷凍サイクル。 Before SL refrigerant pressure in the first gas-liquid separator claims, characterized in that it is set higher than the first refrigerant pressure gas-liquid separator having no gas injection cycle internal heat exchanger 3. The supercritical vapor compression refrigeration cycle according to 1 or 2 . 請求項1〜3のいずれかに記載の超臨界蒸気圧縮式冷凍サイクルを用いた空気調和機。An air conditioner using the supercritical vapor compression refrigeration cycle according to any one of claims 1 to 3 .
JP29775399A 1999-10-20 1999-10-20 Supercritical vapor compression refrigeration cycle Expired - Fee Related JP3614330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29775399A JP3614330B2 (en) 1999-10-20 1999-10-20 Supercritical vapor compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29775399A JP3614330B2 (en) 1999-10-20 1999-10-20 Supercritical vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2001116376A JP2001116376A (en) 2001-04-27
JP3614330B2 true JP3614330B2 (en) 2005-01-26

Family

ID=17850738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29775399A Expired - Fee Related JP3614330B2 (en) 1999-10-20 1999-10-20 Supercritical vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3614330B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380711B1 (en) * 2007-08-30 2014-04-02 한라비스테온공조 주식회사 Air conditioning system for automotive vehicles
CN104101125A (en) * 2013-04-09 2014-10-15 珠海格力电器股份有限公司 Air conditioner
KR101786481B1 (en) 2011-11-10 2017-10-18 마에카와 매뉴팩쳐링 캄파니 리미티드 Refrigeration system for use in ship
WO2021151392A1 (en) * 2020-01-30 2021-08-05 上海复璐帝流体技术有限公司 Carbon dioxide phase change cyclic refrigeration system and refrigeration method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325949B (en) * 2004-02-09 2010-06-11 Sanyo Electric Co Refrigerant system
CN1328556C (en) * 2005-09-26 2007-07-25 浙江春晖智能控制股份有限公司 Refrigerating system of heat pump fixed frequency and frequency conversion type room air conditioner
CN100366992C (en) * 2005-11-25 2008-02-06 珠海格力电器股份有限公司 Low-temperature air-conditioning heat pump system and method for reducing temperature regulation fluctuation by using same
KR100681464B1 (en) 2006-02-27 2007-02-09 주식회사 대우일렉트로닉스 Heat pump air-conditioner of injection type and defrosting method thereof
KR100728341B1 (en) 2006-02-27 2007-06-13 주식회사 대우일렉트로닉스 Heat pump air-conditioner of injection type
US8887524B2 (en) * 2006-03-29 2014-11-18 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP5145674B2 (en) * 2006-09-11 2013-02-20 ダイキン工業株式会社 Refrigeration equipment
JP5324749B2 (en) * 2006-09-11 2013-10-23 ダイキン工業株式会社 Refrigeration equipment
JP4981604B2 (en) * 2007-10-01 2012-07-25 三菱重工業株式会社 Steam generating apparatus and steam generating method
JP2009229012A (en) 2008-03-24 2009-10-08 Daikin Ind Ltd Refrigerating device
JP2008164288A (en) * 2008-03-28 2008-07-17 Sanyo Electric Co Ltd Refrigerating device
ITTV20110141A1 (en) * 2011-10-14 2013-04-15 Enex Srl REFRIGERANT SYSTEM WITH REFRIGERANT R744 WITH HIGH CIRCULATION REPORT IN EVAPORATORS.
ITTV20110077A1 (en) * 2011-06-06 2012-12-07 Enex Srl REFRIGERATOR SYSTEM WITH STEAM COMPRESSION AND DIRECT EXPANSION WITH HIGH CIRCULATION RATIO IN EVAPORATORS.
JP5828131B2 (en) * 2011-06-16 2015-12-02 パナソニックIpマネジメント株式会社 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus
CN105301047B (en) * 2015-11-03 2017-11-28 西安交通大学 A kind of overcritical freon local heat transfer system and its experimental method
JP6718240B2 (en) * 2016-01-20 2020-07-08 三菱重工サーマルシステムズ株式会社 Refrigeration cycle with multiple multi-stage compressors connected in parallel
DE102017204222A1 (en) * 2017-03-14 2018-09-20 Siemens Aktiengesellschaft Heat pump and method for operating a heat pump
CN109751784B (en) * 2018-12-29 2020-01-10 西安交通大学 Parallel flow evaporator carbon dioxide system and operation method thereof
NO345812B1 (en) * 2019-10-28 2021-08-16 Waister As Improved heat pump
DE102021132848A1 (en) 2021-12-13 2023-06-15 TEKO Gesellschaft für Kältetechnik mbH refrigeration cycle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101380711B1 (en) * 2007-08-30 2014-04-02 한라비스테온공조 주식회사 Air conditioning system for automotive vehicles
KR101786481B1 (en) 2011-11-10 2017-10-18 마에카와 매뉴팩쳐링 캄파니 리미티드 Refrigeration system for use in ship
CN104101125A (en) * 2013-04-09 2014-10-15 珠海格力电器股份有限公司 Air conditioner
CN104101125B (en) * 2013-04-09 2016-10-05 珠海格力电器股份有限公司 air conditioner
WO2021151392A1 (en) * 2020-01-30 2021-08-05 上海复璐帝流体技术有限公司 Carbon dioxide phase change cyclic refrigeration system and refrigeration method thereof

Also Published As

Publication number Publication date
JP2001116376A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP3614330B2 (en) Supercritical vapor compression refrigeration cycle
JP5231002B2 (en) Vapor compression apparatus and method for performing a transcritical cycle associated therewith
JP4833330B2 (en) Supercritical vapor compression refrigeration cycle, air conditioning equipment and heat pump water heater using the same
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP5409715B2 (en) Air conditioner
JP2001221517A (en) Supercritical refrigeration cycle
JP6554156B2 (en) Multistage heat pump having a two-stage expansion structure using CO2 refrigerant and its circulation method
WO2007119372A1 (en) Freezing apparatus
JP6774769B2 (en) Refrigeration cycle equipment
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
WO2007034939A1 (en) Thermal converter for condensation and refrigeration system using the same
WO1999008053A1 (en) Cooling cycle
JP4442237B2 (en) Air conditioner
JPH10318614A (en) Air conditioner
JP2009299911A (en) Refrigeration device
JP2018028395A (en) Heat pump device
JP2006220351A (en) Freezer
JP2018119708A (en) Refrigerant circuit system and control method
JP2004286289A (en) Refrigerant cycle device
JP4999531B2 (en) Air conditioner
JP3936027B2 (en) Air conditioner
JP2001227837A (en) Regenerative refrigerating cycle and method for operating heat regenerative refrigeration cycle
CN210861850U (en) Double-stage throttling non-azeotropic working medium mechanical supercooling CO2Transcritical refrigeration cycle system
JP2007263487A (en) Refrigerating device
JP4326004B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees