JP4799347B2 - Hot water supply, cold and hot water air conditioner - Google Patents

Hot water supply, cold and hot water air conditioner Download PDF

Info

Publication number
JP4799347B2
JP4799347B2 JP2006265105A JP2006265105A JP4799347B2 JP 4799347 B2 JP4799347 B2 JP 4799347B2 JP 2006265105 A JP2006265105 A JP 2006265105A JP 2006265105 A JP2006265105 A JP 2006265105A JP 4799347 B2 JP4799347 B2 JP 4799347B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat exchanger
water
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006265105A
Other languages
Japanese (ja)
Other versions
JP2008082653A (en
Inventor
広有 柴
信 齊藤
裕輔 島津
宗 野本
哲二 七種
和樹 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006265105A priority Critical patent/JP4799347B2/en
Publication of JP2008082653A publication Critical patent/JP2008082653A/en
Application granted granted Critical
Publication of JP4799347B2 publication Critical patent/JP4799347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Description

本発明は、給湯、冷温水空気調和装置に関するものである。   The present invention relates to hot water supply and cold / hot water air conditioners.

給湯、冷温水空気調和装置の従来技術は多い。   There are many conventional technologies for hot water supply and cold / hot water air conditioners.

特許文献1に示される従来技術の冷媒回路を簡略化した図を図13に示す。図13に示すように、冷媒回路は、室外機冷媒回路と水回路とで構成されている。室外機冷媒回路は圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4、室外熱交換器6、室外ファン7、室外ファンモータ8から構成され、水回路は水ポンプ21、三方弁22、給湯タンク23、タンク内部熱交換器24、冷温水空気調和用熱交換器25から構成されている。   FIG. 13 is a simplified diagram of the prior art refrigerant circuit disclosed in Patent Document 1. In FIG. As shown in FIG. 13, the refrigerant circuit includes an outdoor unit refrigerant circuit and a water circuit. The outdoor unit refrigerant circuit is composed of a compressor 1, a four-way valve 2, a water refrigerant heat exchanger 3, a pressure reducing device 4, an outdoor heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit is a water pump 21, three-way. It comprises a valve 22, a hot water supply tank 23, a tank internal heat exchanger 24, and a cold / hot water air conditioning heat exchanger 25.

次に、従来技術の各運転モードにおける冷媒と水の動作を、図13を用いて説明する。
給湯運転する場合、室外機冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して水冷媒熱交換器3に流入し、ここで負荷側ユニットに温熱を供給して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4で減圧されて低圧気液二相冷媒となり、室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して蒸発し、低圧ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して圧縮機1に戻る。
Next, the operation of the refrigerant and water in each operation mode of the prior art will be described with reference to FIG.
In the case of hot water supply operation, in the outdoor unit refrigerant circuit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 3 through the four-way valve 2, where the heat is supplied to the load unit and condensed. And flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is decompressed by the decompression device 4 to become a low-pressure gas-liquid two-phase refrigerant, flows into the outdoor heat exchanger 6 where the outdoor fan 7 is forcibly blowing air, and exchanges heat with ambient air to evaporate. It flows out as a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the four-way valve 2.

給湯運転や温水暖房運転の途中でデフロスト運転する場合、室外機冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して室外ファン7を停止した室外熱交換器6に流入し、ここで熱交換器に着いた霜と熱交換して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は開度全開の減圧装置4を介して水冷媒熱交換器3に流入し、ここで負荷側システムから吸熱して蒸発し、低圧ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して圧縮機1に戻る。   When the defrost operation is performed during the hot water supply operation or the hot water heating operation, in the outdoor unit refrigerant circuit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 6 in which the outdoor fan 7 is stopped via the four-way valve 2. In this case, heat is exchanged with the frost attached to the heat exchanger to condense and flow out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out flows into the water-refrigerant heat exchanger 3 via the decompression device 4 that is fully open, where it absorbs heat from the load-side system, evaporates, and flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the four-way valve 2.

特開平05−340641号公報(図1、段落0024〜0034)JP 05-340641 A (FIG. 1, paragraphs 0024 to 0034)

特許文献1に示される従来技術では、デフロスト運転後の給湯運転や温水暖房運転の能力回復が遅い、という課題がある。デフロスト運転初期は、室外熱交換器6の管外着霜量が多く、室外熱交換器6の熱交換量が大きいので、室外熱交換器6を流通する冷媒はすぐに凝縮して液化するため室外熱交換器6に滞留する液冷媒量は多い。一方、デフロスト運転終了時は、室外熱交換器6の管外に霜は無いため室外熱交換器6の熱交換量は少ないので、室外熱交換器6を流通する冷媒はほとんど凝縮せず、室外熱交換器6に滞留する液冷媒量は少なくなる。室外熱交換気を流出した冷媒はアキュムレータ10に滞留する。   In the prior art disclosed in Patent Document 1, there is a problem that the ability recovery of the hot water supply operation and the hot water heating operation after the defrost operation is slow. In the initial stage of the defrost operation, the amount of frost on the outside of the outdoor heat exchanger 6 is large and the amount of heat exchange of the outdoor heat exchanger 6 is large. Therefore, the refrigerant flowing through the outdoor heat exchanger 6 is immediately condensed and liquefied. The amount of liquid refrigerant staying in the outdoor heat exchanger 6 is large. On the other hand, at the end of the defrosting operation, since there is no frost outside the pipe of the outdoor heat exchanger 6, the amount of heat exchange in the outdoor heat exchanger 6 is small, so that the refrigerant flowing through the outdoor heat exchanger 6 hardly condenses, The amount of liquid refrigerant staying in the heat exchanger 6 is reduced. The refrigerant flowing out of the outdoor heat exchange air stays in the accumulator 10.

デフロスト運転初期に室外熱交換器6に滞留していた液冷媒は、デフロスト運転終了に近づくと室外熱交換器6から流出し、アキュムレータ10に滞留する。凝縮器、蒸発器が空冷式熱交換器であり、室外機と室内機を延長配管で接続するセパレート式空気調和装置では、室外熱交換器6から流出した冷媒はアキュムレータ10以外に延長配管にも滞留する。一方、給湯、冷温水空気調和装置は延長配管がないので、室外熱交換器6から流出した冷媒はほとんどアキュムレータ10に滞留する。   The liquid refrigerant staying in the outdoor heat exchanger 6 at the initial stage of the defrost operation flows out of the outdoor heat exchanger 6 and stays in the accumulator 10 when the defrost operation approaches. In the separate air conditioner in which the condenser and the evaporator are air-cooled heat exchangers and the outdoor unit and the indoor unit are connected by an extension pipe, the refrigerant flowing out of the outdoor heat exchanger 6 is not only in the accumulator 10 but also in the extension pipe. Stay. On the other hand, since the hot water supply and cold / hot water air conditioner do not have an extension pipe, most of the refrigerant flowing out of the outdoor heat exchanger 6 stays in the accumulator 10.

デフロスト運転を終了し、給湯運転や温水暖房運転を開始する場合、アキュムレータ10に滞留した冷媒を水冷媒熱交換器3に移動して高圧を上昇させないと能力は増加しない。しかしながら、低圧のアキュムレータ10に滞留した冷媒を高圧の水冷媒熱交換器に移動するには多大なエネルギーが必要であり、特に低外気温度の場合には移動に時間がかかる。冷媒をアキュムレータ10から水冷媒熱交換器に移動するにはアキュムレータ入口冷媒を過熱ガス状態にし、アキュムレータ10内の滞留液と接触熱交換して滞留冷媒を蒸発させる必要がある。アキュムレータ入口の過熱ガス冷媒は接触熱交換後に飽和ガス冷媒になる。   When the defrost operation is terminated and the hot water supply operation or the hot water heating operation is started, the capacity does not increase unless the refrigerant accumulated in the accumulator 10 is moved to the water refrigerant heat exchanger 3 to increase the high pressure. However, a large amount of energy is required to move the refrigerant staying in the low-pressure accumulator 10 to the high-pressure water-refrigerant heat exchanger, and it takes time to move especially at low outside air temperatures. In order to move the refrigerant from the accumulator 10 to the water refrigerant heat exchanger, the refrigerant at the inlet of the accumulator needs to be in a superheated gas state, and contact heat is exchanged with the accumulated liquid in the accumulator 10 to evaporate the accumulated refrigerant. The superheated gas refrigerant at the inlet of the accumulator becomes a saturated gas refrigerant after contact heat exchange.

アキュムレータ10内の液冷媒を0.5kg蒸発させてアキュムレータ10から流出させるのに要する時間を計算検討する。使用冷媒をR410Aとし、冷媒物性計算プログラムREFPROPver.7を用いて0℃の物性を計算すると、0℃の潜熱Lは221.3kJ/kg、0℃の飽和ガス圧力における10℃の過熱量Qshは10.8kJ/kgである。アキュムレータ10内の0℃冷媒を0.5kg蒸発するのに必要な熱量Eは110.7kJ(=L×0.5kg)である。給湯、温水暖房運転開始時の冷媒流量Grを1.6kg/min、アキュムレータ入口冷媒の過熱度を10℃とした場合、アキュムレータ10内の液冷媒との接触熱交換量Qは17.3kJ/min(=Gr×Qsh)なので、0.5kgの冷媒を蒸発させるには6.4分(=E/Q)必要であることが計算により分かる。この他にも、デフロスト運転後のアキュムレータ10は冷えているので、アキュムレータ10をガス冷媒の過熱エネルギーで温める必要があること、給湯、温水暖房運転開始後数分は、冷媒状態が不安定なため、アキュムレータ入口冷媒を過熱するのが難しいことを考慮すると、最低でも10分以上かかる。このようにデフロスト運転後の給湯運転や温水暖房運転では能力が増加するまでに時間がかかる。   The time required for 0.5 kg of the liquid refrigerant in the accumulator 10 to evaporate and flow out of the accumulator 10 is calculated and examined. When the refrigerant used is R410A and the physical property calculation at 0 ° C is calculated using the refrigerant property calculation program REFPROPver.7, the latent heat L at 0 ° C is 221.3kJ / kg, and the superheat Qsh at 10 ° C at 0 ° C saturated gas pressure is 10.8 kJ / kg. The amount of heat E required to evaporate 0.5 kg of the 0 ° C. refrigerant in the accumulator 10 is 110.7 kJ (= L × 0.5 kg). When the refrigerant flow rate Gr at the start of hot water supply and hot water heating operation is 1.6 kg / min and the degree of superheat of the refrigerant at the accumulator inlet is 10 ° C., the contact heat exchange amount Q with the liquid refrigerant in the accumulator 10 is 17.3 kJ / min (= (Gr × Qsh), it can be calculated by calculation that it takes 6.4 minutes (= E / Q) to evaporate 0.5 kg of refrigerant. In addition to this, since the accumulator 10 after the defrost operation is cold, it is necessary to heat the accumulator 10 with the superheat energy of the gas refrigerant, and the refrigerant state is unstable for several minutes after the start of hot water supply and hot water heating operation. Considering that it is difficult to overheat the accumulator inlet refrigerant, it takes at least 10 minutes. Thus, in hot water supply operation and hot water heating operation after defrost operation, it takes time until the capacity increases.

また、従来技術では低外気温度下での高温給湯運転などの冷凍サイクル高圧縮比運転時に能力が低下する、という技術課題がある。その理由は以下の通りである。
圧縮機吐出冷媒の温度と、圧縮機吸入冷媒の状態は相関性が高く、圧縮機吸入冷媒の過熱度や乾き度を制御することで圧縮機吐出冷媒の温度を制御できることは自明である。
また、冷媒回路に余剰冷媒が発生する場合、余剰冷媒はアキュムレータ10に滞留する。アキュムレータ10に冷媒が滞留すると、圧縮機吸入冷媒の状態は乾き度0.8〜1の状態で安定するので、この圧縮機吸入冷媒の状態を自在に制御することは難しい。圧縮機の吸入状態を自在に制御できないため、圧縮機吐出冷媒温度を容易に制御できない。
Further, the conventional technique has a technical problem that the capacity is reduced during a refrigeration cycle high compression ratio operation such as a high temperature hot water supply operation under a low outside air temperature. The reason is as follows.
It is obvious that the temperature of the compressor discharge refrigerant and the state of the compressor intake refrigerant are highly correlated, and the temperature of the compressor discharge refrigerant can be controlled by controlling the degree of superheat and dryness of the compressor intake refrigerant.
Further, when surplus refrigerant is generated in the refrigerant circuit, the surplus refrigerant stays in the accumulator 10. If the refrigerant stays in the accumulator 10, the state of the compressor suction refrigerant is stabilized at a dryness of 0.8 to 1, so that it is difficult to freely control the state of the compressor suction refrigerant. Since the suction state of the compressor cannot be freely controlled, the compressor discharge refrigerant temperature cannot be easily controlled.

実際には、圧縮機吐出冷媒の温度が信頼性上限値を超えると、圧縮機吸入の冷媒状態を制御するのではなく、圧縮機運転周波数を下げて吐出温度を下げる制御を導入している。こうすると能力が低下する。   Actually, when the temperature of the refrigerant discharged from the compressor exceeds the reliability upper limit value, control for lowering the discharge temperature by lowering the compressor operating frequency is introduced instead of controlling the refrigerant state of the compressor suction. This will reduce your ability.

凝縮器、蒸発器が空冷式熱交換器であり、室外機と室内機を延長配管で接続するセパレート式空気調和装置(以降、通常空調機と呼ぶ)では、暖房運転時に要求される吹出し温度は高くても50℃前後である。一方、給湯運転では要求される温水温度は60℃以上の場合が多い。給湯、温水暖房空気調和装置では、セパレート式空気調和装置の暖房運転の時よりも圧縮機の吐出温度を自在に制御する必要がある。従来技術では、通常の空調機よりも吐出温度制限で圧縮機運転周波数を低減して能力を下げるケースが多く発生する。   In a separate air conditioner (hereinafter referred to as a normal air conditioner) in which the condenser and the evaporator are air-cooled heat exchangers and the outdoor unit and the indoor unit are connected by an extension pipe, the blowing temperature required during heating operation is It is around 50 ° C at the highest. On the other hand, in hot water operation, the required hot water temperature is often 60 ° C or higher. In the hot water supply and hot water heating air conditioner, it is necessary to control the discharge temperature of the compressor more freely than in the heating operation of the separate air conditioner. In the prior art, there are many cases where the compressor operating frequency is reduced and the capacity is lowered by limiting the discharge temperature as compared with a normal air conditioner.

本発明は上記のような問題点を解消するためになされたもので、デフロスト運転後の給湯、温水暖房運転の能力立上りが早く、低外気高温給湯運転などの冷凍サイクル高圧縮比運転時に能力が低下しない給湯、冷温水空気調和装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and the capacity of hot water supply and hot water heating operation after defrost operation has risen quickly, and the capacity is improved during refrigeration cycle high compression ratio operation such as low outdoor air high temperature hot water supply operation. It aims at providing the hot water supply which does not fall, and a cold / hot water air conditioning apparatus.

前記課題を解決するため、本発明の給湯、冷温水空気調和装置は、室外機に設けられ、冷媒が回転数可変な圧縮機、四方弁、水と熱交換を行う第1の熱交換器、空気と熱交換を行う第2の熱交換器を順次循環する冷媒回路と、水搬送手段と給湯タンクを備え、水が、水搬送手段、第1の熱交換器、給湯タンクを順次循環する水回路と、第1の熱交換器と第2の熱交換器を連通する配管に直列に設けられた2つの減圧装置と、2つの減圧装置の間に設けられ、冷媒を貯留するレシーバと、制御手段と、を備え、制御手段は、冷媒が前記循環の方向とは逆の方向に循環するデフロスト運転中は、前記2つの減圧装置の開度を全開にし、デフロスト運転終了間際には、制御手段が上流側の減圧装置の開度を全開のままにして下流側の減圧装置の開度を小さく制御し、給湯、温水暖房運転時には、前記第1、第2の熱交換器の内の凝縮器となる熱交換器の出口過冷却度が所定の目標値になるように上流側の減圧装置を制御すると共に圧縮機吐出温度または圧縮機吐出過熱度に基づいて前記下流側の減圧装置の開度を制御するものである。 In order to solve the above-mentioned problems, a hot water supply and cold / hot water air conditioner of the present invention is provided in an outdoor unit, a compressor having a variable rotation speed of a refrigerant, a four-way valve, a first heat exchanger that exchanges heat with water, Water comprising a refrigerant circuit that sequentially circulates a second heat exchanger that exchanges heat with air, a water transfer means, and a hot water supply tank, and water sequentially circulates through the water transfer means, the first heat exchanger , and the hot water supply tank A circuit, two pressure reducing devices provided in series in a pipe communicating the first heat exchanger and the second heat exchanger, a receiver provided between the two pressure reducing devices and storing refrigerant, and a control And the control means fully opens the opening of the two decompression devices during the defrost operation in which the refrigerant circulates in the direction opposite to the direction of the circulation , and immediately before the defrost operation ends, the control means Open the decompression device on the downstream side while keeping the opening of the decompression device on the upstream side fully open. The pressure reducing device on the upstream side is controlled to be small and the outlet supercooling degree of the heat exchanger serving as a condenser in the first and second heat exchangers becomes a predetermined target value during hot water supply and hot water heating operation. And the opening of the decompression device on the downstream side is controlled based on the compressor discharge temperature or the compressor discharge superheat degree.

本発明により、デフロスト運転後の給湯、温水暖房運転の能力立上りが早く、低外気高温給湯運転などの冷凍サイクル高圧縮比運転時に能力が低下しない給湯、冷温水空気調和装置の提供が可能になる。   According to the present invention, it is possible to provide hot water supply and chilled / hot water air conditioners that have quick rise in capacity for hot water supply and hot water heating operation after defrost operation, and that do not have reduced performance during refrigeration cycle high compression ratio operation such as low outside air high temperature hot water supply operation. .

実施の形態1.
以下、本発明の実施の形態1を説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below.

図1に冷媒回路図を示す。冷媒回路は、室外機冷媒回路と水回路から構成されている。室外機冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、空冷式の室外熱交換器6、室外ファン7、室外ファンモータ8から構成され、水回路は水ポンプ21、給湯タンク23、タンク内部熱交換器24を備えている。また、室外機側には、室外機周囲乾球温度検知手段31、水冷媒熱交換器の入口水温検知手段32、空冷式熱交換器の液管側冷媒温度検出手段33、水冷媒熱交換器の液管側冷媒温度検知手段34、圧縮機吐出温度検知手段35、圧縮機吐出圧力検知手段36が取り付けられている。また、上記水回路の各構成要素を制御する負荷側制御・通信手段41と、上記室外機冷媒回路及び室外機の各構成要素を制御する室外機制御、通信手段42が設けられている。   FIG. 1 shows a refrigerant circuit diagram. The refrigerant circuit is composed of an outdoor unit refrigerant circuit and a water circuit. The outdoor unit refrigerant circuit includes a compressor 1, a four-way valve 2, a water refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an air-cooled outdoor heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit includes a water pump 21, a hot water supply tank 23, and a tank internal heat exchanger 24. Further, on the outdoor unit side, the outdoor unit ambient dry bulb temperature detecting means 31, the water refrigerant heat exchanger inlet water temperature detecting means 32, the liquid pipe side refrigerant temperature detecting means 33 of the air-cooled heat exchanger, the water refrigerant heat exchanger. The liquid pipe side refrigerant temperature detecting means 34, the compressor discharge temperature detecting means 35, and the compressor discharge pressure detecting means 36 are attached. A load-side control / communication means 41 for controlling each component of the water circuit, and an outdoor unit control and communication means 42 for controlling each component of the outdoor unit refrigerant circuit and the outdoor unit are provided.

図1では24はタンク内部熱交換器を熱交換器式で示したが、図2のように二重構造式やその他式でも同様の機能が得られる。図3以降でも同様の効果が得られる。   In FIG. 1, reference numeral 24 indicates the heat exchanger type in the tank internal heat exchanger, but the same function can be obtained by a double structure type or other type as shown in FIG. The same effect can be obtained from FIG.

