JP2000356420A - System for circulating refrigerant - Google Patents

System for circulating refrigerant

Info

Publication number
JP2000356420A
JP2000356420A JP2000141563A JP2000141563A JP2000356420A JP 2000356420 A JP2000356420 A JP 2000356420A JP 2000141563 A JP2000141563 A JP 2000141563A JP 2000141563 A JP2000141563 A JP 2000141563A JP 2000356420 A JP2000356420 A JP 2000356420A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
low
receiver
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000141563A
Other languages
Japanese (ja)
Inventor
Osamu Morimoto
修 森本
Fujio Hitomi
不二夫 人見
Moriya Miyamoto
守也 宮本
Shuichi Tani
秀一 谷
Tomohiko Kasai
智彦 河西
Yoshihiro Sumida
嘉裕 隅田
Hitoshi Iijima
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000141563A priority Critical patent/JP2000356420A/en
Publication of JP2000356420A publication Critical patent/JP2000356420A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To control a flow rate of a refrigerant without changing a rotation frequency of a compressor by controlling composition of the refrigerant circulating through the inside of a refrigerant circuit in a refrigerating cycle using a nonazeotropic mixed refrigerant blended with plural kinds of hydrofluorocarbon as the refrigerant. SOLUTION: A refrigerating cycle using a nonazeotropic mixed refrigerant blended with plural kinds of hydrofluorocarbon as the refrigerant is provided with a low pressure receiver 35 located between an evaporator and a compressor 31, a high pressure receiver 42 located between a condenser and a throttling device, an intermediate pressure receiver 79, liquid refrigerant piping for introducing liquid refrigerant from the high pressure receiver 42 to the intermediate pressure receiver 79, gas refrigerant piping from the high pressure receiver 42 to the intermediate pressure receiver 79, a bypass pipe connected with low pressure gas piping via a second throttling device 75 and a third throttling device 80, and a heat exchanger for rectification performing heat exchange with the refrigerant inside the intermediate pressure receiver 79 between the second throttling device 75 and the third throttling device 80.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒に数種のハイ
ドロフルオロカーボンをブレンドした非共沸混合冷媒を
用いる冷凍・空調装置等に使用される冷媒循環システム
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant circulating system for use in a refrigerating / air-conditioning apparatus using a non-azeotropic mixed refrigerant obtained by blending several kinds of hydrofluorocarbons into a refrigerant.

【0002】[0002]

【従来の技術】図34は、例えば特公平6−12201
号に示された従来の非共沸混合冷媒を用いた冷凍・空調
装置であり、図中1は圧縮機、2は負荷側熱交換器、
3,4は主絞り装置、6は熱源側熱交換器で、これらを
冷媒配管にて接続されて、冷凍サイクルの主回路を形成
している。8は精留塔で、その塔頂部には冷媒配管17
と冷却源9が配設された冷媒配管18とにより塔頂貯留
器11が接続され、また、上記精留塔底部には冷媒配管
19と加熱源10が配設された冷媒配管20とにより塔
底貯留器12が接続されている。
FIG. 34 shows, for example, Japanese Patent Publication No. 6-12201.
Is a conventional refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, wherein 1 is a compressor, 2 is a load side heat exchanger,
Reference numerals 3 and 4 denote main expansion devices, and reference numeral 6 denotes a heat source side heat exchanger, which are connected by a refrigerant pipe to form a main circuit of a refrigeration cycle. A rectification column 8 has a refrigerant pipe 17 at the top.
The tower reservoir 11 is connected by a refrigerant pipe 18 in which the cooling source 9 is disposed, and a refrigerant pipe 19 and a refrigerant pipe 20 in which the heating source 10 is disposed at the bottom of the rectification tower. The bottom reservoir 12 is connected.

【0003】負荷側熱交換器2と熱源側熱交換器6の間
には、開閉弁15が設置された冷媒配管21により塔頂
貯留器11が接続され、また、開閉弁16が設置された
冷媒配管22により塔底貯留器12が接続されている。
熱源側熱交換器6の上流側には、副絞り装置5と開閉弁
13は設置された冷媒配管23により塔頂貯留器11が
接続され、また、副絞り装置5と開閉弁14が設置され
た冷媒配管24により塔底貯留器12が接続されてい
る。そして、塔頂貯留器11から冷媒配管23への流出
口は塔頂貯留器11の底部に、また、塔底貯留器12か
ら冷媒配管24への流出口は塔底貯留器12の底部にそ
れぞれ設置されている。
The top reservoir 11 is connected between the load side heat exchanger 2 and the heat source side heat exchanger 6 by a refrigerant pipe 21 provided with an on-off valve 15, and an on-off valve 16 is provided. The tower bottom reservoir 12 is connected by the refrigerant pipe 22.
On the upstream side of the heat source side heat exchanger 6, the tower top reservoir 11 is connected by a refrigerant pipe 23 provided with the sub-throttle device 5 and the on-off valve 13, and the sub-throttle device 5 and the on-off valve 14 are provided. The tower bottom reservoir 12 is connected by the refrigerant pipe 24. The outlet from the top reservoir 11 to the refrigerant pipe 23 is at the bottom of the top reservoir 11, and the outlet from the bottom reservoir 12 to the refrigerant pipe 24 is at the bottom of the bottom reservoir 12. is set up.

【0004】上記構成において、圧縮機1で圧縮された
高温高圧の非共沸混合冷媒(以下、冷媒と言う)の蒸気
は矢印Aの方向に流れ、負荷側熱交換器2で凝縮して主
絞り装置3に入る。通常運転時には開閉弁15,16は
閉じられているのでそのまま主絞り装置4に入り、低温
低圧になった冷媒は、熱源側熱交換器6で蒸発して再び
圧縮機1に戻る。
In the above configuration, the vapor of the high-temperature and high-pressure non-azeotropic refrigerant (hereinafter referred to as refrigerant) compressed in the compressor 1 flows in the direction of arrow A, and is condensed in the load-side heat exchanger 2 to be condensed. The diaphragm device 3 is entered. During normal operation, since the on-off valves 15 and 16 are closed, the refrigerant enters the main throttle device 4 as it is, and the low temperature and low pressure refrigerant evaporates in the heat source side heat exchanger 6 and returns to the compressor 1 again.

【0005】この主回路を流れる冷媒組成を変える場合
において、まず、主回路を流れる冷媒の組成を非常に高
沸点成分に富んだものにするには、開閉弁13,15を
閉じ、開閉弁14,16を開く。そうすると、主絞り装
置3を出た主回路を流れる冷媒の一部は、開いている開
閉弁16へ分流し、残りは主絞り装置4に流入して通常
の運転と同様の回路で流れる。開閉弁16へ流入した冷
媒は、塔底貯留器12に入る。塔底貯留器12に入った
冷媒は、一部は開いている開閉弁14を通って副絞り装
置5に入り、熱源側熱交換器6の上流側で主回路を流れ
る冷媒と合流し、残りは加熱源10が設置された冷媒配
管20に入り、加熱されて冷媒精留塔8内を蒸気となっ
て上昇する。このとき、塔頂貯留器11に貯留されてい
る冷媒液も冷媒配管17から冷媒精留塔8内を下降し、
上昇してくる冷媒蒸気と気液接触して、いわゆる精留作
用を行う。
When the composition of the refrigerant flowing through the main circuit is changed, first, the on-off valves 13 and 15 are closed and the on-off valve 14 is turned on in order to make the composition of the refrigerant flowing through the main circuit very rich in high boiling point components. , 16 are opened. Then, a part of the refrigerant flowing out of the main circuit from the main throttle device 3 is diverted to the open / close valve 16, and the rest flows into the main throttle device 4 and flows in the same circuit as in the normal operation. The refrigerant flowing into the on-off valve 16 enters the tower bottom reservoir 12. Part of the refrigerant that has entered the tower bottom reservoir 12 enters the sub-throttle device 5 through the open / close valve 14, merges with the refrigerant flowing in the main circuit upstream of the heat source side heat exchanger 6, and Enters the refrigerant pipe 20 in which the heating source 10 is installed, is heated, and rises as vapor in the refrigerant rectification column 8. At this time, the refrigerant liquid stored in the top reservoir 11 also descends from the refrigerant pipe 17 in the refrigerant rectification column 8,
The so-called rectification is performed by gas-liquid contact with the rising refrigerant vapor.

【0006】こうして、冷媒蒸気は上昇するにつれて低
沸点成分に富んだものとなり、冷却源9が設置された冷
媒配管18に導入されて液化し、開閉弁13が閉じられ
ていることにより塔頂貯留器11に貯留される。このよ
うな精留作用が繰り返され、ついには、塔頂貯留器11
には非常に低沸点成分に富んだ冷媒だけが貯留されるこ
とになる。したがって、主回路を流れる冷媒の組成は、
非常に高沸点成分に富んだものにするようにしていた。
[0006] Thus, the refrigerant vapor becomes rich in low-boiling components as it rises, is introduced into the refrigerant pipe 18 in which the cooling source 9 is installed, liquefies, and is stored at the top due to the on-off valve 13 being closed. Is stored in the vessel 11. Such rectification is repeated, and finally, the top reservoir 11
, Only the refrigerant having a very low boiling point component is stored. Therefore, the composition of the refrigerant flowing through the main circuit is:
It was designed to be very rich in high boiling components.

【0007】主回路を流れる冷媒の組成を、低沸点成分
に富んだものとするには、開閉弁13,15を開き、開
閉弁14,16を閉じる。そうすると、主絞り装置3を
出た主回路を流れる冷媒の一部は分流して、開いている
開閉弁15を通り、塔頂貯留器11に流入するが、開閉
弁13も開いているため、流入してきた冷媒の一部は冷
媒配管23を通り、副絞り装置5を通って主回路に合流
する。そして、残りの冷媒は、冷媒配管17から冷媒精
留塔8内に入り下降する。このとき、塔底貯留器12内
の冷媒の一部が加熱源10で加熱されて冷媒精留塔内を
上昇し、下降する液と気液接触して、いわゆる精留作用
を行う。このようにして、下降する冷媒液は徐々に高沸
点成分に富んだものになり、開閉弁14が閉じられてい
るため塔底貯留器12に貯留される。そして、このよう
な精留作用が繰り返され、ついには、塔底貯留器12に
は、非常に高沸点成分に富んだ冷媒だけが貯留されるこ
とになる。したがって、主回路を流れる冷媒の組成は、
非常に低沸点成分に富んだものにするようにしていた。
To make the composition of the refrigerant flowing in the main circuit rich in low boiling point components, the on-off valves 13 and 15 are opened and the on-off valves 14 and 16 are closed. Then, a part of the refrigerant flowing out of the main circuit exiting the main throttle device 3 is divided and flows into the tower top reservoir 11 through the open on-off valve 15, but the on-off valve 13 is also open. A part of the inflowing refrigerant passes through the refrigerant pipe 23 and passes through the sub-throttling device 5 to join the main circuit. Then, the remaining refrigerant enters the refrigerant rectification tower 8 from the refrigerant pipe 17 and descends. At this time, a part of the refrigerant in the tower bottom reservoir 12 is heated by the heating source 10 and rises in the refrigerant rectification tower, and comes into gas-liquid contact with the descending liquid to perform a so-called rectification action. In this manner, the descending refrigerant liquid gradually becomes rich in the high boiling point component, and is stored in the tower bottom reservoir 12 because the on-off valve 14 is closed. Then, such a rectifying operation is repeated, and finally, only the refrigerant having a very high boiling point component is stored in the tower bottom storage device 12. Therefore, the composition of the refrigerant flowing through the main circuit is:
It was intended to be very rich in low boiling components.

【0008】[0008]

【発明が解決しようとする課題】このような従来の冷凍
・空調装置等に使用される冷媒循環システムでは、精留
塔によって精留された成分を貯留する構成としているの
で、冷媒の濃度が冷媒回路内で一定しない圧縮機起動時
等の急激な圧力変動に対応できなくなり、また、精留塔
自身の構造も複雑で大きく、コストもかかるなどの問題
があった。本発明は、上記の課題を解決するもので、定
常運転時のみならず起動時などの非定常運転時にも素早
く冷媒回路内の組成を調節し、かつ、組成調節機構を簡
素化し、低コスト化を実現するものである。
The refrigerant circulation system used in such a conventional refrigeration / air-conditioning apparatus is configured to store the components rectified by the rectification tower. There is a problem that it is not possible to cope with sudden pressure fluctuations at the time of starting the compressor which is not constant in the circuit, and the structure of the rectification column itself is complicated, large and costly. The present invention solves the above-mentioned problem, and quickly adjusts the composition in the refrigerant circuit not only during steady operation but also during non-steady operation such as startup, and simplifies the composition adjustment mechanism to reduce cost. Is realized.

【0009】[0009]

【課題を解決するための手段】この発明は、圧縮機、凝
縮器、絞り装置及び蒸発器の各機器を順次接続し、冷媒
に数種のハイドロフルオロカーボンをブレンドした非共
沸混合冷媒を用い、各機器をバイパスさせる配管と、こ
の配管に開閉機構を設け、これを開閉させて冷媒回路内
を循環させながら冷媒の組成を調整するものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected to each other, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant is used. A piping for bypassing each device and an opening / closing mechanism are provided in the piping, and the opening / closing mechanism is opened / closed to adjust the composition of the refrigerant while circulating in the refrigerant circuit.

【0010】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、圧縮機
吐出部から低圧側構成機器または低圧側配管へのバイパ
ス管を設ける構成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant. Alternatively, a bypass pipe to the low pressure pipe is provided.

【0011】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、圧縮機
吐出から蒸発器入口へのバイパス管を設ける構成とした
ものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended into a refrigerant is used. In this configuration, a bypass pipe is provided.

【0012】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
出口から圧縮機吸入へのバイパス管を設ける構成とした
ものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended into the refrigerant is used. In this configuration, a bypass pipe is provided.

【0013】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
出口から絞り装置をバイパスし蒸発器入口に至るバイパ
ス管を設ける構成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and the throttle device is bypassed from an outlet of the condenser. The configuration is such that a bypass pipe leading to the evaporator inlet is provided.

【0014】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、蒸発器
と圧縮機の間等の低圧側に低圧レシーバを備え、凝縮器
出口の過冷却度を負荷に応じて変更したものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant between the evaporator and the compressor. A low-pressure receiver is provided on the low-pressure side, and the degree of supercooling at the condenser outlet is changed according to the load.

【0015】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
と絞り装置の間に高圧レシーバを備える構成としたもの
である。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a high-pressure refrigerant is applied between the condenser and the throttle device. It is configured to include a receiver.

【0016】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、蒸発器
と圧縮機の間に位置する低圧レシーバと、凝縮器と絞り
装置の間に位置する高圧レシーバを備える構成としたも
のである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the evaporator and the compressor. And a high-pressure receiver located between the condenser and the expansion device.

【0017】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、蒸発器
と圧縮機の間に位置する低圧レシーバと、凝縮器と絞り
装置の間に位置する高圧レシーバと、上記低圧レシーバ
と高圧レシーバとを備えたものである。またこの間をバ
イパスするバイパス管を備える構成としたものである。
また、バイパス管に開閉機構を設けたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the evaporator and the compressor. , A high-pressure receiver located between the condenser and the expansion device, and the low-pressure receiver and the high-pressure receiver. Further, a bypass pipe for bypassing the space is provided.
Further, an opening and closing mechanism is provided in the bypass pipe.

【0018】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
と絞り装置の間に位置する高圧レシーバと、上記高圧レ
シーバより絞り装置を介して、高圧の冷媒液配管と熱交
換した後、低圧側構成機器又は低圧側配管と合流するバ
イパス管とを備える構成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the condenser and the throttle device. And a bypass pipe that exchanges heat with the high-pressure refrigerant liquid pipe via the expansion device from the high-pressure receiver and then merges with the low-pressure component device or the low-pressure pipe.

【0019】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
と絞り装置の間に位置する高圧レシーバと、上記高圧レ
シーバ上部より、第二の絞り装置及び第二の蒸発器を介
して、上記蒸発器出口の配管と接続するバイパス管と、
上記高圧レシーバと第二の絞り装置の間の配管と上記絞
り装置と上記蒸発器の間の配管を熱交換させる熱交換器
を備える構成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the condenser and the throttle device. A high-pressure receiver, and a bypass pipe connected to a pipe at the evaporator outlet from the upper part of the high-pressure receiver through a second expansion device and a second evaporator,
A heat exchanger for exchanging heat between a pipe between the high-pressure receiver and the second expansion device and a pipe between the expansion device and the evaporator is provided.

【0020】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、凝縮器
と絞り装置の間に位置する高圧レシーバと、上記高圧レ
シーバ上部より、第二の絞り装置、蓄熱用熱交換器及び
冷媒ガスポンプを介して、上記蒸発器出口の配管と接続
するバイパス管と、上記冷媒ガスポンプをバイパスして
上記蓄熱槽と上記蒸発器出口を接続する配管と、上記高
圧レシーバと第二の絞り装置の間の配管と上記絞り装置
と上記蒸発器の間の配管を熱交換させる熱交換器を備え
る構成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant is provided between the condenser and the throttle device. A high-pressure receiver, a bypass pipe connected to a pipe at the evaporator outlet from the upper part of the high-pressure receiver through a second expansion device, a heat storage heat exchanger, and a refrigerant gas pump; and A pipe that connects the heat storage tank and the evaporator outlet, a pipe between the high-pressure receiver and the second throttle device, and a heat exchanger that exchanges heat with the pipe between the throttle device and the evaporator are provided. Things.

【0021】この発明は、圧縮機、凝縮器、絞り装置、
蓄熱用熱交換器及び蒸発器を順次接続し、冷媒に数種の
ハイドロフルオロカーボンをブレンドした非共沸混合冷
媒と、凝縮器と絞り装置の間に位置する高圧レシーバ
と、上記高圧レシーバ上部より、第二の絞り装置、第二
の蓄熱用熱交換器を介して、低圧の二相配管と接続する
バイパス管と、上記蓄熱用熱交換器と第二の蓄熱用熱交
換器を介して熱エネルギを蓄える蓄熱媒体と、上記蓄熱
媒体を収納する蓄熱槽と、上記高圧レシーバと第二の絞
り装置の間の配管と上記絞り装置と上記蒸発器の間の配
管を熱交換させる熱交換器を備える構成としたものであ
る。
The present invention relates to a compressor, a condenser, a throttle device,
A heat storage heat exchanger and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended into the refrigerant, a high-pressure receiver located between the condenser and the expansion device, and from the upper portion of the high-pressure receiver, A second expansion device, a bypass pipe connected to a low-pressure two-phase pipe through a second heat storage heat exchanger, and heat energy through the heat storage heat exchanger and the second heat storage heat exchanger. A heat storage medium that stores the heat storage medium, a heat storage tank that stores the heat storage medium, and a heat exchanger that exchanges heat between a pipe between the high-pressure receiver and the second expansion device and a pipe between the expansion device and the evaporator. It is configured.

【0022】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、蒸発器
と圧縮機の間に位置する低圧レシーバと、凝縮器と絞り
装置の間に位置する高圧レシーバと、中間圧力レシーバ
と、上記高圧レシーバから中間圧力レシーバを介して低
圧のガス配管部へ接続するバイパス管と、上記中間圧レ
シーバ内の温度を制御する手段と、を備えたものであ
る。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the evaporator and the compressor. Low pressure receiver, a high pressure receiver located between the condenser and the throttle device, an intermediate pressure receiver, a bypass pipe connecting the high pressure receiver to the low pressure gas piping via the intermediate pressure receiver, and the intermediate pressure receiver Means for controlling the internal temperature.

【0023】この発明は、圧縮機、凝縮器、絞り装置及
び蒸発器を順次接続し、冷媒に数種のハイドロフルオロ
カーボンをブレンドした非共沸混合冷媒を用い、蒸発器
と圧縮機の間に位置する低圧レシーバと、凝縮器と絞り
装置の間に位置し、高圧レシーバと、精溜用熱源機を内
蔵する中間圧組成調整器と、上記高圧レシーバから上記
中間圧組成調整器へ液冷媒を導く液冷媒配管と、上記高
圧レシーバから上記中間圧組成調整器へガス冷媒を導く
ガス冷媒配管と、上記中間圧組成調整器から低圧側構成
機器又は低圧側配管に接続するバイパス管とを備える構
成としたものである。
According to the present invention, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are blended as a refrigerant, and a refrigerant is located between the evaporator and the compressor. A low-pressure receiver, a high-pressure receiver located between the condenser and the throttle device, an intermediate-pressure composition adjuster containing a rectifying heat source unit, and a liquid refrigerant from the high-pressure receiver to the intermediate-pressure composition adjuster. A liquid refrigerant pipe, a gas refrigerant pipe that guides a gas refrigerant from the high-pressure receiver to the intermediate-pressure composition adjuster, and a configuration that includes a bypass pipe that is connected to the low-pressure side component device or the low-pressure side pipe from the intermediate-pressure composition adjuster. It was done.

【0024】[0024]

【発明の実施の形態】この発明の作用は以下の通りであ
る。この発明は、冷媒を冷媒回路の機器をバイパスさせ
て、冷媒回路内を循環する冷媒の組成を調整することに
より、定常運転時及び非定常運転時において、高低圧を
制御し、常に安定かつ効率の良い運転を行うことができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention is as follows. The present invention controls the high and low pressure during steady-state operation and non-steady-state operation by adjusting the composition of the refrigerant circulating in the refrigerant circuit by bypassing the equipment of the refrigerant circuit by the refrigerant, thereby always stably and efficiently. Good driving can be done.

【0025】この発明は、圧縮機吐出部から、冷媒回路
の低圧側へ冷媒をバイパスさせる。
According to the present invention, the refrigerant is bypassed from the compressor discharge section to the low pressure side of the refrigerant circuit.

【0026】この発明は、圧縮機より吐出される低沸点
成分に富む冷媒を低圧側構成機器又は低圧側配管に一部
バイパスすることにより、蒸発器に寝込んだ高沸点成分
に富む液冷媒を蒸発させ、冷媒の組成を素早く一定にす
ることができる。
According to the present invention, the refrigerant rich in the low boiling point component discharged from the compressor is partially bypassed to the low pressure side component equipment or the low pressure side piping, thereby evaporating the liquid refrigerant rich in the high boiling point component trapped in the evaporator. As a result, the composition of the refrigerant can be quickly made constant.

【0027】この発明は、必要に応じて、時間、温度変
化、圧力変化、液面量等物理量を検知して開閉機構を開
閉することにより、精度よいタイミングで開閉できる。
According to the present invention, the opening and closing mechanism can be opened and closed with high accuracy by detecting physical quantities such as time, temperature change, pressure change, and liquid level, as necessary.

【0028】この発明は、凝縮器出口から低沸点成分に
富む冷媒を圧縮機吸入側へ戻すことにより、圧縮機吸入
圧力の低下を防ぎ、暖房の立ち上げ時間を短縮する。
According to the present invention, the refrigerant rich in the low boiling point component is returned from the condenser outlet to the compressor suction side, thereby preventing a decrease in the compressor suction pressure and shortening the heating start-up time.

【0029】この発明は、起動時、絞り装置をバイパス
するバイパスを開き、冷媒循環量を多くすることによっ
て、冷媒の組成を素早く一定にする。
According to the present invention, at the time of startup, the bypass which bypasses the expansion device is opened, and the refrigerant circulation amount is increased to thereby quickly make the composition of the refrigerant constant.

【0030】この発明は、低圧レシーバに冷媒液を溜め
ることにより、冷媒回路内を流れる高沸点成分の量を調
節し、負荷に合わせて能力を調整する。
According to the present invention, the amount of the high-boiling component flowing in the refrigerant circuit is adjusted by storing the refrigerant liquid in the low-pressure receiver, and the capacity is adjusted according to the load.

【0031】この発明は、高圧レシーバに余剰冷媒液を
貯留することにより、冷媒回路内を流れる冷媒の組成変
化の量を小さくし、安定した冷凍サイクル制御を行うこ
とができる。
According to the present invention, since the excess refrigerant liquid is stored in the high-pressure receiver, the amount of change in the composition of the refrigerant flowing in the refrigerant circuit is reduced, and stable refrigeration cycle control can be performed.

【0032】この発明は、低圧レシーバと高圧レシーバ
に溜める冷媒液の量を、絞り装置他を調整することによ
り、または、上記低圧レシーバと高圧レシーバを結ぶバ
イパス管を設ける等により、冷媒回路内を流れる冷媒の
量や組成を素早く調節する。
According to the present invention, the amount of the refrigerant liquid stored in the low-pressure receiver and the high-pressure receiver is adjusted by adjusting the expansion device and the like, or by providing a bypass pipe connecting the low-pressure receiver and the high-pressure receiver to the inside of the refrigerant circuit. Quickly adjust the amount and composition of the flowing refrigerant.

【0033】この発明は、低圧レシーバと高圧レシーバ
間のバイパス管に開閉機構を設け冷媒の移動量を調節す
る。
According to the present invention, an opening / closing mechanism is provided in a bypass pipe between the low-pressure receiver and the high-pressure receiver to adjust the amount of refrigerant movement.

【0034】この発明は、低圧側と高圧レシーバに溜め
る冷媒液量をバイパスを通して調節することによって、
冷媒回路内を流れる高沸点成分の量を調節し、圧縮機吐
出圧力が上昇するときには、高圧レシーバ内の液を、一
旦、絞った後、メインの高圧の液冷媒と熱交換すること
によって自身を蒸発気化させ、能力を保持したまま、圧
縮機吐出圧力を抑えることができる。
According to the present invention, the amount of the refrigerant liquid stored in the low-pressure side and the high-pressure receiver is adjusted through a bypass.
When the compressor discharge pressure rises by adjusting the amount of high-boiling components flowing in the refrigerant circuit, the liquid in the high-pressure receiver is once squeezed, and then heat-exchanges with the main high-pressure liquid refrigerant. The compressor discharge pressure can be suppressed while evaporating and maintaining the capacity.

【0035】この発明は、高圧レシーバにて、高沸点成
分に富む液冷媒と低沸点成分に富むガス冷媒とに分流
し、高沸点成分に富む液冷媒を一旦絞って低圧の気液二
相冷媒とした後、低沸点成分に富むガス冷媒と熱交換さ
せ液化し、この低沸点成分に富む液冷媒を絞って、低圧
の気液二相状態とする。こうして、高沸点成分に富む低
圧の二相冷媒と、低沸点成分に富む低圧の二相冷媒とを
得ることによって、温度の異なる蒸発温度を得ることが
できる。
According to the present invention, a low-pressure gas-liquid two-phase refrigerant is divided by a high-pressure receiver into a liquid refrigerant rich in a high-boiling component and a gas refrigerant rich in a low-boiling component. After that, heat exchange is performed with a gas refrigerant rich in low-boiling components to liquefy, and the liquid refrigerant rich in low-boiling components is squeezed to obtain a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, it is possible to obtain evaporation temperatures having different temperatures.

【0036】この発明は、高圧レシーバにて、高沸点成
分に富む液冷媒と低沸点成分に富むガス冷媒とに分流
し、高沸点成分に富む液冷媒を一旦絞って低圧の気液二
相冷媒とした後、低沸点成分に富むガス冷媒と熱交換さ
せ液化し、この低沸点成分に富む液冷媒を絞って、低圧
の気液二相状態とする。こうして、高沸点成分に富む低
圧の二相冷媒と、低沸点成分に富む低圧の二相冷媒とを
得ることによって、温度の異なる蒸発温度を得るととも
に、冷房負荷の軽い時には、蓄熱槽に熱エネルギを蓄
え、かつ、負荷の高い時には、ガスポンプの駆動によ
り、蓄熱槽に蓄えた蓄熱エネルギを使って空調すること
ができる。
According to the present invention, a low-pressure gas-liquid two-phase refrigerant is divided by a high-pressure receiver into a liquid refrigerant rich in high-boiling components and a gas refrigerant rich in low-boiling components. After that, heat exchange is performed with a gas refrigerant rich in low-boiling components to liquefy, and the liquid refrigerant rich in low-boiling components is squeezed to obtain a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, evaporation temperatures having different temperatures are obtained, and when the cooling load is light, heat energy is stored in the heat storage tank. When the load is high, air conditioning can be performed using the heat storage energy stored in the heat storage tank by driving the gas pump.

【0037】この発明は、高圧レシーバにて、高沸点成
分に富む液冷媒と低沸点成分に富むガス冷媒とに分流
し、高沸点成分に富む液冷媒を一旦絞って低圧の気液二
相冷媒とした後、低沸点成分に富むガス冷媒と熱交換さ
せ液化し、この低沸点成分に富む液冷媒を絞って、低圧
の気液二相状態とする。こうして、高沸点成分に富む低
圧の二相冷媒と、低沸点成分に富む低圧の二相冷媒とを
得ることによって、温度の異なる蒸発温度を得るととも
に、冷房負荷の軽い時には、蓄熱槽に熱エネルギを蓄
え、かつ、蓄熱槽に蓄えた蓄熱エネルギによって、メイ
ン回路を流れる冷媒の過冷却度を多きくすることができ
る。
According to the present invention, a low-pressure gas-liquid two-phase refrigerant is divided by a high-pressure receiver into a liquid refrigerant rich in a high-boiling component and a gas refrigerant rich in a low-boiling component. After that, heat exchange is performed with a gas refrigerant rich in low-boiling components to liquefy, and the liquid refrigerant rich in low-boiling components is squeezed to obtain a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, evaporation temperatures having different temperatures are obtained, and when the cooling load is light, heat energy is stored in the heat storage tank. And the degree of supercooling of the refrigerant flowing through the main circuit can be increased by the heat storage energy stored in the heat storage tank.

【0038】この発明は、中間圧レシーバ内の温度を制
御することにより、中間圧力に溜まる冷媒の組成を変化
させ、冷媒回路内を循環する冷媒の組成を変化させる。
According to the present invention, by controlling the temperature in the intermediate pressure receiver, the composition of the refrigerant accumulated at the intermediate pressure is changed, and the composition of the refrigerant circulating in the refrigerant circuit is changed.

【0039】この発明は、高圧レシーバにおいて、予め
高沸点冷媒に富む液冷媒と低沸点冷媒に富むガス冷媒と
に分流し、中間圧組成調整器内の精溜用熱源機にて精留
し、高沸点冷媒または低沸点冷媒を選択して中間圧組成
調整器内にため、メイン回路を流れる冷媒の組成を調整
することができる。
According to the present invention, in a high-pressure receiver, a liquid refrigerant rich in a high-boiling-point refrigerant and a gas refrigerant rich in a low-boiling-point refrigerant are divided in advance and rectified by a rectifying heat source device in an intermediate-pressure composition controller. Since the high-boiling refrigerant or the low-boiling refrigerant is selected and stored in the intermediate-pressure composition controller, the composition of the refrigerant flowing through the main circuit can be adjusted.

【0040】実施の形態1.以下、本発明の一実施の形
態を図1について説明する。図1は、本発明の基本シス
テムを示す冷媒回路図である。図1において、31は圧
縮機、32は熱源側熱交換器、33は絞り装置、34は
負荷側熱交換器、35は低圧レシーバで、これらは冷媒
配管にて順次接続されメイン回路をなす。また、101
は、冷媒を圧縮機吐出側から低圧レシーバ吸入側へバイ
パスするバイパス管であり、36はバイパス管101上
に位置する開閉機構である。
Embodiment 1 An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a refrigerant circuit diagram showing a basic system of the present invention. In FIG. 1, 31 is a compressor, 32 is a heat source side heat exchanger, 33 is a throttling device, 34 is a load side heat exchanger, and 35 is a low-pressure receiver, which are sequentially connected by refrigerant piping to form a main circuit. Also, 101
Is a bypass pipe for bypassing the refrigerant from the compressor discharge side to the low pressure receiver suction side, and 36 is an opening / closing mechanism located on the bypass pipe 101.

【0041】作用について説明する。図1の冷媒の流れ
に示す如く、圧縮機31から吐出された冷媒は熱源側熱
交換器32、絞り装置33、負荷側熱交換器34と流れ
圧縮機31に吸入される。一方、圧縮機31起動時に、
開閉機構36を開き、圧縮機31から吐出される冷媒ガ
スを低圧レシーバ35へと導く。低圧レシーバ35に
は、熱容量関係から、冷媒液が寝込んでいる場合が多
く、ガス成分は低沸点成分に富んでおり、液成分は高沸
点成分に富んでいる。起動時、圧縮機31は低沸点成分
に富んだガス成分を吸うため、圧縮機31の吐出圧力は
急激に上昇するが、上記圧縮機31の高温の吐出ガスの
一部を、低圧レシーバ35吸入側に戻すことによって、
高沸点冷媒に富む液成分を蒸発気化させ、上記圧縮機3
1に吸入される冷媒の組成を調節し、高圧の上昇を抑え
る。
The operation will be described. As shown in the flow of the refrigerant in FIG. 1, the refrigerant discharged from the compressor 31 is sucked into the heat source side heat exchanger 32, the expansion device 33, the load side heat exchanger 34, and the flow compressor 31. On the other hand, when the compressor 31 is started,
The opening / closing mechanism 36 is opened to guide the refrigerant gas discharged from the compressor 31 to the low-pressure receiver 35. In many cases, the refrigerant liquid is trapped in the low-pressure receiver 35 due to heat capacity, the gas component is rich in low-boiling components, and the liquid component is rich in high-boiling components. When the compressor 31 is started, the discharge pressure of the compressor 31 rapidly rises because the compressor 31 absorbs a gas component rich in low boiling point components, but a part of the high temperature discharge gas of the compressor 31 is sucked into the low pressure receiver 35. By returning to the side,
The liquid component rich in high boiling point refrigerant is evaporated and vaporized, and the compressor 3
The composition of the refrigerant sucked into 1 is adjusted to suppress a rise in high pressure.

【0042】図1の説明では、低圧レシーバ35と負荷
側熱交換器34(蒸発器)の間の低圧配管にバイパス管
101を接続し、吐出ガスを吹き込んだが、このガスの
吹き込み先は低圧部の冷媒液が寝込む可能性のあるとこ
ろであればどこでも同様な効果を奏する。なお上記説明
では圧縮機31起動時に開閉機構36を開く説明を行っ
たが、組成調整が必要な条件、例えば能力低下のような
物理量を検出したり、一定時間毎に開放しても良い。
In the description of FIG. 1, the bypass pipe 101 is connected to the low-pressure pipe between the low-pressure receiver 35 and the load-side heat exchanger 34 (evaporator) to blow out the discharge gas. The same effect can be obtained in any place where there is a possibility that the refrigerant liquid may fall asleep. In the above description, the opening / closing mechanism 36 is opened when the compressor 31 is started. However, a condition requiring a composition adjustment, for example, a physical quantity such as a decrease in capacity may be detected, or the opening may be performed at regular intervals.

【0043】実施の形態2.以下、本発明の実施の形態
2を図2に基づいて説明する。なお図中、実施の形態1
と同一部分には同一符号を付し、説明を省略する。図2
に示すように、図1における実施の形態1の構成要素に
おいて、圧縮機31の吐出側と主絞り装置33出口をバ
イパスするバイパス管102と、バイパス管102上に
位置する開閉機構37とを有する構成とする。また、バ
イパス管101及び開閉機構36を廃止しても良いし、
そのまま残しても良い。
Embodiment 2 Hereinafter, a second embodiment of the present invention will be described with reference to FIG. In the figure, the first embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
As shown in FIG. 1, the component of the first embodiment shown in FIG. 1 includes a bypass pipe 102 that bypasses the discharge side of the compressor 31 and the outlet of the main throttle device 33, and an opening / closing mechanism 37 located on the bypass pipe 102. Configuration. Further, the bypass pipe 101 and the opening / closing mechanism 36 may be eliminated,
You may leave it as it is.

【0044】作用について説明する。冷媒は図示の如く
流れる。一方、圧縮機起動時に、開閉機構37を開き、
圧縮機31から吐出される冷媒ガスを負荷側熱交換器3
4の入口へと導く。負荷側熱交換器34には、熱容量関
係から、冷媒液が寝込んでいる場合が多く、液成分は高
沸点成分に富んでいる。起動時、圧縮機31は低沸点成
分に富んだガス成分を吸うため、圧縮機31の吐出圧力
は急激に上昇するが、高温の上記圧縮機31吐出ガスの
一部を、負荷側熱交換器へバイパスすることによって、
高沸点冷媒に富む液成分を蒸発気化させ、上記圧縮機3
1に吸入される冷媒の組成を調節し、高圧の上昇を抑え
る。
The operation will be described. The refrigerant flows as shown. On the other hand, when the compressor is started, the opening / closing mechanism 37 is opened,
The refrigerant gas discharged from the compressor 31 is transferred to the load-side heat exchanger 3.
4 to the entrance. In many cases, the refrigerant liquid is stagnant in the load side heat exchanger 34 due to heat capacity, and the liquid component is rich in high boiling point components. At startup, the compressor 31 sucks a gas component rich in low boiling point components, so that the discharge pressure of the compressor 31 rises rapidly, but a part of the high temperature compressor 31 discharge gas is transferred to the load side heat exchanger. By bypassing to
The liquid component rich in high boiling point refrigerant is evaporated and vaporized, and the compressor 3
The composition of the refrigerant sucked into 1 is adjusted to suppress a rise in high pressure.

【0045】図2の説明では負荷側熱交換器34入口と
主絞り装置33出口との間の配管にバイパス管102を
接続したが、このバイパス管102と図1で説明したバ
イパス管101のような位置の違う部分を接続する他の
バイパス管を2本またはそれ以上設けることにより寝込
みのおきやすい部分全体にホットガスを流すことができ
るので冷媒の組成が一定となるまでの時間を一層短縮で
きることになる。
In the description of FIG. 2, the bypass pipe 102 is connected to the pipe between the inlet of the load-side heat exchanger 34 and the outlet of the main expansion device 33. However, the bypass pipe 102 and the bypass pipe 101 described in FIG. By providing two or more bypass pipes that connect different parts at different positions, hot gas can flow through the entire area where laying is likely to occur, so that the time until the composition of the refrigerant becomes constant can be further reduced. become.

【0046】なおシステム停止時には室温が下がれば、
熱交換器の熱交換やヘッダー部は液で満たされることに
なる。
If the room temperature drops when the system is stopped,
The heat exchange and the header of the heat exchanger will be filled with liquid.

【0047】また、開閉機構(図1 36、図2 3
7)は、組成調整時や、システム起動時に開とされる
が、例えば開放されている時間を検出し数分後に閉じれ
ば良い。所定時間のみ冷媒を流すことにより開閉機構が
閉じられている定常運転時は冷媒のバイパスによる能力
ロスをなくせる。なお、時間検出以外にも低圧レシーバ
35の液面が低下(なくなる)した後や、圧縮機31吸
入スーパーヒートが増大した後や、高圧の上昇が留まっ
た後等、温度の変化や圧力の変化を検出して閉じても良
い。すなわち、組成が一定になったことを検出したり、
あるいは液が寝込んでいなくなればこの開閉機構を閉じ
て通常の運転回路に戻すことになる。なお、図1、図2
の説明は冷媒回路の例を示したが暖房回路でもよいこと
は当然である。このように所定の物理量がある値に達し
ないような時には、開閉機構を開閉することにより、開
閉するタイミングが適正となるので、効率のよい運転を
行うことができる。
The opening and closing mechanism (FIGS. 136 and 23)
7) is opened when the composition is adjusted or when the system is started. For example, the open time may be detected and closed after a few minutes. By flowing the refrigerant only for a predetermined time, the capacity loss due to the bypass of the refrigerant can be eliminated during the steady operation in which the opening / closing mechanism is closed. In addition to the time detection, a change in temperature or a change in pressure, such as after the liquid level of the low-pressure receiver 35 has dropped (eliminated), after the superheat of the suction of the compressor 31 has increased, or after the high-pressure has stopped rising. May be detected and closed. That is, to detect that the composition has become constant,
Alternatively, when the liquid is no longer laid down, the opening / closing mechanism is closed to return to the normal operation circuit. 1 and 2
In the above description, an example of the refrigerant circuit is shown, but it goes without saying that a heating circuit may be used. When the predetermined physical quantity does not reach a certain value as described above, the opening and closing timing of the opening and closing mechanism becomes appropriate, so that efficient operation can be performed.

【0048】実施の形態3.以下、本発明の実施の形態
3を図3に基づいて説明する。なお図中、実施の形態1
と同一部分には同一符号を付し、説明を省略する。図3
に示すように、熱源側熱交換器32の出口側と圧縮機3
1吸入側をバイパスするバイパス管103と、バイパス
管103上に位置する開閉機構38とを有する構成とす
る。
Embodiment 3 Hereinafter, a third embodiment of the present invention will be described with reference to FIG. In the figure, the first embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
As shown in the figure, the outlet side of the heat source side heat exchanger 32 and the compressor 3
(1) A structure including a bypass pipe 103 that bypasses the suction side and an opening / closing mechanism 38 located on the bypass pipe 103 is adopted.

【0049】作用について説明する。冷媒は図示の如く
流れる。圧縮機31起動時に、開閉機構38を開き、低
沸点成分に富む凝縮器である熱源側熱交換器32出口の
未凝縮冷媒ガスを圧縮機31吸入へと導くことにより、
圧縮機31吸入において、圧力が大気圧以下になるのを
抑え、圧縮機の破損を防ぐ。なお、この構成は暖房時、
外気が非常に低い場合に有効である。
The operation will be described. The refrigerant flows as shown. When the compressor 31 is started, the opening / closing mechanism 38 is opened, and the uncondensed refrigerant gas at the outlet of the heat source side heat exchanger 32, which is a condenser rich in low boiling point components, is guided to the compressor 31 suction.
During the suction of the compressor 31, the pressure is suppressed from becoming lower than the atmospheric pressure, and damage to the compressor is prevented. This configuration is for heating
It is effective when the outside air is very low.

【0050】実施の形態4.以下、本発明の実施の形態
4を図4に基づいて説明する。なお図中、実施の形態1
と同一部分には同一符号を付し、説明を省略する。図4
に示すように、図1における実施の形態1の構成要素に
おいて、熱源側熱交換器32の出口側より主絞り装置を
バイパスし負荷側熱交換器34入口と接続するバイパス
管104と、バイパス管上に位置する開閉機構39とを
有する構成とする。
Embodiment 4 Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. In the figure, the first embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
As shown in FIG. 1, in the components of the first embodiment in FIG. 1, a bypass pipe 104 that bypasses the main throttle device from the outlet side of the heat source side heat exchanger 32 and connects to the inlet of the load side heat exchanger 34, And an opening / closing mechanism 39 located above.

【0051】作用について説明する。冷媒は図示の如く
流れる。圧縮機31起動時に、開閉機構39を開き、高
低圧を小さくし冷媒の循環量を増大させることにより、
起動時における高圧の上昇を抑えつつ、冷媒回路内の冷
媒の濃度分布を素早く均一とし、起動時から安定した冷
凍サイクル制御を行うことができる。なお、この構成は
冷房時、特に3分程度で再起動する際有効である。ま
た、高圧レシーバ(図示せず)を用いる場合は絞りの位
置が変わるが、冷房と暖房の区別はない。
The operation will be described. The refrigerant flows as shown. When the compressor 31 is started, the opening / closing mechanism 39 is opened to reduce the high / low pressure and increase the circulation amount of the refrigerant,
The concentration distribution of the refrigerant in the refrigerant circuit is quickly made uniform while suppressing a rise in high pressure at the time of startup, and stable refrigeration cycle control can be performed from the time of startup. This configuration is effective at the time of cooling, especially when restarting in about 3 minutes. When a high-pressure receiver (not shown) is used, the position of the throttle changes, but there is no distinction between cooling and heating.

【0052】開閉機構を起動時あけることにより、起動
時の冷凍サイクルの安定性を向上できる。凝縮器である
熱源側熱交換器32出口のからバイパスさせ絞り出口下
流からはバイパスさせない構成したのは、冷媒が低圧の
二相状態となり、差圧がつきにくくバイパスが流れにく
くなるためである。図4の開閉機構39は、全開でもよ
いが、但し、バイパスを流れる冷媒流量が多すぎると、
多量に液バックするので、バイパス管自体にある程度の
絞りの機能を持たせることが必要である。このような構
成により、冷媒の濃度分布を短時間に均一化できるの
は、冷媒循環量を多くとることによって、冷媒回路内に
存在する冷媒の濃度分布を解消し、組成を早く均一にす
る効果が得られる。
By opening the opening / closing mechanism at startup, the stability of the refrigeration cycle at startup can be improved. The reason why the refrigerant is bypassed from the outlet of the heat source side heat exchanger 32 as a condenser and not from the downstream of the throttle outlet is that the refrigerant is in a low-pressure two-phase state, so that a differential pressure is hardly generated and the bypass hardly flows. The opening / closing mechanism 39 in FIG. 4 may be fully opened, provided that the flow rate of the refrigerant flowing through the bypass is too large.
Since a large amount of liquid is backed up, it is necessary to provide the bypass pipe itself with a certain throttling function. With such a configuration, the concentration distribution of the refrigerant can be made uniform in a short time. The effect of eliminating the concentration distribution of the refrigerant present in the refrigerant circuit and increasing the composition quickly by taking a large amount of refrigerant circulation. Is obtained.

【0053】実施の形態5.図5は、本発明の基本シス
テムを示す冷媒回路図である。図において、31は圧縮
機、40は四方弁、32は熱源側熱交換器、33は主絞
り装置、34は負荷側熱交換器、35は低圧レシーバ
で、これらは冷媒配管にて順次接続されメイン回路をな
す。
Embodiment 5 FIG. 5 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 33 is a main throttle device, 34 is a load side heat exchanger, 35 is a low pressure receiver, and these are sequentially connected by refrigerant piping. Form the main circuit.

【0054】作用について説明する。暖房時と冷房時の
冷媒の流れを図に示す。予め、余剰冷媒が低圧レシーバ
に溜まるように冷媒を充填し、熱源側熱交換器32の熱
交換器出口の過冷却度を負荷に応じて変更する。負荷が
重い時には、熱源側熱交換器32の熱交換器出口の過冷
却度を少なめとし、余剰冷媒を低圧レシーバ35に溜め
る運転をする。低圧レシーバ35に溜まった余剰の液冷
媒は、高沸点成分に富み、よって、メイン回路を循環す
る冷媒の組成は低沸点成分に富んだ冷媒となる。このた
め、圧縮機31に吸入される冷媒の密度は増大し、冷媒
循環量が増し、能力が増大する。負荷が軽い時には、熱
源側熱交換器32側の熱交換器出口の過冷却度を多めと
し、余剰冷媒を低圧レシーバ35から熱交換器または冷
媒配管へと移動させ、余剰冷媒を低圧レシーバ35に溜
めない運転をすることにより、冷媒循環量を減少させ、
能力を減少させる。
The operation will be described. The flow of the refrigerant at the time of heating and at the time of cooling is shown in the figure. The refrigerant is charged in advance so that the surplus refrigerant accumulates in the low-pressure receiver, and the degree of supercooling at the heat exchanger outlet of the heat source side heat exchanger 32 is changed according to the load. When the load is heavy, the degree of supercooling at the heat exchanger outlet of the heat source side heat exchanger 32 is reduced, and an operation is performed in which excess refrigerant is stored in the low-pressure receiver 35. The excess liquid refrigerant accumulated in the low-pressure receiver 35 is rich in high-boiling components, and therefore, the composition of the refrigerant circulating in the main circuit is a refrigerant rich in low-boiling components. For this reason, the density of the refrigerant sucked into the compressor 31 increases, the refrigerant circulation amount increases, and the capacity increases. When the load is light, the degree of supercooling at the heat exchanger outlet on the side of the heat source side heat exchanger 32 is increased, and the excess refrigerant is moved from the low-pressure receiver 35 to the heat exchanger or the refrigerant pipe. By operating without storing, the amount of circulating refrigerant is reduced,
Decrease ability.

【0055】過冷却度の変更は、例えば、低圧レシーバ
35内の温度と圧力のデータより絞り装置の開度を変え
ることにより変更する。ここで、負荷が重いとは空気条
件(DB/WB)が高い時であり、軽いとは、空気条件
が低い時を示す。また、過冷却度は凝縮器(冷房時:熱
源側熱交換器32/暖房時:負荷側熱交換器34)出口
圧力における飽和液温度と凝縮器出口冷媒温度との差と
して定義しているが、上記飽和液温度は冷媒の組成に依
存するためセンシング(上記低圧レシーバの圧力と温
度)により予め推測することが必要である。充填組成
(ユニットに封入する冷媒の組成)と循環組成(ユニッ
トを運転させた時の冷媒の組成)に相違が生じるのは、
気液二相ラインでの気液のスリップのためであり、つま
りR32リッチのガスの方がR134aリッチの液より
も速度が速く、いわばR134aはその場に滞留するに
近い形となる。その極限が低圧のレシーバ(アキュムレ
ータ)になる。
The degree of supercooling is changed, for example, by changing the degree of opening of the expansion device based on temperature and pressure data in the low-pressure receiver 35. Here, a heavy load indicates a high air condition (DB / WB), and a light load indicates a low air condition. The degree of supercooling is defined as the difference between the saturated liquid temperature at the outlet pressure of the condenser (at the time of cooling: heat source side heat exchanger 32 / at the time of heating: load side heat exchanger 34) and the refrigerant temperature at the outlet of the condenser. Since the temperature of the saturated liquid depends on the composition of the refrigerant, it needs to be estimated in advance by sensing (pressure and temperature of the low-pressure receiver). The difference between the filling composition (the composition of the refrigerant sealed in the unit) and the circulation composition (the composition of the refrigerant when the unit is operated) occurs.
This is due to the gas-liquid slip in the gas-liquid two-phase line, that is, the velocity of the R32-rich gas is higher than that of the R134a-rich liquid, so that R134a is close to staying in place. The limit is a low-pressure receiver (accumulator).

【0056】このように低圧レシーバ35に冷媒液を貯
留させることにより、冷媒回路内を流れる高沸点成分の
冷媒量を調整し、負荷に合わせて能力を調整する。
By storing the refrigerant liquid in the low-pressure receiver 35 in this manner, the amount of the high-boiling component refrigerant flowing in the refrigerant circuit is adjusted, and the capacity is adjusted according to the load.

【0057】能力とは、熱交換器での熱交換量を示す。
低圧のレシーバ35は余剰の液冷媒を溜めれば、そこに
は高沸点成分に富む液冷媒が溜まり、メインの冷媒回路
を流れる冷媒の組成は低沸点成分リッチになる。よっ
て、低圧レシーバ35に溜まる液冷媒の量を制御するこ
とにより、メインの冷媒回路を流れる冷媒の組成を変化
させることができる。更に、低圧レシーバ35内の液面
を変化させるには、絞りを絞ることにより、冷媒は低圧
レシーバ35内から凝縮器へ移動する。余剰の液冷媒の
成分は高沸点成分に富んだものであり、循環組成が低沸
点成分に富んだものになれば、圧縮機31に吸収される
冷媒ガスの密度が増大し、冷媒循環量が増える。
The capacity indicates the amount of heat exchange in the heat exchanger.
When the low-pressure receiver 35 stores the excess liquid refrigerant, the liquid refrigerant rich in high-boiling components is stored therein, and the composition of the refrigerant flowing through the main refrigerant circuit becomes rich in low-boiling components. Therefore, by controlling the amount of the liquid refrigerant accumulated in the low-pressure receiver 35, the composition of the refrigerant flowing through the main refrigerant circuit can be changed. Further, in order to change the liquid level in the low-pressure receiver 35, the throttle moves down to move the refrigerant from inside the low-pressure receiver 35 to the condenser. The component of the excess liquid refrigerant is rich in high-boiling components, and if the circulating composition becomes rich in low-boiling components, the density of the refrigerant gas absorbed by the compressor 31 increases, and the refrigerant circulation amount increases. Increase.

【0058】実施の形態6.図6は、本発明の基本シス
テムを示す冷媒回路図である。なお図中、実施の形態5
と同一部分には同一符号を付し、説明を省略する。図5
における実施の形態5の構成要素に加えて、副絞り装置
41及び高圧レシーバ42を新たに設け、熱源側熱交換
器32と主絞り装置の間に、副絞り装置41及び高圧レ
シーバ42を接続する。
Embodiment 6 FIG. FIG. 6 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the fifth embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
In addition to the components of the fifth embodiment, a sub-throttle device 41 and a high-pressure receiver 42 are newly provided, and the sub-throttle device 41 and the high-pressure receiver 42 are connected between the heat source side heat exchanger 32 and the main throttle device. .

【0059】作用について説明する。冷媒は図示の如く
流れる。予め、余剰冷媒が低圧レシーバ35または高圧
レシーバ42に溜まるように充填する。冷房する場合、
圧縮機31より吐出された冷媒ガスは、四方弁40を通
って熱源側熱交換器32で凝縮され液冷媒となり、副絞
り装置41にて若干絞られた後、高圧レシーバ42に入
る。高圧レシーバ42を通った液冷媒は、主絞り装置3
3にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。高圧レシーバ42に液冷媒を溜める場合に
は、蒸発器である負荷側熱交換器34の出口過熱度が一
定となるように制御し、低圧レシーバ35に液冷媒を溜
める場合には、凝縮器である熱源側熱交換器32出口過
冷却度一定の制御を行う。
The operation will be described. The refrigerant flows as shown. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. When cooling,
The refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. After being slightly throttled by the sub-throttle device 41, it enters the high-pressure receiver 42. The liquid refrigerant passing through the high-pressure receiver 42 is supplied to the main throttle device 3
3, the pressure is reduced to a low pressure, evaporated in the load-side heat exchanger 34, and compressed through the four-way valve 40 and the low-pressure receiver 35.
Return to 1. When the liquid refrigerant is stored in the high-pressure receiver 42, the outlet superheat degree of the load-side heat exchanger 34, which is an evaporator, is controlled to be constant, and when the liquid refrigerant is stored in the low-pressure receiver 35, a condenser is used. Control is performed to keep the degree of supercooling constant at the outlet of a certain heat source side heat exchanger 32.

【0060】負荷が重い時には、副絞り装置41をきつ
く絞ることによって、副絞り装置41出口にて冷媒が二
相状態となるようにすれば、高圧レシーバ42には液冷
媒が溜まらなくなり、液冷媒は低圧レシーバ35へと移
動する。低圧レシーバ35には、高沸点成分に富んだ冷
媒液が溜まるため、メイン回路を循環する冷媒は、低沸
点成分に富んだ冷媒となる。このため、圧縮機31に吸
入される冷媒の密度は増大し、冷媒循環量が増し、能力
が増大する。すなわち、副絞り装置41をきつく絞り、
高圧レシーバ42に流れ込む冷媒が二相となることと、
高圧レシーバ42から低圧レシーバ35へ液が移ること
との両効果により、高圧レシーバ42には液がなくな
る。
When the load is heavy, the sub-throttle device 41 is tightly throttled so that the refrigerant enters the two-phase state at the outlet of the sub-throttle device 41. Moves to the low-pressure receiver 35. Since the refrigerant liquid rich in the high boiling point component is stored in the low pressure receiver 35, the refrigerant circulating in the main circuit is a refrigerant rich in the low boiling point component. For this reason, the density of the refrigerant sucked into the compressor 31 increases, the refrigerant circulation amount increases, and the capacity increases. That is, the sub-aperture device 41 is squeezed tightly,
That the refrigerant flowing into the high-pressure receiver 42 has two phases,
Both the effect of transferring the liquid from the high-pressure receiver 42 to the low-pressure receiver 35 causes the high-pressure receiver 42 to run out of liquid.

【0061】負荷が軽い時には、主絞り装置33をきつ
く絞り、液冷媒を低圧レシーバ35から高圧レシーバ4
2へ移動させることによって、冷媒の組成は、充填した
冷媒の組成に近付くので、能力を減少させることができ
る。
When the load is light, the main throttle device 33 is throttled tightly, and the liquid refrigerant is supplied from the low pressure receiver 35 to the high pressure receiver 4.
By moving to 2, the composition of the refrigerant approaches the composition of the charged refrigerant, so that the capacity can be reduced.

【0062】なお、暖房時に外気が低温の時、低圧が引
く場合にも、低圧レシーバ35に液冷媒を溜めることに
より、低圧の低下を押さえることができる。
Even when a low pressure is applied when the outside air is at a low temperature during heating, the lowering of the low pressure can be suppressed by storing the liquid refrigerant in the low-pressure receiver 35.

【0063】暖房の場合も同様に、負荷に合わせて、高
圧レシーバ42または低圧レシーバ35に液冷媒を溜め
ることにより、能力を調整することができる。このよう
に、低圧レシーバ35に冷媒液を溜めることにより、冷
媒回路内を流れる高沸点成分の量を調節し、負荷に合わ
せて能力を調整する。
Similarly, in the case of heating, the capacity can be adjusted by storing the liquid refrigerant in the high-pressure receiver 42 or the low-pressure receiver 35 according to the load. In this way, by storing the refrigerant liquid in the low-pressure receiver 35, the amount of the high-boiling component flowing in the refrigerant circuit is adjusted, and the capacity is adjusted according to the load.

【0064】高圧レシーバ42に余剰冷媒液を貯留する
ことにより、冷媒回路内を流れる冷媒の組成変化の量を
小さくし、安定した冷凍サイクル制御を行うことができ
る。また、主絞りと副絞りの操作により、各レシーバを
利用して運転中に組成調整が簡単にできることになる。
これは絞り装置33の操作により高圧レシーバ42内の
冷媒量の調整ができることであり、すなわち蒸発器であ
る熱源側熱交換器32出口の冷媒の過熱度が一定となる
ように絞り装置33の開度を制御することになる。
By storing the excess refrigerant liquid in the high-pressure receiver 42, the amount of change in the composition of the refrigerant flowing in the refrigerant circuit can be reduced, and stable refrigeration cycle control can be performed. Further, by operating the main throttle and the sub-aperture, the composition can be easily adjusted during operation using each receiver.
This means that the amount of the refrigerant in the high-pressure receiver 42 can be adjusted by operating the expansion device 33, that is, the opening of the expansion device 33 is controlled so that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger 32 as an evaporator becomes constant. Will control the degree.

【0065】負荷が重い(空気温度が高い)時は、図6
A矢印のようにレシーバに入る冷媒は二相状態であり、
レシーバから出ていくB矢印の冷媒は飽和状態のため、
単相で出ていき、このため高圧レシーバ42より持ち出
される冷媒量の方が多くなり高圧レシーバ42内の液面
が下がる。
When the load is heavy (air temperature is high), FIG.
As shown by the arrow A, the refrigerant entering the receiver is in a two-phase state,
Since the refrigerant indicated by the arrow B coming out of the receiver is saturated,
The refrigerant flows out in a single phase, so that the amount of refrigerant taken out of the high-pressure receiver 42 increases, and the liquid level in the high-pressure receiver 42 drops.

【0066】負荷が軽い(空気温度が低い)時、矢印A
の高圧レシーバ42に入る単相の液冷媒が過冷却するよ
うに絞り装置33を絞ると、高圧レシーバ42に入った
過冷却状態の液冷媒は高圧レシーバ42内のガス冷媒を
凝縮させて自身は飽和の単相の液冷媒となり高圧レシー
バ42より矢印Bのように持ち出される。よって、高圧
レシーバ42内のガスが凝縮される分、高圧レシーバ4
2内の液の量は増える。なお、図4のような構成におい
ては熱交換器に液溜めとしての機能をもたせているが、
高圧レシーバ42を高圧側に設けることにより、格段に
調整量を増やすことができる。
When the load is light (air temperature is low), arrow A
When the expansion device 33 is throttled so that the single-phase liquid refrigerant entering the high-pressure receiver 42 is supercooled, the supercooled liquid refrigerant entering the high-pressure receiver 42 condenses the gas refrigerant in the high-pressure receiver 42 and becomes itself. The liquid refrigerant becomes a saturated single-phase liquid refrigerant and is taken out from the high-pressure receiver 42 as shown by the arrow B. Therefore, as much as the gas in the high-pressure receiver 42 is condensed, the high-pressure receiver 4
The amount of liquid in 2 increases. In the configuration shown in FIG. 4, the heat exchanger has a function as a liquid reservoir,
By providing the high-pressure receiver 42 on the high-pressure side, the amount of adjustment can be significantly increased.

【0067】また、暖房時、負荷が重い時には、主絞り
装置33をきつく絞ることにより、上記の負荷が重い時
の状態とすることができ、高圧レシーバ42内の液冷媒
は減少する。逆に負荷が軽い時には、副絞り装置41を
きつく絞ることにより上記の負荷が軽い時の状態とす
る。
When the load is heavy at the time of heating, the main throttle device 33 is tightly throttled to make the above-mentioned state at the time of heavy load, and the liquid refrigerant in the high-pressure receiver 42 is reduced. Conversely, when the load is light, the sub-throttle device 41 is squeezed tightly to make the above-mentioned state where the load is light.

【0068】以上のように、高圧レシーバ42を凝縮器
となる熱交換器の出口側に配置することにより、凝縮器
で凝縮した液冷媒が高圧レシーバ42に溜まる。この液
冷媒は、循環している冷媒がすべて凝縮し、液単相の状
態である為、組成は循環組成に近いものとなり、低圧レ
シーバ35に余剰冷媒を溜める場合とは異なる。又、副
絞り装置41を設けることにより冷房・暖房で高圧レシ
ーバを高圧液ラインに位置させることができる。このよ
うに凝縮器となる熱交換器と高圧レシーバ42との間に
圧力を変化させる手段を設けることにより、高圧レシー
バ42に流入する冷媒の乾き度を変化させ、簡易に高圧
レシーバ42内の液面を制御することができる。
As described above, by disposing the high-pressure receiver 42 on the outlet side of the heat exchanger serving as a condenser, the liquid refrigerant condensed in the condenser accumulates in the high-pressure receiver 42. Since the circulating refrigerant is all condensed and in a liquid single phase state, the composition of the liquid refrigerant is close to the circulating composition, which is different from the case where excess refrigerant is stored in the low-pressure receiver 35. Further, by providing the sub-throttle device 41, the high-pressure receiver can be positioned in the high-pressure liquid line during cooling and heating. By providing a means for changing the pressure between the heat exchanger serving as a condenser and the high-pressure receiver 42, the dryness of the refrigerant flowing into the high-pressure receiver 42 is changed, and the liquid in the high-pressure receiver 42 is easily changed. The surface can be controlled.

【0069】実施の形態7.図7は、本発明の基本シス
テムを示す冷媒回路図である。なお図中、実施の形態6
と同一部分には同一符号を付し、説明を省略する。図6
における実施の形態6の構成要素に加えて、高圧レシー
バ42の底部より低圧レシーバ35に至るバイパス管1
05と、開閉装置43を設け、開閉装置43をバイパス
管105の途中に設置する構成とする。
Embodiment 7 FIG. 7 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the sixth embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
In addition to the components of the sixth embodiment, the bypass pipe 1 extending from the bottom of the high-pressure receiver 42 to the low-pressure receiver 35
05 and an opening and closing device 43 are provided, and the opening and closing device 43 is installed in the middle of the bypass pipe 105.

【0070】作用について説明する。図示の如く冷媒が
流れる。予め、余剰冷媒が低圧レシーバ35または高圧
レシーバ42に溜まるように充填する。冷房する場合、
圧縮機31より吐出された冷媒ガスは、四方弁40を通
って熱源側熱交換器32で凝縮され液冷媒となり、副絞
り装置41にて若干絞られた後、高圧レシーバ42に入
る。高圧レシーバ42を通った液冷媒は、主絞り装置3
3にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. When cooling,
The refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. After being slightly throttled by the sub-throttle device 41, it enters the high-pressure receiver 42. The liquid refrigerant passing through the high-pressure receiver 42 is supplied to the main throttle device 3
3, the pressure is reduced to a low pressure, evaporated in the load-side heat exchanger 34, and compressed through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0071】負荷が重い時には、開閉装置43を開き、
副絞り装置41をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管105を通って、低圧
レシーバ35へ移動する。副絞り装置41出口にて冷媒
が二相状態になるようにすれば、高圧レシーバ42には
液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35に
確保される。低圧レシーバ35には、高沸点成分に富ん
だ冷媒液が溜まるため、メイン回路を循環する冷媒は、
低沸点成分に富んだ冷媒となる。このため、圧縮機31
に吸入される冷媒の密度は増大し、冷媒循環量が増し、
能力が増大する。
When the load is heavy, the switching device 43 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 105 by tightly restricting the sub-throttle device 41. If the refrigerant is made to be in a two-phase state at the outlet of the sub-throttle device 41, the liquid refrigerant does not accumulate in the high-pressure receiver 42, and the liquid refrigerant is secured in the low-pressure receiver 35. Since the refrigerant liquid rich in the high boiling point component is accumulated in the low-pressure receiver 35, the refrigerant circulating in the main circuit is:
It becomes a refrigerant rich in low boiling point components. For this reason, the compressor 31
The density of the refrigerant sucked into the air increases, the refrigerant circulation amount increases,
Ability increases.

【0072】負荷が軽い時には、主絞り装置33をきつ
く絞り、液冷媒を低圧レシーバ35から高圧レシーバ4
2へ移動させることによって、冷媒の組成は、充填した
冷媒の組成に近付くので、能力を減少させることができ
る。
When the load is light, the main throttle device 33 is tightly throttled, and the liquid refrigerant is supplied from the low-pressure receiver 35 to the high-pressure receiver 4.
By moving to 2, the composition of the refrigerant approaches the composition of the charged refrigerant, so that the capacity can be reduced.

【0073】暖房時の場合も同様に、負荷に合わせて、
高圧レシーバ42または低圧レシーバ35に液冷媒を溜
めることにより、能力を調整することができる。このよ
うにこの、冷凍・空調装置は、低圧レシーバ35と高圧
レシーバ42に溜める冷媒液の量を、上記低圧レシーバ
35と高圧レシーバ42を結ぶバイパス管105を用い
て調節することにより、冷媒回路内を流れる高沸点成分
の量を素早く調節し、負荷に合わせて能力を調節する。
以上のようにバイパス管105を設けることにより組成
を素早く調整し、冷凍サイクルを安定にすることができ
る。
Similarly, at the time of heating, according to the load,
The capacity can be adjusted by storing the liquid refrigerant in the high-pressure receiver 42 or the low-pressure receiver 35. As described above, the refrigeration / air-conditioning apparatus adjusts the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42 by using the bypass pipe 105 that connects the low-pressure receiver 35 and the high-pressure receiver 42, so that the refrigerant circuit Quickly adjust the amount of high boiling components flowing through and adjust the capacity according to the load.
By providing the bypass pipe 105 as described above, the composition can be quickly adjusted and the refrigeration cycle can be stabilized.

【0074】実施の形態8.図8は、本発明の基本シス
テムを示す冷媒回路図である。なお図中、実施の形態6
と同一部分には同一符号を付し、説明を省略する。図6
における実施の形態6の構成要素に加えて、高圧レシー
バ42の上部より低圧レシーバ35に至るバイパス管1
06と、開閉装置44を設け、開閉装置44をバイパス
管106の途中に設置する構成とする。
Embodiment 8 FIG. FIG. 8 is a refrigerant circuit diagram showing the basic system of the present invention. In the figure, the sixth embodiment
The same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted. FIG.
In addition to the components of the sixth embodiment, the bypass pipe 1 extending from the upper part of the high-pressure receiver 42 to the low-pressure receiver 35
06 and the opening and closing device 44 are provided, and the opening and closing device 44 is installed in the middle of the bypass pipe 106.

【0075】作用について説明する。予め、余剰冷媒が
低圧レシーバ35または高圧レシーバ42に溜まるよう
に充填する。冷房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って熱源側熱交換器32で
凝縮され液冷媒となり、副絞り装置41にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、主絞り装置にて低圧まで絞られ、負荷側
熱交換器34にて蒸発し、四方弁40及び低圧レシーバ
35を介して圧縮機31へ戻る。
The operation will be described. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant. enter. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0076】運転中、暖房時で外気が低温の時、低圧が
低い場合には、開閉装置44を開き、図示の如く低沸点
成分に富んだ未凝縮ガスを低圧レシーバ35へと導き、
圧縮機31吸入の圧力の低下を押さえる。
During operation, when the outside air is at a low temperature during heating, and when the low pressure is low, the switch 44 is opened to guide the uncondensed gas rich in the low boiling point component to the low pressure receiver 35 as shown in the figure.
The compressor 31 suppresses a decrease in suction pressure.

【0077】実施の形態9.以下、本発明の実施の形態
9を図9に基づいて説明する。31は圧縮機、40は四
方弁、32は熱源側熱交換器、41は副絞り装置、42
は高圧レシーバ、33は主絞り装置、34は負荷側熱交
換器、35は低圧レシーバで、これらは冷媒配管にて順
次接続されメイン回路をなす。47,48は高圧レシー
バ42の入口と出口を開閉する開閉機構である。また、
107は高圧レシーバ42から低圧レシーバに至る第一
のバイパス管であり、45は上記第一のバイパス管上に
設けられた開閉機構である。108は高圧レシーバ42
と開閉機構47及び48をバイパスする第二のバイパス
管であり、46は上記第二のバイパス管108上に設け
られた開閉機構である。
Embodiment 9 Hereinafter, a ninth embodiment of the present invention will be described with reference to FIG. 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42
Is a high-pressure receiver, 33 is a main throttle device, 34 is a load-side heat exchanger, and 35 is a low-pressure receiver, which are sequentially connected by refrigerant piping to form a main circuit. Reference numerals 47 and 48 denote opening and closing mechanisms for opening and closing the inlet and outlet of the high-pressure receiver 42, respectively. Also,
107 is a first bypass pipe from the high-pressure receiver 42 to the low-pressure receiver, and 45 is an opening / closing mechanism provided on the first bypass pipe. 108 is a high voltage receiver 42
And a second bypass pipe that bypasses the opening and closing mechanisms 47 and 48, and 46 is an opening and closing mechanism provided on the second bypass pipe 108.

【0078】作用について説明する。冷媒は図9に示す
如く流れる。予め、余剰冷媒が低圧レシーバ35または
高圧レシーバ42に溜まるように充填する。冷房する場
合、圧縮機31より吐出された冷媒ガスは、四方弁40
を通って熱源側熱交換器32で凝縮され液冷媒となり、
副絞り装置41にて若干絞られた後、高圧レシーバ42
に入る。高圧レシーバ42を通った液冷媒は、主絞り装
置にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown in FIG. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 is supplied to the four-way valve 40.
Through the heat source side heat exchanger 32 to be condensed into a liquid refrigerant,
After being slightly throttled by the sub-throttle device 41, the high-pressure receiver 42
to go into. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and passes through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0079】負荷が重い時には、開閉機構45を開き、
副絞り装置41をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管107を通って、低圧
レシーバ35へ移動する。副絞り装置41出口にて冷媒
が二相状態になるようにすれば、高圧のレシーバ42に
は液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35
に保持される。低圧レシーバ35に保持された液冷媒
は、メイン回路を循環する冷媒の組成とは異なり、高沸
点成分に富んだ冷媒となる。低圧レシーバ35に確保さ
れた状態を検知した後、開閉機構47,48を閉じ、開
閉機構46を開き、冷媒が高圧レシーバ42をバイパス
するようにし、常に冷媒回路内の冷媒分布を一定にする
ことによって、運転を安定させる。液冷媒がレシーバに
ある状態を検知するには、液面検知回路、すなわちアキ
ュムレータ外壁を一定量加熱し、温度上昇を検知し加熱
位置を比較したり、あるいは後述のように循環組成を検
知してレシーバ内の冷媒量を求める方法などがある。
When the load is heavy, the opening / closing mechanism 45 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 107 by tightly restricting the sub-throttle device 41. If the refrigerant is made to be in a two-phase state at the outlet of the sub-throttle device 41, the liquid refrigerant will not accumulate in the high-pressure receiver 42, and the liquid refrigerant will
Is held. The liquid refrigerant held in the low-pressure receiver 35 is different from the composition of the refrigerant circulating in the main circuit, and becomes a refrigerant rich in high-boiling components. After detecting the state secured in the low-pressure receiver 35, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened so that the refrigerant bypasses the high-pressure receiver 42 and the distribution of the refrigerant in the refrigerant circuit is always kept constant. Stabilizes driving. To detect the state that the liquid refrigerant is in the receiver, the liquid level detection circuit, that is, heat the outer wall of the accumulator by a certain amount, detect the temperature rise and compare the heating position, or detect the circulation composition as described later. There is a method of determining the amount of refrigerant in the receiver.

【0080】負荷が軽い時には、開閉機構47及び48
を開き、開閉機構46を閉じ、主絞り装置33をきつく
絞り、凝縮器として作用している熱源側熱交換器32の
出口において、冷媒の状態を液状態とすることによっ
て、高圧レシーバ42に液冷媒を溜める。高圧レシーバ
42に液冷媒を溜めた状態で、開閉機構47及び48を
閉じ、開閉機構46を開き、高圧レシーバ42に液冷媒
を溜めた状態を保持する。この時、高圧レシーバ42に
保持される液冷媒は、冷媒回路に冷媒を充填した時の組
成と近いものとなり、かつ、冷媒回路内を循環する冷媒
の組成もまた冷媒を充填した時の組成に近いものとな
る。
When the load is light, the opening / closing mechanisms 47 and 48
Is opened, the opening / closing mechanism 46 is closed, the main throttle device 33 is tightly throttled, and the state of the refrigerant is changed to a liquid state at the outlet of the heat source side heat exchanger 32 acting as a condenser, so that the high-pressure receiver 42 Store refrigerant. With the liquid refrigerant stored in the high-pressure receiver 42, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened to maintain the state in which the liquid refrigerant is stored in the high-pressure receiver 42. At this time, the liquid refrigerant held in the high-pressure receiver 42 has a composition close to the composition when the refrigerant circuit is filled with the refrigerant, and the composition of the refrigerant circulating in the refrigerant circuit also has the composition when the refrigerant is filled. It will be close.

【0081】暖房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って負荷側熱交換器34で
凝縮され液冷媒となり、主絞り装置33にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、副絞り装置41にて低圧まで絞られ、熱
源側熱交換器32にて蒸発し、四方弁40及び低圧レシ
ーバ35を介して圧縮機31へ戻る。
In the case of heating, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the load-side heat exchanger 34 to become a liquid refrigerant. Enter the receiver 42. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the sub-throttle device 41, evaporates in the heat-source-side heat exchanger 32, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0082】負荷が重い時には、開閉装置45を開き、
主絞り装置33をきつく絞ることによって、高圧レシー
バ42内の液冷媒は、バイパス管107を通って、低圧
レシーバ35へ移動する。主絞り装置33出口にて冷媒
が二相状態になるようにすれば、高圧のレシーバ42に
は液冷媒が溜まらなくなり、液冷媒は低圧レシーバ35
に保持される。低圧レシーバ35に保持された液冷媒
は、メイン回路を循環する冷媒の組成とは異なり、高沸
点成分に富んだ冷媒となる。適当な量の冷媒が低圧レシ
ーバ35へ移動した後、開閉機構47,48を閉じ、開
閉機構46を開き、冷媒が高圧レシーバ42をバイパス
するようにし、常に冷媒回路内の冷媒分布を一定にする
ことによって、運転を安定させる。
When the load is heavy, the switching device 45 is opened,
The liquid refrigerant in the high-pressure receiver 42 moves to the low-pressure receiver 35 through the bypass pipe 107 by tightly restricting the main expansion device 33. If the refrigerant is made to be in a two-phase state at the outlet of the main throttle device 33, the liquid refrigerant will not accumulate in the high-pressure receiver 42, and the liquid refrigerant will
Is held. The liquid refrigerant held in the low-pressure receiver 35 is different from the composition of the refrigerant circulating in the main circuit, and becomes a refrigerant rich in high-boiling components. After an appropriate amount of refrigerant has moved to the low-pressure receiver 35, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened, so that the refrigerant bypasses the high-pressure receiver 42, and the refrigerant distribution in the refrigerant circuit is always constant. This stabilizes driving.

【0083】負荷が軽い時には、開閉機構47及び48
を開き、開閉機構46を閉じ、副絞り装置41をきつく
絞り、凝縮器として作用している負荷側熱交換器32の
出口において、冷媒の状態を液状態とすることによっ
て、高圧レシーバ42に液冷媒を溜める。高圧レシーバ
42に液冷媒を溜めた状態で、開閉機構47及び48を
閉じ、開閉機構46を開き、高圧レシーバ42に液冷媒
を溜めた状態を保持する。この時、高圧レシーバ42に
保持される液冷媒は、冷媒回路に冷媒を充填した時の組
成と近いものとなり、かつ、冷媒回路内を循環する冷媒
の組成もまた冷媒を充填した時の組成に近いものとする
ことができる。
When the load is light, the opening / closing mechanisms 47 and 48
Is opened, the opening / closing mechanism 46 is closed, the sub-throttle device 41 is tightly throttled, and at the outlet of the load-side heat exchanger 32 acting as a condenser, the state of the refrigerant is changed to a liquid state. Store refrigerant. With the liquid refrigerant stored in the high-pressure receiver 42, the opening and closing mechanisms 47 and 48 are closed, and the opening and closing mechanism 46 is opened to maintain the state in which the liquid refrigerant is stored in the high-pressure receiver 42. At this time, the liquid refrigerant held in the high-pressure receiver 42 has a composition close to the composition when the refrigerant circuit is filled with the refrigerant, and the composition of the refrigerant circulating in the refrigerant circuit also has the composition when the refrigerant is filled. Can be close.

【0084】このように、負荷に応じて、低圧レシーバ
35または高圧レシーバ42に冷媒液を選択して溜める
ことによって、冷媒回路内を循環する冷媒の組成を変更
し、圧縮機31の回転周波数を変えることなく、能力を
変化させることができる。
As described above, by selectively storing the refrigerant liquid in the low-pressure receiver 35 or the high-pressure receiver 42 according to the load, the composition of the refrigerant circulating in the refrigerant circuit is changed, and the rotation frequency of the compressor 31 is changed. The ability can be changed without changing.

【0085】上述の如く、これらの冷媒回路から構成さ
れる冷凍・空調装置は、低圧レシーバ35と高圧レシー
バ42に溜める冷媒液の量を、上記低圧レシーバ35と
高圧レシーバ42を結ぶバイパス管を用いて調節するこ
とにより、冷媒回路内を流れる高沸点成分の量を素早く
調節し、負荷に合わせて能力を調整する。
As described above, the refrigeration / air-conditioning system constituted by these refrigerant circuits uses the bypass pipe connecting the low-pressure receiver 35 and the high-pressure receiver 42 with the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42. In this way, the amount of the high boiling point component flowing in the refrigerant circuit is quickly adjusted, and the capacity is adjusted according to the load.

【0086】また、これらの冷凍・空調装置は、低圧レ
シーバ35と高圧レシーバ42に溜める冷媒液を調節し
つつ、圧縮機31吸入にて圧力が低下する場合には、高
圧レシーバ42上部より低沸点成分に富む冷媒ガスを圧
縮機31吸入側に戻すことによって、圧縮機吸入圧力の
低下を防止する。
Further, these refrigeration / air-conditioning apparatuses adjust the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42, and when the pressure is reduced by the suction of the compressor 31, the boiling point is lower than that of the upper part of the high-pressure receiver 42. By returning the refrigerant gas rich in components to the suction side of the compressor 31, a decrease in compressor suction pressure is prevented.

【0087】以上実施の形態7,8,9にはバイパス管
に開閉機構を設けた例を記載したが、この開閉のタイミ
ングは例えば起動時や定常時に高圧が上昇するか、低圧
が引込む場合等に開放するようにする。
In the seventh, eighth, and ninth embodiments, an example in which an opening / closing mechanism is provided in the bypass pipe has been described. Open to the public.

【0088】実施の形態10.以下、本発明の実施の形
態10を図10に基づいて説明する。31は圧縮機、4
0は四方弁、32は熱源側熱交換器、41は副絞り装
置、42は高圧レシーバ、33は主絞り装置、34は負
荷側熱交換器、35は低圧レシーバで、これらは冷媒配
管にて順次接続されメイン回路をなす。また、109は
高圧レシーバ42から低圧レシーバ35に至るバイパス
管であり、49は上記第一のバイパス管上に設けられた
第三の絞り装置である。50は主絞り装置33と副絞り
装置41の間のメイン配管と、第三の絞り装置49と低
圧レシーバ35の間のバイパス管とを熱交換させる過冷
却熱交換器である。
Embodiment 10 FIG. Hereinafter, a tenth embodiment of the present invention will be described with reference to FIG. 31 is a compressor, 4
0 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 34 is a load-side heat exchanger, 35 is a low-pressure receiver, and these are refrigerant pipes. They are sequentially connected to form a main circuit. Reference numeral 109 denotes a bypass pipe from the high-pressure receiver 42 to the low-pressure receiver 35, and reference numeral 49 denotes a third throttle device provided on the first bypass pipe. Reference numeral 50 denotes a supercooling heat exchanger for exchanging heat between a main pipe between the main throttle device 33 and the sub-throttle device 41 and a bypass pipe between the third throttle device 49 and the low-pressure receiver 35.

【0089】作用について説明する。冷媒は図10に示
す如く流れる。予め、余剰冷媒が低圧レシーバ35また
は高圧レシーバ42に溜まるように充填する。冷房する
場合、圧縮機31より吐出された冷媒ガスは、四方弁4
0を通って熱源側熱交換器32で凝縮され液冷媒とな
り、副絞り装置41にて若干絞られた後、高圧レシーバ
に入る。高圧レシーバ42を通った液冷媒は、主絞り装
置にて低圧まで絞られ、負荷側熱交換器34にて蒸発
し、四方弁40及び低圧レシーバ35を介して圧縮機3
1へ戻る。
The operation will be described. The refrigerant flows as shown in FIG. The surplus refrigerant is filled beforehand so as to accumulate in the low-pressure receiver 35 or the high-pressure receiver 42. In the case of cooling, the refrigerant gas discharged from the compressor 31 is supplied to the four-way valve 4.
After passing through 0, it is condensed in the heat source side heat exchanger 32 to become a liquid refrigerant, and after being slightly throttled by the sub-throttle device 41, it enters the high-pressure receiver. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the main throttle device, evaporates in the load-side heat exchanger 34, and passes through the four-way valve 40 and the low-pressure receiver 35.
Return to 1.

【0090】ここで、第三の絞り装置49を開き、高圧
レシーバ42内の液冷媒を低圧の二相冷媒として過冷却
熱交換器50へと導く。過冷却熱交換器50では、高圧
の液冷媒が流れるメイン配管と、低圧の二相冷媒が流れ
るバイパス管とが熱交換し、メイン配管を流れる液冷媒
の過冷却度を増大させることができる。このことによ
り、主絞り装置33及び副絞り装置41における流量制
御の信頼性を高めることができる。
Here, the third expansion device 49 is opened, and the liquid refrigerant in the high-pressure receiver 42 is guided to the supercooling heat exchanger 50 as a low-pressure two-phase refrigerant. In the supercooling heat exchanger 50, the main pipe through which the high-pressure liquid refrigerant flows and the bypass pipe through which the low-pressure two-phase refrigerant flows exchange heat, and the degree of subcooling of the liquid refrigerant flowing through the main pipe can be increased. Thereby, the reliability of the flow control in the main throttle device 33 and the sub throttle device 41 can be improved.

【0091】また、高圧の上昇が著しい時には、主絞り
装置33及び副絞り装置41を甘くし、凝縮器として作
用している熱源側熱交換器32の出口において、冷媒の
状態を二相状態とする。この時、高圧レシーバ42内に
溜まる液冷媒を高沸点冷媒に富むものとなり、第三の絞
り装置49を開けて、この高沸点成分に富む冷媒を、過
冷却熱交換器50にて蒸発させた後、低圧レシーバ35
に戻すことによって、圧縮機31は高沸点成分に富むガ
ス冷媒を吸入するため、圧縮機31の吐出圧力を抑える
ことができる。
When the increase in high pressure is remarkable, the main throttle device 33 and the sub-throttle device 41 are weakened, and the state of the refrigerant is changed to a two-phase state at the outlet of the heat source side heat exchanger 32 acting as a condenser. I do. At this time, the liquid refrigerant accumulated in the high-pressure receiver 42 becomes rich in high-boiling-point refrigerant, and the third expansion device 49 is opened to evaporate the high-boiling-point-rich refrigerant in the supercooling heat exchanger 50. Later, low-voltage receiver 35
By returning the pressure to, the compressor 31 sucks in the gas refrigerant rich in the high boiling point component, so that the discharge pressure of the compressor 31 can be suppressed.

【0092】暖房する場合、圧縮機31より吐出された
冷媒ガスは、四方弁40を通って負荷側熱交換器34で
凝縮され液冷媒となり、主絞り装置33にて若干絞られ
た後、高圧レシーバ42に入る。高圧レシーバ42を通
った液冷媒は、副絞り装置41にて低圧まで絞られ、熱
源側熱交換器32にて蒸発し、四方弁40及び低圧レシ
ーバ35を介して圧縮機31へ戻る。
In the case of heating, the refrigerant gas discharged from the compressor 31 passes through the four-way valve 40 and is condensed in the load-side heat exchanger 34 to become liquid refrigerant. Enter the receiver 42. The liquid refrigerant that has passed through the high-pressure receiver 42 is throttled to a low pressure by the sub-throttle device 41, evaporates in the heat-source-side heat exchanger 32, and returns to the compressor 31 via the four-way valve 40 and the low-pressure receiver 35.

【0093】ここで、第三の絞り装置49を開き、高圧
レシーバ42内の液冷媒を低圧の二相冷媒として過冷却
熱交換器50へと導く。過冷却熱交換器50では、高圧
の液冷媒が流れるメイン配管と、低圧の二相冷媒が流れ
るバイパス管とが熱交換し、メイン配管を流れる液冷媒
の過冷却度を増大させることができる。このことによ
り、主絞り装置33及び副絞り装置41における流量制
御の信頼性を高めることができる。
Here, the third expansion device 49 is opened to guide the liquid refrigerant in the high-pressure receiver 42 to the supercooling heat exchanger 50 as a low-pressure two-phase refrigerant. In the supercooling heat exchanger 50, the main pipe through which the high-pressure liquid refrigerant flows and the bypass pipe through which the low-pressure two-phase refrigerant flows exchange heat, and the degree of subcooling of the liquid refrigerant flowing through the main pipe can be increased. Thereby, the reliability of the flow control in the main throttle device 33 and the sub throttle device 41 can be improved.

【0094】また、高圧の上昇が著しい時には、主絞り
装置33及び副絞り装置41を甘くし、凝縮器として作
用している負荷側熱交換器34の出口において、冷媒の
状態を二相状態とする。この時、高圧レシーバ42内に
溜まる液冷媒を高沸点冷媒に富むものとなり、第三の絞
り装置49を開けて、この高沸点成分に富む冷媒を、過
冷却熱交換器50にて蒸発させた後、低圧レシーバ35
に戻すことによって、圧縮機31は高沸点成分に富むガ
ス冷媒を吸入するため、圧縮機31の吐出圧力を抑える
ことができる。
When the high pressure rise is remarkable, the main throttle device 33 and the sub-throttle device 41 are weakened, and the state of the refrigerant is changed to a two-phase state at the outlet of the load side heat exchanger 34 acting as a condenser. I do. At this time, the liquid refrigerant accumulated in the high-pressure receiver 42 becomes rich in high-boiling-point refrigerant, and the third expansion device 49 is opened to evaporate the high-boiling-point-rich refrigerant in the supercooling heat exchanger 50. Later, low-voltage receiver 35
By returning the pressure to, the compressor 31 sucks in the gas refrigerant rich in the high boiling point component, so that the discharge pressure of the compressor 31 can be suppressed.

【0095】すなわち、この冷凍・空調装置は、低圧レ
シーバ35と高圧レシーバ42に溜める冷媒液量を調節
することによって、冷媒回路内を流れる高沸点成分の量
を調節し、圧縮機31吐出圧力が上昇するときには、高
圧レシーバ42内の液を、一旦、絞った後、メインの高
圧の液冷媒と熱交換することによって自身を蒸発気化さ
せ、能力を保持したまま、圧縮機31吐出圧力を抑える
ことができる。このように高圧レシーバ42より絞りを
介して高圧の冷媒液配管と熱交換した後低圧のガス配管
と合流するバイパス管109を設けることにより、流量
制御の信頼性を高めることができるとともに、能力を保
持したまま圧縮機31吐出圧力を抑えられる。
That is, in this refrigeration / air-conditioning apparatus, the amount of the high-boiling component flowing in the refrigerant circuit is adjusted by adjusting the amount of the refrigerant liquid stored in the low-pressure receiver 35 and the high-pressure receiver 42, and the discharge pressure of the compressor 31 is reduced. When ascending, the liquid in the high-pressure receiver 42 is once squeezed, and then heat-exchanges with the main high-pressure liquid refrigerant to evaporate itself, thereby suppressing the discharge pressure of the compressor 31 while maintaining the capability. Can be. Thus, by providing the bypass pipe 109 that exchanges heat with the high-pressure refrigerant liquid pipe via the throttle from the high-pressure receiver 42 and then joins with the low-pressure gas pipe, the reliability of the flow rate control can be improved and the capacity can be improved. The discharge pressure of the compressor 31 can be suppressed while maintaining the pressure.

【0096】実施の形態11.図11は、本発明の実施
の形態11を示す冷媒回路図である。図中、31は圧縮
機、54は四方弁、32は熱源側熱交換器、41は副絞
り装置、42は高圧レシーバ、33は主絞り装置、53
は冷媒−冷媒熱交換器、34は負荷側熱交換器、35は
低圧レシーバであり、これらを順次接続してメイン配管
をなす。また、51は第三の絞り装置、52は第二の負
荷側熱交換器であり、冷媒−冷媒熱交換器53、第三の
絞り装置51及び第二の負荷側熱交換器52は、冷媒配
管110により連結され、一端を高圧レシーバ42と、
他端を負荷側熱交換器34と四方弁54の間の配管とに
接続する。
Embodiment 11 FIG. FIG. 11 is a refrigerant circuit diagram showing Embodiment 11 of the present invention. In the figure, 31 is a compressor, 54 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 53
Is a refrigerant-refrigerant heat exchanger, 34 is a load-side heat exchanger, 35 is a low-pressure receiver, and these are sequentially connected to form a main pipe. Reference numeral 51 denotes a third expansion device, 52 denotes a second load-side heat exchanger, and a refrigerant-refrigerant heat exchanger 53, a third expansion device 51, and a second load-side heat exchanger 52 One end is connected to the high-pressure receiver 42 by a pipe 110,
The other end is connected to a pipe between the load side heat exchanger 34 and the four-way valve 54.

【0097】作用について説明する。冷媒の流れを図1
1に記す。冷房する場合、圧縮機31より四方弁54を
介して熱源側熱交換器32に入り、ここで凝縮され副絞
り装置41にて若干絞られた後、高圧レシーバ42に入
る。高圧レシーバ42で、冷媒は、低沸点成分に富む気
体と高沸点成分に富む液体に分離される。高沸点成分に
富む冷媒は、主絞り装置33にて低圧まで絞られ、冷媒
−冷媒熱交換器53にて若干吸熱気化し、負荷側熱交換
器34に入る。負荷側熱交換器34にて周囲より吸熱
し、蒸発気化した冷媒は、四方弁54及び低圧レシーバ
35を介して圧縮機31へ戻る。
The operation will be described. Figure 1 shows the flow of the refrigerant
Write it in 1. In the case of cooling, the air enters the heat source side heat exchanger 32 from the compressor 31 via the four-way valve 54, is condensed here, is slightly throttled by the sub-throttle device 41, and then enters the high-pressure receiver 42. In the high pressure receiver 42, the refrigerant is separated into a gas rich in low boiling components and a liquid rich in high boiling components. The refrigerant rich in the high boiling point component is throttled to a low pressure by the main throttle device 33, slightly absorbed by the refrigerant-refrigerant heat exchanger 53, and enters the load-side heat exchanger 34. The refrigerant that has absorbed heat from the surroundings in the load side heat exchanger 34 and evaporated and returned to the compressor 31 via the four-way valve 54 and the low-pressure receiver 35.

【0098】また、高圧レシーバ42にて分離された、
低沸点冷媒に富む冷媒ガスは、冷媒−冷媒熱交換器53
にて、低圧の二相冷媒と熱交換して凝縮する。この低沸
点成分に富む高圧の液冷媒は、第三の絞り装置51にて
低圧まで絞られ、第二の負荷側熱交換器52にて周囲よ
り熱を奪うとともに、自身は蒸発気化し、負荷側熱交換
器34にて蒸発気化した高沸点成分に富む冷媒ガスと合
流し、四方弁54及び低圧レシーバ35を介して圧縮機
31に戻る。ここで、第二の負荷側熱交換器52を流れ
る冷媒は、低沸点成分に富むため、同じ低圧圧力でも負
荷側熱交換器34とは異なる蒸発温度とすることができ
る。こうすることによって、低沸点成分リッチのガス
が、熱交換器53により凝縮される為、熱交換器52に
は、低沸点成分リッチの冷媒が流れ、熱交換器34に
は、高沸点成分リッチの冷媒が流れるようになる。よっ
て、圧力が同一であれば、熱交換器34,52は蒸発温
度が異なり、この例では熱交換器52の蒸発温度の方が
低くなる。
Further, the signals separated by the high pressure receiver 42
The refrigerant gas rich in low boiling point refrigerant is supplied to the refrigerant-refrigerant heat exchanger 53.
At this point, heat exchange is performed with the low-pressure two-phase refrigerant to condense. The high-pressure liquid refrigerant rich in the low-boiling-point component is throttled to a low pressure by the third throttle device 51, takes heat from the surroundings in the second load-side heat exchanger 52, evaporates itself, and loads the refrigerant. The refrigerant mixes with the high-boiling-point-rich refrigerant gas evaporated in the side heat exchanger 34 and returns to the compressor 31 via the four-way valve 54 and the low-pressure receiver 35. Here, since the refrigerant flowing through the second load-side heat exchanger 52 is rich in low-boiling components, the evaporation temperature can be different from that of the load-side heat exchanger 34 even at the same low pressure. By doing so, the low-boiling component-rich gas is condensed by the heat exchanger 53, so that the low-boiling component-rich refrigerant flows through the heat exchanger 52, and the high-boiling component-rich refrigerant flows through the heat exchanger 34. Refrigerant flows. Therefore, if the pressures are the same, the heat exchangers 34 and 52 have different evaporation temperatures, and in this example, the evaporation temperature of the heat exchanger 52 is lower.

【0099】また、熱源側熱交換器32にて熱交換量を
制御することにより、高圧レシーバ42にて分離される
冷媒のガスの組成と液の組成を制御し、負荷側熱交換器
34と第二の負荷側熱交換器52にて得られる蒸発温度
の差を制御することができる。上記は例えば、熱交換器
32において熱交換器を分割したり、又、風量(水量)
を加減することにより、熱交換量を調節する。又、加減
の調整は例えば、熱交換器34及び52の冷媒の出口過
熱度で行なう。
Also, by controlling the amount of heat exchange in the heat source side heat exchanger 32, the composition of the gas and liquid of the refrigerant separated in the high pressure receiver 42 is controlled, and the load side heat exchanger 34 It is possible to control the difference between the evaporation temperatures obtained in the second load-side heat exchanger 52. The above is, for example, the division of the heat exchanger in the heat exchanger 32 or the air volume (water volume).
The amount of heat exchange is adjusted by adjusting the amount of heat exchange. The adjustment of the degree of adjustment is performed, for example, based on the degree of superheat of the refrigerant at the heat exchangers 34 and 52 at the outlet.

【0100】この冷凍・空調装置は、高圧レシーバ42
にて、高沸点成分に富む液冷媒と低沸点成分に富むガス
冷媒とに分流し、高沸点成分に富む液冷媒を一旦絞って
低圧の気液二相冷媒とした後、低沸点成分に富むガス冷
媒と熱交換させ液化し、この低沸点成分に富む液冷媒を
絞って、低圧の気液二相状態とする。こうして、高沸点
成分に富む低圧の二相冷媒と、低沸点成分に富む低圧の
二相冷媒とを得ることによって、温度の異なる蒸発温度
を得ることができる。
This refrigeration / air-conditioning apparatus has a high-pressure receiver 42
In, the liquid refrigerant rich in the high boiling point component and the gas refrigerant rich in the low boiling point component are divided, and the liquid refrigerant rich in the high boiling point component is once squeezed into a low-pressure gas-liquid two-phase refrigerant, and then rich in the low boiling point component. The liquid refrigerant is heat-exchanged with the gas refrigerant to be liquefied, and the liquid refrigerant rich in low-boiling components is squeezed to form a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, it is possible to obtain evaporation temperatures having different temperatures.

【0101】実施の形態12.図12〜15は、本発明
の実施の形態12を示す冷媒回路図である。なお、図1
2〜図15に各運転状況における冷媒の流れを示す。図
中、実施の形態11と同一部分には同一符号を付し、説
明を省略する。図12に示す如く、蓄熱用熱交換器55
と、蓄熱媒体56と、蓄熱用熱交換器55と蓄熱媒体5
6とを収納する蓄熱槽57と、冷媒ガスポンプ58と、
蓄熱用四方弁59と、開閉機構60,61及び62が設
けられ、蓄熱媒体56としては例えば水を使用する。冷
媒−冷媒熱交換器53、第三の絞り装置51、蓄熱用熱
交換器55及び開閉機構62は、冷媒配管110により
連結され、一端を高圧レシーバ42と、他端を負荷側熱
交換器34と四方弁54の間の配管とに接続される。ま
た、開閉機構62をバイパスして、蓄熱用四方弁59と
ガスポンプ58を連結し、その端部を開閉機構62前後
の配管と開閉機構60及び61を介して接続する。
Embodiment 12 FIG. 12 to 15 are refrigerant circuit diagrams showing Embodiment 12 of the present invention. FIG.
2 to 15 show the flow of the refrigerant in each operation state. In the figure, the same portions as those of the eleventh embodiment are denoted by the same reference numerals, and the description is omitted. As shown in FIG. 12, the heat storage heat exchanger 55
, Heat storage medium 56, heat storage heat exchanger 55 and heat storage medium 5
6, a heat storage tank 57 for storing therein, a refrigerant gas pump 58,
A heat storage four-way valve 59 and opening / closing mechanisms 60, 61 and 62 are provided. As the heat storage medium 56, for example, water is used. The refrigerant-refrigerant heat exchanger 53, the third expansion device 51, the heat storage heat exchanger 55, and the opening / closing mechanism 62 are connected by a refrigerant pipe 110, one end of which is a high-pressure receiver 42 and the other end of which is a load-side heat exchanger 34. And a pipe between the four-way valve 54. Further, the heat storage four-way valve 59 and the gas pump 58 are connected by bypassing the opening / closing mechanism 62, and the ends thereof are connected to pipes before and after the opening / closing mechanism 62 via the opening / closing mechanisms 60 and 61.

【0102】蓄冷運転、即ち、製氷を行う運転について
説明する。図12において、開閉機構60及び61を閉
じ、開閉機構62を開き、圧縮機31を駆動する。圧縮
機31より吐出された高温高圧のガス冷媒は、熱源側熱
交換器32にて凝縮し、副絞り装置41にて若干絞られ
た後、高圧レシーバ42に至る。高圧レシーバ42が液
冷媒で満たされると、液冷媒は、配管110へと導か
れ、冷媒−冷媒熱交換器53を介して第三の絞り装置5
1により低圧まで絞られる。この時、主絞り装置33は
適宜開閉し、冷媒−冷媒熱交換器53にて、冷媒配管1
10を流れる冷媒の過冷却度を調節する。第三の絞り装
置51により低圧まで絞られた低温の二相冷媒は、蓄熱
槽57内の蓄熱媒体56より熱を奪い、蓄熱媒体56は
凍結させ、自身は蒸発気化する。気化した冷媒は、四方
弁54及び低圧レシーバ35を介して圧縮機31へ戻
る。また、蓄熱運転の例を図14に示す。
The cold storage operation, that is, the operation for making ice will be described. 12, the opening and closing mechanisms 60 and 61 are closed, the opening and closing mechanism 62 is opened, and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 is condensed in the heat-source-side heat exchanger 32 and is slightly throttled by the sub-throttle device 41 before reaching the high-pressure receiver 42. When the high-pressure receiver 42 is filled with the liquid refrigerant, the liquid refrigerant is guided to the pipe 110 and is passed through the refrigerant-refrigerant heat exchanger 53 to the third throttle device 5.
1 narrows down to low pressure. At this time, the main throttle device 33 is opened and closed appropriately, and the refrigerant pipe 1
The degree of supercooling of the refrigerant flowing through 10 is adjusted. The low-temperature two-phase refrigerant throttled to a low pressure by the third expansion device 51 takes heat from the heat storage medium 56 in the heat storage tank 57, freezes the heat storage medium 56, and vaporizes itself. The vaporized refrigerant returns to the compressor 31 via the four-way valve 54 and the low-pressure receiver 35. FIG. 14 shows an example of the heat storage operation.

【0103】図14の如く、放冷運転、即ち、蓄冷熱の
放冷によって冷房する運転について説明する。開閉機構
60及び61を開き、開閉機構62を閉じ、ガスポンプ
58を駆動する。ガスポンプ58より吐出された冷媒
は、蓄熱用四方弁59を通って蓄熱用熱交換器55に至
り、蓄熱槽57内の蓄熱媒体により冷却されて凝縮液化
し、約9kgf/cm2 Gの液冷媒となる。この液冷媒
は、蓄熱用絞り装置51にて若干絞られた後、高圧レシ
ーバ42に流入する。高圧レシーバ42より導出された
液冷媒は、主絞り装置33により、低圧まで絞られ低温
低圧の二相冷媒となり、冷媒−冷媒熱交換器53にて若
干吸熱した後、負荷側熱交換器34に至る。低温低圧の
二相冷媒は、負荷側熱交換器34にて周囲より熱を奪い
冷房するとともに、自身は蒸発気化し、蓄熱用四方弁5
9を通ってガスポンプ58へ戻る。
As shown in FIG. 14, the cooling operation, that is, the cooling operation by cooling the cold storage heat will be described. The opening and closing mechanisms 60 and 61 are opened, the opening and closing mechanism 62 is closed, and the gas pump 58 is driven. The refrigerant discharged from the gas pump 58 reaches the heat storage heat exchanger 55 through the heat storage four-way valve 59, is cooled and condensed and liquefied by the heat storage medium in the heat storage tank 57, and is a liquid refrigerant of about 9 kgf / cm 2 G. Becomes This liquid refrigerant is slightly throttled by the heat storage throttle device 51 and then flows into the high-pressure receiver 42. The liquid refrigerant led out from the high-pressure receiver 42 is throttled down to low pressure by the main throttle device 33 to become a low-temperature low-pressure two-phase refrigerant. After slightly absorbing heat in the refrigerant-refrigerant heat exchanger 53, the liquid refrigerant is transferred to the load-side heat exchanger 34. Reach. The low-temperature and low-pressure two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool it, evaporates and vaporizes itself, and the heat storage four-way valve 5.
9 and return to the gas pump 58.

【0104】図12の如く、一般冷房運転、即ち、蓄冷
熱は利用せずに圧縮機31のみで冷房する運転について
説明する。開閉機構60,61及び62を閉じ、圧縮機
31を駆動する。圧縮機31より吐出された冷媒は、四
方弁54を通って熱源側熱交換器32に至り、そこで凝
縮液化し、副絞り装置41にて若干絞られた後、高圧レ
シーバ42に流入する。高圧レシーバ42より導出され
た液冷媒は、主絞り装置33により、低圧まで絞られ低
温低圧の二相冷媒となり、負荷側熱交換器34に至る。
低温低圧の二相冷媒は、負荷側熱交換器34にて周囲よ
り熱を奪い冷房するとともに、自身は蒸発気化し、四方
弁54及び低圧レシーバ35を通って圧縮機31へ戻
る。また、一般暖房運転の例を図15に示す。
As shown in FIG. 12, the general cooling operation, that is, the operation of cooling only by the compressor 31 without using the cold storage heat will be described. The opening and closing mechanisms 60, 61 and 62 are closed, and the compressor 31 is driven. The refrigerant discharged from the compressor 31 reaches the heat source side heat exchanger 32 through the four-way valve 54, condensed and liquefied therein, is slightly throttled by the sub-throttle device 41, and flows into the high-pressure receiver 42. The liquid refrigerant discharged from the high-pressure receiver 42 is throttled down to a low pressure by the main throttle device 33 to become a low-temperature low-pressure two-phase refrigerant, and reaches the load-side heat exchanger 34.
The low-temperature low-pressure two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool it, evaporates itself, and returns to the compressor 31 through the four-way valve 54 and the low-pressure receiver 35. FIG. 15 shows an example of the general heating operation.

【0105】図13の如く一般冷房において、冷房負荷
が軽い時には、開閉機構62を開き、高圧レシーバ42
上部より低沸点成分に富むガス冷媒を、冷媒配管110
へ導く。この低沸点成分に富むガス冷媒は冷媒−冷媒熱
交換器53にて放熱するとともに凝縮し、蓄熱用絞り装
置にて絞られる。冷媒配管110を流れる冷媒は低沸点
成分に富むため、蓄熱用絞り装置にて絞られた冷媒の温
度は、負荷側熱交換器34の蒸発温度よりも低くするこ
とができ、蓄熱用熱交換器55において、周囲より熱を
奪って蓄熱槽57内の蓄熱媒体56を凍結させ、自身は
蒸発気化することにより冷房しながら蓄冷熱を行うこと
ができる。
In general cooling as shown in FIG. 13, when the cooling load is light, the opening / closing mechanism 62 is opened and the high-pressure receiver 42 is opened.
A gas refrigerant rich in components having a low boiling point from the upper part
Lead to. The gas refrigerant rich in the low boiling point component releases heat in the refrigerant-refrigerant heat exchanger 53 and condenses, and is condensed by the heat storage expansion device. Since the refrigerant flowing through the refrigerant pipe 110 is rich in low boiling point components, the temperature of the refrigerant throttled by the heat storage expansion device can be lower than the evaporation temperature of the load-side heat exchanger 34, and the heat storage heat exchanger At 55, the heat storage medium 56 in the heat storage tank 57 is frozen by removing heat from the surroundings, and the storage medium 56 itself can perform cold storage heat while cooling by evaporating.

【0106】図13にて、一般冷房運転と放冷運転を同
時に運転させた蓄冷熱併用冷房運転について説明する。
開閉機構60及び61を開き、開閉機構62を閉じ、圧
縮機31及びガスポンプ58を駆動する。この時ガスポ
ンプ58側の蓄熱用熱交換器55で凝縮した液冷媒は、
圧縮機31より放出され、副絞り装置41で減圧された
冷媒と高圧レシーバ42にて合流し、絞り装置33にて
更に低圧まで減圧されて、負荷側熱交換器34に至り、
周囲より熱を奪い冷房するとともに、自身は蒸発気化す
る。負荷側熱交換器34にて気化した冷媒は二分され
て、一方は四方弁54及び低圧レシーバ35を通って圧
縮機31に戻り、他方は蓄熱用四方弁59を通ってガス
ポンプ58に戻る。また蓄熱併用暖房の例を図15に示
す。
Referring to FIG. 13, a description will be given of a cooling operation combined with cold storage in which the general cooling operation and the cooling operation are simultaneously performed.
The opening and closing mechanisms 60 and 61 are opened, the opening and closing mechanism 62 is closed, and the compressor 31 and the gas pump 58 are driven. At this time, the liquid refrigerant condensed in the heat storage heat exchanger 55 on the gas pump 58 side is:
The refrigerant discharged from the compressor 31 and joined by the high-pressure receiver 42 with the refrigerant decompressed by the sub-throttling device 41 is further decompressed to a low pressure by the throttling device 33 and reaches the load-side heat exchanger 34.
While taking heat from the surroundings and cooling, it evaporates itself. The refrigerant vaporized in the load side heat exchanger 34 is divided into two parts, one of which returns to the compressor 31 through the four-way valve 54 and the low-pressure receiver 35, and the other returns to the gas pump 58 through the four-way valve 59 for heat storage. FIG. 15 shows an example of combined heating and heating.

【0107】この冷凍・空調装置は、高圧レシーバ42
にて、高沸点成分に富む液冷媒と低沸点成分に富むガス
冷媒とに分流し、高沸点成分に富む液冷媒を一旦絞って
低圧の気液二相冷媒とした後、低沸点成分に富むガス冷
媒と熱交換させ液化し、この低沸点成分に富む液冷媒を
絞って、低圧の気液二相状態とする。こうして、高沸点
成分に富む低圧の二相冷媒と、低沸点成分に富む低圧の
二相冷媒とを得ることによって、温度の異なる蒸発温度
を得るとともに、冷房負荷の軽い時には、蓄熱槽57に
熱エネルギを蓄え、かつ、負荷の高い時には、ガスポン
プ58の駆動により、蓄熱槽57に蓄えた蓄熱エネルギ
を使って空調することができる。
This refrigeration / air-conditioning apparatus has a high-pressure receiver 42
In, the liquid refrigerant rich in the high boiling point component and the gas refrigerant rich in the low boiling point component are divided, and the liquid refrigerant rich in the high boiling point component is once squeezed into a low-pressure gas-liquid two-phase refrigerant, and then rich in the low boiling point component. The liquid refrigerant is heat-exchanged with the gas refrigerant to be liquefied, and the liquid refrigerant rich in low-boiling components is squeezed to form a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, evaporation temperatures having different temperatures are obtained, and when the cooling load is light, heat is stored in the heat storage tank 57. When energy is stored and the load is high, air conditioning can be performed using the heat storage energy stored in the heat storage tank 57 by driving the gas pump 58.

【0108】実施の形態13.図16〜18は、本発明
の実施の形態13を示す冷媒回路図である。図中、31
は圧縮機、54は四方弁、32は熱源側熱交換器、41
は副絞り装置、42は高圧レシーバ、33は主絞り装
置、53は冷媒−冷媒熱交換器、63は第一の蓄熱用熱
交換器、73は第三の絞り装置、34は負荷側熱交換
器、35は低圧レシーバを示し、これらを順次接続して
メインの冷媒回路を構成する。51は蓄熱用絞り装置、
64は第二の蓄熱用熱交換器であり、これらは冷媒配管
111にて連結され、一端を高圧レシーバ上部、他端を
負荷側熱交換器34と四方弁54の間の冷媒配管と接続
する。第一の蓄熱用熱交換器56の一端には開閉機構6
8、他端には開閉機構69が設置され、第二の蓄熱用熱
交換器64の一端には開閉機構65,66、他端には開
閉機構70,71が設置される。112は開閉機構65
と66の間の配管と、開閉機構68と主絞り装置33の
間の配管とを、開閉機構67を介して接続する冷媒配管
である。113は開閉機構70と71の間の配管と、開
閉機構69と負荷側熱交換器の間の配管とを、開閉機構
72を介して接続する冷媒配管である。
Embodiment 13 FIG. 16 to 18 are refrigerant circuit diagrams showing Embodiment 13 of the present invention. In the figure, 31
Is a compressor, 54 is a four-way valve, 32 is a heat source side heat exchanger, 41
Is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 53 is a refrigerant-refrigerant heat exchanger, 63 is a first heat storage heat exchanger, 73 is a third throttle device, and 34 is load-side heat exchange. And a low-pressure receiver 35, which is connected in sequence to form a main refrigerant circuit. 51 is a heat storage throttle device,
64 is a second heat storage heat exchanger, which is connected by a refrigerant pipe 111, and has one end connected to the upper part of the high-pressure receiver and the other end connected to the refrigerant pipe between the load side heat exchanger 34 and the four-way valve 54. . An opening / closing mechanism 6 is provided at one end of the first heat storage heat exchanger 56.
8, an open / close mechanism 69 is provided at the other end, and open / close mechanisms 65 and 66 are provided at one end of the second heat storage heat exchanger 64, and open / close mechanisms 70 and 71 are provided at the other end. 112 is an opening / closing mechanism 65
And a piping between the opening and closing mechanism 68 and the main throttle device 33 via an opening and closing mechanism 67. Reference numeral 113 denotes a refrigerant pipe that connects a pipe between the opening / closing mechanisms 70 and 71 and a pipe between the opening / closing mechanism 69 and the load-side heat exchanger via an opening / closing mechanism 72.

【0109】蓄冷運転、即ち、製氷を行う運転について
説明する。図16において、開閉機構65を閉じ、開閉
機構66,67,68,69,70,71及び72を開
き、圧縮機31を駆動する。圧縮機31より吐出された
高温高圧のガス冷媒は、熱源側熱交換器32にて凝縮
し、副絞り装置41にて若干絞られた後、高圧レシーバ
42に至る。高圧レシーバ42が液冷媒で満たされる
と、液冷媒は、配管111へと導かれ、冷媒−冷媒熱交
換器53を介して第三の絞り装置51により低圧まで絞
られる。この時、主絞り装置33は適宜開閉し、冷媒−
冷媒熱交換器53にて、冷媒配管110を流れる冷媒の
過冷却度を調節する。第三の絞り装置51により低圧ま
で絞られた低温の二相冷媒は、第一の蓄熱用熱交換器と
第二の蓄熱用熱交換器へと分流され、蓄熱槽57内の蓄
熱媒体56より熱を奪い、蓄熱媒体56は凍結させ、自
身は蒸発気化する。気化した冷媒は、四方弁54及び低
圧レシーバ35を介して圧縮機31へ戻る。また、蓄熱
運転については図17に示す。
The operation of cold storage, that is, the operation of making ice will be described. 16, the opening / closing mechanism 65 is closed, and the opening / closing mechanisms 66, 67, 68, 69, 70, 71, and 72 are opened, and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 is condensed in the heat-source-side heat exchanger 32 and is slightly throttled by the sub-throttle device 41 before reaching the high-pressure receiver 42. When the high-pressure receiver 42 is filled with the liquid refrigerant, the liquid refrigerant is guided to the pipe 111 and is throttled to a low pressure by the third throttle device 51 via the refrigerant-refrigerant heat exchanger 53. At this time, the main throttle device 33 opens and closes appropriately, and the refrigerant-
In the refrigerant heat exchanger 53, the degree of supercooling of the refrigerant flowing through the refrigerant pipe 110 is adjusted. The low-temperature two-phase refrigerant compressed to a low pressure by the third expansion device 51 is diverted to the first heat storage heat exchanger and the second heat storage heat exchanger, and from the heat storage medium 56 in the heat storage tank 57. The heat is taken away, the heat storage medium 56 is frozen, and the heat storage medium 56 itself evaporates. The vaporized refrigerant returns to the compressor 31 via the four-way valve 54 and the low-pressure receiver 35. FIG. 17 shows the heat storage operation.

【0110】冷房運転について説明する。図16に示す
如く、開閉機構65,66,67,70,71及び72
を閉じ、開閉機構68及び69を開き、圧縮機31を駆
動する。圧縮機31より吐出された冷媒は、四方弁54
を通って熱源側熱交換器32に至り、そこで凝縮液化
し、副絞り装置41にて若干絞られた後、高圧レシーバ
42に流入る。高圧レシーバ42より導出された液冷媒
は、第一の蓄熱用熱交換器63にて蓄熱媒体より熱を奪
い過冷却度を増大させ、第三の絞り装置73により、低
圧まで絞られ低温低圧の二相冷媒となり、負荷側熱交換
器34に至る。低温低圧の二相冷媒は、負荷側熱交換器
34にて周囲より熱を奪い冷房するとともに、自身は蒸
発気化し、四方弁54及び低圧レシーバ35を通って圧
縮機31へ戻る。また、暖房運転については図18に示
す。
The cooling operation will be described. As shown in FIG. 16, opening / closing mechanisms 65, 66, 67, 70, 71 and 72 are provided.
Is closed, the opening and closing mechanisms 68 and 69 are opened, and the compressor 31 is driven. The refrigerant discharged from the compressor 31 is supplied to the four-way valve 54.
After passing through the heat source side heat exchanger 32, the condensed liquid is condensed and liquefied. The liquid refrigerant derived from the high-pressure receiver 42 takes heat from the heat storage medium in the first heat storage heat exchanger 63 to increase the degree of supercooling, and is throttled to a low pressure by the third expansion device 73 to be cooled to a low temperature and low pressure. It becomes a two-phase refrigerant and reaches the load-side heat exchanger 34. The low-temperature low-pressure two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool it, evaporates itself, and returns to the compressor 31 through the four-way valve 54 and the low-pressure receiver 35. FIG. 18 shows the heating operation.

【0111】冷房運転時において、冷房負荷が軽い時に
は、図17の如く開閉機構65,66,70及び71を
開き、高圧レシーバ42より低沸点成分に富むガス冷媒
を、冷媒配管111へ導く。またこの時、主絞り装置3
3をきつく絞り、冷媒−冷媒熱交換器へ高沸点冷媒に富
む低温低圧の二相冷媒を導く。高圧レシーバ42より冷
媒配管111に導かれた低沸点成分に富むガス冷媒は冷
媒−冷媒熱交換器53にて放熱するとともに凝縮し、蓄
熱用絞り装置にて絞られる。冷媒配管111を流れる冷
媒は低沸点成分に富むため、蓄熱用絞り装置51にて絞
られた冷媒の温度は、負荷側熱交換器34の蒸発温度よ
りも低くすることができ、第二の蓄熱用熱交換器64に
おいて、周囲より熱を奪って蓄熱槽57内の蓄熱媒体5
6を凍結させ、自身は蒸発気化する。
In the cooling operation, when the cooling load is light, the opening / closing mechanisms 65, 66, 70 and 71 are opened as shown in FIG. 17, and the high-pressure receiver 42 guides the gas refrigerant rich in low-boiling components to the refrigerant pipe 111. At this time, the main aperture device 3
3 is narrowed tightly, and a low-temperature low-pressure two-phase refrigerant rich in a high-boiling-point refrigerant is guided to a refrigerant-refrigerant heat exchanger. The gas refrigerant rich in low-boiling components guided from the high-pressure receiver 42 to the refrigerant pipe 111 radiates heat in the refrigerant-refrigerant heat exchanger 53, condenses, and is condensed by the heat storage restrictor. Since the refrigerant flowing through the refrigerant pipe 111 is rich in low boiling point components, the temperature of the refrigerant throttled by the heat storage expansion device 51 can be lower than the evaporation temperature of the load-side heat exchanger 34, and the second heat storage The heat storage medium 5 in the heat storage tank 57 by removing heat from the surroundings.
6 freezes and evaporates itself.

【0112】この冷凍・空調装置は、高圧レシーバ42
にて、高沸点成分に富む液冷媒と低沸点成分に富むガス
冷媒とに分流し、高沸点成分に富む液冷媒を一旦絞って
低圧の気液二相冷媒とした後、低沸点成分に富むガス冷
媒と熱交換させ液化し、この低沸点成分に富む液冷媒を
絞って、低圧の気液二相状態とする。こうして、高沸点
成分に富む低圧の二相冷媒と、低沸点成分に富む低圧の
二相冷媒とを得ることによって、温度の異なる蒸発温度
を得るとともに、冷房負荷の軽い時には、蓄熱槽57に
熱エネルギを蓄え、かつ、蓄熱槽57に蓄えた蓄熱エネ
ルギによって、メイン回路を流れる冷媒の過冷却度を多
きくすることができる。
This refrigeration / air-conditioning apparatus is provided with a high-pressure receiver 42
In, the liquid refrigerant rich in the high boiling point component and the gas refrigerant rich in the low boiling point component are divided, and the liquid refrigerant rich in the high boiling point component is once squeezed into a low-pressure gas-liquid two-phase refrigerant, and then rich in the low boiling point component. The liquid refrigerant is heat-exchanged with the gas refrigerant to be liquefied, and the liquid refrigerant rich in low-boiling components is squeezed to form a low-pressure gas-liquid two-phase state. Thus, by obtaining a low-pressure two-phase refrigerant rich in high-boiling components and a low-pressure two-phase refrigerant rich in low-boiling components, evaporation temperatures having different temperatures are obtained, and when the cooling load is light, heat is stored in the heat storage tank 57. Energy can be stored, and the degree of supercooling of the refrigerant flowing through the main circuit can be increased by the heat storage energy stored in the heat storage tank 57.

【0113】上述の実施の形態12,13において、熱
交換器53には、低沸点成分を凝縮させる作用を持たせ
ている。この結果、負荷側熱交換器34と蓄熱用熱交換
器55の蒸発温度を変えて、蓄冷(製氷)しながらの空
調を可能にする。 (蓄冷の蒸発温度−5〜0℃、空調5〜10℃)このよ
うに例えば空調しながら、蓄冷(製氷)するような場合
が可能となる。又、低圧レシーバ35の効果は、低圧レ
シーバ35に液を溜めることにより、循環組成を低沸点
成分リッチとすることができる。つまり、冷媒循環量の
増大により能力が出る。このとき高圧レシーバ42は、
上記低圧レシーバ35の余剰冷媒量を加減し、かつ、気
液の分離を行なう。
In Embodiments 12 and 13 described above, the heat exchanger 53 has the function of condensing low-boiling components. As a result, the evaporation temperature of the load side heat exchanger 34 and the heat storage heat exchanger 55 is changed to enable air conditioning while storing (cooling) ice. (Evaporation temperature of cold storage −5 to 0 ° C., air conditioning 5 to 10 ° C.) Thus, for example, it is possible to perform cold storage (ice making) while air conditioning. Further, the effect of the low-pressure receiver 35 is that the circulating composition can be made rich in low-boiling components by storing the liquid in the low-pressure receiver 35. That is, the capacity is increased due to the increase in the refrigerant circulation amount. At this time, the high-pressure receiver 42
The surplus refrigerant amount of the low-pressure receiver 35 is adjusted, and gas-liquid separation is performed.

【0114】実施の形態14.以下、本発明の実施の形
態14を図19に基づいて説明する。図中、31は圧縮
機、40は四方弁、32は熱源側熱交換器、41は副絞
り装置、42は高圧レシーバ、33は主絞り装置、34
は負荷側熱交換器、35は低圧レシーバを示し、これら
を順次冷媒配管にて接続し冷媒のメイン回路をなす。7
9は中間圧レシーバを示し、中間圧レシーバ79の第三
の絞り装置80を介して冷媒配管114にて高圧レシー
バ42上部と接続される。75は第四の絞り装置、76
は開閉機構を示し、冷媒配管にて連結され、一端を中間
圧レシーバ79の上部と、他端を低圧レシーバ35の吸
入配管と接続する。77は低温熱源、78は高温熱源で
あり、かつ温度調節できる。冷媒の流れは図19に示
す。
Embodiment 14 FIG. Hereinafter, a fourteenth embodiment of the present invention will be described with reference to FIG. In the figure, 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 34
Denotes a load-side heat exchanger, and 35 denotes a low-pressure receiver, which are sequentially connected by a refrigerant pipe to form a refrigerant main circuit. 7
Reference numeral 9 denotes an intermediate-pressure receiver, which is connected to the upper part of the high-pressure receiver 42 through the third expansion device 80 of the intermediate-pressure receiver 79 and the refrigerant pipe 114. 75 is a fourth diaphragm device, 76
Denotes an opening / closing mechanism, which is connected by a refrigerant pipe, and has one end connected to the upper part of the intermediate pressure receiver 79 and the other end connected to the suction pipe of the low pressure receiver 35. 77 is a low-temperature heat source, 78 is a high-temperature heat source, and the temperature can be adjusted. FIG. 19 shows the flow of the refrigerant.

【0115】冷房運転について説明する。開閉機構76
を閉じ、圧縮機31を駆動する。圧縮機31より吐出さ
れた高温高圧のガス冷媒は、四方弁40を通って熱源側
熱交換器32に入る。熱源側熱交換器32で凝縮した冷
媒は、副絞り装置41にて若干絞られた後、高圧レシー
バ42に入る。高圧レシーバ42にて気液を分離し、液
冷媒は主絞り装置33にて低圧まで減圧され、低温の二
相冷媒となった冷媒は、負荷側熱交換器34にて周囲よ
り熱を奪い冷房するとともに、自身は蒸発気化し四方弁
40及び低圧レシーバ35を通って、圧縮機31に戻
る。
The cooling operation will be described. Opening / closing mechanism 76
Is closed, and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. At the same time, the vaporizer vaporizes and returns to the compressor 31 through the four-way valve 40 and the low-pressure receiver 35.

【0116】冷媒回路内を流れる冷媒の組成を変更する
場合には、開閉機構76を開け、高圧レシーバ42上部
より、高沸点成分に富むガス冷媒を冷媒配管114によ
り第三の絞り装置80を介して、中間圧レシーバ79へ
と導く。中間圧レシーバ79において、低温熱源にて所
定の温度に設定し、冷媒ガスを凝縮させる。この結果、
中間圧レシーバ79には、低沸点成分に富む液冷媒が貯
留されるとともに、未凝縮ガスは、冷媒配管115を通
って低圧レシーバ35吸入へ入る。よって、メイン回路
を循環する冷媒の組成を高沸点成分に富むものとするこ
とができる。
To change the composition of the refrigerant flowing in the refrigerant circuit, the opening / closing mechanism 76 is opened, and the gas refrigerant rich in the high boiling point component is supplied from the upper part of the high-pressure receiver 42 through the refrigerant pipe 114 through the third expansion device 80. To the intermediate pressure receiver 79. In the intermediate pressure receiver 79, a predetermined temperature is set by a low-temperature heat source to condense the refrigerant gas. As a result,
The intermediate-pressure receiver 79 stores a liquid refrigerant rich in low-boiling components, and the uncondensed gas enters the low-pressure receiver 35 through the refrigerant pipe 115. Therefore, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0117】このことを、混合成分の比率と温度の関係
図を用いて説明する。図20は混合成分の比率と温度の
関係図であり、縦軸に温度、横軸に冷媒の高沸点成分と
低沸点成分の比を取り、また、g1は高圧の飽和ガス、
L 1は高圧の液、g2は中間圧の飽和ガス、L 2は中間
圧の液の状態を示す。初め冷媒回路に、組成Aの冷媒が
充填されているとすると、高圧レシーバ42内の冷媒の
状態は、GH の組成を持つガス冷媒と、LH の組成を持
つ液冷媒とに分離する。更に、このGH の組成を持つガ
ス冷媒は中間圧レシーバ79内にて、LM の組成を持つ
液冷媒とに分離する。よって、中間圧レシーバ79にお
いて、充填した冷媒の組成よりも、低沸点成分に富む冷
媒を貯留することができる。
This will be described with reference to the relationship between the ratio of the mixed components and the temperature. FIG. 20 is a graph showing the relationship between the ratio of the mixed components and the temperature. The vertical axis represents the temperature, the horizontal axis represents the ratio between the high-boiling component and the low-boiling component, and g1 represents a high-pressure saturated gas.
L1 indicates a state of a high-pressure liquid, g2 indicates a state of a medium-pressure saturated gas, and L2 indicates a state of a medium-pressure liquid. Assuming that the refrigerant circuit is initially filled with the refrigerant having the composition A, the state of the refrigerant in the high-pressure receiver 42 is separated into a gas refrigerant having a composition of G H and a liquid refrigerant having a composition of L H. Further, gas refrigerant having a composition of this G H is at an intermediate pressure receiver within 79, is separated into a liquid refrigerant having the composition L M. Therefore, in the intermediate-pressure receiver 79, a refrigerant rich in components having a lower boiling point than the composition of the filled refrigerant can be stored.

【0118】また、メインの冷媒回路を流れる冷媒の成
分を、低沸点成分に富むものとするには、開閉機構76
を開き、高温熱源にて中間圧レシーバ79内部の冷媒を
蒸発させる。蒸発した後、開閉機構76を閉じると、高
沸点成分に富む余剰冷媒は、低圧レシーバに溜まり、よ
って、メイン回路を循環する冷媒の組成を、低沸点成分
に富むものとすることができる。
In order to make the refrigerant flowing in the main refrigerant circuit rich in low boiling point components, the opening and closing mechanism 76
Is opened, and the refrigerant inside the intermediate pressure receiver 79 is evaporated by the high-temperature heat source. When the opening / closing mechanism 76 is closed after the evaporation, the excess refrigerant rich in high-boiling components is accumulated in the low-pressure receiver, so that the composition of the refrigerant circulating in the main circuit can be rich in low-boiling components.

【0119】なお、本実施の形態の高温熱源78につい
ては、電気ヒータ、圧縮機31吐出ガス、高圧の冷媒液
があり、また、低温熱源77には、冷水、低温低圧の二
相冷媒を利用することができる。
The high-temperature heat source 78 of this embodiment includes an electric heater, a gas discharged from the compressor 31 and a high-pressure refrigerant liquid, and the low-temperature heat source 77 uses cold water and a low-temperature and low-pressure two-phase refrigerant. can do.

【0120】この冷凍・空調装置は、中間圧レシーバ7
9内の温度と圧力を制御することにより、中間圧力に溜
まる冷媒の組成を変化させ、冷媒回路内を循環する冷媒
の組成を変化させる。
This refrigeration / air-conditioning apparatus is provided with an intermediate pressure receiver 7.
By controlling the temperature and pressure in the refrigerant 9, the composition of the refrigerant accumulated at the intermediate pressure is changed, and the composition of the refrigerant circulating in the refrigerant circuit is changed.

【0121】実施の形態15.以下、本発明の実施の形
態15を図21に基づいて説明する。図中、31は圧縮
機、40は四方弁、32は熱源側熱交換器、41は副絞
り装置、83は高圧組成調整器、33は主絞り装置、3
4は負荷側熱交換器、35は低圧レシーバを示し、これ
らを順次冷媒配管にて接続し冷媒のメイン回路をなす。
84は中間圧組成調整器を示し、中間圧組成調整器84
は第三の絞り装置を介して冷媒配管117にて高圧上部
組成調整器と接続される。82は第三の絞り装置を示
し、冷媒配管118上に設置され、一端を中間圧組成調
整器84の上部と、他端を低圧レシーバ35の吸入配管
と接続する。116a,116bはそれぞれ、中間圧組
成調整器84及び、高圧組成調整器83上部に接続され
る低温熱源であり、温度は適宜調節できる。81は中間
圧組成調整器84に設置された高温熱源である。
Embodiment 15 FIG. Hereinafter, a fifteenth embodiment of the present invention will be described with reference to FIG. In the figure, 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 83 is a high-pressure composition adjuster, 33 is a main throttle device, 3
Reference numeral 4 denotes a load-side heat exchanger, and reference numeral 35 denotes a low-pressure receiver, which are sequentially connected by a refrigerant pipe to form a main circuit of the refrigerant.
Reference numeral 84 denotes an intermediate pressure composition adjuster.
Is connected to a high-pressure upper composition adjuster through a third expansion device via a refrigerant pipe 117. Reference numeral 82 denotes a third expansion device, which is installed on the refrigerant pipe 118, and has one end connected to the upper part of the intermediate-pressure composition regulator 84 and the other end connected to the suction pipe of the low-pressure receiver 35. Reference numerals 116a and 116b denote low-temperature heat sources connected to the upper portions of the intermediate-pressure composition regulator 84 and the high-pressure composition regulator 83, respectively, and the temperature can be appropriately adjusted. 81 is a high-temperature heat source installed in the intermediate-pressure composition adjuster 84.

【0122】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧組成調整
器83に入る。高圧組成調整器83にて気液を分離し、
液冷媒は主絞り装置33にて低圧まで減圧され、低温の
二相冷媒となった冷媒は、負荷側熱交換器34にて周囲
より熱を奪い冷房するとともに、自身は蒸発気化し四方
弁40及び低圧レシーバ35を通って、圧縮機31に戻
る。
The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat-source-side heat exchanger 32 enters the high-pressure composition adjuster 83 after being slightly throttled by the sub-throttle device 41. The gas-liquid is separated by the high-pressure composition adjuster 83,
The liquid refrigerant is decompressed to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 and cools, and also evaporates and vaporizes to form a four-way valve 40. And returns to the compressor 31 through the low-pressure receiver 35.

【0123】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧組成調整器83
に入る。高圧組成調整器83にて気液を分離し、液冷媒
は副絞り装置41にて低圧まで減圧され、低温の二相冷
媒となった冷媒は、熱源側熱交換器32にて周囲より熱
を奪い蒸発気化し四方弁40及び低圧レシーバを通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant dissipates heat to the surroundings in the load side heat exchanger 34 to heat it, condenses itself, and is slightly throttled by the main throttle device 33.
to go into. Gas-liquid is separated by the high-pressure composition controller 83, the liquid refrigerant is reduced in pressure to a low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant is cooled by the heat source side heat exchanger 32 from the surroundings. After being robbed and vaporized, it returns to the compressor 31 through the four-way valve 40 and the low-pressure receiver.

【0124】冷媒回路内を流れる冷媒の組成を変更する
場合には、開閉機構76を開け、高圧組成調整器83の
上部より、低沸点成分に富むガス冷媒が、冷媒配管11
7により中間圧組成調整器84へと流れる。この時、低
沸点成分に富むガス冷媒は、高圧組成調整器83の上部
に至るまでの間に、低温熱源116bと熱交換し、高沸
点成分に富む冷媒が凝縮液化し、高圧組成調整器83下
部へと落下し、高圧組成調整器83の上部にある程度精
留された低沸点成分に富むガス冷媒が残る。この低沸点
成分に富むガス冷媒が中間圧組成調整器84の下部へ導
かれ、更に、中間圧組成調整器84内部を上昇する際
に、低温熱源116aと熱交換し凝縮液化し、中間圧組
成調整器80下部に貯留される。未凝縮ガスは、第三の
絞り装置82及び開閉機構76を介して、低圧レシーバ
35の吸入側へと導かれる。この結果、中間圧レシーバ
79には、低沸点成分に富む液冷媒が貯留されるととも
に、メイン回路を循環する冷媒の組成を高沸点成分に富
むものとすることができる。
To change the composition of the refrigerant flowing in the refrigerant circuit, the opening / closing mechanism 76 is opened, and a gas refrigerant rich in low-boiling components is supplied from the upper part of the high-pressure composition controller 83 to the refrigerant pipe 11.
7 flows to the intermediate pressure composition regulator 84. At this time, the gas refrigerant rich in low-boiling components exchanges heat with the low-temperature heat source 116b before reaching the upper part of the high-pressure composition controller 83, and the refrigerant rich in high-boiling components is condensed and liquefied. The gas refrigerant falls to the lower part, and the gas refrigerant rich in low-boiling components, which has been rectified to some extent, remains in the upper part of the high-pressure composition controller 83. The gas refrigerant rich in the low boiling point component is guided to the lower part of the intermediate pressure composition regulator 84, and further, when ascending inside the intermediate pressure composition regulator 84, exchanges heat with the low temperature heat source 116a to condense and liquefy. It is stored in the lower part of the regulator 80. The uncondensed gas is guided to the suction side of the low-pressure receiver 35 via the third throttle device 82 and the opening / closing mechanism 76. As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0125】また、メインの冷媒回路を流れる冷媒の成
分を、低沸点成分に富むものとするには、開閉機構76
を開き、高温熱源81にて中間圧組成調整器内部の冷媒
を蒸発させる。蒸発した後、開閉機構76を閉じると、
高沸点成分に富む余剰冷媒は、低圧レシーバに溜まり、
よって、メイン回路を循環する冷媒の組成を、低沸点成
分に富むものとすることができる。
In order to make the refrigerant flowing through the main refrigerant circuit rich in low boiling point components, the opening and closing mechanism 76
Is opened, and the refrigerant inside the intermediate-pressure composition controller is evaporated by the high-temperature heat source 81. After the evaporation, when the opening / closing mechanism 76 is closed,
Excess refrigerant rich in high-boiling components accumulates in the low-pressure receiver,
Therefore, the composition of the refrigerant circulating in the main circuit can be rich in low-boiling components.

【0126】なお、本実施の形態の高温熱源81につい
ては、電気ヒータ、圧縮機吐出ガス、高圧の冷媒液があ
り、また、低温熱源116a,116bには、冷水、低
温低圧の二相冷媒を利用することができる。
The high-temperature heat source 81 of this embodiment includes an electric heater, a compressor discharge gas, and a high-pressure refrigerant liquid, and the low-temperature heat sources 116a and 116b use cold water and low-temperature and low-pressure two-phase refrigerant. Can be used.

【0127】この冷凍・空調装置は、高圧レシーバ42
において、予め高沸点冷媒に富む液冷媒と低沸点冷媒に
富むガス冷媒とに分流し、中間圧組成調整器内の精留用
熱源機にて精留し、高沸点冷媒または低沸点冷媒を選択
して中間圧組成調整器内にため、メイン回路を流れる冷
媒の組成を調整することができる。
This refrigeration / air-conditioning apparatus is provided with a high-pressure receiver 42
In, the liquid refrigerant rich in high-boiling point refrigerant and the gas refrigerant rich in low-boiling point refrigerant are divided in advance, rectified by the rectifying heat source unit in the intermediate pressure composition regulator, and a high boiling point refrigerant or a low boiling point refrigerant is selected. As a result, the composition of the refrigerant flowing through the main circuit can be adjusted.

【0128】図19,21において、低圧レシーバ35
は高沸点成分冷媒を貯留する。さらにこの低圧レシーバ
35は負荷が重い時、液をためる。又、高圧レシーバ4
2は気液分離を行なう。中間圧レシーバ79は低沸点成
分冷媒を貯留するとともに、負荷が軽い時、液をため
る。図20の相図に見られるように、高圧レシーバ42
内の冷媒ガス及び液の組成は異なり、冷媒ガスの組成1
2、低沸点成分リッチになる。よって、この低沸点成分
リッチのガスを中間圧レシーバ79に取込み凝縮させる
ことにより、組成調整が可能となる。図19,21のよ
うに、中間圧レシーバ79を設けることによって、ある
組成の冷媒を確実に中間圧レシーバ79内に閉じ込める
ことができるので、組成調整の後に過渡現象(デフロス
ト等)が生じ、冷媒回路内の冷媒量分布に変化が生じて
も、組成が変化しにくくなる。なお、低温熱源を設けた
理由は、1.凝縮のスピードを上げる、2.凝縮しにく
い低沸点成分まで凝縮させる、ことにある。
19 and 21, the low-voltage receiver 35
Stores a high-boiling component refrigerant. Further, the low-pressure receiver 35 stores liquid when the load is heavy. Also, high-pressure receiver 4
2 performs gas-liquid separation. The intermediate-pressure receiver 79 stores the low-boiling-point component refrigerant and stores the liquid when the load is light. As can be seen in the phase diagram of FIG.
The composition of the refrigerant gas and the liquid in the chamber is different, and the composition of the refrigerant gas 1
2. Low boiling point component becomes rich. Therefore, the composition can be adjusted by taking the low-boiling-point-rich gas into the intermediate-pressure receiver 79 and condensing it. As shown in FIGS. 19 and 21, by providing the intermediate pressure receiver 79, a refrigerant having a certain composition can be reliably confined in the intermediate pressure receiver 79, so that a transient phenomenon (such as defrost) occurs after the composition adjustment, Even if a change occurs in the refrigerant amount distribution in the circuit, the composition is unlikely to change. The reason for providing the low-temperature heat source is as follows. 1. Increase the speed of condensation It is to condense even low-boiling components that are difficult to condense.

【0129】実施の形態16.以下、本発明の実施の形
態16を図22に基づいて説明する。図中、31は圧縮
機、40は四方弁、32は熱源側熱交換器、41は副絞
り装置、42は高圧レシーバ、33は主絞り装置、34
は負荷側熱交換器、35は低圧レシーバを示し、これら
を順次冷媒配管にて接続し冷媒のメイン回路をなす。8
4は中間圧組成調整器を示し、中間圧組成調整器84の
上部にて、開閉機構85を介して冷媒配管119にて高
圧レシーバ42上部と接続され、開閉機構86を介して
冷媒配管120にて高圧レシーバ42下部と中間圧組成
調整器84の下部にて接続される。82は第三の絞り装
置を示し、冷媒配管121上に設置され、一端を中間圧
組成調整器84の上部と、他端を低圧レシーバ35の吸
入配管と接続する。116aは中間圧組成調整器84上
部に接続される低温熱源で、81は中間圧組成調整器8
4に設置された熱源であり、温度は適宜調節できる。
Embodiment 16 FIG. Hereinafter, a sixteenth embodiment of the present invention will be described with reference to FIG. In the figure, 31 is a compressor, 40 is a four-way valve, 32 is a heat source side heat exchanger, 41 is a sub-throttle device, 42 is a high-pressure receiver, 33 is a main throttle device, 34
Denotes a load-side heat exchanger, and 35 denotes a low-pressure receiver, which are sequentially connected by a refrigerant pipe to form a refrigerant main circuit. 8
Reference numeral 4 denotes an intermediate pressure composition adjuster. The intermediate pressure composition adjuster 84 is connected to the upper part of the high-pressure receiver 42 via an opening / closing mechanism 85 via an opening / closing mechanism 85 and connected to the refrigerant pipe 120 via an opening / closing mechanism 86. The lower part of the high-pressure receiver 42 is connected to the lower part of the intermediate pressure composition adjuster 84. Reference numeral 82 denotes a third expansion device, which is installed on the refrigerant pipe 121, and has one end connected to the upper part of the intermediate-pressure composition regulator 84 and the other end connected to the suction pipe of the low-pressure receiver 35. 116a is a low-temperature heat source connected to the upper part of the intermediate pressure composition adjuster 84, and 81 is a low temperature heat source
4, and the temperature can be adjusted appropriately.

【0130】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0131】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
Next, the heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0132】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富むガス冷媒を中間
圧組成調整器84に貯留する方法について説明する。開
閉機構76及び86を開け、高圧レシーバ42の上部よ
り、低沸点成分に富むガス冷媒が、冷媒配管120を流
れ中間圧組成調整器84の下部へと導かれる。中間圧組
成調整器84内部を上昇する際に、低温熱源116aと
熱交換し凝縮液化し、中間圧組成調整器84下部に貯留
される。未凝縮ガスは、第三の絞り装置82及び開閉機
構76を介して、低圧レシーバ35の吸入側へと導かれ
る。この結果、中間圧レシーバ79には、低沸点成分に
富む液冷媒が貯留されるとともに、メイン回路を循環す
る冷媒の組成を高沸点成分に富むものとすることができ
る。
In the case of changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing a gas refrigerant rich in low-boiling components in the intermediate-pressure composition regulator 84 will be described. The opening / closing mechanisms 76 and 86 are opened, and a gas refrigerant rich in low-boiling components flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 120 to the lower part of the intermediate-pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is guided to the suction side of the low-pressure receiver 35 via the third throttle device 82 and the opening / closing mechanism 76. As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0133】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method of storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0134】なお、本実施の形態の高温熱源81につい
ては、電気ヒータ、圧縮機吐出ガス、高圧の冷媒液があ
り、また、低温熱源116a,116bには冷水、低温
低圧の二相冷媒を利用することができる。
The high-temperature heat source 81 of this embodiment includes an electric heater, a compressor discharge gas, and a high-pressure refrigerant liquid, and the low-temperature heat sources 116a and 116b use cold water and low-temperature and low-pressure two-phase refrigerant. can do.

【0135】実施の形態17.以下、本発明の実施の形
態17を図23に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34の中央部の温度を検知
する温度センサ200と、負荷側熱交換器34と主絞り
装置33の間の配管温度をはかる温度センサ201と、
負荷側熱交換器34と四方弁40の間の配管温度をはか
る温度センサ202と、温度センサからの情報により主
絞り装置33及び副絞り装置41の開度を演算し、開度
を調節する制御器203を付け加える。
Embodiment 17 FIG. Hereinafter, a seventeenth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor 200 for detecting the temperature at the center of the load side heat exchanger 34; A temperature sensor 201 for measuring a pipe temperature between the exchanger 34 and the main throttle device 33,
A temperature sensor 202 for measuring a pipe temperature between the load-side heat exchanger 34 and the four-way valve 40, and control for calculating the opening of the main throttle device 33 and the sub-throttle device 41 based on information from the temperature sensor and adjusting the opening. The vessel 203 is added.

【0136】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
ここで、主絞り装置33の開度は温度センサ201と2
02の差が一定となるように制御する。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.
Here, the opening degree of the main throttle device 33 is determined by the temperature sensors 201 and 2.
02 is controlled so as to be constant.

【0137】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。ここで、副絞り装置41の開度
は温度センサ200と201の差が一定となるように制
御する。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31. Here, the opening degree of the sub-throttle device 41 is controlled so that the difference between the temperature sensors 200 and 201 is constant.

【0138】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case where the composition of the refrigerant flowing in the refrigerant circuit is changed, first, a method of storing a refrigerant rich in low-boiling components in the intermediate-pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0139】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0140】なお、本実施の形態の高温熱源81につい
ては、電気ヒータ、圧縮機吐出ガス、高圧の冷媒液があ
り、また、低温熱源116a,116bには冷水、低温
低圧の二相冷媒を利用することができる。
The high-temperature heat source 81 of this embodiment includes an electric heater, a compressor discharge gas, and a high-pressure refrigerant liquid, and the low-temperature heat sources 116a and 116b use cold water and low-temperature and low-pressure two-phase refrigerant. can do.

【0141】実施の形態18.以下、本発明の実施の形
態18を図24に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34の中央部の温度を検知
する温度センサ200と、負荷側熱交換器34と主絞り
装置33の間の配管温度をはかる温度センサ201と、
負荷側熱交換器34と四方弁40の間の配管温度をはか
る温度センサ202と、高圧レシーバ下部より、飽和温
度検知用絞り装置87を介して低圧レシーバ35に至る
冷媒回路122と、飽和温度検知用絞り装置87と低圧
レシーバ35の間の配管の温度を検知する温度センサ2
03と、温度センサからの情報により主絞り装置33及
び副絞り装置41の開度を演算し、開度を調節する制御
器203を付け加える。
Embodiment 18 FIG. Hereinafter, an eighteenth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor 200 for detecting the temperature at the center of the load side heat exchanger 34; A temperature sensor 201 for measuring a pipe temperature between the exchanger 34 and the main throttle device 33,
A temperature sensor 202 for measuring a pipe temperature between the load-side heat exchanger 34 and the four-way valve 40; a refrigerant circuit 122 from the lower part of the high-pressure receiver to the low-pressure receiver 35 through the saturation temperature detecting throttle device 87; Temperature sensor 2 for detecting the temperature of the pipe between the expansion device 87 and the low-pressure receiver 35
03 and the information from the temperature sensor, the opening of the main throttle device 33 and the sub-throttle device 41 is calculated, and a controller 203 for adjusting the opening is added.

【0142】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
ここで、主絞り装置33の開度は温度センサ202と2
03の差が一定となるように制御する。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.
Here, the opening degree of the main throttle device 33 is determined by the temperature sensors 202 and 2.
03 is controlled to be constant.

【0143】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。ここで、副絞り装置41の開度
は温度センサ200と201の差が一定となるように制
御する。
Next, the heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31. Here, the opening degree of the sub-throttle device 41 is controlled so that the difference between the temperature sensors 200 and 201 is constant.

【0144】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case where the composition of the refrigerant flowing in the refrigerant circuit is changed, first, a method of storing a refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0145】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method of storing a refrigerant rich in high-boiling components in the intermediate-pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0146】なお、本実施の形態の高温熱源81につい
ては、電気ヒータ、圧縮機吐出ガス、高圧の冷媒液があ
り、また、低温熱源116a,116bには冷水、低温
低圧の二相冷媒を利用することができる。
The high-temperature heat source 81 of this embodiment includes an electric heater, a compressor discharge gas, and a high-pressure refrigerant liquid, and the low-temperature heat sources 116a and 116b use cold water and low-temperature and low-pressure two-phase refrigerant. can do.

【0147】実施の形態19.以下、本発明の実施の形
態19を図25に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度をはかる温度センサ201と、負荷側熱交換
器34と四方弁40の間の配管温度及び圧力をはかる温
度センサ202と圧力センサ204、低圧レシーバ35
内部の余剰冷媒量を検知する手段216と、上記余剰冷
媒量の情報より冷媒回路内を循環する冷媒の組成を演算
し、かつ、圧力センサ、温度センサ及び上記循環組成の
情報から主絞り装置33及び副絞り装置41の開度を演
算し、開度を調節する制御器203を付け加える。
Embodiment 19 FIG. Hereinafter, a nineteenth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor 201 for measuring a pipe temperature between the load side heat exchanger 34 and the main expansion device 33 is provided. , A temperature sensor 202 and a pressure sensor 204 for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the four-way valve 40, and a low-pressure receiver 35
Means 216 for detecting the amount of surplus refrigerant inside, and calculating the composition of the refrigerant circulating in the refrigerant circuit from the information on the amount of surplus refrigerant, and the main throttle device 33 from the information on the pressure sensor, the temperature sensor and the circulating composition. And a controller 203 for calculating the opening of the sub-throttle device 41 and adjusting the opening is added.

【0148】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0149】ここで、主絞り装置33の開度は次のよう
に制御する。まず、低圧レシーバ35内の液面の検知に
より、低圧レシーバ35内に発生している余剰冷媒量を
認識し、余剰冷媒量から冷媒回路内を流れる冷媒の組成
(以下、循環組成と言う)を予測する。予測した循環組
成より飽和温度と圧力の関係を導き出す。この結果、圧
力センサ204より導き出される蒸発温度と温度センサ
202より測定された温度の差が一定となるように、主
絞り装置33の開度を決定する。
The opening of the main throttle device 33 is controlled as follows. First, by detecting the liquid level in the low-pressure receiver 35, the amount of surplus refrigerant generated in the low-pressure receiver 35 is recognized, and the composition of the refrigerant flowing in the refrigerant circuit (hereinafter, referred to as circulation composition) is determined based on the surplus refrigerant amount. Predict. The relationship between saturation temperature and pressure is derived from the predicted circulation composition. As a result, the opening degree of the main throttle device 33 is determined so that the difference between the evaporation temperature derived from the pressure sensor 204 and the temperature measured by the temperature sensor 202 is constant.

【0150】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバを通って、圧
縮機31に戻る。ここで、副絞り装置41の開度は温度
センサ200と201の差が一定となるように制御す
る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The gas returns to the compressor 31 through the four-way valve 40 and the low-pressure receiver. Here, the opening degree of the sub-throttle device 41 is controlled so that the difference between the temperature sensors 200 and 201 is constant.

【0151】ここで、主絞り装置33の開度は次のよう
に制御する。まず、低圧レシーバ35内の液面の検知に
より、低圧レシーバ内に発生している余剰冷媒量を認識
し、余剰冷媒量から循環組成を予測する。予測した循環
組成より飽和温度と圧力の関係を導き出す。この結果、
圧力センサ204より導き出される凝縮温度と温度セン
サ201より測定された温度の差が一定となるように、
副絞り装置41の開度を決定する。
The opening of the main throttle device 33 is controlled as follows. First, by detecting the liquid level in the low-pressure receiver 35, the amount of excess refrigerant generated in the low-pressure receiver is recognized, and the circulation composition is predicted from the amount of excess refrigerant. The relationship between saturation temperature and pressure is derived from the predicted circulation composition. As a result,
So that the difference between the condensation temperature derived from the pressure sensor 204 and the temperature measured by the temperature sensor 201 is constant.
The opening of the sub-throttle device 41 is determined.

【0152】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case where the composition of the refrigerant flowing in the refrigerant circuit is changed, first, a method of storing a refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0153】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0154】なお、本実施の形態の高温熱源81につい
ては、電気ヒータ、圧縮機吐出ガス、高圧の冷媒液があ
り、また、低温熱源116a,116bには冷水、低温
低圧の二相冷媒を利用することができる。また、上記に
おいて、低圧レシーバ35内の余剰冷媒を検知する方法
に関しては、例えば、冷房と暖房で必要となる冷媒量の
さより予測することも可能である。
The high-temperature heat source 81 of this embodiment includes an electric heater, a compressor discharge gas, and a high-pressure refrigerant liquid, and the low-temperature heat sources 116a and 116b use cold water and low-temperature and low-pressure two-phase refrigerant. can do. In the above description, the method of detecting the surplus refrigerant in the low-pressure receiver 35 can be predicted, for example, based on the amount of refrigerant required for cooling and heating.

【0155】実施の形態20.以下、本発明の実施の形
態20を図26に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、高圧レシーバ
42と主絞り装置33の間の配管温度及び圧力をはかる
温度センサ205及び圧力センサ206と、上記圧力と
温度の情報より冷媒回路内を循環する冷媒の組成を演算
し、かつ、圧力センサ、温度センサ及び上記循環組成の
情報から主絞り装置33及び副絞り装置41の開度を演
算し、開度を調節する制御器203を付け加える。
Embodiment 20 FIG. Hereinafter, a twentieth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40; a temperature sensor 205 for measuring a pipe temperature and pressure between the high-pressure receiver 42 and the main throttle device 33; The composition of the refrigerant circulating in the refrigerant circuit is calculated from the pressure sensor 206 and the information on the pressure and the temperature, and the opening of the main throttle device 33 and the sub-throttle device 41 is calculated from the pressure sensor, the temperature sensor and the information on the circulating composition. A controller 203 for calculating the degree and adjusting the opening is added.

【0156】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0157】ここで、主絞り装置33の開度は次のよう
に制御する。まず、循環組成を仮定し、この循環組成を
使って、温度センサ201及び205と、圧力センサ2
04及び206より、主絞り装置の前後における冷媒の
エンタルピを演算する。このエンタルピが等しくなるま
で循環組成の仮定を繰り返し、循環組成を決定する。次
に、循環組成における冷媒の飽和温度と飽和圧力の関係
を認知し、圧力センサ204の測定値から予測される蒸
発温度と、温度センサ202の測定値の差が一定となる
ように、主絞り装置33の開度を制御する。
Here, the opening of the main throttle device 33 is controlled as follows. First, a circulation composition is assumed, and the temperature sensors 201 and 205 and the pressure sensor 2 are used by using the circulation composition.
The enthalpy of the refrigerant before and after the main throttle device is calculated from 04 and 206. The assumption of the circulation composition is repeated until the enthalpies become equal to determine the circulation composition. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening of the device 33 is controlled.

【0158】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0159】ここで、副絞り装置41の開度は次のよう
に制御する。まず、循環組成を仮定し、この循環組成を
使って、温度センサ201及び202と、圧力センサ2
04及び206より、主絞り装置の前後における冷媒の
エンタルピを演算する。このエンタルピが等しくなるま
で循環組成の仮定を繰り返し、循環組成を決定する。次
に、循環組成における冷媒の飽和温度と飽和圧力の関係
を認知し、圧力センサ204の測定値から予測される凝
縮温度と、温度センサ201の測定値の差が一定となる
ように、副絞り装置41の開度を制御する。
Here, the opening of the sub-throttle device 41 is controlled as follows. First, a circulation composition is assumed, and using this circulation composition, the temperature sensors 201 and 202 and the pressure sensor 2 are used.
The enthalpy of the refrigerant before and after the main throttle device is calculated from 04 and 206. The assumption of the circulation composition is repeated until the enthalpies become equal to determine the circulation composition. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the sub-throttler is set so that the difference between the condensation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 201 is constant. The opening of the device 41 is controlled.

【0160】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case of changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing the refrigerant having a low boiling point component in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0161】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in high-boiling components in the intermediate-pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0162】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled.

【0163】実施の形態21.以下、本発明の実施の形
態21を図27に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、高圧レシーバ
42と主絞り装置33の間の配管温度及び圧力をはかる
温度センサ205及び圧力センサ206と、上記圧力と
温度の情報より冷媒回路内を循環する冷媒の組成を演算
し、かつ、圧力センサ、温度センサ及び上記循環組成の
情報から主絞り装置33及び副絞り装置41の開度を演
算し、開度を調節する制御器203を付け加える。
Embodiment 21 FIG. Hereinafter, the twenty-first embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40; a temperature sensor 205 for measuring a pipe temperature and pressure between the high-pressure receiver 42 and the main throttle device 33; The composition of the refrigerant circulating in the refrigerant circuit is calculated from the pressure sensor 206 and the information on the pressure and the temperature, and the opening of the main throttle device 33 and the sub-throttle device 41 is calculated from the pressure sensor, the temperature sensor and the information on the circulating composition. A controller 203 for calculating the degree and adjusting the opening is added.

【0164】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
[0164] The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0165】ここで、主絞り装置33の開度は次のよう
に制御する。まず、主絞り装置33と負荷側熱交換器3
4の間の冷媒の乾き度を0.2と仮定する。温度センサ
201及び圧力センサ204とにより、循環組成を推定
する。次に、循環組成における冷媒の飽和温度と飽和圧
力の関係を認知し、圧力センサ204の測定値から予測
される蒸発温度と、温度センサ202の測定値の差が一
定となるように、主絞り装置33の開度を制御する。
The opening of the main throttle device 33 is controlled as follows. First, the main throttle device 33 and the load side heat exchanger 3
Suppose the dryness of the refrigerant between 4 is 0.2. The circulation composition is estimated by the temperature sensor 201 and the pressure sensor 204. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening of the device 33 is controlled.

【0166】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0167】ここで、副絞り装置41の開度は次のよう
に制御する。まず、循環組成を仮定し、この循環組成を
使って、温度センサ201及び202と、圧力センサ2
04及び206より、主絞り装置の前後における冷媒の
エンタルピを演算する。このエンタルピが等しくなるま
で循環組成の仮定を繰り返し、循環組成を決定する。次
に、循環組成における冷媒の飽和温度と飽和圧力の関係
を認知し、圧力センサ204の測定値から予測される凝
縮温度と、温度センサ201の測定値の差が一定となる
ように、副絞り装置41の開度を制御する。
Here, the opening of the sub-throttle device 41 is controlled as follows. First, a circulation composition is assumed, and using this circulation composition, the temperature sensors 201 and 202 and the pressure sensor 2 are used.
The enthalpy of the refrigerant before and after the main throttle device is calculated from 04 and 206. The assumption of the circulation composition is repeated until the enthalpies become equal to determine the circulation composition. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the sub-throttler is set so that the difference between the condensation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 201 is constant. The opening of the device 41 is controlled.

【0168】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
When the composition of the refrigerant flowing in the refrigerant circuit is changed, first, a method of storing the refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0169】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0170】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled.

【0171】実施の形態22.以下、本発明の実施の形
態22を図28に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、高圧レシーバ
42と主絞り装置33の間の配管温度及び圧力をはかる
温度センサ205及び圧力センサ206と、上記圧力と
温度の情報より冷媒回路内を循環する冷媒の組成を演算
し、かつ、圧力センサ、温度センサ及び上記循環組成の
情報から主絞り装置33及び副絞り装置41の開度を演
算し、開度を調節する制御器203を付け加える。
Embodiment 22 FIG. Hereinafter, a twenty-second embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40; a temperature sensor 205 for measuring a pipe temperature and pressure between the high-pressure receiver 42 and the main throttle device 33; The composition of the refrigerant circulating in the refrigerant circuit is calculated from the pressure sensor 206 and the information on the pressure and the temperature, and the opening of the main throttle device 33 and the sub-throttle device 41 is calculated from the pressure sensor, the temperature sensor and the information on the circulating composition. A controller 203 for calculating the degree and adjusting the opening is added.

【0172】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
[0172] The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0173】ここで、主絞り装置33の開度は次のよう
に制御する。まず、主絞り装置33と負荷側熱交換器3
4の間の冷媒の乾き度を0.2と仮定する。温度センサ
201及び圧力センサ204とにより、循環組成を推定
する。次に、循環組成における冷媒の飽和温度と飽和圧
力の関係を認知し、圧力センサ204の測定値から予測
される蒸発温度と、温度センサ202の測定値の差が一
定となるように、主絞り装置33の開度を制御する。
Here, the opening of the main throttle device 33 is controlled as follows. First, the main throttle device 33 and the load side heat exchanger 3
Suppose the dryness of the refrigerant between 4 is 0.2. The circulation composition is estimated by the temperature sensor 201 and the pressure sensor 204. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening of the device 33 is controlled.

【0174】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0175】ここで、主絞り装置33の開度は次のよう
に制御する。まず、主絞り装置33と高圧レシーバ42
の間の冷媒の乾き度を0と仮定する。温度センサ205
及び圧力センサ206とにより、循環組成を推定する。
次に、循環組成における冷媒の飽和温度と飽和圧力の関
係を認知し、圧力センサ204の測定値から予測される
蒸発温度と、温度センサ201の測定値の差が一定とな
るように、主絞り装置33の開度を制御する。
Here, the opening of the main throttle device 33 is controlled as follows. First, the main diaphragm device 33 and the high-pressure receiver 42
It is assumed that the dryness of the refrigerant during the period is zero. Temperature sensor 205
And the pressure sensor 206 to estimate the circulation composition.
Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 201 is constant. The opening of the device 33 is controlled.

【0176】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case of changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing the refrigerant having a low boiling point component in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0177】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method of storing a refrigerant rich in a high boiling point component in the intermediate pressure composition regulator 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0178】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled.

【0179】実施の形態23.以下、本発明の実施の形
態23を図29に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、低圧レシーバ
35の吸入側に温度センサ207及び圧力センサ208
と、上記圧力と温度の情報より冷媒回路内を循環する冷
媒の組成を演算し、かつ、圧力センサ、温度センサ及び
上記循環組成の情報から主絞り装置33及び副絞り装置
41の開度を演算し、開度を調節する制御器203を付
け加える。
Embodiment 23 FIG. Hereinafter, a twenty-third embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40; and a temperature sensor 207 and a pressure sensor 208 on the suction side of the low-pressure receiver 35.
And the composition of the refrigerant circulating in the refrigerant circuit is calculated from the information on the pressure and the temperature, and the opening degree of the main throttle device 33 and the sub-throttle device 41 is calculated from the information of the pressure sensor, the temperature sensor and the circulating composition. Then, a controller 203 for adjusting the opening is added.

【0180】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0181】ここで、主絞り装置33の開度は次のよう
に制御する。まず、低圧レシーバ35吸入において、冷
媒の乾き度を0.9〜1.0の範囲で仮定する。温度セ
ンサ207及び圧力センサ208とにより、循環組成を
推定する。次に、循環組成における冷媒の飽和温度と飽
和圧力の関係を認知し、圧力センサ204の測定値から
予測される蒸発温度と、温度センサ202の測定値の差
が一定となるように、主絞り装置33の開度を制御す
る。
Here, the opening of the main throttle device 33 is controlled as follows. First, it is assumed that the dryness of the refrigerant in the suction of the low-pressure receiver 35 is in the range of 0.9 to 1.0. The circulation composition is estimated by the temperature sensor 207 and the pressure sensor 208. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening of the device 33 is controlled.

【0182】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0183】ここで、副絞り装置41の開度は次のよう
に制御する。まず、低圧レシーバ35吸入において、冷
媒の乾き度を0.9〜1.0の範囲で仮定する。次に、
循環組成における冷媒の飽和温度と飽和圧力の関係を認
知し、圧力センサ204の測定値から予測される凝縮温
度と、温度センサ201の測定値の差が一定となるよう
に、副絞り装置41の開度を制御する。
Here, the opening degree of the sub-throttle device 41 is controlled as follows. First, it is assumed that the dryness of the refrigerant in the suction of the low-pressure receiver 35 is in the range of 0.9 to 1.0. next,
Recognizing the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition, the condensing temperature predicted from the measurement value of the pressure sensor 204, and the auxiliary throttle device 41 Control the opening.

【0184】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing a refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0185】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method of storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0186】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the method for estimating the circulating composition described above, and the above-described composition adjustment is performed depending on the magnitude of the load, and the time of the composition adjustment is controlled.

【0187】実施の形態24.以下、本発明の実施の形
態24を図30に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、高圧レシーバ
42内部冷媒の飽和温度及び圧力を検知する温度センサ
209及び圧力センサ210と、上記圧力と温度の情報
より冷媒回路内を循環する冷媒の組成を演算し、かつ、
圧力センサ、温度センサ及び上記循環組成の情報から主
絞り装置33及び副絞り装置41の開度を演算し、開度
を調節する制御器203を付け加える。
Embodiment 24 FIG. Embodiment 24 of the present invention will be described below with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40; a temperature sensor 209 and a pressure sensor 210 for detecting the saturation temperature and pressure of the refrigerant inside the high-pressure receiver 42; Calculate the composition of the refrigerant circulating in the refrigerant circuit from the pressure and temperature information, and
An opening of the main throttle device 33 and the sub-throttle device 41 is calculated from the information of the pressure sensor, the temperature sensor and the circulating composition, and a controller 203 for adjusting the opening is added.

【0188】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0189】ここで、主絞り装置33の開度は次のよう
に制御する。まず、高圧レシーバ42内部には冷媒の液
面が存在し、飽和状態であるため、温度センサ209及
び圧力センサ210とにより、循環組成を推定すること
が可能となる。次に、予測した循環組成における冷媒の
飽和温度と飽和圧力の関係を認知し、圧力センサ204
の測定値から予測される蒸発温度と、温度センサ202
の測定値の差が一定となるように、主絞り装置33の開
度を制御する。
Here, the opening of the main throttle device 33 is controlled as follows. First, since the liquid level of the refrigerant exists inside the high-pressure receiver 42 and is in a saturated state, the circulation composition can be estimated by the temperature sensor 209 and the pressure sensor 210. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the predicted circulation composition is recognized, and the pressure sensor 204
Of the evaporation temperature predicted from the measured value of
The opening degree of the main throttle device 33 is controlled so that the difference between the measured values of the constants is constant.

【0190】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0191】ここで、副絞り装置41の開度は次のよう
に制御する。まず、高圧レシーバ42内部には冷媒の液
面が存在し、飽和状態であるため、温度センサ209及
び圧力センサ210とにより、循環組成を推定すること
が可能となる。次に、予測した循環組成における冷媒の
飽和温度と飽和圧力の関係を認知し、圧力センサ204
の測定値から予測される蒸発温度と、温度センサ201
の測定値の差が一定となるように、主絞り装置33の開
度を制御する。
Here, the opening of the sub-throttle device 41 is controlled as follows. First, since the liquid level of the refrigerant exists inside the high-pressure receiver 42 and is in a saturated state, the circulation composition can be estimated by the temperature sensor 209 and the pressure sensor 210. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the predicted circulation composition is recognized, and the pressure sensor 204
Evaporation temperature predicted from the measured value of
The opening degree of the main throttle device 33 is controlled so that the difference between the measured values of the constants is constant.

【0192】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing a refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0193】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in a high boiling point component in the intermediate pressure composition regulator 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4 When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates, and rises as a gas refrigerant rich in low boiling point components.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0194】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。また、
ここでは、高圧レシーバ42内での圧力と温度の測定に
より、循環組成を予測する方法を述べたが、低圧レシー
バ35内での圧力と温度の測定により、循環組成を予測
する方法も本実施の形態に含む。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled. Also,
Here, the method of predicting the circulation composition by measuring the pressure and the temperature in the high-pressure receiver 42 has been described. However, the method of predicting the circulation composition by measuring the pressure and the temperature in the low-pressure receiver 35 is also described in the present embodiment. Including in the form.

【0195】実施の形態25.以下、本発明の実施の形
態25を図31に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、圧縮機31吐
出側より分岐し、第三の絞り装置90及び冷媒熱交換器
92を介して低圧レシーバ35吸入側と接続する冷媒配
管123と、冷媒配管123において第三の絞り装置9
0と低圧レシーバ35吸入の間にて、配管温度をはかる
温度センサ211と、圧縮機吐出圧力を計測する圧力セ
ンサ212と、上記圧力と温度の情報より冷媒回路内を
循環する冷媒の組成を演算し、かつ、圧力センサ、温度
センサ及び上記循環組成の情報から主絞り装置33及び
副絞り装置41の開度を演算し、開度を調節する制御器
203を付け加える。
Embodiment 25 FIG. Hereinafter, a twenty-fifth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201, a pressure sensor 204, a temperature sensor 202 for measuring a pipe temperature between the load side heat exchanger 34 and the four-way valve 40, a branch from the compressor 31 discharge side, a third expansion device 90 and a refrigerant heat exchanger 92. Refrigerant pipe 123 connected to the suction side of the low-pressure receiver 35 via the refrigerant pipe 123;
Between 0 and the suction of the low-pressure receiver 35, a temperature sensor 211 for measuring the pipe temperature, a pressure sensor 212 for measuring the compressor discharge pressure, and the composition of the refrigerant circulating in the refrigerant circuit is calculated from the pressure and temperature information. In addition, a controller 203 for calculating the opening of the main throttle device 33 and the sub-throttle device 41 from the information of the pressure sensor, the temperature sensor and the circulating composition and adjusting the opening is added.

【0196】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
Next, the cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0197】ここで、主絞り装置33の開度は次のよう
に制御する。まず、冷媒配管123内部の冷媒の乾き度
が、温度センサ211の計測部付近で乾き度が0.1〜
0.5の範囲で仮定すると、温度センサ211及び圧力
センサ212とにより、循環組成を推定することが可能
となる。次に、予測した循環組成における冷媒の飽和温
度と飽和圧力の関係を認知し、圧力センサ204の測定
値から予測される蒸発温度と、温度センサ202の測定
値の差が一定となるように、主絞り装置33の開度を制
御する。
Here, the opening degree of the main throttle device 33 is controlled as follows. First, the degree of dryness of the refrigerant inside the refrigerant pipe 123 is 0.1 to 0.1 in the vicinity of the measurement unit of the temperature sensor 211.
Assuming a range of 0.5, the circulation composition can be estimated by the temperature sensor 211 and the pressure sensor 212. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the predicted circulation composition is recognized, and the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening degree of the main throttle device 33 is controlled.

【0198】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0199】ここで、副絞り装置41の開度は次のよう
に制御する。まず、冷媒配管123内部の冷媒の乾き度
が、温度センサ211の計測部付近で乾き度が0.1〜
0.5の範囲で仮定すると、温度センサ211及び圧力
センサ212とにより、循環組成を推定することが可能
となる。次に、予測した循環組成における冷媒の飽和温
度と飽和圧力の関係を認知し、圧力センサ204の測定
値から予測される蒸発温度と、温度センサ201の測定
値の差が一定となるように、副絞り装置41の開度を制
御する。
Here, the opening of the sub-throttle device 41 is controlled as follows. First, the degree of dryness of the refrigerant inside the refrigerant pipe 123 is 0.1 to
Assuming a range of 0.5, the circulation composition can be estimated by the temperature sensor 211 and the pressure sensor 212. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the predicted circulation composition is recognized, and the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 201 is constant. The opening degree of the sub-throttle device 41 is controlled.

【0200】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case of changing the composition of the refrigerant flowing in the refrigerant circuit, first, a method of storing the refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0201】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method for storing a refrigerant rich in a high boiling point component in the intermediate pressure composition regulator 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4. When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates and becomes a gas refrigerant rich in low-boiling components and rises.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0202】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled.

【0203】実施の形態26.以下、本発明の実施の形
態26を図32に基づいて説明する。なお図中、実施の
形態16と同一部分については、同一符号を付し、説明
を省略する。図22における実施の形態16の構成要素
において、主絞り装置33及び副絞り装置41を電子式
膨張弁とし、負荷側熱交換器34と主絞り装置33の間
の配管温度及び圧力をはかる温度センサ201及び圧力
センサ204と、負荷側熱交換器34と四方弁40の間
の配管温度をはかる温度センサ202と、高圧レシーバ
42底部より分岐し、第三の絞り装置91を介して低圧
レシーバ35に接続される冷媒配管124と、冷媒配管
124上において、第三の絞り装置91と低圧レシーバ
35との間の配管温度及び圧力を計測する温度センサ2
13及び圧力センサ214と、上記圧力と温度の情報よ
り冷媒回路内を循環する冷媒の組成を演算し、かつ、圧
力センサ、温度センサ及び上記循環組成の情報から主絞
り装置33及び副絞り装置41の開度を演算し、開度を
調節する制御器203を付け加える。
Embodiment 26 FIG. Hereinafter, a twenty-sixth embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and the description is omitted. In the components of the sixteenth embodiment in FIG. 22, the main expansion device 33 and the auxiliary expansion device 41 are electronic expansion valves, and a temperature sensor for measuring a pipe temperature and a pressure between the load side heat exchanger 34 and the main expansion device 33. 201 and a pressure sensor 204; a temperature sensor 202 for measuring a pipe temperature between the load-side heat exchanger 34 and the four-way valve 40; and a branch from the bottom of the high-pressure receiver 42 to the low-pressure receiver 35 via the third expansion device 91. A connected refrigerant pipe 124 and a temperature sensor 2 that measures the pipe temperature and pressure between the third expansion device 91 and the low-pressure receiver 35 on the refrigerant pipe 124.
13 and the pressure sensor 214 and the composition of the refrigerant circulating in the refrigerant circuit from the information on the pressure and the temperature. The main throttle device 33 and the sub-throttle device 41 are obtained from the pressure sensor, the temperature sensor and the information on the circulating composition. , And a controller 203 for adjusting the opening is added.

【0204】冷房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って熱源側熱
交換器32に入る。熱源側熱交換器32で凝縮した冷媒
は、副絞り装置41にて若干絞られた後、高圧レシーバ
42に入る。高圧レシーバ42にて気液を分離し、液冷
媒は主絞り装置33にて低圧まで減圧され、低温の二相
冷媒となった冷媒は、負荷側熱交換器34にて周囲より
熱を奪い冷房するとともに、自身は蒸発気化し四方弁4
0及び低圧レシーバ35を通って、圧縮機31に戻る。
The cooling operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the heat source side heat exchanger 32 through the four-way valve 40. The refrigerant condensed in the heat source side heat exchanger 32 is slightly throttled by the sub-throttle device 41 and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to a low pressure by the main expansion device 33, and the low-temperature two-phase refrigerant takes heat from the surroundings in the load-side heat exchanger 34 to cool the air. And evaporates and evaporates itself.
Returning to the compressor 31 through the 0 and the low pressure receiver 35.

【0205】ここで、主絞り装置33の開度は次のよう
に制御する。まず、冷媒配管124において、第三の絞
り装置91より下流の冷媒の乾き度を0.1〜0.5の
範囲で仮定する。温度センサ213及び圧力センサ21
4とにより、循環組成を推定する。次に、循環組成にお
ける冷媒の飽和温度と飽和圧力の関係を認知し、圧力セ
ンサ204の測定値から予測される蒸発温度と、温度セ
ンサ202の測定値の差が一定となるように、主絞り装
置33の開度を制御する。
Here, the opening of the main throttle device 33 is controlled as follows. First, in the refrigerant pipe 124, the dryness of the refrigerant downstream of the third expansion device 91 is assumed to be in the range of 0.1 to 0.5. Temperature sensor 213 and pressure sensor 21
4 to estimate the circulating composition. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 202 is constant. The opening of the device 33 is controlled.

【0206】暖房運転について説明する。開閉機構76
を閉じ圧縮機31を駆動する。圧縮機31より吐出され
た高温高圧のガス冷媒は、四方弁40を通って負荷側熱
交換器34に入る。この高温高圧のガス冷媒は、負荷側
熱交換器34で周囲に放熱し暖房し、自身は凝縮し、主
絞り装置33にて若干絞られた後、高圧レシーバ42に
入る。高圧レシーバ42にて気液を分離し、液冷媒は副
絞り装置41にて低圧まで減圧され、低温の二相冷媒と
なった冷媒は、熱源側熱交換器32にて周囲より熱を奪
い蒸発気化し四方弁40及び低圧レシーバ35を通っ
て、圧縮機31に戻る。
The heating operation will be described. Opening / closing mechanism 76
Is closed and the compressor 31 is driven. The high-temperature and high-pressure gas refrigerant discharged from the compressor 31 enters the load-side heat exchanger 34 through the four-way valve 40. The high-temperature and high-pressure gas refrigerant radiates heat to the surroundings in the load-side heat exchanger 34 and heats it. The refrigerant condenses, is slightly throttled by the main throttle device 33, and then enters the high-pressure receiver 42. Gas-liquid is separated by the high-pressure receiver 42, the liquid refrigerant is reduced in pressure to the low pressure by the sub-throttle device 41, and the low-temperature two-phase refrigerant takes heat from the surroundings in the heat source side heat exchanger 32 and evaporates. The vaporized gas passes through the four-way valve 40 and the low-pressure receiver 35, and returns to the compressor 31.

【0207】ここで、副絞り装置41の開度は次のよう
に制御する。まず、冷媒配管124において、第三の絞
り装置91より下流の冷媒の乾き度を0.1〜0.5の
範囲で仮定する。温度センサ213及び圧力センサ21
4とにより、循環組成を推定する。次に、循環組成にお
ける冷媒の飽和温度と飽和圧力の関係を認知し、圧力セ
ンサ204の測定値から予測される蒸発温度と、温度セ
ンサ201の測定値の差が一定となるように、主絞り装
置33の開度を制御する。
Here, the opening degree of the sub-throttle device 41 is controlled as follows. First, in the refrigerant pipe 124, the dryness of the refrigerant downstream of the third expansion device 91 is assumed to be in the range of 0.1 to 0.5. Temperature sensor 213 and pressure sensor 21
4 to estimate the circulating composition. Next, the relationship between the saturation temperature and the saturation pressure of the refrigerant in the circulation composition is recognized, and the main throttle is set so that the difference between the evaporation temperature predicted from the measurement value of the pressure sensor 204 and the measurement value of the temperature sensor 201 is constant. The opening of the device 33 is controlled.

【0208】冷媒回路内を流れる冷媒の組成を変更する
場合において、まず、低沸点成分に富む冷媒を中間圧組
成調整器84に貯留する方法について説明する。開閉機
構76及び86を開け、高圧レシーバ42の上部より、
低沸点成分に富むガス冷媒が、冷媒配管120を流れ中
間圧組成調整器84の下部へと導かれる。中間圧組成調
整器84内部を上昇する際に、低温熱源116aと熱交
換し凝縮液化し、中間圧組成調整器84下部に貯留され
る。未凝縮ガスは、第三の絞り装置82及び開閉機構7
6を介して、低圧レシーバ35の吸入側へと導かれる。
この結果、中間圧レシーバ79には、低沸点成分に富む
液冷媒が貯留されるとともに、メイン回路を循環する冷
媒の組成を高沸点成分に富むものとすることができる。
In the case where the composition of the refrigerant flowing in the refrigerant circuit is changed, first, a method of storing a refrigerant rich in low boiling point components in the intermediate pressure composition regulator 84 will be described. Open the opening and closing mechanisms 76 and 86, and from the upper part of the high-pressure receiver 42,
A gas refrigerant rich in low boiling point components flows through the refrigerant pipe 120 and is guided to a lower part of the intermediate pressure composition regulator 84. When ascending inside the intermediate-pressure composition adjuster 84, it exchanges heat with the low-temperature heat source 116 a to be condensed and liquefied, and is stored below the intermediate-pressure composition adjuster 84. The uncondensed gas is supplied to the third throttle device 82 and the opening / closing mechanism 7.
6, it is guided to the suction side of the low-pressure receiver 35.
As a result, the intermediate-pressure receiver 79 stores the liquid refrigerant rich in low-boiling components and can make the composition of the refrigerant circulating in the main circuit rich in high-boiling components.

【0209】高沸点成分に富む冷媒を中間圧組成調整器
84に貯留する方法について説明する。開閉機構76及
び85を開け、高圧レシーバ42の上部より、若干高沸
点成分に富む液冷媒が、冷媒配管119を流れ中間圧組
成調整器84の上部へと導かれる。中間圧組成調整器8
4上部より下部に向けて、液冷媒は重力の作用により下
降する際、高温熱源116aと熱交換しその一部が蒸発
気化し、低沸点成分に富むガス冷媒となって上昇する。
この低沸点成分に富むガス冷媒は冷媒配管121を通っ
て低圧レシーバ35の吸入へ導かれる。中間圧組成調整
器84下部に貯留される液冷媒は高沸点成分に富むもの
となる。この結果、メイン回路を循環する冷媒の組成を
高沸点成分に富むものとすることができる。
A method of storing a refrigerant rich in a high boiling point component in the intermediate pressure composition controller 84 will be described. The opening and closing mechanisms 76 and 85 are opened, and a liquid refrigerant slightly rich in a high boiling point component flows from the upper part of the high-pressure receiver 42 through the refrigerant pipe 119 and is guided to the upper part of the intermediate pressure composition regulator 84. Intermediate pressure composition adjuster 8
4 When the liquid refrigerant descends from the upper part to the lower part by the action of gravity, it exchanges heat with the high-temperature heat source 116a, and a part of the liquid refrigerant evaporates, and rises as a gas refrigerant rich in low boiling point components.
The gas refrigerant rich in the low-boiling component is guided to the suction of the low-pressure receiver 35 through the refrigerant pipe 121. The liquid refrigerant stored in the lower part of the intermediate-pressure composition regulator 84 is rich in high-boiling components. As a result, the composition of the refrigerant circulating in the main circuit can be made rich in high-boiling components.

【0210】ここで、上記で述べた循環組成の推定方法
によって、循環組成を予測し、負荷の大小によって上記
の組成調整を行い、組成調整の時間を制御する。
Here, the circulating composition is predicted by the above-described method for estimating the circulating composition, the above-described composition adjustment is performed according to the magnitude of the load, and the time of the composition adjustment is controlled.

【0211】実施の形態27.以下、本発明の実施の形
態27を図33に基づいて説明する。図中、31は圧縮
機、32は熱源側熱交換器、42は高圧レシーバ、94
は暖房熱交換器、96は暖房用絞り装置、98は冷房用
絞り装置、95は冷房用熱交換器、35は低圧レシーバ
であり、これらを順次接続し、冷媒のメイン回路を構成
する。また、高圧レシーバより分岐し、上記暖房熱交換
器94及び暖房用絞り装置96をバイパスし、暖房用絞
り装置96と冷房用絞り装置98の間の配管と接続する
冷媒配管125と、冷媒配管125上において、バイパ
ス冷媒流量を制御するバイパス用絞り装置97とを備え
る。さらに、高圧レシーバ42内部の冷媒の圧力と温度
を計測する圧力センサ222及び温度センサ223と、
暖房用熱交換器94と暖房用絞り装置96との間の冷媒
の温度を計測する温度センサ217と、暖房用熱交換器
95と低圧レシーバ35との間の圧力及び温度を計測す
る圧力センサ218及び温度センサ219と、上記冷房
と暖房の能力の比、圧力センサ222の計測値及び温度
センサ223の計測値から循環組成を推定し、暖房用絞
り装置96の開度を制御する第一の制御器220と、上
記冷房と暖房の能力の比、圧力センサ222の計測値及
び温度センサ223の計測値から循環組成を推定し、冷
房用絞り装置98の開度を制御する第二の制御器221
とを備える構成とした。
Twenty-seventh Embodiment Hereinafter, a twenty-seventh embodiment of the present invention will be described with reference to FIG. In the figure, 31 is a compressor, 32 is a heat source side heat exchanger, 42 is a high pressure receiver, 94
Is a heating heat exchanger, 96 is a heating throttle device, 98 is a cooling throttle device, 95 is a cooling heat exchanger, and 35 is a low-pressure receiver, which are sequentially connected to form a refrigerant main circuit. The refrigerant pipe 125 branches from the high-pressure receiver, bypasses the heating heat exchanger 94 and the heating expansion device 96, and connects to a piping between the heating expansion device 96 and the cooling expansion device 98. Above, a bypass throttle device 97 for controlling the bypass refrigerant flow rate is provided. Further, a pressure sensor 222 and a temperature sensor 223 for measuring the pressure and temperature of the refrigerant inside the high-pressure receiver 42,
A temperature sensor 217 for measuring the temperature of the refrigerant between the heating heat exchanger 94 and the heating throttle device 96, and a pressure sensor 218 for measuring the pressure and the temperature between the heating heat exchanger 95 and the low-pressure receiver 35. And a temperature sensor 219, a ratio of the cooling and heating capacities, a measurement value of the pressure sensor 222, and a measurement value of the temperature sensor 223 to estimate a circulation composition, and control the opening degree of the heating throttle device 96. Controller 220 that estimates the circulation composition from the ratio of the cooling and heating capacities, the measurement value of the pressure sensor 222 and the measurement value of the temperature sensor 223, and controls the opening of the cooling expansion device 98.
And a configuration including:

【0212】作用について説明する。圧縮機31より吐
出された高温高圧の冷媒ガスは、熱源側熱交換器32に
て、ある乾き度まで凝縮され、気液二相流となって高圧
レシーバ42に入る。この気液二相状態の冷媒は、高圧
レシーバ42にて気体と液体に分離される。この内、気
体は、上記暖房用熱交換器94へ導かれ、周囲に熱を放
出し暖房するとともに、自身は凝縮液化し、暖房用絞り
装置96にて若干絞られる。また高圧レシーバ42内部
の液体は、冷媒配管125を通って、バイパス用絞り装
置97にて若干絞られた後、上記暖房用絞り装置96を
出た冷媒と合流する。この合流した液冷媒は、冷房用絞
り装置98にて低圧まで減圧され、冷房用熱交換器95
にて周囲より熱を奪い冷房するとともに、自身は蒸発気
化し、低圧レシーバ35を介して圧縮機31へ戻る。
The operation will be described. The high-temperature and high-pressure refrigerant gas discharged from the compressor 31 is condensed to a certain degree of dryness in the heat-source-side heat exchanger 32 and enters the high-pressure receiver 42 as a gas-liquid two-phase flow. The refrigerant in the gas-liquid two-phase state is separated by the high-pressure receiver 42 into gas and liquid. Among them, the gas is guided to the heating heat exchanger 94 and emits heat to the surroundings for heating. At the same time, the gas itself is condensed and liquefied, and is slightly throttled by the heating throttle device 96. Further, the liquid inside the high-pressure receiver 42 passes through the refrigerant pipe 125 and is slightly throttled by the bypass throttle device 97, and then merges with the refrigerant that has exited the heating throttle device 96. The combined liquid refrigerant is decompressed to a low pressure by the cooling expansion device 98, and the cooling heat exchanger 95
At the same time, heat is taken from the surroundings and cooling is performed.

【0213】ここで、循環組成を推定するには、まず、
冷房と暖房の能力の比より、高圧レシーバ42に溜まる
冷媒の乾き度を算出する。ここで算出した乾き度と圧力
センサ222及び温度センサ223の計測値から循環組
成を推定する。また、暖房用絞り装置96の制御を行う
場合には、圧力センサ222に対する飽和温度を演算
し、この飽和温度と温度センサ217から検知された温
度との差が一定となるように、暖房用絞り装置96の開
度を決定する。さらに、冷房用絞り装置98の制御を行
う場合には、圧力センサ218に対する飽和温度を演算
し、この飽和温度と温度センサ219から検知された温
度との差が一定となるように、冷房用絞り装置98の開
度を決定する。
Here, in order to estimate the circulation composition, first,
The dryness of the refrigerant accumulated in the high-pressure receiver 42 is calculated from the ratio between the cooling and heating capacities. The circulation composition is estimated from the calculated dryness and the measured values of the pressure sensor 222 and the temperature sensor 223. When controlling the heating throttle device 96, the saturation temperature for the pressure sensor 222 is calculated, and the heating throttle device is controlled so that the difference between the saturation temperature and the temperature detected by the temperature sensor 217 is constant. The opening of the device 96 is determined. Furthermore, when controlling the cooling throttle device 98, the saturation temperature for the pressure sensor 218 is calculated, and the cooling throttle is controlled so that the difference between the saturation temperature and the temperature detected by the temperature sensor 219 becomes constant. The opening of the device 98 is determined.

【0214】[0214]

【発明の効果】この発明は上述のような構成を有してお
り、これにより冷媒回路内を循環する冷媒の組成を調整
することによって、冷凍サイクルの高圧及び低圧を制御
し、常に安定かつ効率的な運転を行うことができる。
As described above, the present invention has the above-mentioned structure, and by controlling the composition of the refrigerant circulating in the refrigerant circuit, the high pressure and the low pressure of the refrigeration cycle are controlled, so that the refrigerant is always stable and efficient. Driving can be performed.

【0215】この発明は、圧縮機吸入側に存在する高沸
点成分に富む液冷媒を蒸発させ、急激な高圧圧力の上昇
を抑えることができる。
According to the present invention, the liquid refrigerant rich in high-boiling components existing on the compressor suction side is evaporated, and a rapid rise in high pressure can be suppressed.

【0216】この発明は、蒸発器に寝込んだ高沸点成分
に富む液冷媒を蒸発させ、冷媒回路内において、冷媒の
組成が一定となり、安定な運転状態となるまでの時間を
短縮する。
The present invention evaporates the liquid refrigerant rich in high-boiling components stored in the evaporator, and shortens the time required for the refrigerant circuit to have a constant composition in the refrigerant circuit and to attain a stable operation state.

【0217】この発明は精度良く開閉機構を開閉でき、
効率の良い運転を行うことができる。
According to the present invention, the opening and closing mechanism can be opened and closed with high accuracy.
Efficient operation can be performed.

【0218】この発明は、圧縮機吸入における圧力の低
下を防ぎ、暖房の立ち上げ時間を短縮する。
According to the present invention, a decrease in pressure at the suction of the compressor is prevented, and the startup time of heating is shortened.

【0219】この発明は、高圧圧力の上昇を抑えつつ、
冷媒の組成が一定となり、安定な運転状態となるまでの
時間を短縮する。
According to the present invention, while suppressing an increase in high pressure,
The time required until the composition of the refrigerant becomes constant and a stable operation state is obtained is reduced.

【0220】この発明は、冷媒回路内を流れる冷媒の組
成を変更する目的を安価に達成しつつ、圧縮機への液バ
ックを防止する。
The present invention prevents the liquid from flowing back to the compressor while achieving the purpose of changing the composition of the refrigerant flowing in the refrigerant circuit at low cost.

【0221】この発明は、冷媒の組成変化を抑え、安定
な冷凍サイクル制御を行うことができる。
According to the present invention, the composition change of the refrigerant can be suppressed and stable refrigeration cycle control can be performed.

【0222】この発明は、冷媒の組成を変更し、効率の
よい運転を行うことができる。
According to the present invention, the composition of the refrigerant can be changed and efficient operation can be performed.

【0223】この発明は、絞り装置により、圧力を変化
させて、複数存在するレシーバ内の液冷媒の量を制御す
ることにより、冷媒の組成調整を行うので簡易に組成調
整を行うことができる。
According to the present invention, the composition of the refrigerant is adjusted by controlling the amount of the liquid refrigerant in the plurality of receivers by changing the pressure by the expansion device, so that the composition can be easily adjusted.

【0224】この発明は、複数存在するレシーバ内部の
圧力差を利用し、バイパス管を介して、冷媒を移動させ
るので、冷媒の移動を素早く行い、組成調整をスムーズ
に行うことができる。
According to the present invention, the refrigerant is moved through the bypass pipe by utilizing the pressure difference inside the receiver, and the refrigerant can be moved quickly and the composition can be adjusted smoothly.

【0225】この発明は、複数存在するレシーバ間で冷
媒を液の状態で移動させるので、冷媒の移動を更に素早
く行い、組成調整をスムーズに行うと共に、冷凍サイク
ルを安定に制御する。
According to the present invention, since the refrigerant is moved in a liquid state between a plurality of receivers, the refrigerant is moved more quickly, the composition is smoothly adjusted, and the refrigeration cycle is controlled stably.

【0226】この発明は、バイパス管により、各レシー
バに溜まる液冷媒の量を一定に制御するので、簡易に組
成調整を行うことができる。
According to the present invention, since the amount of the liquid refrigerant accumulated in each receiver is controlled to be constant by the bypass pipe, the composition can be easily adjusted.

【0227】この発明は、冷媒の組成を変更に要する時
間を短縮し、効率のよい運転を行い、かつ、冷凍サイク
ルの高圧及び低圧を制御することができる。
According to the present invention, the time required for changing the composition of the refrigerant can be reduced, efficient operation can be performed, and high and low pressures of the refrigeration cycle can be controlled.

【0228】この発明は、周囲の温度条件により、開閉
機構を開閉して、冷媒の組成の調整を行うので、空調負
荷等に合わせた冷媒の組成調整を行うことができる。
According to the present invention, the composition of the refrigerant is adjusted by opening and closing the opening / closing mechanism according to the ambient temperature conditions, so that the composition of the refrigerant can be adjusted according to the air-conditioning load and the like.

【0229】この発明は、レシーバ内部の液面を検知
し、検知した液面が、目標の液面でない場合には、バイ
パスを開けて、液面の調整を行うので、精度のよい組成
調整を行うことができる。
According to the present invention, the liquid level inside the receiver is detected, and if the detected liquid level is not the target liquid level, the bypass is opened and the liquid level is adjusted. It can be carried out.

【0230】この発明は、圧縮機への冷媒液バックを防
止しつつ、冷媒の組成を変更に要する時間を短縮し、効
率のよい運転を行い、かつ、冷凍サイクルの高圧及び低
圧を制御することができる。
According to the present invention, it is possible to shorten the time required for changing the composition of the refrigerant, perform an efficient operation, and control the high and low pressures of the refrigeration cycle while preventing the refrigerant liquid from flowing back to the compressor. Can be.

【0231】この発明は、流量制御の信頼性を高めると
ともに能力を保持したまま圧縮機の吐出圧力を抑えられ
る。この発明は、複数の蒸発器において、異なる蒸発温
度を得ることができる。
According to the present invention, the discharge pressure of the compressor can be suppressed while improving the reliability of the flow rate control and maintaining the capability. According to the present invention, different evaporation temperatures can be obtained in a plurality of evaporators.

【0232】この発明は、負荷が軽い時には、熱エネル
ギを蓄え、負荷が重いときには、蓄熱エネルギを使っ
て、空調等の運転をすることができる。
According to the present invention, when the load is light, heat energy can be stored, and when the load is heavy, operation such as air conditioning can be performed using the heat energy.

【0233】この発明は、負荷が軽い時には、熱エネル
ギを蓄え、負荷が重いときには、蓄熱エネルギを使って
空調等運転し、かつ、絞り装置入口にて、過冷却度を増
大し絞り装置の信頼精を高める。
According to the present invention, when the load is light, heat energy is stored, and when the load is heavy, the air conditioner or the like is operated by using the heat storage energy, and the degree of supercooling is increased at the inlet of the expansion device to improve the reliability of the expansion device. Improve spirit.

【0234】この発明は、中間圧レシーバに溜まる冷媒
の組成を変化させ、冷媒回路内を循環する冷媒の組成の
変更範囲を広げ、効率のよい運転を行うことができる。
According to the present invention, the composition of the refrigerant accumulated in the intermediate pressure receiver is changed, the range of changing the composition of the refrigerant circulating in the refrigerant circuit is widened, and efficient operation can be performed.

【0235】この発明は、中間圧組成調整器に溜まる冷
媒の組成を変化させ、冷媒回路内を循環する冷媒の組成
の変更範囲を広げ、かつ、組成を精度よく調整し、効率
のよい運転を行うことができる。
According to the present invention, the composition of the refrigerant accumulated in the intermediate pressure composition regulator is changed, the range of changing the composition of the refrigerant circulating in the refrigerant circuit is widened, the composition is adjusted with high accuracy, and efficient operation is performed. It can be carried out.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明における実施の形態の冷媒回路図であ
る。
FIG. 1 is a refrigerant circuit diagram according to an embodiment of the present invention.

【図2】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 2 is a refrigerant circuit diagram of another embodiment of the present invention.

【図3】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 3 is a refrigerant circuit diagram of another embodiment of the present invention.

【図4】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 4 is a refrigerant circuit diagram of another embodiment of the present invention.

【図5】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 5 is a refrigerant circuit diagram of another embodiment of the present invention.

【図6】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 6 is a refrigerant circuit diagram of another embodiment of the present invention.

【図7】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 7 is a refrigerant circuit diagram of another embodiment of the present invention.

【図8】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 8 is a refrigerant circuit diagram of another embodiment of the present invention.

【図9】 本発明における他の実施の形態の冷媒回路図
である。
FIG. 9 is a refrigerant circuit diagram of another embodiment of the present invention.

【図10】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 10 is a refrigerant circuit diagram of another embodiment of the present invention.

【図11】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 11 is a refrigerant circuit diagram of another embodiment of the present invention.

【図12】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 12 is a refrigerant circuit diagram of another embodiment of the present invention.

【図13】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 13 is a refrigerant circuit diagram of another embodiment of the present invention.

【図14】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 14 is a refrigerant circuit diagram of another embodiment of the present invention.

【図15】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 15 is a refrigerant circuit diagram of another embodiment of the present invention.

【図16】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 16 is a refrigerant circuit diagram of another embodiment of the present invention.

【図17】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 17 is a refrigerant circuit diagram of another embodiment of the present invention.

【図18】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 18 is a refrigerant circuit diagram of another embodiment of the present invention.

【図19】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 19 is a refrigerant circuit diagram of another embodiment of the present invention.

【図20】 本発明における温度と冷媒の組成に関する
図である。
FIG. 20 is a diagram relating to the temperature and the composition of the refrigerant in the present invention.

【図21】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 21 is a refrigerant circuit diagram of another embodiment of the present invention.

【図22】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 22 is a refrigerant circuit diagram of another embodiment of the present invention.

【図23】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 23 is a refrigerant circuit diagram of another embodiment of the present invention.

【図24】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 24 is a refrigerant circuit diagram of another embodiment of the present invention.

【図25】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 25 is a refrigerant circuit diagram of another embodiment of the present invention.

【図26】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 26 is a refrigerant circuit diagram of another embodiment of the present invention.

【図27】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 27 is a refrigerant circuit diagram of another embodiment of the present invention.

【図28】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 28 is a refrigerant circuit diagram of another embodiment of the present invention.

【図29】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 29 is a refrigerant circuit diagram of another embodiment of the present invention.

【図30】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 30 is a refrigerant circuit diagram of another embodiment of the present invention.

【図31】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 31 is a refrigerant circuit diagram of another embodiment of the present invention.

【図32】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 32 is a refrigerant circuit diagram of another embodiment of the present invention.

【図33】 本発明における他の実施の形態の冷媒回路
図である。
FIG. 33 is a refrigerant circuit diagram of another embodiment of the present invention.

【図34】 従来の冷凍・空調装置を示す冷媒回路図で
ある。
FIG. 34 is a refrigerant circuit diagram showing a conventional refrigeration / air-conditioning device.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 熱源側熱交換器、3 主絞り装置、4
主絞り装置、5 副絞り装置、6 負荷側熱交換器、
8 冷媒貯留塔、9 冷却源、10 加熱源、11 塔
頂貯留器、12 塔底貯留器、13 開閉弁、14 開
閉弁、15 開閉弁、16 開閉弁、31 圧縮機、3
2 熱源側熱交換器、33 絞り装置、34 負荷側熱
交換器、35 低圧レシーバ、36 開閉機構、37
開閉機構、 38 開閉機構、39 開閉機構、40
四方弁、41 副絞り装置、42高圧レシーバ、43
開閉機構、44 開閉機構、45 開閉機構、46 開
閉機構、47 開閉機構、48 開閉機構、49 絞り
装置、50 過冷却熱交換器、51 絞り装置、52
負荷側熱交換器、53 冷媒−冷媒熱交換器、54 四
方弁、55 蓄熱用熱交換器、56 蓄熱媒体、57
蓄熱槽、58 冷媒ガスポンプ、59 蓄熱用四方弁、
60 開閉機構、61 開閉機構、62開閉機構、63
蓄熱用熱交換器、64 蓄熱用熱交換器、65 開閉
機構、66 開閉機構、67 開閉機構、68 開閉機
構、69 開閉機構、70 開閉機構、71 開閉機
構、72 開閉機構、73 絞り装置、75 絞り装
置、76 開閉機構、77 低温熱源、78 高温熱
源、79 中間圧レシーバ、81高温熱源、82 絞り
装置、83 高圧組成調整器、84 中間圧組成調整
器、85 開閉機構、86 開閉機構、87 飽和温度
検知用絞り装置、91 絞り装置、94 暖房用熱交換
器、95 冷房用熱交換器、96 暖房用絞り装置、9
7 バイパス用絞り装置、98 冷房用絞り装置、20
0 温度センサ、201 温度センサ、202 温度セ
ンサ、203 制御器、204 圧力センサ、205
温度センサ、206 圧力センサ、207 温度セン
サ、208 圧力センサ、209 温度センサ、210
圧力センサ、211 温度センサ、212 圧力セン
サ、213 温度センサ、214 圧力センサ、215
温度センサ、216 冷媒量検知手段、217 温度
センサ、218 圧力センサ、219 温度センサ、2
20 制御器、221 制御器、222 圧力センサ、
223 温度センサ。
1 compressor, 2 heat source side heat exchanger, 3 main throttle device, 4
Main throttle device, 5 auxiliary throttle device, 6 load side heat exchanger,
8 Refrigerant storage tower, 9 Cooling source, 10 Heating source, 11 Tower reservoir, 12 Tower reservoir, 13 Open / close valve, 14 Open / close valve, 15 Open / close valve, 16 Open / close valve, 31 Compressor, 3
2 heat source side heat exchanger, 33 expansion device, 34 load side heat exchanger, 35 low pressure receiver, 36 opening and closing mechanism, 37
Opening and closing mechanism, 38 opening and closing mechanism, 39 opening and closing mechanism, 40
Four-way valve, 41 Sub-throttle device, 42 High-pressure receiver, 43
Opening / closing mechanism, 44 opening / closing mechanism, 45 opening / closing mechanism, 46 opening / closing mechanism, 47 opening / closing mechanism, 48 opening / closing mechanism, 49 expansion device, 50 supercooling heat exchanger, 51 expansion device, 52
Load side heat exchanger, 53 refrigerant-refrigerant heat exchanger, 54 four-way valve, 55 heat storage heat exchanger, 56 heat storage medium, 57
Heat storage tank, 58 refrigerant gas pump, 59 four-way valve for heat storage,
60 opening / closing mechanism, 61 opening / closing mechanism, 62 opening / closing mechanism, 63
Heat storage heat exchanger, 64 Heat storage heat exchanger, 65 opening / closing mechanism, 66 opening / closing mechanism, 67 opening / closing mechanism, 68 opening / closing mechanism, 69 opening / closing mechanism, 70 opening / closing mechanism, 71 opening / closing mechanism, 72 opening / closing mechanism, 73 diaphragm device, 75 Expansion device, 76 opening and closing mechanism, 77 low temperature heat source, 78 high temperature heat source, 79 intermediate pressure receiver, 81 high temperature heat source, 82 expansion device, 83 high pressure composition adjuster, 84 intermediate pressure composition adjustment device, 85 opening and closing mechanism, 86 opening and closing mechanism, 87 Throttle device for detecting saturated temperature, 91 Throttle device, 94 Heat exchanger for heating, 95 Heat exchanger for cooling, 96 Throttle device for heating, 9
7 Throttle device for bypass, 98 Throttle device for cooling, 20
0 temperature sensor, 201 temperature sensor, 202 temperature sensor, 203 controller, 204 pressure sensor, 205
Temperature sensor, 206 pressure sensor, 207 temperature sensor, 208 pressure sensor, 209 temperature sensor, 210
Pressure sensor, 211 temperature sensor, 212 pressure sensor, 213 temperature sensor, 214 pressure sensor, 215
Temperature sensor, 216 refrigerant amount detection means, 217 temperature sensor, 218 pressure sensor, 219 temperature sensor, 2
20 controller, 221 controller, 222 pressure sensor,
223 Temperature sensor.

フロントページの続き (72)発明者 宮本 守也 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 谷 秀一 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 (72)発明者 隅田 嘉裕 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社中央研究所内 (72)発明者 飯島 等 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内Continued on the front page (72) Inventor Moriya Miyamoto 6-66, Tehira, Wakayama-shi Mitsubishi Electric Corporation Wakayama Works (72) Inventor Shuichi Tani 6-66, Teda, Wakayama-shi Mitsubishi Electric Corporation Inside Wakayama Works (72) Inventor Tomohiko Kasai 6-5-66 Tehira, Wakayama City Mitsubishi Electric Corporation Inside Wakayama Works (72) Inventor Yoshihiro Sumida 8-1-1 Honcho Tsukaguchi, Amagasaki City Mitsubishi Electric Corporation Central Research Laboratory (72) Inventor, etc. Iijima, etc. 3-181-1, Oka, Shizuoka City Mitsubishi Electric Corporation Living Environment Engineering Management Center

Claims (37)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、絞り装置及び蒸発器の
各機器を順次接続して冷媒を循環させる冷媒回路を形成
させ、冷媒に数種のハイドロフルオロカーボンを混合し
た非共沸混合冷媒を用いる冷媒循環システムにおいて、
前記各機器をバイパスさせる配管と、この配管に設けら
れた開閉機構と、この開閉機構を開閉させて、前記冷媒
を前記冷媒回路内の各機器を循環させながら組成を調整
することを特徴とする冷媒循環システム。
1. A refrigerant circuit for circulating a refrigerant by sequentially connecting a compressor, a condenser, a throttle device, and an evaporator to form a non-azeotropic mixed refrigerant in which several types of hydrofluorocarbons are mixed with the refrigerant. In the refrigerant circulation system used,
A piping for bypassing each device, an opening / closing mechanism provided in this piping, and opening / closing the opening / closing mechanism to adjust the composition while circulating the refrigerant through each device in the refrigerant circuit. Refrigerant circulation system.
【請求項2】 圧縮機吐出部から冷媒回路の低圧側構成
機器または低圧側配管の少なくとも1ヶ所へ接続され冷
媒をバイパスするバイパス管を設けたことを特徴とする
請求項1記載の冷媒循環システム。
2. The refrigerant circulation system according to claim 1, further comprising a bypass pipe connected from the compressor discharge section to at least one of low-pressure side components of the refrigerant circuit or the low-pressure side pipe to bypass the refrigerant. .
【請求項3】 圧縮機、凝縮器、絞り装置及び蒸発器を
順次接続し、冷媒に数種のハイドロフルオロカーボンを
混合した非共沸混合冷媒を用いる冷媒循環システムにお
いて、圧縮機吐出部から低圧側構成機器または低圧側配
管の少なくとも1ヶ所へ接続され冷媒の一部をバイパス
するバイパス管を設けたことを特徴とする冷媒循環シス
テム。
3. A refrigerant circulation system in which a compressor, a condenser, a throttling device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several types of hydrofluorocarbons are mixed into a refrigerant, a low pressure side from a compressor discharge part. A refrigerant circulation system, comprising: a bypass pipe connected to at least one component device or a low-pressure side pipe and bypassing a part of the refrigerant.
【請求項4】 システム起動時に低圧側構成機器または
低圧側配管内の冷媒液寝込部分に、圧縮機からの吐出冷
媒の一部を吹き込むことを特徴とする請求項2または3
記載の冷媒循環システム。
4. A part of the refrigerant discharged from the compressor is blown into the refrigerant liquid stagnation portion in the low-pressure side component device or the low-pressure side piping at the time of starting the system.
The refrigerant circulation system according to claim 1.
【請求項5】 バイパス管は圧縮機吐出部と蒸発器入口
部との間を接続したことを特徴とする請求項3または4
記載の冷媒循環システム。
5. The compressor according to claim 3, wherein the bypass pipe is connected between the compressor discharge part and the evaporator inlet part.
The refrigerant circulation system according to claim 1.
【請求項6】 開閉機構は起動時に開放されることを特
徴とする請求項1または2記載の冷媒循環システム。
6. The refrigerant circulation system according to claim 1, wherein the opening / closing mechanism is opened at the time of starting.
【請求項7】 開閉機構は所定の物理量を検出して閉じ
られることを特徴とする請求項1又は6記載の冷媒循環
システム。
7. The refrigerant circulation system according to claim 1, wherein the opening / closing mechanism is closed by detecting a predetermined physical quantity.
【請求項8】 物理量として、時間、温度変化、圧力変
化、液面量の内の少なくとも1つであることを特徴とす
る請求項7記載の冷媒循環システム。
8. The refrigerant circulation system according to claim 7, wherein the physical quantity is at least one of time, temperature change, pressure change, and liquid level.
【請求項9】 圧縮機、凝縮器、絞り装置及び蒸発器を
順次接続し、冷媒に数種のハイドロフルオロカーボンを
混合した非共沸混合冷媒を用い、凝縮器出口から圧縮機
吸入へのバイパス管を設けたことを特徴とする冷媒循環
システム。
9. A compressor, a condenser, a throttle device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed with the refrigerant, and a bypass pipe from an outlet of the condenser to a suction of the compressor. A refrigerant circulation system comprising:
【請求項10】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、凝縮器出口から絞り
装置をバイパスし蒸発器入口にいたるバイパス管を設け
たことを特徴とする冷媒循環システム。
10. A compressor, a condenser, a throttling device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed in the refrigerant, and the evaporator is bypassed from the condenser outlet to bypass the throttling device. A refrigerant circulation system provided with a bypass pipe leading to an inlet.
【請求項11】 バイパス管に開閉機構を設け、この開
閉機構は起動時に開かれることを特徴とする請求項9ま
たは10記載の冷媒循環システム。
11. The refrigerant circulation system according to claim 9, wherein an opening / closing mechanism is provided in the bypass pipe, and the opening / closing mechanism is opened at the time of startup.
【請求項12】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、蒸発器と圧縮機の間
等の低圧側に液冷媒貯留可能な低圧レシーバを備え、凝
縮器出口の過冷却度を負荷に応じて変更したことを特徴
とする冷媒循環システム。
12. A compressor, a condenser, a throttle device, and an evaporator are connected in sequence, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed in the refrigerant, and a low-pressure side such as between the evaporator and the compressor. A low pressure receiver capable of storing a liquid refrigerant, and a degree of supercooling at a condenser outlet is changed according to a load.
【請求項13】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、凝縮器と絞り装置の
間に高圧レシーバを備えたことを特徴とする冷媒循環シ
ステム。
13. A compressor, a condenser, a throttling device, and an evaporator are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several kinds of hydrofluorocarbons as a refrigerant, and a high-pressure receiver is provided between the condenser and the throttling device. A refrigerant circulation system, comprising:
【請求項14】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、蒸発器と圧縮機の間
に位置する低圧レシーバと、凝縮器と絞り装置の間に位
置する高圧レシーバを備えたことを特徴とする冷媒循環
システム。
14. A compressor, a condenser, a throttle device, and an evaporator, which are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several kinds of hydrofluorocarbons with a refrigerant, and a low-pressure refrigerant located between the evaporator and the compressor. A refrigerant circulation system comprising: a receiver; and a high-pressure receiver located between the condenser and the expansion device.
【請求項15】 凝縮器と高圧レシーバの間に流れる冷
媒の圧力を変化させる圧力変化手段を設けたことを特徴
とする請求項13または14記載の冷媒循環システム。
15. The refrigerant circulation system according to claim 13, further comprising pressure changing means for changing the pressure of the refrigerant flowing between the condenser and the high-pressure receiver.
【請求項16】 圧縮機、凝縮器、絞り装置及び蒸発器
の各機器を順次接続して冷媒を循環させる冷媒回路を形
成させ、冷媒に数種のハイドロフルオロカーボンを混合
した非共沸混合冷媒を用いる冷媒循環システムにおい
て、低圧側に設けられ冷媒を貯留する低圧レシーバと、
高圧側に設けられ冷媒を貯留する高圧レシーバと、を備
え、前記絞り装置の絞り量を変化させて前記各レシーバ
の貯留する液冷媒を前記各レシーバ間を移動させること
を特徴とする冷媒循環システム。
16. A refrigerant circuit for circulating a refrigerant by sequentially connecting each of a compressor, a condenser, a throttle device, and an evaporator to form a non-azeotropic mixed refrigerant in which several types of hydrofluorocarbons are mixed with the refrigerant. In the refrigerant circulation system used, a low-pressure receiver that is provided on the low-pressure side and stores the refrigerant,
A high-pressure receiver provided on the high-pressure side for storing the refrigerant, wherein the liquid refrigerant stored in each of the receivers is moved between the receivers by changing the throttle amount of the expansion device. .
【請求項17】 低圧レシーバと高圧レシーバとをバイ
パスするバイパス管を備えたことを特徴とする請求項1
4または16記載の冷媒循環システム。
17. The apparatus according to claim 1, further comprising a bypass pipe for bypassing the low-voltage receiver and the high-pressure receiver.
17. The refrigerant circulation system according to 4 or 16.
【請求項18】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続して冷媒を循環させる冷媒回路を形成させ、
冷媒に数種のハイドロフルオロカーボンを混合した非共
沸混合冷媒を用いる冷媒循環システムにおいて、前記冷
媒回路の冷媒圧力の異なる箇所に、冷媒を貯留可能な複
数のレシーバを設け、各レシーバ間を接続させるバイパ
ス管を設けたことを特徴とする冷媒循環システム。
18. A refrigerant circuit for circulating a refrigerant by sequentially connecting a compressor, a condenser, a throttle device, and an evaporator,
In a refrigerant circulation system using a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed with a refrigerant, a plurality of receivers capable of storing a refrigerant are provided at different refrigerant pressures of the refrigerant circuit, and the respective receivers are connected. A refrigerant circulation system provided with a bypass pipe.
【請求項19】 バイパス管に設けられ、バイパス管に
流れる冷媒量を調整する開閉機構を設けたことを特徴と
する請求項17または18記載の冷媒循環システム。
19. The refrigerant circulation system according to claim 17, further comprising an opening / closing mechanism provided on the bypass pipe for adjusting an amount of the refrigerant flowing through the bypass pipe.
【請求項20】 バイパス管は各レシーバの底部近傍に
接続され、各レシーバ間の冷媒移行を可能にしたことを
特徴とする請求項17または18記載の冷媒循環システ
ム。
20. The refrigerant circulation system according to claim 17, wherein the bypass pipe is connected near the bottom of each receiver to enable refrigerant transfer between the receivers.
【請求項21】 バイパス管は複数のレシーバの上下方
向の異なる位置に接続され、各レシーバ間の冷媒移行を
可能にしたことを特徴とする請求項17または18記載
の冷媒循環システム。
21. The refrigerant circulation system according to claim 17, wherein the bypass pipes are connected to different positions in the vertical direction of the plurality of receivers to enable refrigerant transfer between the respective receivers.
【請求項22】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続して冷媒を循環させる冷媒回路を形成し、冷
媒に数種のハイドロフルオロカーボンを混合した非共沸
混合冷媒を用いる冷媒循環システムにおいて、前記冷媒
回路の前記圧縮機の吸入側である低圧側に設けられ冷媒
を貯留する低圧レシーバと、前記冷媒回路の前記絞り装
置の入口側である高圧側に設けられ冷媒を貯留する高圧
レシーバと、前記低圧レシーバと高圧レシーバとを接続
し、各レシーバ間の冷媒を移行可能なバイパス管と、こ
のバイパス管に設けられ前記バイパス管の流路を開閉す
る開閉機構と、を備えた冷媒循環システム。
22. A refrigerant circuit using a non-azeotropic mixed refrigerant in which several types of hydrofluorocarbons are mixed with a refrigerant by forming a refrigerant circuit for circulating the refrigerant by sequentially connecting a compressor, a condenser, a throttle device, and an evaporator. In the system, a low-pressure receiver that is provided on a low-pressure side of the refrigerant circuit that is the suction side of the compressor and stores the refrigerant, and a high-pressure receiver that is provided on a high-pressure side that is an inlet side of the expansion device of the refrigerant circuit and stores the refrigerant. A refrigerant, comprising: a receiver, a bypass pipe that connects the low-pressure receiver and the high-pressure receiver, and is capable of transferring a refrigerant between the receivers, and an opening / closing mechanism provided in the bypass pipe to open and close a flow path of the bypass pipe. Circulation system.
【請求項23】 開閉機構の開閉を、冷媒の組成調整が
必要な負荷状況または周囲環境状況を検出して行うこと
を特徴とする請求項22記載の冷媒循環システム。
23. The refrigerant circulation system according to claim 22, wherein opening and closing of the opening / closing mechanism is performed by detecting a load condition or a surrounding environment condition in which the composition of the refrigerant is required.
【請求項24】 低圧もしくは高圧レシーバの少なくと
も一方のレシーバの液冷媒の貯留状態を検出し、冷媒の
組成を調整すべく冷媒回路開閉機構を開閉することを特
徴とする請求項23記載の冷媒循環システム。
24. The refrigerant circulation according to claim 23, wherein the state of storage of the liquid refrigerant in at least one of the low-pressure and high-pressure receivers is detected, and a refrigerant circuit opening / closing mechanism is opened / closed to adjust the composition of the refrigerant. system.
【請求項25】 バイパス管と冷媒回路の配管との間を
熱交換可能な構造としたことを特徴とする請求項18ま
たは22記載の冷媒循環システム。
25. The refrigerant circulation system according to claim 18, wherein heat exchange can be performed between the bypass pipe and a pipe of the refrigerant circuit.
【請求項26】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、凝縮器と絞り装置の
間に位置する高圧レシーバと、上記高圧レシーバより絞
り装置を介して、高圧の冷媒液配管と熱交換した後、低
圧側構成機器又は低圧側配管と合流するバイパス管とを
備えた冷媒循環システム。
26. A compressor, a condenser, a throttling device and an evaporator which are sequentially connected, a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed with the refrigerant, and a high-pressure high-pressure refrigerant located between the condenser and the throttling device. A refrigerant circulation system comprising: a receiver; and a bypass pipe that exchanges heat with the high-pressure refrigerant liquid pipe via the expansion device from the high-pressure receiver and then joins with the low-pressure component device or the low-pressure pipe.
【請求項27】 蒸発器と圧縮機の間に低圧レシーバを
設け、この低圧レシーバに前記バイパスを接続すること
を特徴とする請求項26記載の冷媒循環システム。
27. The refrigerant circulation system according to claim 26, wherein a low-pressure receiver is provided between the evaporator and the compressor, and the low-pressure receiver is connected to the bypass.
【請求項28】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用いるシステムにおいて、
前記絞り装置と蒸発器の組合せを複数配置し、凝縮器出
口に接続された高圧側レシーバの異なる位置に前記絞り
装置と蒸発器の組合せを接続し、各蒸発器に高圧側レシ
ーバ内の異なる状態の冷媒を流すようにしたことを特徴
とする冷媒循環システム。
28. A system in which a compressor, a condenser, a throttle device, and an evaporator are sequentially connected, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed in the refrigerant,
A plurality of combinations of the expansion device and the evaporator are arranged, and the combinations of the expansion device and the evaporator are connected to different positions of the high-pressure side receiver connected to the condenser outlet, and each evaporator has a different state in the high-pressure side receiver. A refrigerant circulation system, characterized in that the refrigerant is allowed to flow.
【請求項29】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、凝縮器と絞り装置の
間に位置する高圧レシーバと、上記高圧レシーバ上部よ
り、第二の絞り装置及び第二の蒸発器を介して、低圧側
構成機器又は低圧側配管と接続するバイパス管と、上記
高圧レシーバと第二の絞り装置の間の配管と上記絞り装
置と上記蒸発器の間の配管を熱交換させる熱交換器を備
えたことを特徴とする冷媒循環システム。
29. A compressor, a condenser, a throttle device, and an evaporator, which are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several kinds of hydrofluorocarbons as a refrigerant, and a high-pressure refrigerant located between the condenser and the throttle device. A receiver, a bypass pipe connected to a low-pressure side component device or a low-pressure side pipe through a second throttle device and a second evaporator from above the high-pressure receiver, and between the high-pressure receiver and the second throttle device. And a heat exchanger for exchanging heat between the piping and the piping between the expansion device and the evaporator.
【請求項30】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、凝縮器と絞り装置の
間に位置する高圧レシーバと、上記高圧レシーバ上部よ
り、第二の絞り装置、蓄熱用熱交換器及び冷媒ガスポン
プを介して、上記蒸発器出口の配管と接続するバイパス
管と、上記冷媒ガスポンプをバイパスして上記蓄熱槽と
上記蒸発器出口を接続する配管と、上記高圧レシーバと
第二の絞り装置の間の配管と上記絞り装置と上記蒸発器
の間の配管を熱交換させる熱交換器を備えたことを特徴
とする冷媒循環システム。
30. A compressor, a condenser, a throttling device, and an evaporator, which are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several kinds of hydrofluorocarbons as a refrigerant, and a high-pressure high-pressure refrigerant located between the condenser and the throttling device. A receiver, a bypass pipe connected to a pipe at an outlet of the evaporator through a second expansion device, a heat exchanger for heat storage, and a refrigerant gas pump from above the high-pressure receiver, and the heat storage tank bypassing the refrigerant gas pump. And a pipe connecting the evaporator outlet, and a heat exchanger for exchanging heat between a pipe between the high-pressure receiver and a second expansion device and a pipe between the expansion device and the evaporator. Refrigerant circulation system.
【請求項31】 圧縮機、凝縮器、絞り装置、蓄熱用熱
交換器及び蒸発器を順次接続し、冷媒に数種のハイドロ
フルオロカーボンを混合した非共沸混合冷媒を用い、凝
縮器と絞り装置の間に位置する高圧レシーバと、上記高
圧レシーバ上部より、第二の絞り装置、第二の蓄熱用熱
交換器を介して、低圧の二相配管と接続するバイパス管
と、上記蓄熱用熱交換器と第二の蓄熱用熱交換器を介し
て熱エネルギを蓄える蓄熱媒体と、上記蓄熱媒体を収納
する蓄熱槽と、上記高圧レシーバと第二の絞り装置の間
の配管と上記絞り装置と上記蒸発器の間の配管を熱交換
させる熱交換器を備えたことを特徴とする冷媒循環シス
テム。
31. A compressor, a condenser, a throttling device, a heat storage heat exchanger and an evaporator are connected in sequence, and a non-azeotropic mixed refrigerant in which several kinds of hydrofluorocarbons are mixed with a refrigerant is used. A high-pressure receiver located between the high-pressure receiver and a bypass pipe connected to a low-pressure two-phase pipe through a second expansion device and a second heat storage heat exchanger from the upper part of the high-pressure receiver; A heat storage medium that stores heat energy through a heat exchanger and a second heat storage heat exchanger; a heat storage tank that stores the heat storage medium; a pipe between the high-pressure receiver and a second expansion device; the expansion device; A refrigerant circulation system comprising a heat exchanger for exchanging heat between pipes between evaporators.
【請求項32】 蒸発器と圧縮機の間に低圧レシーバを
設けたことを特徴とする請求項30又は31記載の冷媒
循環システム。
32. The refrigerant circulation system according to claim 30, wherein a low-pressure receiver is provided between the evaporator and the compressor.
【請求項33】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、蒸発器と圧縮機の間
に位置する低圧レシーバと、凝縮器と絞り装置の間に位
置する高圧レシーバと、中間圧力レシーバと、上記高圧
レシーバから中間圧力レシーバを介して低圧側構成機器
又は低圧側配管へ接続するバイパス管と、上記中間圧レ
シーバ内の温度を制御する手段と、を備えたことを特徴
とする冷媒循環システム。
33. A compressor, a condenser, a throttle device, and an evaporator, which are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several kinds of hydrofluorocarbons with the refrigerant, and a low-pressure refrigerant located between the evaporator and the compressor. A receiver, a high-pressure receiver located between the condenser and the expansion device, an intermediate pressure receiver, a bypass pipe connecting the high-pressure receiver to the low-pressure side component device or the low-pressure side pipe via the intermediate pressure receiver, and the intermediate pressure Means for controlling the temperature inside the receiver.
【請求項34】 中間圧レシーバ内の圧力を制御する手
段を設けたことを特徴とする請求項33記載の冷媒循環
システム。
34. The refrigerant circulation system according to claim 33, further comprising means for controlling a pressure in the intermediate pressure receiver.
【請求項35】 中間レシーバ内の温度を制御する手段
は、多段階の温度に設定可能なことを特徴とする請求項
33記載の冷媒循環システム。
35. The refrigerant circulation system according to claim 33, wherein the means for controlling the temperature in the intermediate receiver can set the temperature in multiple stages.
【請求項36】 圧縮機、凝縮器、絞り装置及び蒸発器
を順次接続し、冷媒に数種のハイドロフルオロカーボン
を混合した非共沸混合冷媒を用い、蒸発器と圧縮機の間
に位置する低圧レシーバと、凝縮器と絞り装置の間に位
置する高圧レシーバと、精溜用熱源を内蔵する中間圧組
成調整器と、上記高圧レシーバから上記中間圧組成調整
器へ液冷媒を導く液冷媒配管と、上記高圧レシーバから
上記中間圧組成調整器へガス冷媒を導くガス冷媒配管
と、上記中間圧組成調整器から低圧側構成機器又は低圧
側配管に接続するバイパス管とを備えたことを特徴とす
る冷媒循環システム。
36. A compressor, a condenser, a throttle device, and an evaporator, which are sequentially connected, a non-azeotropic mixed refrigerant obtained by mixing several types of hydrofluorocarbons as a refrigerant, and a low-pressure refrigerant located between the evaporator and the compressor. A receiver, a high-pressure receiver located between the condenser and the expansion device, an intermediate-pressure composition adjuster containing a rectifying heat source, and a liquid refrigerant pipe that guides the liquid refrigerant from the high-pressure receiver to the intermediate-pressure composition adjuster. A gas refrigerant pipe that guides a gas refrigerant from the high-pressure receiver to the intermediate-pressure composition adjuster; and a bypass pipe that connects the intermediate-pressure composition adjuster to a low-pressure side component device or a low-pressure side pipe. Refrigerant circulation system.
【請求項37】 高圧レシーバと中間組成調整器との間
を接続する配管、中間組成調整器と低圧側構成機器2は
低圧側配管との間を接続する配管にそれぞれ開閉機構を
設けたことを特徴とする請求項36記載の冷媒循環シス
テム。
37. A pipe connecting between the high-pressure receiver and the intermediate composition adjuster, and a pipe connecting the intermediate composition adjuster and the low-pressure side component device 2 connecting with the low-pressure side pipe are provided with opening / closing mechanisms, respectively. 37. The refrigerant circulation system according to claim 36.
JP2000141563A 2000-01-01 2000-05-15 System for circulating refrigerant Pending JP2000356420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141563A JP2000356420A (en) 2000-01-01 2000-05-15 System for circulating refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141563A JP2000356420A (en) 2000-01-01 2000-05-15 System for circulating refrigerant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06116966A Division JP3140908B2 (en) 1994-05-30 1994-05-30 Refrigerant circulation system

Publications (1)

Publication Number Publication Date
JP2000356420A true JP2000356420A (en) 2000-12-26

Family

ID=18648658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141563A Pending JP2000356420A (en) 2000-01-01 2000-05-15 System for circulating refrigerant

Country Status (1)

Country Link
JP (1) JP2000356420A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
WO2012172597A1 (en) * 2011-06-14 2012-12-20 三菱電機株式会社 Air conditioner
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
WO2017221287A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Cooling device
CN112484192A (en) * 2020-12-30 2021-03-12 王盟 Compressor-free air conditioner system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
WO2012172597A1 (en) * 2011-06-14 2012-12-20 三菱電機株式会社 Air conditioner
GB2508725A (en) * 2011-06-14 2014-06-11 Mitsubishi Electric Corp Air conditioner
JPWO2012172597A1 (en) * 2011-06-14 2015-02-23 三菱電機株式会社 Air conditioner
JP5677570B2 (en) * 2011-06-14 2015-02-25 三菱電機株式会社 Air conditioner
GB2508725B (en) * 2011-06-14 2016-06-15 Mitsubishi Electric Corp Air-conditioning apparatus
US9726409B2 (en) 2011-06-14 2017-08-08 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2013002722A (en) * 2011-06-16 2013-01-07 Sanyo Electric Co Ltd Refrigerator
WO2017221287A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Cooling device
CN112484192A (en) * 2020-12-30 2021-03-12 王盟 Compressor-free air conditioner system

Similar Documents

Publication Publication Date Title
CN105247302B (en) Air-conditioning device
US5987907A (en) Refrigerant circulating system
US5737931A (en) Refrigerant circulating system
EP3062045B1 (en) Air conditioner
JP6320568B2 (en) Refrigeration cycle equipment
US5651263A (en) Refrigeration cycle and method of controlling the same
US9909785B2 (en) Heat pump device with simultaneous use of air and geothermal heat sources
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
US9797639B2 (en) Method for operating a vapour compression system using a subcooling value
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
US8839640B2 (en) Air-conditioning apparatus
JP5164527B2 (en) Air conditioner
JP2002257427A (en) Refrigerating air conditioner and its operating method
JP3140923B2 (en) Refrigerant circulation system and refrigeration / air conditioner
JP2000356420A (en) System for circulating refrigerant
JPH07324828A (en) Refrigerant circulating apparatus
JP2004020070A (en) Heat pump type cold-hot water heater
JPS6155562A (en) Refrigerator using mixed refrigerant
JP3055854B2 (en) Refrigeration cycle and control method thereof
JPH10160268A (en) Air conditioner
JP3804601B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP3978660B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JPH09138018A (en) Heat pump apparatus
JPH10122605A (en) Heat storage type air conditioning apparatus