JP5828131B2 - Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus - Google Patents

Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus Download PDF

Info

Publication number
JP5828131B2
JP5828131B2 JP2011133811A JP2011133811A JP5828131B2 JP 5828131 B2 JP5828131 B2 JP 5828131B2 JP 2011133811 A JP2011133811 A JP 2011133811A JP 2011133811 A JP2011133811 A JP 2011133811A JP 5828131 B2 JP5828131 B2 JP 5828131B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
detector
temperature detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011133811A
Other languages
Japanese (ja)
Other versions
JP2013002722A (en
Inventor
福田 栄寿
栄寿 福田
大竹 雅久
雅久 大竹
清 小山
清 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2011133811A priority Critical patent/JP5828131B2/en
Publication of JP2013002722A publication Critical patent/JP2013002722A/en
Application granted granted Critical
Publication of JP5828131B2 publication Critical patent/JP5828131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、冷凍、空調等に用いられる蒸気圧縮式の冷凍装置及びこの冷凍装置を構成する冷凍ユニットに関し、更に詳しくは、二段圧縮二段膨張式の冷凍装置及びこの冷凍装置を構成する冷凍ユニットに関する。
The present invention relates to a vapor compression refrigeration apparatus used for refrigeration, air conditioning, and the like, and a refrigeration unit constituting the refrigeration apparatus, and more specifically, a two-stage compression / two-stage expansion refrigeration apparatus and a refrigeration constituting the refrigeration apparatus. Regarding the unit .

圧縮機、放熱器、第1絞り手段、レシーバタンク、第2絞り手段、蒸発器を備え、放熱器を出た冷媒を第1絞り手段により蒸発圧力よりも高い中間圧力まで減圧し、レシーバタンク内で気液分離した後、気相の冷媒を圧縮機の圧縮工程の途中に導入し、液相の冷媒を更に第2絞り手段により蒸発圧力まで減圧して蒸発器へと流す、所謂二段圧縮二段膨張式の冷凍装置が従来より知られている(例えば、特許文献1)。この種の冷凍装置では、レシーバタンク内で分離された気相冷媒を蒸発圧力まで減圧させずに中間圧力のまま圧縮機の中間圧力部へと戻すため、冷却に寄与しない前記気相冷媒を蒸発圧力から中間圧力まで圧縮するための動力が不要となり、また、蒸発器の圧力損失も低減できるので、冷凍サイクルの効率を向上させることができる。   A compressor, a radiator, a first throttle means, a receiver tank, a second throttle means, and an evaporator, and the refrigerant discharged from the radiator is decompressed to an intermediate pressure higher than the evaporation pressure by the first throttle means; So-called two-stage compression, in which gas-phase refrigerant is introduced in the middle of the compression process of the compressor, and the liquid-phase refrigerant is further reduced to the evaporation pressure by the second throttling means and flows to the evaporator. A two-stage expansion type refrigeration apparatus has been conventionally known (for example, Patent Document 1). In this type of refrigeration system, the gas-phase refrigerant separated in the receiver tank is returned to the intermediate pressure portion of the compressor without reducing the vapor pressure to the evaporation pressure, and is returned to the intermediate pressure portion of the compressor. Power for compressing from the pressure to the intermediate pressure becomes unnecessary, and the pressure loss of the evaporator can be reduced, so that the efficiency of the refrigeration cycle can be improved.

特開2005−214444号公報JP 2005-214444 A

前述の二段圧縮二段膨張冷凍サイクルでは、第1絞り手段で減圧された後の中間圧力の冷媒、即ちレシーバタンク内の冷媒の状態によって、蒸発器へと流れる冷媒の量やエンタルピが変化する。そのため、前記中間圧力の冷媒の状態を適切にコントロールすることが重要である。冷凍効率を高めるためには、例えば、中間圧部の圧力や温度を検出し、それらの検出値が好適な範囲内となるように運転制御を行うことなどが必要となる。併せて、レシーバタンク内における気相冷媒と液相冷媒の分離効率を高めることが求められ、理想的には完全なる気液分離が望ましい。   In the above-described two-stage compression and two-stage expansion refrigeration cycle, the amount and enthalpy of refrigerant flowing to the evaporator vary depending on the state of the refrigerant at the intermediate pressure after being depressurized by the first throttling means, that is, the refrigerant in the receiver tank. . Therefore, it is important to appropriately control the state of the intermediate pressure refrigerant. In order to increase the refrigeration efficiency, for example, it is necessary to detect the pressure and temperature of the intermediate pressure portion and perform operation control so that those detected values are within a suitable range. In addition, it is required to increase the separation efficiency of the gas-phase refrigerant and the liquid-phase refrigerant in the receiver tank, and ideally complete gas-liquid separation is desirable.

しかしながら、実際の冷凍装置においては、レシーバタンクの大きさが制限されることから、完全なる気液分離は困難である。運転条件によっては、液相冷媒に気相冷媒が混入して蒸発器側へと流れることがある。このように液相冷媒に気相冷媒が混入すると、冷凍効果を発揮しない気相冷媒が蒸発器などの低圧側回路内を流れるため、蒸発器での圧力損失が増大し、更に、圧縮機において蒸発圧力から中間圧力まで冷媒を圧縮するための動力が必要となってくる。そのため、たとえ前述のように中間圧部の圧力や温度を所定の範囲内に制御していたとしても、冷凍装置の効率が低下するという問題があった。   However, in an actual refrigeration apparatus, since the size of the receiver tank is limited, complete gas-liquid separation is difficult. Depending on the operating conditions, gas-phase refrigerant may be mixed into the liquid-phase refrigerant and flow to the evaporator side. When the gas-phase refrigerant is mixed with the liquid-phase refrigerant in this way, the gas-phase refrigerant that does not exhibit the refrigeration effect flows in the low-pressure side circuit such as the evaporator, so that the pressure loss in the evaporator increases, and in the compressor Power for compressing the refrigerant from the evaporation pressure to the intermediate pressure is required. Therefore, even if the pressure and temperature of the intermediate pressure portion are controlled within a predetermined range as described above, there is a problem that the efficiency of the refrigeration apparatus is lowered.

本発明は、上記の事情に鑑みてなされたものであり、周囲条件や冷却負荷の変動に対応して高効率で安定した運転をすることが可能な冷凍装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigeration apparatus capable of stable operation with high efficiency in response to changes in ambient conditions and cooling loads.

第1発明の冷凍装置は、第1圧縮手段、中間冷却器、第2圧縮手段、放熱器、第1絞り手段、レシーバタンク、第2絞り手段、蒸発器を順次接続して閉回路を形成し、前記レシーバタンクから前記第2圧縮手段の吸入部へと冷媒を流すバイパス経路を備えた冷凍装置において、前記レシーバタンクに流入する冷媒における気相冷媒と液相冷媒の和である全体量に対する気相冷媒の質量比率を第1制御変数とし、前記レシーバタンクに流入する冷媒量に対する前記バイパス経路を流れる冷媒量の質量比率を第2制御変数とし、前記レシーバタンク内の気液分離が不完全な状態では前記第1制御変数と前記第2制御変数との差が所定の範囲内になるように前記第1絞り手段の開度を制御する第1制御装置を設けたことを特徴とする冷凍装置を設けたことを特徴とする。
In the refrigeration apparatus according to the first aspect of the invention, the first compression means, the intermediate cooler, the second compression means, the radiator, the first throttle means, the receiver tank, the second throttle means, and the evaporator are sequentially connected to form a closed circuit. In the refrigeration apparatus provided with a bypass path for flowing the refrigerant from the receiver tank to the suction portion of the second compression means, the gas with respect to the total amount that is the sum of the gas-phase refrigerant and the liquid-phase refrigerant in the refrigerant flowing into the receiver tank The mass ratio of the phase refrigerant is the first control variable, the mass ratio of the refrigerant amount flowing through the bypass path to the refrigerant amount flowing into the receiver tank is the second control variable, and the gas-liquid separation in the receiver tank is incomplete. refrigeration system, characterized in that a first control device for controlling the opening of the first throttle means so that a difference between the second control variable and the first control variable is within the predetermined range in the state Provided It is characterized in.

第2発明の冷凍装置は、第1発明において、前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧され前記第2圧縮手段に吸入される冷媒の圧力を検出する中圧圧力検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、前記第1制御装置は、前記高圧圧力検出器及び前記中圧圧力検出器で検出された圧力と前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧圧力検出器で検出された圧力と前記合流前温度検出器及び前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする。   A refrigeration apparatus according to a second aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein the refrigerant is compressed by the second compression means and detects the pressure of the refrigerant flowing into the first throttle means, and the pressure is reduced by the first throttle means and the first 2 an intermediate pressure detector for detecting the pressure of the refrigerant sucked into the compression means, a pre-expansion temperature detector for detecting the temperature of the refrigerant exiting the radiator and flowing into the first throttle means, and the intermediate cooling A pre-merging temperature detector for detecting the temperature of the refrigerant before flowing into the bypass path after flowing out of the container, and a suction temperature detector for detecting the temperature of the refrigerant sucked into the second compression means The first control device calculates the first control variable from the pressure detected by the high pressure detector and the intermediate pressure detector and the temperature detected by the pre-expansion temperature detector, The pressure detected by the medium pressure detector and the pressure And calculates the second control variable from the temperature and detected by flow front temperature detector and the suction temperature detector.

第3発明の冷凍装置は、第1発明において、前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧された後の冷媒の温度を検出する中圧温度検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、前記第1制御装置は、前記高圧圧力検出器で検出された圧力と前記中圧温度検出器及び前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧温度検出器と前記合流前温度検出器と前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする。   The refrigeration apparatus according to a third aspect of the present invention is the refrigeration apparatus according to the first aspect, wherein the high pressure detector detects the pressure of the refrigerant compressed by the second compression means and flows into the first throttle means, An intermediate pressure temperature detector for detecting the temperature of the refrigerant, a pre-expansion temperature detector for detecting the temperature of the refrigerant exiting the radiator and flowing into the first throttle means, and after flowing out the intermediate cooler A first pre-merging temperature detector for detecting a temperature of the refrigerant before joining the refrigerant flowing through the bypass path; and a suction temperature detector for detecting a temperature of the refrigerant sucked into the second compression means. The apparatus calculates the first control variable from the pressure detected by the high pressure detector and the temperatures detected by the intermediate pressure temperature detector and the pre-expansion temperature detector, and the intermediate pressure temperature detector In the pre-merging temperature detector and the suction temperature detector Characterized in that from the out temperature calculating said second control variable.

第4発明の冷凍装置は、第1発明乃至第3発明の何れかにおいて、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記第1絞り手段の開度を大きくすることを特徴とする。   The refrigeration apparatus according to a fourth aspect of the present invention is the refrigeration apparatus according to any one of the first to third aspects, wherein the opening of the first throttle means is greater when the first control variable is larger than the second control variable beyond a predetermined range. It is characterized by increasing.

第5発明の冷凍装置は、第1発明乃至第4発明の何れかにおいて、前記蒸発器に流入する冷媒又は前記蒸発器内の冷媒の温度を検出する蒸発温度検出器と、前記蒸発器から流出する冷媒の温度を検出する蒸発器出口温度検出器とを備え、前記第1制御装置は、前記蒸発器出口温度検出器と蒸発温度検出器で検出される温度の差が所定の目標温度差になるように前記第2絞り手段の開度を制御すると共に、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記目標温度差を大きくすることを特徴とする。   A refrigeration apparatus according to a fifth aspect of the present invention is the refrigeration apparatus according to any one of the first to fourth aspects of the present invention, an evaporating temperature detector for detecting the temperature of the refrigerant flowing into the evaporator or the refrigerant in the evaporator, and the outflow from the evaporator An evaporator outlet temperature detector for detecting a temperature of the refrigerant to be cooled, and the first control device is configured such that a difference between temperatures detected by the evaporator outlet temperature detector and the evaporation temperature detector is a predetermined target temperature difference. The opening degree of the second throttle means is controlled so that the target temperature difference is increased when the first control variable is larger than the second control variable beyond a predetermined range. .

第6発明の冷凍ユニットは、第2絞り手段、蒸発器を具備する蒸発ユニットとユニット間
配管で接続されて冷凍装置を構成する冷凍ユニットにおいて、この冷凍ユニットには、第1圧縮手段、中間冷却器、第2圧縮手段、放熱器、第1絞り手段、レシーバタンク、及び該レシーバタンクと前記第2圧縮手段の吸入部とを接続するバイパス経路を具備し、前記レシーバタンクに流入する冷媒における気相冷媒と液相冷媒の和である全体量に対する気相冷媒の質量比率を第1制御変数とし、前記レシーバタンクに流入する冷媒量に対する前記バイパス経路を流れる冷媒量の質量比率を第2制御変数とし、前記レシーバタンク内の気液分離が不完全な状態では前記第1制御変数と前記第2制御変数との差が所定の範囲内になるように前記第1絞り手段の開度を制御する第1制御装置を設けたことを特徴とする。
A refrigeration unit according to a sixth aspect of the present invention includes a second squeezing means and an evaporation unit provided with an evaporator and the unit.
In a refrigeration unit connected to a pipe to constitute a refrigeration apparatus, the refrigeration unit includes a first compression means, an intermediate cooler, a second compression means, a radiator, a first throttle means, a receiver tank, and the receiver tank. A bypass path connecting the suction portion of the second compression means is provided, and the mass ratio of the gas phase refrigerant to the total amount that is the sum of the gas phase refrigerant and the liquid phase refrigerant in the refrigerant flowing into the receiver tank is controlled first. And a mass ratio of the amount of refrigerant flowing through the bypass path to the amount of refrigerant flowing into the receiver tank is a second control variable, and in the state where gas-liquid separation in the receiver tank is incomplete, the first control variable and the A first control device is provided for controlling the opening degree of the first throttle means so that the difference from the second control variable is within a predetermined range.

第7発明の冷凍ユニットは、第6発明において、前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧され前記第2圧縮手段に吸入される冷媒の圧力を検出する中圧圧力検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器及び前記中圧圧力検出器で検出された圧力と前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧圧力検出器で検出された圧力と前記合流前温度検出器及び前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする。
The refrigeration unit according to a seventh aspect of the present invention is the refrigeration unit according to the sixth aspect, wherein the high pressure detector detects the pressure of the refrigerant compressed by the second compression means and flows into the first throttling means, and is depressurized by the first throttling means. 2 an intermediate pressure detector for detecting the pressure of the refrigerant sucked into the compression means, a pre-expansion temperature detector for detecting the temperature of the refrigerant exiting the radiator and flowing into the first throttle means, and the intermediate cooling A pre-merging temperature detector for detecting the temperature of the refrigerant before flowing into the bypass path after flowing out of the container, and a suction temperature detector for detecting the temperature of the refrigerant sucked into the second compression means Prepared,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the intermediate pressure detector and the temperature detected by the pre-expansion temperature detector, and the intermediate pressure is calculated. The second control variable is calculated from the pressure detected by the pressure detector and the temperatures detected by the pre-merging temperature detector and the suction temperature detector.

第8発明の冷凍ユニットは、第6発明において、前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧された後の冷媒の温度を検出する中圧温度検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器で検出された圧力と前記中圧温度検出器及び前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧温度検出器と前記合流前温度検出器と前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする。
The refrigeration unit according to an eighth aspect of the present invention is the refrigeration unit according to the sixth aspect, wherein the high pressure detector detects the pressure of the refrigerant compressed by the second compression means and flows into the first throttle means, and after being decompressed by the first throttle means An intermediate pressure temperature detector for detecting the temperature of the refrigerant, a pre-expansion temperature detector for detecting the temperature of the refrigerant exiting the radiator and flowing into the first throttle means, and after flowing out the intermediate cooler A pre-merging temperature detector for detecting the temperature of the refrigerant before joining the refrigerant flowing through the bypass path; and a suction temperature detector for detecting the temperature of the refrigerant sucked into the second compression means,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the temperatures detected by the intermediate pressure temperature detector and the pre-expansion temperature detector, and the intermediate pressure is calculated. The second control variable is calculated from a temperature detected by the temperature detector, the pre-merging temperature detector, and the temperature detected by the suction temperature detector.

第9発明に冷凍ユニットは、第6発明乃至第8発明の何れかにおいて、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記第1絞り手段の開度を大きくすることを特徴とする。   A refrigeration unit according to a ninth aspect of the present invention is the refrigeration unit according to any one of the sixth to eighth aspects, wherein the opening of the first throttling means is greater when the first control variable is larger than the second control variable beyond a predetermined range. It is characterized by increasing.

第10発明の冷凍ユニットは、第6発明乃至第9発明の何れかにおいて、前記第1制御装置は、前記蒸発器から流出する冷媒の温度と前記蒸発器に流入する冷媒又は前記蒸発器内の冷媒の温度との差である目標温度差の信号を前記蒸発ユニットに設けられた第2制御装置に送ることを特徴とする。   The refrigeration unit according to a tenth aspect of the present invention is the refrigeration unit according to any one of the sixth to ninth aspects, wherein the first control device is configured such that the temperature of the refrigerant flowing out of the evaporator and the refrigerant flowing into the evaporator or in the evaporator A signal of a target temperature difference, which is a difference from the temperature of the refrigerant, is sent to a second control device provided in the evaporation unit.

第11発明の冷凍ユニットは、第6発明乃至第10発明の何れかにおいて、前記第1制御装置は、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記目標温度差を大きくすることを特徴とする。   The refrigeration unit of the eleventh aspect of the present invention is the refrigeration unit according to any one of the sixth to tenth aspects of the present invention, wherein the first control device includes The target temperature difference is increased.

第1発明の冷凍装置、及び第6発明の冷凍ユニットによれば、前記レシーバタンクにおける気液分離が不完全な状態になることを防止し、蒸発器側へ流れる液冷媒に冷却に寄与しない蒸気冷媒が混入することを回避できる。そのため、周囲温度や冷却負荷が変動した場合であっても、冷凍サイクルの冷却効率が著しく低下することを防止し、好適な冷凍サイクルの状態を維持することが可能となり、冷凍装置の冷却性能を向上させることができる。   According to the refrigeration apparatus of the first aspect of the invention and the refrigeration unit of the sixth aspect of the invention, the vapor that does not contribute to the cooling of the liquid refrigerant flowing to the evaporator side is prevented, preventing the gas-liquid separation in the receiver tank from becoming incomplete. Mixing of refrigerant can be avoided. Therefore, even when the ambient temperature and cooling load fluctuate, it is possible to prevent the cooling efficiency of the refrigeration cycle from significantly decreasing and maintain a suitable refrigeration cycle state. Can be improved.

第2発明の冷凍装置、及び第7発明の冷凍ユニットによれば、運転条件の変動に応じて、レシーバタンクにおける気液分離の状態を的確に把握することができる。そのため、冷凍サイクルの中間圧力部の状態を適切に制御することが可能となる。   According to the refrigeration apparatus of the second aspect of the invention and the refrigeration unit of the seventh aspect of the invention, the state of gas-liquid separation in the receiver tank can be accurately grasped according to fluctuations in operating conditions. Therefore, it is possible to appropriately control the state of the intermediate pressure portion of the refrigeration cycle.

第3発明の冷凍装置、及び第8発明の冷凍ユニットによれば、より安全かつ容易に、冷凍サイクルの中間圧力部の状態を把握することが可能となる。   According to the refrigeration apparatus of the third aspect of the invention and the refrigeration unit of the eighth aspect of the invention, it becomes possible to grasp the state of the intermediate pressure part of the refrigeration cycle more safely and easily.

第4発明の冷凍装置、及び第9発明の冷凍ユニットによれば、冷凍サイクル回路の低圧側に冷却に寄与しない気相冷媒が混入して流れることを回避し、冷凍装置の冷却性能が低下することを防止できる。   According to the refrigeration apparatus of the fourth invention and the refrigeration unit of the ninth invention, it is avoided that gas-phase refrigerant that does not contribute to cooling flows into the low-pressure side of the refrigeration cycle circuit, and the cooling performance of the refrigeration apparatus decreases. Can be prevented.

第5発明の冷凍装置、及び第10、11発明の冷凍ユニットによれば、冷凍サイクル回路の低圧側に冷却に寄与しない気相冷媒が混入した際に、レシーバタンク内の冷媒量を増加させ、第2絞り手段へと流れる液冷媒に蒸気冷媒が混入することを防止することができる。そのため、外気温度や負荷条件が変動した場合であっても、冷凍装置の冷却効率の著しい低下を防止することができる。   According to the refrigeration apparatus of the fifth invention and the refrigeration units of the tenth and eleventh inventions, when a gas-phase refrigerant that does not contribute to cooling is mixed into the low-pressure side of the refrigeration cycle circuit, the amount of refrigerant in the receiver tank is increased, It is possible to prevent the vapor refrigerant from being mixed into the liquid refrigerant flowing to the second throttle means. Therefore, even when the outside air temperature and the load conditions vary, it is possible to prevent a significant decrease in the cooling efficiency of the refrigeration apparatus.

本発明の実施形態に係る冷凍装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment of the present invention. 本発明の実施形態に係るレシーバタンクの断面図である。It is sectional drawing of the receiver tank which concerns on embodiment of this invention. 本発明の冷凍サイクルを示した圧力・エンタルピ線図である。It is the pressure and enthalpy diagram which showed the refrigerating cycle of this invention. 本発明の実施形態に係る冷凍装置の制御ブロック図である。It is a control block diagram of the freezing apparatus which concerns on embodiment of this invention. 本発明の冷凍サイクルを示した圧力・エンタルピ線図である。It is the pressure and enthalpy diagram which showed the refrigerating cycle of this invention. 本発明の冷凍サイクルを示した圧力・エンタルピ線図である。It is the pressure and enthalpy diagram which showed the refrigerating cycle of this invention. 本発明の実施形態おける冷凍装置の制御フロー図である。It is a control flowchart of the freezing apparatus in embodiment of this invention.

以下、本発明の実施形態に係る冷凍装置を図面に基づき詳細に説明する。   Hereinafter, a refrigeration apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る冷凍装置の概略構成図である。本実施形態に係る冷凍装置では、第1圧縮手段としての一段目圧縮要素1aと第2圧縮手段としての二段目圧縮要素1bを備えた二段圧縮式の圧縮機1を採用している。そして、本実施形態に係る冷凍サイクル回路は、圧縮機1の二段目圧縮要素1bの吐出部、放熱器2、第1絞り手段としての膨張弁3、レシーバタンク4、ストレーナ9、第2絞り手段としての膨張弁5、蒸発器6、及びアキュームレータ8を順番に冷媒が流通し、圧縮機1の一段目圧縮要素1aの吸入部に戻る閉回路を形成するよう冷媒配管で接続され構成されている。更に、本冷凍サイクル回路は、圧縮機1の一段目圧縮要素1aの吐出部から吐出された冷媒を流す配管28、中間冷却器7及び配管31を順番に冷媒が流通して圧縮機1の二段目圧縮要素1bの吸入部へと戻る冷媒回路を備える。そして更に、本冷凍サイクル回路は、レシーバタンク4と配管31を接続する冷媒配管29を備えている。前記配管31及び配管29は、レシーバタンク4内の気相冷媒を前記圧縮機1の圧縮行程の途中に吸入させるバイパス経路として機能する。そして、本冷凍装置では、冷媒として二酸化炭素(R744)を用いている。   FIG. 1 is a schematic configuration diagram of a refrigeration apparatus according to an embodiment of the present invention. In the refrigeration apparatus according to the present embodiment, a two-stage compression compressor 1 including a first-stage compression element 1a as a first compression means and a second-stage compression element 1b as a second compression means is employed. The refrigeration cycle circuit according to the present embodiment includes a discharge unit of the second-stage compression element 1b of the compressor 1, a radiator 2, an expansion valve 3 as a first throttle means, a receiver tank 4, a strainer 9, and a second throttle. The refrigerant flows in order through the expansion valve 5, the evaporator 6, and the accumulator 8 as means, and is connected and configured by a refrigerant pipe so as to form a closed circuit that returns to the suction portion of the first-stage compression element 1 a of the compressor 1. Yes. Further, in the refrigeration cycle circuit, the refrigerant flows in order through the pipe 28, the intermediate cooler 7 and the pipe 31 through which the refrigerant discharged from the discharge portion of the first-stage compression element 1a of the compressor 1 flows. A refrigerant circuit returning to the suction portion of the stage compression element 1b is provided. Furthermore, the refrigeration cycle circuit includes a refrigerant pipe 29 that connects the receiver tank 4 and the pipe 31. The pipe 31 and the pipe 29 function as a bypass path for sucking the gas-phase refrigerant in the receiver tank 4 during the compression stroke of the compressor 1. In this refrigeration apparatus, carbon dioxide (R744) is used as the refrigerant.

圧縮機1は、低圧の冷媒を高圧の状態に圧縮するためのものである。本実施形態に係る冷凍装置では、冷媒として二酸化炭素を用いているので、圧縮機1から吐出される冷媒の圧力は臨界圧力を超える場合がある。圧縮機1は、一段目圧縮要素1a、即ち低圧側圧縮要素と、二段目圧縮要素1b、即ち高圧側圧縮要素とを備える、ロータリー式の二段圧縮式である。二段圧縮式とすることで、各段の圧縮要素の圧力比を小さくすることができ、高効率に冷媒を高圧力まで圧縮できるという利点を有する。また、一段目圧縮要素1aと二段目圧縮要素1bの間に冷媒吸入部を設けることにより、レシーバタンク4で分離された気相冷媒を圧縮工程の途中に吸入させる冷凍サイクルを容易に構成することができる。尚、圧縮機1としては、他の公知の圧縮機、例えば、スクロール式や往復式、スクリュー式等の圧縮機を用いることができる。   The compressor 1 is for compressing a low-pressure refrigerant into a high-pressure state. In the refrigeration apparatus according to the present embodiment, since carbon dioxide is used as the refrigerant, the pressure of the refrigerant discharged from the compressor 1 may exceed the critical pressure. The compressor 1 is a rotary type two-stage compression type including a first-stage compression element 1a, that is, a low-pressure side compression element, and a second-stage compression element 1b, that is, a high-pressure side compression element. By adopting a two-stage compression type, the pressure ratio of the compression elements in each stage can be reduced, and the refrigerant can be compressed to a high pressure with high efficiency. Further, by providing a refrigerant suction portion between the first-stage compression element 1a and the second-stage compression element 1b, a refrigeration cycle for sucking the gas-phase refrigerant separated in the receiver tank 4 during the compression process can be easily configured. be able to. As the compressor 1, other known compressors such as a scroll type, a reciprocating type, and a screw type can be used.

更に、圧縮機1を2台以上設けることが可能で、そのことにより冷却負荷に応じた容量制御(台数制御)を行うことが可能となる。また、本実施形態に係る圧縮機1はインバータ駆動方式であるが、定速式も採用可能である。インバータ駆動方式では、冷却負荷に応じて圧縮機の回転数を変更することが可能となり、圧縮機の発停を繰り返す定速式圧縮機の台数制御に比べて高効率な運転が可能となる。また、圧縮機1の二段目圧縮要素1bの吐出配管21には、冷媒の圧力を検出する圧力センサP1、冷媒の温度を検出する冷媒温度センサT1が設けられている。   Furthermore, it is possible to provide two or more compressors 1, which makes it possible to perform capacity control (number control) according to the cooling load. Moreover, although the compressor 1 which concerns on this embodiment is an inverter drive system, a constant speed type is also employable. In the inverter drive system, it is possible to change the rotation speed of the compressor in accordance with the cooling load, and it is possible to operate with higher efficiency compared to the control of the number of constant speed compressors that repeatedly start and stop the compressor. The discharge pipe 21 of the second-stage compression element 1b of the compressor 1 is provided with a pressure sensor P1 that detects the pressure of the refrigerant and a refrigerant temperature sensor T1 that detects the temperature of the refrigerant.

放熱器2は、冷媒の熱を大気に放出するための熱交換器で、例えば、フィンアンドチューブ式の熱交換器を採用しうる。また、放熱器2は、冷媒と熱交換を行う空気を供給するためのファン11を備える。尚、放熱器2内部での冷媒圧力が臨界圧力を超える場合、放熱器2はガスクーラとして作用する。即ち、放熱器2の冷媒流路内部で冷媒は凝縮せず、大気に対して放熱して冷却されるに従ってその温度が低下する。また、放熱器2の出口側配管22には、膨張前温度検出器として冷媒温度センサT2、及び高圧圧力検出器としての圧力センサP2が設けられている。尚、高圧圧力検出器として圧力センサP1を用いることも可能である。   The radiator 2 is a heat exchanger for releasing the heat of the refrigerant to the atmosphere, and for example, a fin-and-tube heat exchanger can be adopted. The radiator 2 includes a fan 11 for supplying air that exchanges heat with the refrigerant. Note that when the refrigerant pressure inside the radiator 2 exceeds the critical pressure, the radiator 2 acts as a gas cooler. That is, the refrigerant does not condense inside the refrigerant flow path of the radiator 2, and its temperature decreases as it is radiated and cooled to the atmosphere. In addition, the outlet side pipe 22 of the radiator 2 is provided with a refrigerant temperature sensor T2 as a pre-expansion temperature detector and a pressure sensor P2 as a high-pressure detector. It is also possible to use the pressure sensor P1 as a high pressure detector.

第1絞り手段としての膨張弁3は、放熱器2で大気に対して放熱し低温度となった冷媒を絞り膨張により減圧して、中間圧力にするためのものである。第1絞り手段としては、キャピラリーチューブ、温度式膨張弁、電動膨張弁等を採用しうる。本実施形態に係る冷凍装置では、電動膨張弁を用いている。そして、第1制御装置90によって、後述する制御方法で膨張弁3の開度が制御されている。   The expansion valve 3 as the first throttle means is for reducing the pressure of the refrigerant that has radiated heat to the atmosphere by the radiator 2 and lowered to the intermediate pressure by the expansion of the throttle. As the first throttle means, a capillary tube, a temperature type expansion valve, an electric expansion valve or the like can be adopted. In the refrigeration apparatus according to the present embodiment, an electric expansion valve is used. And the opening degree of the expansion valve 3 is controlled by the 1st control apparatus 90 with the control method mentioned later.

レシーバタンク4は、膨張弁3で中間圧力まで減圧された気液二相状態の冷媒を気液分離、即ち蒸気冷媒(気相冷媒)と液冷媒(液相冷媒)に分離するためのものである。また、レシーバタンク4は、冷凍サイクル内を循環する冷媒量を適切に維持するため、余剰冷媒を貯留する冷媒レシーバとしても機能する。図2は、本実施形態に係るレシーバタンク4の断面図である。レシーバタンク4は、レシーバ容器4Tと、前記レシーバ容器4Tの上部に設けられた冷媒入口4d及び蒸気冷媒出口4eと、レシーバ容器4Tの下部の冷媒を取り出す液冷媒出口4fを備えている。前記レシーバ容器4Tは、円筒状のレシーバ胴体4aの一端部(上方端部)に上部鏡板4bを密封接合し、他端部(下方端部)に下部鏡板4cを密封接合することにより構成されている。また、レシーバタンク4の冷媒入口4d及び蒸気冷媒出口4eには、気液分離を効率的に行うための液冷媒捕捉部材4g及び4hが各々設けられている。前記液冷媒捕捉部材4g及び4hとしては、金網、パンチングメタル、遮蔽板等が採用可能である。本実施形態では、金網を用いている。そして、金網を円筒状に丸め、下端部を潰して封止固着させたものを冷媒入口4d及び蒸気冷媒出口4eとなる管のレシーバタンク4の内側端部に差し込み固定する構造としている。このような構造を採用することにより、加工が容易で、且つ高効率に気液分離を行うことができる。また、液冷媒捕捉部材4gは、冷媒入口4dから流入する冷媒が冷媒液面に衝突することによる液面の乱れを抑えることができ、気液分離性能を向上させるという効果を有する。   The receiver tank 4 is for separating the gas-liquid two-phase refrigerant decompressed to the intermediate pressure by the expansion valve 3 into gas-liquid separation, that is, separating the refrigerant into vapor refrigerant (gas phase refrigerant) and liquid refrigerant (liquid phase refrigerant). is there. The receiver tank 4 also functions as a refrigerant receiver that stores excess refrigerant in order to appropriately maintain the amount of refrigerant circulating in the refrigeration cycle. FIG. 2 is a cross-sectional view of the receiver tank 4 according to the present embodiment. The receiver tank 4 includes a receiver container 4T, a refrigerant inlet 4d and a vapor refrigerant outlet 4e provided in the upper part of the receiver container 4T, and a liquid refrigerant outlet 4f for taking out the refrigerant in the lower part of the receiver container 4T. The receiver container 4T is configured by sealingly joining the upper end plate 4b to one end (upper end) of the cylindrical receiver body 4a and sealingly lower joint 4c to the other end (lower end). Yes. The refrigerant inlet 4d and the vapor refrigerant outlet 4e of the receiver tank 4 are provided with liquid refrigerant capturing members 4g and 4h, respectively, for efficiently performing gas-liquid separation. As the liquid refrigerant capturing members 4g and 4h, a wire net, a punching metal, a shielding plate or the like can be adopted. In the present embodiment, a wire mesh is used. Then, the wire mesh is rounded into a cylindrical shape, and the lower end portion is crushed and sealed and fixed, and is inserted and fixed to the inner end portion of the receiver tank 4 of the pipe that becomes the refrigerant inlet 4d and the vapor refrigerant outlet 4e. By adopting such a structure, processing is easy and gas-liquid separation can be performed with high efficiency. Further, the liquid refrigerant capturing member 4g can suppress the disturbance of the liquid level caused by the refrigerant flowing from the refrigerant inlet 4d colliding with the refrigerant liquid level, and has the effect of improving the gas-liquid separation performance.

レシーバタンク4の蒸気冷媒出口4eには配管29が接続され、配管29は配管31に接続されている。これによりレシーバタンク4内の気相冷媒を、圧縮機1の圧縮工程の中間圧力部に導入することが可能となる。また、レシーバタンク4の液冷媒出口4fには、レシーバタンク4内部の液冷媒を蒸発器6側へと流す冷媒往き配管24が接続されている。   A pipe 29 is connected to the vapor refrigerant outlet 4 e of the receiver tank 4, and the pipe 29 is connected to a pipe 31. As a result, the gas-phase refrigerant in the receiver tank 4 can be introduced into the intermediate pressure part of the compression process of the compressor 1. In addition, a refrigerant outlet pipe 24 through which the liquid refrigerant in the receiver tank 4 flows to the evaporator 6 side is connected to the liquid refrigerant outlet 4 f of the receiver tank 4.

ここで、前記配管29には、中圧圧力検出器としての圧力センサP3が設けられている。尚、膨張弁3と膨張弁5の間の配管、即ち配管23、配管24、配管29、配管28、配管31は、何れも略同じ圧力(冷凍サイクルの中圧部圧力)となるので、圧力センサP3の設置については、これらの何れかの位置に設ければよい。   Here, the pipe 29 is provided with a pressure sensor P3 as an intermediate pressure detector. Note that the piping between the expansion valve 3 and the expansion valve 5, that is, the piping 23, the piping 24, the piping 29, the piping 28, and the piping 31, all have substantially the same pressure (the intermediate pressure of the refrigeration cycle). The sensor P3 may be installed at any one of these positions.

また、膨張弁3を通過した冷媒の状態は通常気液二相状態であるので、圧力センサP3に代えて、中圧温度検出器として冷媒温度センサ(図示せず)を設けることも可能である。これにより、中圧温度検出器で検出した冷媒温度から中間圧力部の圧力を求めることが可能となる。圧力センサP3に代えて冷媒温度センサを設置する方法では、冷媒配管の外部にセンサを設置できるので、センサの設置が容易であり、特に冷媒の漏れ等の不具合が発生しにくい点で有利である。   Moreover, since the state of the refrigerant that has passed through the expansion valve 3 is normally a gas-liquid two-phase state, a refrigerant temperature sensor (not shown) can be provided as an intermediate pressure temperature detector instead of the pressure sensor P3. . Thereby, it becomes possible to obtain | require the pressure of an intermediate | middle pressure part from the refrigerant | coolant temperature detected with the intermediate pressure temperature detector. In the method of installing the refrigerant temperature sensor instead of the pressure sensor P3, the sensor can be installed outside the refrigerant pipe, which is advantageous in that the sensor can be easily installed, and in particular, troubles such as refrigerant leakage are unlikely to occur. .

ストレーナ9は、冷媒回路中の異物を除去し、膨張弁5の詰まり等の不具合を防止するためのものであり、冷媒往き配管24の膨張弁5上流側に設けられている。   The strainer 9 is for removing foreign matters in the refrigerant circuit and preventing problems such as clogging of the expansion valve 5, and is provided on the upstream side of the expansion valve 5 of the refrigerant going-out pipe 24.

第2絞り手段としての膨張弁5は、冷媒往き配管24を通り流入する中圧低温の液冷媒を絞り膨張により減圧して、低圧低温の冷媒(通常気液二相状態)とするためのもので、キャピラリーチューブ、温度式膨張弁、電動膨張弁等を採用しうる。本実施形態に係る冷凍装置では、電動膨張弁を用いている。そして、第2制御装置91により、蒸発器6の出口側冷媒の過熱度、即ち後述する冷媒温度センサT4(蒸発器出口温度検出器)で検出された蒸発器6出口の冷媒温度と後述する冷媒温度センサT3(蒸発温度検出器)で検出された蒸発器6入口の冷媒温度との差、が所定の値(目標温度差)になるように膨張弁5の開度が制御されている。尚、この目標温度差の情報は、第1制御装置90で演算して決められた後、統合制御装置92から第2制御装置91に送られる。   The expansion valve 5 as the second throttle means is for reducing the pressure of the medium-pressure and low-temperature liquid refrigerant flowing in through the refrigerant delivery pipe 24 by throttle expansion to obtain a low-pressure and low-temperature refrigerant (normal gas-liquid two-phase state). Thus, a capillary tube, a temperature expansion valve, an electric expansion valve, or the like can be employed. In the refrigeration apparatus according to the present embodiment, an electric expansion valve is used. Then, the second controller 91 detects the degree of superheat of the outlet side refrigerant of the evaporator 6, that is, the refrigerant temperature at the outlet of the evaporator 6 detected by a refrigerant temperature sensor T4 (evaporator outlet temperature detector) described later and the refrigerant described later. The opening degree of the expansion valve 5 is controlled so that the difference from the refrigerant temperature at the inlet of the evaporator 6 detected by the temperature sensor T3 (evaporation temperature detector) becomes a predetermined value (target temperature difference). The target temperature difference information is calculated by the first control device 90 and then sent from the integrated control device 92 to the second control device 91.

蒸発器6は、冷媒の蒸発作用による吸熱により食品等を冷却するための熱交換器であり、フィンアンドチューブ式の熱交換器を採用している。蒸発器6の入口配管には、蒸発器6の入口の冷媒温度を検出する蒸発温度検出器としての冷媒温度センサT3が設けられており、蒸発器6の出口配管には、蒸発器6の出口の冷媒温度を検出する蒸発器出口温度検出器としての冷媒温度センサT4が設けられている。尚、冷媒温度センサT3は、蒸発器6を形成する配管部であって、冷媒の状態が気液二相状態であると想定される箇所に設けることも可能である。また、蒸発器6は、冷媒と熱交換を行い冷却される空気を供給するためのファン12を備えている。蒸発器6において、ファン12により供給された空気は、冷媒の蒸発により冷却されて低温となり、その後、食品等の保冷スペースに供給される。   The evaporator 6 is a heat exchanger for cooling food and the like by heat absorption due to the evaporation action of the refrigerant, and employs a fin-and-tube heat exchanger. The inlet pipe of the evaporator 6 is provided with a refrigerant temperature sensor T3 as an evaporation temperature detector for detecting the refrigerant temperature at the inlet of the evaporator 6, and the outlet pipe of the evaporator 6 has an outlet of the evaporator 6. A refrigerant temperature sensor T4 is provided as an evaporator outlet temperature detector for detecting the refrigerant temperature. Note that the refrigerant temperature sensor T3 is a piping part that forms the evaporator 6, and can be provided at a location where the state of the refrigerant is assumed to be a gas-liquid two-phase state. The evaporator 6 includes a fan 12 for supplying air to be cooled by exchanging heat with the refrigerant. In the evaporator 6, the air supplied by the fan 12 is cooled by evaporation of the refrigerant to become a low temperature, and then supplied to a cold storage space such as food.

アキュームレータ8は、圧縮機1に液冷媒が吸入されることを防止するためのものであり、内部で気液分離を行い、一時的に液冷媒を貯留する機能を有する。特に、起動時や、除霜運転時等に機能を発揮する。また、アキュームレータ8から圧縮機の吸入口へつながる配管27上には、圧縮機吸入冷媒の圧力を検出するための圧力センサP4が取り付けられている。   The accumulator 8 is for preventing the liquid refrigerant from being sucked into the compressor 1, and has a function of performing gas-liquid separation inside and temporarily storing the liquid refrigerant. In particular, the function is exhibited at the time of start-up and defrosting operation. A pressure sensor P4 for detecting the pressure of the refrigerant sucked from the compressor is attached on the pipe 27 connected from the accumulator 8 to the suction port of the compressor.

中間冷却器7は、圧縮機1の一段目圧縮要素1aから吐出された冷媒と大気との間で熱交換を行い、冷媒を冷却するための熱交換器である。これにより圧縮機1の圧縮動力を低減し、冷却効率を向上させることができる。中間冷却器7は、フィンアンドチューブ式の熱交換器であり、冷媒と熱交換を行う空気を供給するためのファンは、放熱器2のファン11を利用している。また、中間冷却器7は、放熱器2と冷却フィンを共有し、一体的に構成されている。   The intercooler 7 is a heat exchanger for performing heat exchange between the refrigerant discharged from the first-stage compression element 1a of the compressor 1 and the atmosphere and cooling the refrigerant. Thereby, the compression power of the compressor 1 can be reduced and cooling efficiency can be improved. The intercooler 7 is a fin-and-tube heat exchanger, and a fan 11 for supplying heat for exchanging heat with the refrigerant uses the fan 11 of the radiator 2. Further, the intermediate cooler 7 shares the radiator 2 and the cooling fins, and is configured integrally.

中間冷却器7の出口と圧縮機1の二段目圧縮要素1bの吸入口をつなぐ配管31には、合流前温度検出器としての冷媒温度センサT6と、吸入温度検出器としての冷媒温度センサT7が設けられている。冷媒温度センサT6は、合流点30の上流側に設けられており、中間冷却器7で冷却され流出した冷媒であって、レシーバタンク4から流入する冷媒と合流する前の状態の温度を検出するものである。他方、冷媒温度センサT7は、合流点30より下流側に設けられており、レシーバタンク4から流入する冷媒と合流した後の冷媒温度、即ち圧縮機1の二段目圧縮要素1bに吸入される冷媒の温度を検出するものである。   The piping 31 connecting the outlet of the intercooler 7 and the suction port of the second-stage compression element 1b of the compressor 1 has a refrigerant temperature sensor T6 as a pre-merging temperature detector and a refrigerant temperature sensor T7 as a suction temperature detector. Is provided. The refrigerant temperature sensor T6 is provided on the upstream side of the junction 30 and detects the temperature of the refrigerant that has been cooled and flowed out by the intermediate cooler 7 and before the refrigerant flowing in from the receiver tank 4 is merged. Is. On the other hand, the refrigerant temperature sensor T7 is provided on the downstream side of the junction 30 and is sucked into the refrigerant temperature after having joined with the refrigerant flowing in from the receiver tank 4, that is, the second-stage compression element 1b of the compressor 1. It detects the temperature of the refrigerant.

また、必要に応じて、膨張弁5へと流れる中圧液冷媒と、蒸発器6から流出する低圧冷媒との間で熱交換を行い、中圧冷媒を冷却し低圧冷媒を加熱するための内部熱交換器(図示せず)を設けることも可能である。   Further, if necessary, an inside for performing heat exchange between the medium-pressure liquid refrigerant flowing to the expansion valve 5 and the low-pressure refrigerant flowing out of the evaporator 6 to cool the medium-pressure refrigerant and heat the low-pressure refrigerant. It is also possible to provide a heat exchanger (not shown).

次に、各冷凍機器を収納したユニットの構成について説明する。本実施形態に係る冷凍装置は、冷凍回路を構成する冷凍機器(要素部品)を収容してユニット化した冷凍ユニット10及びショーケース20(蒸発ユニット)から構成される。冷凍ユニット10は、冷媒を圧縮する圧縮機1、圧縮機1の一段目圧縮要素1aから吐出された中間圧の冷媒を冷却する中間冷却器7、圧縮機1の二段目圧縮要素1bから吐出された高温高圧の冷媒を冷却する放熱器2、第1絞り手段としての膨張弁3、膨張弁3で減圧された中間圧の冷媒の気液分離を行うレシーバタンク4、及び圧縮機1への液冷媒の吸入を防止するためのアキュームレータ8を備える。前述の通り、圧縮機1の二段目圧縮要素1bの冷媒吐出配管21は前記放熱器2に冷媒が流通可能に接続され、圧縮機1の冷媒吸入配管27は前記アキュームレータ8に接続されている。また、冷凍ユニット10は、第1制御装置90、圧力センサP1、P2、P3、P4、冷媒温度センサT1、T2、T6,T7、及びその他の図示しない温度センサや圧力センサ等を含む。そして、冷凍ユニット10は、レシーバタンク4の液冷媒出口4fにつながる冷媒往き配管接続口と、アキュームレータ8につながる冷媒戻り配管接続口を備えている。   Next, the structure of the unit which accommodates each refrigeration equipment will be described. The refrigeration apparatus according to the present embodiment is composed of a refrigeration unit 10 and a showcase 20 (evaporation unit) that accommodate and unitize refrigeration equipment (element parts) constituting a refrigeration circuit. The refrigeration unit 10 includes a compressor 1 that compresses refrigerant, an intermediate cooler 7 that cools an intermediate-pressure refrigerant discharged from the first-stage compression element 1a of the compressor 1, and a discharge from the second-stage compression element 1b of the compressor 1. A radiator 2 that cools the high-temperature and high-pressure refrigerant, an expansion valve 3 as a first throttle means, a receiver tank 4 that performs gas-liquid separation of the intermediate-pressure refrigerant decompressed by the expansion valve 3, and a compressor 1 An accumulator 8 is provided for preventing the liquid refrigerant from being sucked. As described above, the refrigerant discharge pipe 21 of the second-stage compression element 1 b of the compressor 1 is connected to the radiator 2 so that the refrigerant can flow, and the refrigerant suction pipe 27 of the compressor 1 is connected to the accumulator 8. . The refrigeration unit 10 includes a first control device 90, pressure sensors P1, P2, P3, P4, refrigerant temperature sensors T1, T2, T6, T7, and other temperature sensors and pressure sensors (not shown). The refrigeration unit 10 includes a refrigerant return pipe connection port connected to the liquid refrigerant outlet 4 f of the receiver tank 4 and a refrigerant return pipe connection port connected to the accumulator 8.

ショーケース20は、中間圧力の冷媒を減圧する膨張弁5、冷媒の蒸発作用により食品等を冷却するための蒸発器6、及び冷媒回路中の異物を除去するストレーナ9を備える。また、ショーケース20は、第2制御装置91、冷媒温度センサT3、T4、及びその他の温度センサ類、並びに食品等を保存するためのスペースや展示棚等を備えている。そして、ショーケース20は、ストレーナ9につながる冷媒入口配管接続口と、蒸発器6の出口側に接続される冷媒出口配管接続口を備えている。尚、ショーケース20は、必ずしも被冷却物を陳列展示するものに限らず、展示を目的としない保冷庫でも良い。   The showcase 20 includes an expansion valve 5 that depressurizes the medium-pressure refrigerant, an evaporator 6 that cools food and the like by the evaporating action of the refrigerant, and a strainer 9 that removes foreign matter in the refrigerant circuit. In addition, the showcase 20 includes a second control device 91, refrigerant temperature sensors T3 and T4, other temperature sensors, a space for storing food, a display shelf, and the like. The showcase 20 includes a refrigerant inlet pipe connection port connected to the strainer 9 and a refrigerant outlet pipe connection port connected to the outlet side of the evaporator 6. In addition, the showcase 20 is not necessarily limited to the display of the objects to be cooled, and may be a cool box that is not intended for display.

ここで、冷媒往き配管24は、冷凍ユニット10の前記冷媒往き配管接続口とショーケース20の前記冷媒入口配管接続口とを配管により接続することにより形成される。また、冷媒戻り配管26は、冷凍ユニット10の前記冷媒戻り配管接続口とショーケース20の前記冷媒出口配管接続口を配管により接続することにより形成される。尚、ショーケース20は、必要に応じて複数台設けることが可能である。その場合、各々のショーケース20の前記冷媒入口配管接続口が冷媒往き配管24側に接続され、前記冷媒出口配管接続口が冷媒戻り配管26側に接続される。   Here, the refrigerant going pipe 24 is formed by connecting the refrigerant going pipe connecting port of the refrigeration unit 10 and the refrigerant inlet pipe connecting port of the showcase 20 with a pipe. The refrigerant return pipe 26 is formed by connecting the refrigerant return pipe connection port of the refrigeration unit 10 and the refrigerant outlet pipe connection port of the showcase 20 with a pipe. A plurality of showcases 20 can be provided as necessary. In that case, the refrigerant inlet pipe connection port of each showcase 20 is connected to the refrigerant forward pipe 24 side, and the refrigerant outlet pipe connection port is connected to the refrigerant return pipe 26 side.

次に、第1の実施形態に係る冷凍装置の動作について説明する。   Next, the operation of the refrigeration apparatus according to the first embodiment will be described.

図3は、本発明に係る冷凍装置の冷凍サイクルを示す圧力−比エンタルピ線図である。横軸は冷媒の比エンタルピ(kJ/kg)、縦軸は冷媒の圧力(MPa)であり、符号SLは冷媒の飽和液線、SVは飽和蒸気線を示している。本図において、符号Cが本実施形態の冷凍サイクルである。   FIG. 3 is a pressure-specific enthalpy diagram showing the refrigeration cycle of the refrigeration apparatus according to the present invention. The horizontal axis represents the refrigerant specific enthalpy (kJ / kg), the vertical axis represents the refrigerant pressure (MPa), the symbol SL represents the saturated liquid line of the refrigerant, and SV represents the saturated vapor line. In this figure, the code | symbol C is the refrigerating cycle of this embodiment.

本冷凍サイクル回路では、図3において状態aで示される低温の冷媒蒸気が圧縮機1の一段目吸入口から吸入され、一段目圧縮要素1aにより圧縮され、高温中圧の冷媒蒸気となって吐出される。この状態での冷媒は、図3において状態bで示される。この冷媒は、中間冷却器7に入り、そこで大気と熱交換を行い冷却され、温度が低下して状態cになる。このように中間冷却器7によって、圧縮機1の一段目圧縮要素1aから吐出される冷媒が冷却されるので、圧縮機1の二段目圧縮要素1bから吐出される冷媒の温度を低く抑えることが可能となり、圧縮機1の異常高温による不具合を防止できる。また、中間冷却器7を採用することにより、圧縮機1の圧縮動力を低減することができるので、冷却効率を向上させることができる。   In this refrigeration cycle circuit, the low-temperature refrigerant vapor shown in the state a in FIG. 3 is sucked from the first-stage intake port of the compressor 1, compressed by the first-stage compression element 1a, and discharged as high-temperature and intermediate-pressure refrigerant vapor. Is done. The refrigerant in this state is indicated by state b in FIG. This refrigerant enters the intercooler 7, where it is cooled by exchanging heat with the atmosphere, and the temperature drops to state c. Since the refrigerant discharged from the first-stage compression element 1a of the compressor 1 is cooled by the intermediate cooler 7 in this way, the temperature of the refrigerant discharged from the second-stage compression element 1b of the compressor 1 is kept low. It becomes possible, and the malfunction by the abnormally high temperature of the compressor 1 can be prevented. Further, by adopting the intermediate cooler 7, the compression power of the compressor 1 can be reduced, so that the cooling efficiency can be improved.

中間冷却器7を出た状態cで示される冷媒は、図1に示す合流点30において、バイパス経路側(配管29側)から流れてきた状態jで示される低温の冷媒と合流する。合流後の冷媒は、状態dで示される。前記合流後の冷媒は、圧縮機1の二段目吸入口から吸入され、圧縮機1の二段目圧縮要素1bにより圧縮され、高温高圧の冷媒(状態e)となって吐出される。本実施形態では冷凍サイクルの冷媒として二酸化炭素を用いているので、圧縮機1から吐出される冷媒の圧力は、図3の状態eのごとく、臨界圧力を超える場合がある。   The refrigerant shown in the state c exiting the intercooler 7 joins with the low-temperature refrigerant shown in the state j flowing from the bypass path side (pipe 29 side) at the junction 30 shown in FIG. The refrigerant after joining is indicated by a state d. The merged refrigerant is sucked from the second-stage suction port of the compressor 1, compressed by the second-stage compression element 1b of the compressor 1, and discharged as a high-temperature and high-pressure refrigerant (state e). In the present embodiment, carbon dioxide is used as the refrigerant in the refrigeration cycle, so the pressure of the refrigerant discharged from the compressor 1 may exceed the critical pressure as in the state e in FIG.

圧縮機1から吐出された冷媒は、放熱器2に流入し、大気と熱交換を行い冷却される。図3で示されるように、放熱器2における冷媒の圧力が臨界圧力を超えている場合には、そこで冷却された冷媒は、凝縮せずに、冷却されるに従ってその温度が低下する。放熱器2によって冷却された冷媒は、状態fで示される。   The refrigerant discharged from the compressor 1 flows into the radiator 2 and is cooled by exchanging heat with the atmosphere. As shown in FIG. 3, when the pressure of the refrigerant in the radiator 2 exceeds the critical pressure, the refrigerant cooled there does not condense and its temperature decreases as it is cooled. The refrigerant cooled by the radiator 2 is indicated by a state f.

放熱器2を出た冷媒は、膨張弁3を通過することによって絞り膨張(等エンタルピ膨張)して、圧縮機1の一段目吸入圧力より高く二段目吐出圧力より低い中間圧力まで減圧され、図3の状態gで示されるように気液二相状態となり、レシーバタンク4に入る。レシーバタンク4において、冷媒は、状態jで示される蒸気冷媒と、状態hで示される液冷媒に分離され、密度差により、蒸気冷媒はレシーバ容器4T内の上方に、液冷媒はレシーバ容器4T内の下方に流れる。   The refrigerant that has exited the radiator 2 passes through the expansion valve 3 and is squeezed and expanded (equal enthalpy expansion) to be reduced to an intermediate pressure that is higher than the first-stage suction pressure of the compressor 1 and lower than the second-stage discharge pressure, As shown by the state g in FIG. 3, the gas-liquid two-phase state is entered and the receiver tank 4 is entered. In the receiver tank 4, the refrigerant is separated into a vapor refrigerant indicated by the state j and a liquid refrigerant indicated by the state h. Due to the density difference, the vapor refrigerant is located above the receiver container 4T and the liquid refrigerant is contained within the receiver container 4T. Flowing downward.

ここで、レシーバタンク4の冷媒入口4dには液冷媒捕捉部材4gが設けられているので、ミスト状の液冷媒が前記液冷媒捕捉部材4gに衝突付着し、効率的に気液分離を行うことが可能となる。また、前記液冷媒捕捉部材4gは、冷媒入口4dから流入する冷媒がレシーバ容器4T下方に貯留されている冷媒の液面に衝突することによる液面の乱れを抑えることができるので、分離された液冷媒が流入する冷媒により再ミスト化することを防止することができ、レシーバタンク4による気液分離性能を更に向上させることができる。また、レシーバタンク4の蒸気冷媒出口4eには液冷媒捕捉部材4hが設けられているので、レシーバタンク4から流出する蒸気冷媒に含まれるミスト状の液冷媒を液冷媒捕捉部材4hで捕捉分離することができる。よって、レシーバタンク4の気液分離性能を更に向上させることができる。   Here, since the liquid refrigerant capturing member 4g is provided at the refrigerant inlet 4d of the receiver tank 4, the mist liquid refrigerant collides with the liquid refrigerant capturing member 4g and efficiently performs gas-liquid separation. Is possible. Further, the liquid refrigerant capturing member 4g is separated because the refrigerant flowing from the refrigerant inlet 4d can suppress the disturbance of the liquid level caused by the collision with the liquid level of the refrigerant stored below the receiver container 4T. It is possible to prevent re-misting by the refrigerant into which the liquid refrigerant flows, and the gas-liquid separation performance by the receiver tank 4 can be further improved. Further, since the liquid refrigerant capturing member 4h is provided at the vapor refrigerant outlet 4e of the receiver tank 4, the mist liquid refrigerant contained in the vapor refrigerant flowing out from the receiver tank 4 is captured and separated by the liquid refrigerant capturing member 4h. be able to. Therefore, the gas-liquid separation performance of the receiver tank 4 can be further improved.

レシーバタンク4で気液分離された状態hの液冷媒は、液冷媒出口4fから流出し、配管24を流れ冷却負荷側(蒸発器6側)へと流れていく。レシーバタンク4から流出する液冷媒(状態h)の比エンタルピは、レシーバタンク4に流入する冷媒(状態g)の比エンタルピより小さくなるので、状態gと状態hの比エンタルピ差に相当する分、蒸発器6における冷媒の冷凍効果が増大する。   The liquid refrigerant in the state h separated from the gas and liquid in the receiver tank 4 flows out from the liquid refrigerant outlet 4f, flows through the pipe 24, and flows to the cooling load side (the evaporator 6 side). Since the specific enthalpy of the liquid refrigerant flowing out from the receiver tank 4 (state h) is smaller than the specific enthalpy of the refrigerant flowing into the receiver tank 4 (state g), an amount corresponding to the specific enthalpy difference between the state g and the state h, The refrigerant refrigeration effect in the evaporator 6 is increased.

他方、レシーバタンク4で気液分離された状態jの蒸気冷媒は、蒸気冷媒出口4eから配管29を流通し、前述の通り中間冷却器7で冷却された後の状態cの冷媒と合流点30において合流して、状態dになる。そして、圧縮機1の二段目吸入口から吸入される。レシーバタンク4で気液分離された蒸気冷媒(状態j)は、比エンタルピが大きく、たとえ蒸発器6へ流入したとしても冷凍効果を発揮し得ないものである。そのため、当該状態jの蒸気冷媒を圧縮行程の途中、即ち二段圧縮の二段目吸入部、に戻すことにより、当該冷媒を一段目吸入部へ戻す場合に比べ、一段目圧縮要素1aの圧縮動力を低減することができる。その結果、冷凍サイクルの冷凍効率を向上させることができる。   On the other hand, the vapor refrigerant in the state j separated from the gas and liquid in the receiver tank 4 flows through the pipe 29 from the vapor refrigerant outlet 4e and is merged with the refrigerant in the state c after being cooled by the intermediate cooler 7 as described above. And merges into state d. Then, the air is sucked from the second-stage suction port of the compressor 1. The vapor refrigerant (state j) separated by gas and liquid in the receiver tank 4 has a large specific enthalpy and cannot exhibit a refrigeration effect even if it flows into the evaporator 6. Therefore, the first stage compression element 1a is compressed by returning the vapor refrigerant in the state j in the middle of the compression stroke, that is, when returning the refrigerant to the first stage suction part. Power can be reduced. As a result, the refrigeration efficiency of the refrigeration cycle can be improved.

レシーバタンク4の液冷媒出口4fから流出した液冷媒(状態h)は、配管24を流れ、ストレーナ9を通過した後、膨張弁5により絞り膨張(等エンタルピ膨張)し、蒸発器6へと流れる。蒸発器6に流入する冷媒は、状態iで表わされ、低圧の気液二相状態である。蒸発器6において、冷媒は、ファン12によって供給された被冷却空気と熱交換を行い、空気を冷やし、液相部分が蒸発する。蒸発器6の出口において、冷媒は僅かに過熱した蒸気であり、状態aで表わされる。蒸発器6への冷媒の供給は、第2制御装置91によって、膨張弁5の開度を制御することにより調整されており、前述のごとく、蒸発器6の出口において所定の過熱状態、即ち蒸発器出入口温度差が目標温度差となるように制御されている。   The liquid refrigerant (state h) flowing out from the liquid refrigerant outlet 4 f of the receiver tank 4 flows through the pipe 24, passes through the strainer 9, undergoes throttle expansion (equal enthalpy expansion) by the expansion valve 5, and flows to the evaporator 6. . The refrigerant flowing into the evaporator 6 is represented by the state i and is in a low-pressure gas-liquid two-phase state. In the evaporator 6, the refrigerant exchanges heat with the air to be cooled supplied by the fan 12, cools the air, and the liquid phase portion evaporates. At the outlet of the evaporator 6, the refrigerant is a slightly superheated vapor and is represented by state a. The supply of the refrigerant to the evaporator 6 is adjusted by controlling the opening degree of the expansion valve 5 by the second controller 91. As described above, a predetermined superheated state at the outlet of the evaporator 6, that is, evaporation is performed. The temperature difference between the inlet and outlet is controlled to be the target temperature difference.

蒸発器6から流れ出た冷媒は、冷媒戻り管26を流通し、アキュームレータ8を通過し、そこで確実に気液分離された後、圧縮機1の一段目吸入口へと流れ、圧縮される。以上説明の通り冷凍サイクルが連続的に動作し、蒸発器6において冷凍能力が発揮される。そして、蒸発器6で冷却された空気が保冷スペースを循環し、食品等被冷却物の冷凍、冷蔵が行われる。   The refrigerant flowing out of the evaporator 6 flows through the refrigerant return pipe 26, passes through the accumulator 8, where it is surely gas-liquid separated, and then flows to the first stage inlet of the compressor 1 and is compressed. As described above, the refrigeration cycle operates continuously, and the refrigeration capacity is exhibited in the evaporator 6. Then, the air cooled by the evaporator 6 circulates in the cool space, and the object to be cooled such as food is frozen and refrigerated.

尚、内部熱交換器(図示せず)を設けた場合には、該内部熱交換器において、レシーバタンク4から流出した中圧低温の液冷媒は、蒸発器6を出た低圧低温の冷媒と熱交換を行い冷却される。この場合は、内部熱交換器により、中圧冷媒が冷やされるので冷媒往き配管24内部でのフラッシュガス発生を防止し、低圧冷媒が過熱されるので圧縮機1の湿り圧縮を防止する効果がある。また、内部熱交換器の採用により、蒸発器6の内部に熱伝達率が高い二相冷媒領域を多く確保できるので、蒸発器6の伝熱性能が向上し、サイクル性能を向上させることができる。   In the case where an internal heat exchanger (not shown) is provided, the medium-pressure and low-temperature refrigerant flowing out of the receiver tank 4 in the internal heat exchanger is the low-pressure and low-temperature refrigerant exiting the evaporator 6. It is cooled by heat exchange. In this case, since the intermediate-pressure refrigerant is cooled by the internal heat exchanger, generation of flash gas in the refrigerant delivery pipe 24 is prevented, and the low-pressure refrigerant is overheated, so that the compressor 1 is prevented from being wet-compressed. . Moreover, since the adoption of the internal heat exchanger can secure a large number of two-phase refrigerant regions having a high heat transfer coefficient inside the evaporator 6, the heat transfer performance of the evaporator 6 can be improved and the cycle performance can be improved. .

図4は、本実施形態に係る冷凍装置の制御装置を示すブロック図である。本実施形態の制御装置は、冷凍ユニット10に備えられた第1制御装置90と、各ショーケース20に内蔵されている第2制御装置91と、統合制御装置92とから構成される。   FIG. 4 is a block diagram illustrating a control device for the refrigeration apparatus according to the present embodiment. The control device of this embodiment includes a first control device 90 provided in the refrigeration unit 10, a second control device 91 built in each showcase 20, and an integrated control device 92.

第1制御装置90は、膨張弁3(第1膨張弁、第1絞り手段)や圧縮機1やファン11等、基本的には、冷凍ユニット10に備えられた操作手段を制御するためのものである。そして、第1制御装置90は、各センサ類からの入力や設定入力手段95からの入力信号を処理する入力信号処理部90aと、制御演算を行う主演算処理部90bと、演算結果を操作信号に変換して各制御操作手段に出力する操作信号出力部90cと、統合制御装置92や第1制御装置90との通信を行うための通信処理部90dとを備える。   The first control device 90 basically controls the operation means provided in the refrigeration unit 10, such as the expansion valve 3 (first expansion valve, first throttle means), the compressor 1, the fan 11, and the like. It is. The first control device 90 includes an input signal processing unit 90a that processes input from each sensor and an input signal from the setting input unit 95, a main calculation processing unit 90b that performs control calculation, and an operation result as an operation signal. And an operation signal output unit 90 c that converts the signal into the control operation means and a communication processing unit 90 d for performing communication with the integrated control device 92 and the first control device 90.

第2制御装置91は、膨張弁5(第2膨張弁、第2絞り手段)やファン12等、基本的には、ショーケース20に備えられた操作手段を制御するためのものである。図示を省略するが、ショーケース20の第2制御装置91についても第1制御装置90と同様の処理部を備えた構成からなる。   The second control device 91 is basically for controlling the operation means provided in the showcase 20 such as the expansion valve 5 (second expansion valve, second throttle means) and the fan 12. Although not shown, the second control device 91 of the showcase 20 also has a configuration including a processing unit similar to the first control device 90.

そして、統合制御装置92は、冷凍ユニット10の第1制御装置90及びショーケース20の第2制御装置91と双方向に通信を行い、各センサ類による検出値や制御変数、制御指令等の情報を交換し、冷凍装置全体を統括的に制御するものである。統合制御装置92を備えることにより、通常離れた場所に設置される冷凍ユニット10とショーケース20とから構成される冷凍装置について、外気条件や負荷条件の変動に対応した適切な運転制御を行うことが可能となる。
尚、本実施の形態では、第1制御装置90と統合制御装置92とを別個の手段として説明したが、それらの機能をひとつにまとめた制御装置としても本発明の目的・効果を達成できることはいうまでもない。
The integrated control device 92 communicates bidirectionally with the first control device 90 of the refrigeration unit 10 and the second control device 91 of the showcase 20, and information such as detection values, control variables, control commands, and the like by the sensors. To control the entire refrigeration system. By providing the integrated control device 92, appropriate operation control corresponding to fluctuations in outside air conditions and load conditions is performed on the refrigeration apparatus configured of the refrigeration unit 10 and the showcase 20 that are normally installed at remote locations. Is possible.
In the present embodiment, the first control device 90 and the integrated control device 92 have been described as separate means. However, the object and effect of the present invention can also be achieved as a control device that combines these functions. Needless to say.

また、第1制御装置90、第2制御装置91及び統合制御装置92は、制御設定データや運転指令を入力するための設定入力手段95、96、97や、制御データを表示するための表示器(図示せず)を備えている。更に、統合制御装置92は、店舗の外から運転データを監視し、制御設定データを送受信するための遠隔通信機能も備えている。   The first control device 90, the second control device 91, and the integrated control device 92 include setting input means 95, 96, and 97 for inputting control setting data and operation commands, and a display for displaying the control data. (Not shown). Further, the integrated control device 92 has a remote communication function for monitoring operation data from outside the store and transmitting / receiving control setting data.

次に、第1制御装置90について、制御信号の流れを説明する。各センサ類で検出された入力信号は、先ず入力信号処理部90aで所定の検出値(制御変数)に変換される。そして、主演算処理部90bにおいて、後述の制御方法により、制御動作が演算により決定される。そして、その演算結果が操作信号出力部90cによって、膨張弁3や圧縮機1、ファン11等の各操作手段に適合する信号に変換され出力される。その操作信号に基づき、各操作手段が作動し、冷凍装置の適切な運転制御が行われる。   Next, the flow of control signals for the first control device 90 will be described. Input signals detected by the sensors are first converted into predetermined detection values (control variables) by the input signal processing unit 90a. Then, in the main calculation processing unit 90b, the control operation is determined by calculation by the control method described later. Then, the calculation result is converted into a signal suitable for each operation means such as the expansion valve 3, the compressor 1, and the fan 11 by the operation signal output unit 90c and is output. Based on the operation signal, each operation means operates to perform appropriate operation control of the refrigeration apparatus.

次に、具体的に、本実施形態の基本的な制御を説明する。冷凍サイクルを冷却運転中の圧縮機1の運転は、冷凍ユニット10に内蔵された第1制御装置90により制御されている。具体的には、冷媒吸入配管27に設けられた圧力センサP4により検出された低圧冷媒の圧力が所定の圧力範囲になるように圧縮機1の回転数制御及び発停制御を行っている。ショーケース20に設けられた第2制御装置91との通信によって被冷却空間の保冷設定温度を読み取り、好適な冷凍サイクルとなるように、前記所定の圧力範囲を定めている。これにより、冷却負荷に対応した高効率な冷却が行われる。   Next, the basic control of this embodiment will be specifically described. The operation of the compressor 1 during the cooling operation of the refrigeration cycle is controlled by a first control device 90 built in the refrigeration unit 10. Specifically, the rotational speed control and start / stop control of the compressor 1 are performed so that the pressure of the low-pressure refrigerant detected by the pressure sensor P4 provided in the refrigerant suction pipe 27 falls within a predetermined pressure range. The predetermined pressure range is determined so as to obtain a suitable refrigeration cycle by reading the cold set temperature of the space to be cooled by communication with the second control device 91 provided in the showcase 20. Thereby, highly efficient cooling corresponding to the cooling load is performed.

第1絞り手段としての膨張弁3の開度は、配管29に取り付けられた圧力センサP3で検出された中間圧力が所定の値になるように、第1制御装置90によって制御される。即ち、第1制御装置90は、中間圧力が所定の目標値より高ければ膨張弁3の開度を小さくし、中間圧力が所定の値より低ければ膨張弁3の開度を大きくする制御を行う。ここで、所定の目標値は、圧力センサP4で検出される低圧圧力と圧力センサP1若しくはP2で検出される高圧圧力の相乗平均に所定の係数を乗じて求めている。これにより冷凍サイクルの中間圧力を適切に制御できるので、圧縮機1の一段目圧縮要素1aと二段目圧縮要素1bの圧縮比率が好適に維持されると共に、蒸発器6側へと流れる冷媒及びバイパス経路を流れる冷媒の比エンタルピ及び流量が適切に維持され、高効率な冷却運転を行うことができる。   The opening degree of the expansion valve 3 as the first throttle means is controlled by the first controller 90 so that the intermediate pressure detected by the pressure sensor P3 attached to the pipe 29 becomes a predetermined value. That is, the first control device 90 performs control to reduce the opening degree of the expansion valve 3 if the intermediate pressure is higher than a predetermined target value, and to increase the opening degree of the expansion valve 3 if the intermediate pressure is lower than the predetermined value. . Here, the predetermined target value is obtained by multiplying a geometric coefficient of the low pressure detected by the pressure sensor P4 and the high pressure detected by the pressure sensor P1 or P2 by a predetermined coefficient. As a result, the intermediate pressure of the refrigeration cycle can be controlled appropriately, so that the compression ratio of the first-stage compression element 1a and the second-stage compression element 1b of the compressor 1 is suitably maintained, and the refrigerant flowing toward the evaporator 6 side and The specific enthalpy and flow rate of the refrigerant flowing through the bypass path are appropriately maintained, and a highly efficient cooling operation can be performed.

また、圧力センサP1若しくはP2で検出される高圧圧力が所定の値になるように、第1絞り手段としての膨張弁3の開度を制御することも可能である。即ち、制御手段90は、高圧圧力が所定の目標値より高ければ膨張弁3の開度を大きくし、高圧圧力が所定の目標値より低ければ膨張弁3の開度を小さくする制御を行う。所定の目標値は、膨張弁3に流入する冷媒の温度、即ち冷媒温度センサT2によって検出される冷媒の温度、に応じて求めている。高圧側の圧力が臨界圧力を超える冷凍サイクルにおいては、高圧側の圧力を変えると、圧縮機1の圧縮動力が変化すると共に、膨張弁3に流入する冷媒(図3の状態f)のエンタルピが大きく変化して冷凍効果が大きく変化する。そのため、膨張弁3に流入する冷媒の温度に応じて所定の高圧圧力目標値を設定し制御することにより、冷凍装置の効率を向上させることができる。尚、膨張弁3に流入する冷媒の温度、即ち放熱器2で外気に対して放熱した後の冷媒の温度、は外気温度に依存するため、前記高圧圧力の目標値の演算においては、前述の膨張弁3に流入する冷媒の温度に代えて、外気温度を基準とすることも可能である。   It is also possible to control the opening degree of the expansion valve 3 as the first throttle means so that the high pressure detected by the pressure sensor P1 or P2 becomes a predetermined value. That is, the control means 90 performs control to increase the opening degree of the expansion valve 3 if the high pressure is higher than a predetermined target value, and to decrease the opening degree of the expansion valve 3 if the high pressure is lower than the predetermined target value. The predetermined target value is obtained according to the temperature of the refrigerant flowing into the expansion valve 3, that is, the temperature of the refrigerant detected by the refrigerant temperature sensor T2. In a refrigeration cycle in which the pressure on the high pressure side exceeds the critical pressure, changing the pressure on the high pressure side changes the compression power of the compressor 1 and changes the enthalpy of the refrigerant (state f in FIG. 3) flowing into the expansion valve 3. It changes greatly and the freezing effect changes greatly. Therefore, the efficiency of the refrigeration apparatus can be improved by setting and controlling a predetermined high pressure target value according to the temperature of the refrigerant flowing into the expansion valve 3. In addition, since the temperature of the refrigerant flowing into the expansion valve 3, that is, the temperature of the refrigerant after radiating heat to the outside air with the radiator 2, depends on the outside air temperature, in the calculation of the target value of the high pressure, the above-mentioned Instead of the temperature of the refrigerant flowing into the expansion valve 3, the outside air temperature can be used as a reference.

また、第1絞り手段としての膨張弁3の制御として、前述の中間圧力制御と高圧圧力制御を組み合わせて行うことも可能である。即ち、圧力センサP3で検出される中間圧力と圧力センサP1若しくはP2で検出される高圧圧力が共に各々の目標値(目標範囲)となるように制御を行うこともできる。これにより外気温度や負荷の変動に対して更に安定的に高効率な運転を行うことが可能となる。   Further, as the control of the expansion valve 3 as the first throttle means, the above-described intermediate pressure control and high pressure control can be performed in combination. That is, it is possible to perform control so that the intermediate pressure detected by the pressure sensor P3 and the high pressure detected by the pressure sensor P1 or P2 become the respective target values (target ranges). As a result, it is possible to perform more stable and highly efficient operation against fluctuations in the outside air temperature and load.

第2絞り手段としての膨張弁5は、蒸発器6の出口側冷媒の過熱度、即ち冷媒温度センサT4(蒸発器出口温度検出器)で検出された蒸発器6出口の冷媒温度と冷媒温度センサT3(蒸発温度検出器)で検出された蒸発器6入口の冷媒温度との差、が所定の値(目標温度差)になるように、第2制御装置91によって制御される。具体的には、第2制御装置91は、前記過熱度が所定の目標値より大きければ膨張弁5の開度を大きくし、前記過熱度が目標値より小さければ膨張弁5の開度を小さくする制御を行う。これにより蒸発器6に、冷却負荷に応じた適切な量の冷媒を供給することができ、蒸発器6における効率的な熱交換を維持しながら所定の冷却能力を発揮することができる。   The expansion valve 5 serving as the second throttle means includes a degree of superheat of the refrigerant on the outlet side of the evaporator 6, that is, the refrigerant temperature at the outlet of the evaporator 6 detected by the refrigerant temperature sensor T4 (evaporator outlet temperature detector) and the refrigerant temperature sensor. The second controller 91 controls the difference between the refrigerant temperature at the inlet of the evaporator 6 detected by T3 (evaporation temperature detector) to be a predetermined value (target temperature difference). Specifically, the second controller 91 increases the opening degree of the expansion valve 5 if the degree of superheat is greater than a predetermined target value, and decreases the opening degree of the expansion valve 5 if the degree of superheat is smaller than the target value. Control. Accordingly, an appropriate amount of refrigerant according to the cooling load can be supplied to the evaporator 6, and a predetermined cooling capacity can be exhibited while maintaining efficient heat exchange in the evaporator 6.

ところで、以上説明の基本的な制御を行う場合、理想的には、レシーバタンク4で完全に気液分離され、膨張弁5へと流れる冷媒は液冷媒のみであり、バイパス経路側(配管29側)へと流れる冷媒は蒸気冷媒のみであることが望ましい。そのため、前述のように、レシーバタンク4は、気液分離を促進するため、液冷媒捕捉部材4g及び4hを設ける等の工夫をしている。しかしながら実機においては、レシーバ容器4T内の冷媒は、液相冷媒と気相冷媒が泡状に混ざり合った状態であったり、気相冷媒中に霧状の液冷媒が多数存在する状態であるので、気相冷媒と液相冷媒を完全に分離することは困難である。レシーバタンク4のサイズを非常に大きなものとすれば、このような問題も低減されるが、実際には大きさが制限される。そのため、負荷の状態によっては、低圧側へと流れる液冷媒に蒸気冷媒が混入したり、中圧側へと流れる蒸気冷媒に液冷媒が混入する場合がある。特に高外気温度条件において、冷却負荷も大きい場合には、冷凍サイクルの高圧側と低圧側の冷媒量を多くする必要があり、レシーバタンク4内部の冷媒量が減少するので、気液分離が不完全となり液冷媒への蒸気混入が発生しやすい状態となる。   By the way, in the case of performing the basic control described above, ideally, the refrigerant that is completely gas-liquid separated in the receiver tank 4 and that flows to the expansion valve 5 is only the liquid refrigerant, and the bypass path side (pipe 29 side) It is desirable that the refrigerant flowing into () is only a vapor refrigerant. Therefore, as described above, the receiver tank 4 is devised such as providing the liquid refrigerant capturing members 4g and 4h in order to promote gas-liquid separation. However, in the actual machine, the refrigerant in the receiver container 4T is in a state where the liquid-phase refrigerant and the gas-phase refrigerant are mixed in the form of bubbles, or in the state where there are many mist-like liquid refrigerants in the gas-phase refrigerant. It is difficult to completely separate the gas-phase refrigerant and the liquid-phase refrigerant. Such a problem can be reduced if the size of the receiver tank 4 is very large, but the size is actually limited. Therefore, depending on the state of the load, the vapor refrigerant may be mixed into the liquid refrigerant flowing toward the low pressure side, or the liquid refrigerant may be mixed into the vapor refrigerant flowing toward the medium pressure side. In particular, when the cooling load is large under high outside air temperature conditions, it is necessary to increase the amount of refrigerant on the high-pressure side and the low-pressure side of the refrigeration cycle, and the amount of refrigerant in the receiver tank 4 decreases, so gas-liquid separation is not possible. It becomes complete, and vapor mixing into the liquid refrigerant is likely to occur.

このように気液分離が不完全で、低圧側へと流れる冷媒に気相冷媒が混入した状態の冷凍サイクルを示したものが、図5の冷凍サイクルC2である。また、図6は、理想的な冷凍サイクルC1(実線)と、気液分離が不完全な冷凍サイクルC2(破線)を重ねてプロットしたものである。図5及び図6において、図3と同様に、横軸は冷媒の比エンタルピ(kJ/kg)、縦軸は冷媒の圧力(MPa)であり、符号SLは冷媒の飽和液線、SVは飽和蒸気線を示している。また、図3に示した冷凍サイクルCと同一の箇所についての状態を示す符号には同一のアルファベットを付している。   The refrigeration cycle C2 in FIG. 5 shows the refrigeration cycle in which the gas-liquid separation is incomplete and the refrigerant flowing into the low pressure side is mixed with the gas phase refrigerant. FIG. 6 is a plot in which an ideal refrigeration cycle C1 (solid line) and a refrigeration cycle C2 (dashed line) with incomplete gas-liquid separation are superimposed. 5 and 6, as in FIG. 3, the horizontal axis represents the specific enthalpy (kJ / kg) of the refrigerant, the vertical axis represents the refrigerant pressure (MPa), the symbol SL represents the saturated liquid line of the refrigerant, and SV represents the saturation. The vapor line is shown. Moreover, the code | symbol which shows the state about the same location as the refrigerating cycle C shown in FIG.

図5及び図6に示す通り、状態h2で示される冷凍サイクルC2におけるレシーバタンク4出口の冷媒は、気相冷媒が混入しているので、飽和液線SL上になく、飽和液に比べて比エンタルピが大きい。この状態h2で示される冷媒が膨張弁3で減圧され、状態i2となり、蒸発器6へと流れるので、蒸発器6入口での冷媒の比エンタルピも、理想的な冷凍サイクルC1における状態i1に比べて大きくなる。そして、冷凍効果(状態a2と状態i2の比エンタルピ差)は、冷凍サイクルC1に比べて小さくなる。また、低圧側の冷媒流量qL2は冷凍サイクルC1よりも大きくなるので、蒸発器6での圧力損失が増大し、圧縮機1の一段目圧縮要素1aでの冷媒圧縮仕事が増大する。その結果、冷凍装置の冷凍効率が著しく低下してしまう。   As shown in FIG. 5 and FIG. 6, the refrigerant at the outlet of the receiver tank 4 in the refrigeration cycle C2 shown in the state h2 is not on the saturated liquid line SL because the gas-phase refrigerant is mixed, and compared with the saturated liquid. Enthalpy is large. Since the refrigerant shown in this state h2 is decompressed by the expansion valve 3 to become the state i2 and flows to the evaporator 6, the specific enthalpy of the refrigerant at the inlet of the evaporator 6 is also compared with the state i1 in the ideal refrigeration cycle C1. Become bigger. And the refrigerating effect (specific enthalpy difference between the state a2 and the state i2) is smaller than that of the refrigerating cycle C1. Moreover, since the refrigerant | coolant flow volume qL2 by the side of low pressure becomes larger than the refrigerating cycle C1, the pressure loss in the evaporator 6 increases and the refrigerant | coolant compression work in the 1st stage | paragraph compression element 1a of the compressor 1 increases. As a result, the refrigeration efficiency of the refrigeration apparatus is significantly reduced.

そこで、本実施形態に係る冷凍装置では、第1の絞り手段である膨張弁3の制御として、前述の中間圧力制御や高圧圧力制御に代えて、又はそれらの制御に組み合わせて、以下に詳述する制御を行っている。   Therefore, in the refrigeration apparatus according to the present embodiment, the control of the expansion valve 3 serving as the first throttling means is described below in detail in place of or in combination with the above-described intermediate pressure control and high pressure control. Control to do.

図7は、本実施形態に係る冷凍装置の膨張弁3の制御フローを示す図である。冷凍運転中、第1制御装置90は、各センサによって、冷凍回路各部の温度と圧力を検出する(ステップS1)。次に、第1制御装置90は、主演算処理部90bにおいて、冷媒温度センサT2によって検出された膨張弁3に流入する冷媒の温度Tfと、圧力センサP2によって検出された高圧圧力PHより、膨張弁3に流入する冷媒(状態f)の比エンタルピhfを算出する(ステップS2)。尚、比エンタルピの演算方法としては、運転範囲を想定して予め作成された近似式による方法や、所定の幅で数値を区分けして作成したデータテーブルをメモリに保存しておき該テーブルから該当する値を検索して読み込む方法など、種々の方法が考えられる。   FIG. 7 is a diagram illustrating a control flow of the expansion valve 3 of the refrigeration apparatus according to the present embodiment. During the refrigeration operation, the first controller 90 detects the temperature and pressure of each part of the refrigeration circuit using each sensor (step S1). Next, the first control device 90 expands from the refrigerant temperature Tf flowing into the expansion valve 3 detected by the refrigerant temperature sensor T2 and the high pressure PH detected by the pressure sensor P2 in the main arithmetic processing unit 90b. The specific enthalpy hf of the refrigerant (state f) flowing into the valve 3 is calculated (step S2). Note that the specific enthalpy calculation method includes a method based on an approximate expression created in advance assuming an operating range, or a data table created by dividing numerical values by a predetermined width and stored in a memory. Various methods are conceivable, such as a method of searching for and reading a value to be read.

次に、上記のように求めた比エンタルピhfと、圧力センサP3によって検出された中圧圧力PMから、第1制御変数Xとして、レシーバタンク4に流入する冷媒(状態g2)における気相冷媒と液相冷媒の和である全体量に対する気相冷媒の質量比率、即ち乾き度xを算出する(ステップS3)。
Next, from the specific enthalpy hf obtained as described above and the intermediate pressure PM detected by the pressure sensor P3, as the first control variable X, the gas phase refrigerant in the refrigerant (state g2) flowing into the receiver tank 4 The mass ratio of the gas-phase refrigerant to the total amount, which is the sum of the liquid-phase refrigerant, that is , the dryness x is calculated (step S3).

次に、冷媒温度センサT6で検出された冷媒の温度Tcと、中圧圧力PMより、中間冷却器7で冷却された後であって、レシーバタンク4からの冷媒と合流する前の冷媒(状態c)の比エンタルピhcを算出する(ステップS4)。また、中圧圧力PMより、レシーバタンク4からバイパス経路へと流れ出る蒸気冷媒(状態j)の比エンタルピhj(飽和蒸気の比エンタルピ)を求める(ステップS5)。更に、冷媒温度センサT7で検出された冷媒の温度Tdと、中圧圧力PMとから、合流後、即ち圧縮機1の二段目圧縮要素1bに吸入される冷媒(状態d)の比エンタルピhdを求める(ステップS6)。   Next, the refrigerant (state) after being cooled by the intermediate cooler 7 from the refrigerant temperature Tc detected by the refrigerant temperature sensor T6 and the intermediate pressure PM and before joining the refrigerant from the receiver tank 4 The specific enthalpy hc of c) is calculated (step S4). Further, the specific enthalpy hj (saturated steam specific enthalpy) of the vapor refrigerant (state j) flowing out from the receiver tank 4 to the bypass path is obtained from the intermediate pressure PM (step S5). Further, the specific enthalpy hd of the refrigerant (state d) after merging, that is, the refrigerant (state d) sucked into the second-stage compression element 1b of the compressor 1 from the refrigerant temperature Td detected by the refrigerant temperature sensor T7 and the intermediate pressure PM. Is obtained (step S6).

そして、上記のように求められた各点における冷媒の比エンタルピhc、hj、hdを基に、冷媒合流前後のエンタルピバランスより、第2制御変数Yとして、放熱器2を流れる冷媒量qHに対するバイパス経路を流れる冷媒量qMの質量比率を算出する(ステップS7)。即ち、第2制御変数Y=qM/qH=(hc−hd)/(hc−hj)となる。   Then, based on the specific enthalpies hc, hj, hd of the refrigerant at each point obtained as described above, a bypass for the refrigerant quantity qH flowing through the radiator 2 as the second control variable Y from the enthalpy balance before and after the refrigerant merge. A mass ratio of the refrigerant quantity qM flowing through the path is calculated (step S7). That is, the second control variable Y = qM / qH = (hc−hd) / (hc−hj).

次に、レシーバタンク4に流入する冷媒の乾き度x(第1制御変数X)と、バイパス経路を流れる冷媒の質量流量比率qM/qH(第2制御変数Y)を比較し(ステップ8)、乾き度xが質量流量比qM/qHより大きい場合は、膨張弁3の開度を大きくする(ステップS9)。これにより膨張弁3と膨張弁5の開度比率が変化するため、レシーバタンク4に十分な冷媒が供給され、中圧圧力PMが僅かに上昇し、レシーバタンク4から膨張弁5へと流れる冷媒に混入する気相冷媒が減少する。即ち、膨張弁5へと流れる冷媒の状態は、図6において、蒸気冷媒が混入した状態h2から、飽和液冷媒のみとなる状態h1へと近づく。その結果、蒸発器6における冷凍効果が増大し、低圧側の冷媒流量qLが減少するので、冷凍サイクルの冷凍効率を向上させることができる。   Next, the dryness x (first control variable X) of the refrigerant flowing into the receiver tank 4 is compared with the mass flow rate ratio qM / qH (second control variable Y) of the refrigerant flowing through the bypass path (step 8). When the dryness x is larger than the mass flow rate ratio qM / qH, the opening degree of the expansion valve 3 is increased (step S9). As a result, the opening ratio between the expansion valve 3 and the expansion valve 5 changes, so that a sufficient amount of refrigerant is supplied to the receiver tank 4, the intermediate pressure PM rises slightly, and the refrigerant flows from the receiver tank 4 to the expansion valve 5. The gas-phase refrigerant mixed in is reduced. That is, in FIG. 6, the state of the refrigerant flowing to the expansion valve 5 approaches from the state h2 in which the vapor refrigerant is mixed to the state h1 in which only the saturated liquid refrigerant is present. As a result, the refrigeration effect in the evaporator 6 is increased and the refrigerant flow rate qL on the low pressure side is decreased, so that the refrigeration efficiency of the refrigeration cycle can be improved.

他方、レシーバタンク4に流入する冷媒の乾き度x(第1制御変数X)と、バイパス経路を流れる冷媒の質量流量比率qM/qH(第2制御変数Y)を比較し(ステップ10)、乾き度xが質量流量比qM/qHより小さい場合は、レシーバタンク4で気液分離された蒸気冷媒に液冷媒が混入してバイパス経路側に流れていると判断できる。低外気温度条件において、冷却負荷も小さくなり冷却運転を行う蒸発器6の数が減少すると、冷凍サイクル高圧側と低圧側の冷媒量を少なくする必要があり、その結果、レシーバタンク4内の冷媒量が多くなるので、このように蒸気冷媒に液冷媒が混入しやすくなる。そこで、この場合、第1制御装置90は、膨張弁3の開度を小さくする制御を行う(ステップS11)。これにより中圧圧力PMが僅かに下降し、レシーバタンク4内の冷媒量が減少し、バイパス経路側への液冷媒の混入を減少させることができる。   On the other hand, the dryness x (first control variable X) of the refrigerant flowing into the receiver tank 4 is compared with the mass flow rate ratio qM / qH (second control variable Y) of the refrigerant flowing through the bypass path (step 10). When the degree x is smaller than the mass flow ratio qM / qH, it can be determined that the liquid refrigerant is mixed in the vapor refrigerant separated in the receiver tank 4 and is flowing to the bypass path side. When the cooling load is reduced and the number of evaporators 6 that perform the cooling operation is reduced under the low outside air temperature condition, it is necessary to reduce the refrigerant amounts on the refrigeration cycle high-pressure side and low-pressure side. As a result, the refrigerant in the receiver tank 4 Since the amount increases, the liquid refrigerant is likely to be mixed into the vapor refrigerant in this way. Therefore, in this case, the first control device 90 performs control to reduce the opening degree of the expansion valve 3 (step S11). As a result, the intermediate pressure PM is slightly lowered, the amount of refrigerant in the receiver tank 4 is reduced, and mixing of liquid refrigerant into the bypass path can be reduced.

尚、前述のステップ8とステップ10における乾き度xと質量流量比qM/qHの比較においては、制御動作を安定させるため、所定の制御範囲(許容幅、不感帯)を設けることもできる。図7において、符号ka及びkbは、所定の制御範囲を示す係数である。このように所定の幅を持たせることにより、前述の中間圧力制御と高圧圧力制御を基本としつつ、乾き度xと質量流量比qM/qHとの差が所定の範囲を超えて大きくなった場合にのみ、本制御動作を組み合わせることも可能である。   In the comparison of the dryness x and the mass flow rate ratio qM / qH in Step 8 and Step 10 described above, a predetermined control range (allowable width, dead zone) can be provided in order to stabilize the control operation. In FIG. 7, symbols ka and kb are coefficients indicating a predetermined control range. When the difference between the dryness x and the mass flow rate ratio qM / qH becomes larger than a predetermined range while the above-described intermediate pressure control and high pressure control are used as a basis by giving the predetermined width in this way. It is also possible to combine this control operation only with the above.

また、ステップ9において、膨張弁3の開度を大きくする動作に加えて、又は代えて、膨張弁5の開度制御における目標温度差(目標過熱度)を大きくする制御を行うこともできる。具体的には、冷凍ユニット10の第1制御装置90は、主演算処理部90bで前記の演算処理を行い、通信処理部90d、統合制御装置92を介して、ショーケース20の第2制御装置91と通信を行って、第2制御装置91へ目標温度差を大きくする指令を送る。ショーケース20の第2制御装置91は、第1制御装置90からの信号に基づいて、目標温度差を変更して膨張弁5の制御を行う。これにより、膨張弁5の開度は、小さくなる方向に制御されることになり、蒸発器6内部の冷媒量が減少する。その結果、レシーバタンク4内部の冷媒量が増加するので、レシーバタンク4における気液分離効率が改善され、レシーバタンク4から膨張弁5へと流れる液冷媒への蒸気冷媒混入が抑えられる。   Further, in step 9, in addition to or instead of the operation of increasing the opening degree of the expansion valve 3, it is also possible to perform control for increasing the target temperature difference (target superheat degree) in the opening degree control of the expansion valve 5. Specifically, the first control device 90 of the refrigeration unit 10 performs the arithmetic processing by the main arithmetic processing unit 90b, and the second control device of the showcase 20 via the communication processing unit 90d and the integrated control device 92. 91 is communicated, and a command to increase the target temperature difference is sent to the second controller 91. The second control device 91 of the showcase 20 controls the expansion valve 5 by changing the target temperature difference based on the signal from the first control device 90. As a result, the opening degree of the expansion valve 5 is controlled in a decreasing direction, and the amount of refrigerant inside the evaporator 6 is reduced. As a result, since the amount of refrigerant in the receiver tank 4 increases, the gas-liquid separation efficiency in the receiver tank 4 is improved, and mixing of vapor refrigerant into the liquid refrigerant flowing from the receiver tank 4 to the expansion valve 5 is suppressed.

以上説明のごとく、本発明の冷凍装置によれば、外気条件や冷却負荷条件の変動によりレシーバタンク4における気液分離が不十分となった場合においても、その状態を検知し、理想的な気液分離状態に近づけることができるので、安定的に、高効率な冷却運転を維持することができる。   As described above, according to the refrigeration apparatus of the present invention, even when the gas-liquid separation in the receiver tank 4 becomes insufficient due to fluctuations in the outside air condition and the cooling load condition, the state is detected, and the ideal air Since the liquid separation state can be obtained, a highly efficient cooling operation can be stably maintained.

尚、上述の実施形態は、本発明の一具体例を示したものであり、従って本発明の実施形態はこれに限定されるものではなく、種々の変更実施が可能である。   The above-described embodiment shows a specific example of the present invention. Therefore, the embodiment of the present invention is not limited to this, and various modifications can be made.

本発明の冷凍装置は、スーパーマーケット、コンビニエンスストア及び飲食店等において、食品等を冷凍、冷蔵するための冷凍装置として、また、冷却を必要とする他の用途においても利用することが可能である。   The refrigeration apparatus of the present invention can be used as a refrigeration apparatus for freezing and refrigeration of food and the like in supermarkets, convenience stores, restaurants, and the like, and also in other uses that require cooling.

1・・・圧縮機
1a・・・一段目圧縮要素(第1圧縮手段)
1b・・・二段目圧縮要素(第2圧縮手段)
2・・・放熱器
3・・・膨張弁(第1絞り手段)
4・・・レシーバタンク
5・・・膨張弁(第2絞り手段)
6・・・蒸発器
7・・・中間冷却器
8・・・アキュームレータ
9・・・ストレーナ
10・・・冷凍ユニット
11・・・ファン
12・・・ファン
20・・・ショーケース(蒸発ユニット)
29、31・・・冷媒配管(バイパス経路)
30・・・合流点
90・・・第1制御装置
91・・・第2制御装置
92・・・統合制御装置
P2・・・圧力センサ(高圧圧力検出器)
P3・・・圧力センサ(中圧圧力検出器)又は冷媒温度センサ(中圧温度検出器)
T2・・・冷媒温度センサ(膨張前温度検出器)
T3・・・冷媒温度センサ(蒸発温度検出器)
T4・・・冷媒温度センサ(蒸発器出口温度検出器)
T6・・・冷媒温度センサ(合流前温度検出器)
T7・・・冷媒温度センサ(吸入温度検出器)
X・・・乾き度x(第1制御変数)
Y・・・冷媒質量流量比(第2制御変数)

DESCRIPTION OF SYMBOLS 1 ... Compressor 1a ... First stage compression element (1st compression means)
1b... Second stage compression element (second compression means)
2 ... Radiator 3 ... Expansion valve (first throttle means)
4 ... Receiver tank 5 ... Expansion valve (second throttle means)
6 ... Evaporator 7 ... Intermediate cooler 8 ... Accumulator 9 ... Strainer 10 ... Refrigeration unit 11 ... Fan 12 ... Fan 20 ... Showcase (evaporation unit)
29, 31 ... Refrigerant piping (bypass path)
30 ... Merging point 90 ... First control device 91 ... Second control device 92 ... Integrated control device P2 ... Pressure sensor (high pressure detector)
P3 ... Pressure sensor (intermediate pressure detector) or refrigerant temperature sensor (intermediate pressure detector)
T2 ... Refrigerant temperature sensor (temperature detector before expansion)
T3 ... Refrigerant temperature sensor (evaporation temperature detector)
T4 ... refrigerant temperature sensor (evaporator outlet temperature detector)
T6 ... Refrigerant temperature sensor (Temperature detector before joining)
T7 ... Refrigerant temperature sensor (suction temperature detector)
X: Dryness x (first control variable)
Y: Refrigerant mass flow ratio (second control variable)

Claims (11)

第1圧縮手段、中間冷却器、第2圧縮手段、放熱器、第1絞り手段、レシーバタンク、第2絞り手段、蒸発器を順次接続して閉回路を形成し、前記レシーバタンクから前記第2圧縮手段の吸入部へと冷媒を流すバイパス経路を備えた冷凍装置において、
前記レシーバタンクに流入する冷媒における気相冷媒と液相冷媒の和である全体量に対する気相冷媒の質量比率を第1制御変数とし、前記レシーバタンクに流入する冷媒量に対する前記バイパス経路を流れる冷媒量の質量比率を第2制御変数とし、前記レシーバタンク内の気液分離が不完全な状態では前記第1制御変数と前記第2制御変数との差が所定の範囲内になるように前記第1絞り手段の開度を制御する第1制御装置を設けたことを特徴とする冷凍装置。
A first compression unit, an intermediate cooler, a second compression unit, a radiator, a first throttle unit, a receiver tank, a second throttle unit, and an evaporator are sequentially connected to form a closed circuit, and the second from the receiver tank In the refrigeration apparatus provided with a bypass path for flowing the refrigerant to the suction portion of the compression means,
Refrigerant flowing through the bypass path with respect to the amount of refrigerant flowing into the receiver tank, with the mass ratio of the vapor phase refrigerant to the total amount, which is the sum of the vapor phase refrigerant and liquid phase refrigerant in the refrigerant flowing into the receiver tank, as a first control variable The mass ratio of the quantity is set as a second control variable, and when the gas-liquid separation in the receiver tank is incomplete , the difference between the first control variable and the second control variable is within a predetermined range. A refrigeration apparatus comprising a first control device for controlling the opening of one throttle means.
前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧され前記第2圧縮手段に吸入される冷媒の圧力を検出する中圧圧力検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器及び前記中圧圧力検出器で検出された圧力と前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧圧力検出器で検出された圧力と前記合流前温度検出器及び前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする請求項1記載の冷凍装置。
A high pressure detector for detecting the pressure of the refrigerant compressed by the second compression means and flowing into the first throttle means; and the pressure of the refrigerant reduced in pressure by the first throttle means and sucked into the second compression means. An intermediate pressure detector, a pre-expansion temperature detector that detects the temperature of the refrigerant that exits the radiator and flows into the first throttle means, and a refrigerant that flows through the bypass path after flowing out the intermediate cooler A pre-merging temperature detector that detects the temperature of the refrigerant before the suction, and a suction temperature detector that detects the temperature of the refrigerant sucked into the second compression means,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the intermediate pressure detector and the temperature detected by the pre-expansion temperature detector, and the intermediate pressure is calculated. The refrigeration apparatus according to claim 1, wherein the second control variable is calculated from a pressure detected by a pressure detector and temperatures detected by the pre-merging temperature detector and the suction temperature detector.
前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧された後の冷媒の温度を検出する中圧温度検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器で検出された圧力と前記中圧温度検出器及び前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧温度検
出器と前記合流前温度検出器と前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする請求項1記載の冷凍装置。
A high pressure detector for detecting the pressure of the refrigerant compressed by the second compression means and flowing into the first throttle means; and an intermediate pressure temperature detector for detecting the temperature of the refrigerant after being reduced in pressure by the first throttle means; A pre-expansion temperature detector that detects the temperature of the refrigerant that exits the radiator and flows into the first throttle means, and the temperature of the refrigerant that has flowed out of the intermediate cooler and before joining the refrigerant flowing through the bypass path And a pre-merging temperature detector for detecting the refrigerant, and a suction temperature detector for detecting the temperature of the refrigerant sucked into the second compression means,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the temperatures detected by the intermediate pressure temperature detector and the pre-expansion temperature detector, and the intermediate pressure is calculated. The refrigeration apparatus according to claim 1, wherein the second control variable is calculated from a temperature detected by the temperature detector, the pre-merging temperature detector, and the temperature detected by the suction temperature detector.
前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記第1絞り手段の開度を大きくすることを特徴とする請求項1乃至請求項3の何れか一項記載の冷凍装置。 4. The opening degree of the first throttle means is increased when the first control variable is larger than the second control variable beyond a predetermined range. 5. The refrigeration apparatus described. 前記蒸発器に流入する冷媒又は前記蒸発器内の冷媒の温度を検出する蒸発温度検出器と、前記蒸発器から流出する冷媒の温度を検出する蒸発器出口温度検出器とを備え、
前記第1制御装置は、前記蒸発器出口温度検出器と蒸発温度検出器で検出される温度の差が所定の目標温度差になるように前記第2絞り手段の開度を制御すると共に、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記目標温度差を大きくすることを特徴とする請求項1乃至請求項4の何れか一項記載の冷凍装置。
An evaporation temperature detector for detecting the temperature of the refrigerant flowing into the evaporator or the refrigerant in the evaporator, and an evaporator outlet temperature detector for detecting the temperature of the refrigerant flowing out of the evaporator,
The first control device controls the opening of the second throttling means so that the difference between the temperatures detected by the evaporator outlet temperature detector and the evaporation temperature detector becomes a predetermined target temperature difference, and The refrigeration apparatus according to any one of claims 1 to 4, wherein the target temperature difference is increased when the first control variable is larger than the second control variable beyond a predetermined range.
第2絞り手段、蒸発器を具備する蒸発ユニットとユニット間配管で接続されて冷凍装置を構成する冷凍ユニットにおいて、
この冷凍ユニットには、第1圧縮手段、中間冷却器、第2圧縮手段、放熱器、第1絞り手段、レシーバタンク、及び該レシーバタンクと前記第2圧縮手段の吸入部とを接続するバイパス経路を具備し、前記レシーバタンクに流入する冷媒における気相冷媒と液相冷媒の和である全体量に対する気相冷媒の質量比率を第1制御変数とし、前記レシーバタンクに流入する冷媒量に対する前記バイパス経路を流れる冷媒量の質量比率を第2制御変数とし、前記レシーバタンク内の気液分離が不完全な状態では前記第1制御変数と前記第2制御変数との差が所定の範囲内になるように前記第1絞り手段の開度を制御する第1制御装置を設けたことを特徴とする冷凍ユニット。
In the refrigeration unit that constitutes the refrigeration apparatus connected to the evaporation unit including the second throttle means and the evaporator and the pipe between the units,
The refrigeration unit includes a first compression unit, an intermediate cooler, a second compression unit, a radiator, a first throttling unit, a receiver tank, and a bypass path connecting the receiver tank and the suction portion of the second compression unit The bypass for the amount of refrigerant flowing into the receiver tank, wherein the mass ratio of the gas phase refrigerant to the total amount that is the sum of the gas phase refrigerant and liquid phase refrigerant in the refrigerant flowing into the receiver tank is a first control variable The mass ratio of the amount of refrigerant flowing through the path is the second control variable, and the difference between the first control variable and the second control variable is within a predetermined range when the gas-liquid separation in the receiver tank is incomplete. A refrigeration unit comprising a first control device for controlling the opening degree of the first throttle means.
前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧され前記第2圧縮手段に吸入される冷媒の圧力を検出する中圧圧力検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器及び前記中圧圧力検出器で検出された圧力と前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧圧力検出器で検出された圧力と前記合流前温度検出器及び前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする請求項6記載の冷凍ユニット。
A high pressure detector for detecting the pressure of the refrigerant compressed by the second compression means and flowing into the first throttle means; and the pressure of the refrigerant reduced in pressure by the first throttle means and sucked into the second compression means. An intermediate pressure detector, a pre-expansion temperature detector that detects the temperature of the refrigerant that exits the radiator and flows into the first throttle means, and a refrigerant that flows through the bypass path after flowing out the intermediate cooler A pre-merging temperature detector that detects the temperature of the refrigerant before the suction, and a suction temperature detector that detects the temperature of the refrigerant sucked into the second compression means,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the intermediate pressure detector and the temperature detected by the pre-expansion temperature detector, and the intermediate pressure is calculated. The refrigeration unit according to claim 6, wherein the second control variable is calculated from a pressure detected by a pressure detector and a temperature detected by the pre-merging temperature detector and the suction temperature detector.
前記第2圧縮手段で圧縮され第1絞り手段に流入する冷媒の圧力を検出する高圧圧力検出器と、前記第1絞り手段で減圧された後の冷媒の温度を検出する中圧温度検出器と、前記放熱器を出て前記第1絞り手段に流入する冷媒の温度を検出する膨張前温度検出器と、前記中間冷却器を流出した後前記バイパス経路を流れる冷媒と合流する前の冷媒の温度を検出する合流前温度検出器と、前記第2圧縮手段に吸入される冷媒の温度を検出する吸入温度検出器とを備え、
前記第1制御装置は、前記高圧圧力検出器で検出された圧力と前記中圧温度検出器及び前記膨張前温度検出器で検出された温度とから前記第1制御変数を算出し、前記中圧温度検出器と前記合流前温度検出器と前記吸入温度検出器で検出された温度とから前記第2制御変数を算出することを特徴とする請求項6記載の冷凍ユニット。
A high pressure detector for detecting the pressure of the refrigerant compressed by the second compression means and flowing into the first throttle means; and an intermediate pressure temperature detector for detecting the temperature of the refrigerant after being reduced in pressure by the first throttle means; A pre-expansion temperature detector that detects the temperature of the refrigerant that exits the radiator and flows into the first throttle means, and the temperature of the refrigerant that has flowed out of the intermediate cooler and before joining the refrigerant flowing through the bypass path And a pre-merging temperature detector for detecting the refrigerant, and a suction temperature detector for detecting the temperature of the refrigerant sucked into the second compression means,
The first control device calculates the first control variable from the pressure detected by the high pressure detector and the temperatures detected by the intermediate pressure temperature detector and the pre-expansion temperature detector, and the intermediate pressure is calculated. The refrigeration unit according to claim 6, wherein the second control variable is calculated from a temperature detector, a pre-merging temperature detector, and a temperature detected by the suction temperature detector.
前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記第1絞り手段の開度を大きくすることを特徴とする請求項6乃至請求項8の何れか一項記載の冷凍ユニット。 9. The opening degree of the first throttle means is increased when the first control variable is larger than the second control variable beyond a predetermined range. 9. The refrigeration unit described. 前記第1制御装置は、前記蒸発器から流出する冷媒の温度と前記蒸発器に流入する冷媒又は前記蒸発器内の冷媒の温度との差である目標温度差の信号を前記蒸発ユニットに設けられた第2制御装置に送ることを特徴とする請求項6乃至請求項9の何れか一項記載の冷凍ユニット。 The first control device is provided with a signal of a target temperature difference, which is a difference between the temperature of the refrigerant flowing out of the evaporator and the temperature of the refrigerant flowing into the evaporator or the refrigerant in the evaporator, in the evaporation unit. The refrigeration unit according to any one of claims 6 to 9, wherein the refrigeration unit is sent to a second control device. 前記第1制御装置は、前記第1制御変数が前記第2制御変数よりも所定の範囲を超えて大きい場合に前記目標温度差を大きくすることを特徴とする請求項6乃至請求項10の何れか一項記載の冷凍ユニット。 The said 1st control apparatus enlarges the said target temperature difference, when the said 1st control variable is larger than the said 2nd control variable exceeding a predetermined range, The any of Claim 6 thru | or 10 characterized by the above-mentioned. A refrigeration unit according to claim 1.
JP2011133811A 2011-06-16 2011-06-16 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus Active JP5828131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133811A JP5828131B2 (en) 2011-06-16 2011-06-16 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133811A JP5828131B2 (en) 2011-06-16 2011-06-16 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus

Publications (2)

Publication Number Publication Date
JP2013002722A JP2013002722A (en) 2013-01-07
JP5828131B2 true JP5828131B2 (en) 2015-12-02

Family

ID=47671483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133811A Active JP5828131B2 (en) 2011-06-16 2011-06-16 Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP5828131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772703B2 (en) * 2016-09-15 2020-10-21 富士電機株式会社 Refrigerant circuit device
JP6973539B2 (en) * 2017-01-23 2021-12-01 株式会社デンソー Refrigeration cycle device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114668A (en) * 1987-10-28 1989-05-08 Toshiba Corp Two-stage compression refrigeration cycle device
JPH10132394A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Freezer
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
JP3614330B2 (en) * 1999-10-20 2005-01-26 シャープ株式会社 Supercritical vapor compression refrigeration cycle
JP2000356420A (en) * 2000-01-01 2000-12-26 Mitsubishi Electric Corp System for circulating refrigerant
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP4115414B2 (en) * 2004-03-19 2008-07-09 三洋電機株式会社 Refrigeration equipment
JP2006308207A (en) * 2005-04-28 2006-11-09 Daikin Ind Ltd Refrigerating device
JP5027160B2 (en) * 2006-09-29 2012-09-19 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver
JP2009257706A (en) * 2008-04-18 2009-11-05 Daikin Ind Ltd Refrigerating apparatus
EP2491317B1 (en) * 2009-10-23 2018-06-27 Carrier Corporation Refrigerant vapor compression system operation
JP5168327B2 (en) * 2010-08-26 2013-03-21 三菱電機株式会社 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2013002722A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
CN110325803B (en) Oil management for micro-booster type supermarket refrigeration system
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
CN102713463B (en) Refrigeration storage in refrigerant vapor compression system
CN100590372C (en) Refrigeration circuit with improved liquid/steam receiver
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
US8424326B2 (en) Refrigerant vapor compression system and method of transcritical operation
JP5585003B2 (en) Refrigeration equipment
US20080289350A1 (en) Two stage transcritical refrigeration system
US7574869B2 (en) Refrigeration system with flow control valve
CN101512245B (en) Refrigeration device
JP5323023B2 (en) Refrigeration equipment
EP2322875A1 (en) Refrigeration cycle device and air conditioner
CN101512244B (en) Refrigeration device
KR20100135923A (en) Refrigeration device
WO2012002248A1 (en) Refrigeration apparatus
JP2012504221A (en) Increase in capacity when pulling down
JP5796619B2 (en) Air conditioner
JP5828131B2 (en) Refrigeration apparatus and refrigeration unit constituting the refrigeration apparatus
JP5903577B2 (en) Refrigeration equipment
JP2009228972A (en) Refrigerating device
US20230280072A1 (en) Refrigeration system with parallel compressors
RU2375649C2 (en) Cooling system with fluid/steam receiver

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5828131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151