なお、室外機制御、通信手段42は制御手段を構成し、水冷媒熱交換器3は第1の熱交換器を構成し、空冷式の室外熱交換器6は第2の熱交換器を構成する。   The outdoor unit control / communication means 42 constitutes a control means, the water-refrigerant heat exchanger 3 constitutes a first heat exchanger, and the air-cooled outdoor heat exchanger 6 constitutes a second heat exchanger. To do.

図3に冷媒回路図を示す。室外機の冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、空冷式熱交換器6、室外ファン7、室外ファンモータ8から構成されており、水回路は、水ポンプ21、冷温水空気調和機用熱交換器25を備えている。また、室外機側には、室外機周囲乾球温度検知手段31は、水冷媒熱交換器の入口水温検知手段32、空冷式熱交換器の液管側冷媒温度検出手段33、水冷媒熱交換器の液管側冷媒温度検知手段34、圧縮機吐出温度検知手段35、圧縮機吐出圧力検知手段36が取り付けられている、また、上記水回路の各構成要素を制御する負荷側制御・通信手段41と、上記室外機冷媒回路及び室外機の各構成要素を制御する室外機制御、通信手段42が設けられている。   FIG. 3 shows a refrigerant circuit diagram. The refrigerant circuit of the outdoor unit includes a compressor 1, a four-way valve 2, a water refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an air-cooled heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit includes a water pump 21 and a heat exchanger 25 for cold / hot water air conditioner. On the outdoor unit side, the outdoor unit ambient dry bulb temperature detecting means 31 includes an inlet water temperature detecting means 32 for the water refrigerant heat exchanger, a liquid pipe side refrigerant temperature detecting means 33 for the air-cooled heat exchanger, and water refrigerant heat exchange. A liquid pipe side refrigerant temperature detecting means 34, a compressor discharge temperature detecting means 35, and a compressor discharge pressure detecting means 36 are attached, and load side control / communication means for controlling each component of the water circuit. 41, and an outdoor unit control and communication means 42 for controlling each component of the outdoor unit refrigerant circuit and the outdoor unit.

図4に冷媒回路図を示す。室外機の冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、空冷式熱交換器6、室外ファン7、室外ファンモータ8から構成されており、水回路は、水ポンプ21、三方弁22、給湯タンク23、タンク内部熱交換器24、冷温水空気調和機用熱交換器25を備えている。また、室外機側には、室外機周囲乾球温度検知手段31は、水冷媒熱交換器の入口水温検知手段32、空冷式熱交換器の液管側冷媒温度検出手段33、水冷媒熱交換器の液管側冷媒温度検知手段34、圧縮機吐出温度検知手段35、圧縮機吐出圧力検知手段36が取り付けられている、また、上記水回路の各構成要素を制御する負荷側制御・通信手段41と、上記室外機冷媒回路及び室外機の各構成要素を制御する室外機制御、通信手段42が設けられている。   FIG. 4 shows a refrigerant circuit diagram. The refrigerant circuit of the outdoor unit includes a compressor 1, a four-way valve 2, a water refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an air-cooled heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit includes a water pump 21, a three-way valve 22, a hot water supply tank 23, a tank internal heat exchanger 24, and a heat exchanger 25 for a cold / hot water air conditioner. On the outdoor unit side, the outdoor unit ambient dry bulb temperature detecting means 31 includes an inlet water temperature detecting means 32 for the water refrigerant heat exchanger, a liquid pipe side refrigerant temperature detecting means 33 for the air-cooled heat exchanger, and water refrigerant heat exchange. A liquid pipe side refrigerant temperature detecting means 34, a compressor discharge temperature detecting means 35, and a compressor discharge pressure detecting means 36 are attached, and load side control / communication means for controlling each component of the water circuit. 41, and an outdoor unit control and communication means 42 for controlling each component of the outdoor unit refrigerant circuit and the outdoor unit.

図1、3、4において、負荷側制御・通信手段41と水ポンプ21、三方弁22とは、有線或いは無線の通信線で接続されている(図示せず)。室外機制御、通信手段42は圧縮機1のモータ回転制御手段、四方弁2、減圧装置4a、4b、室外ファンモータ8の回転数制御手段、各温度・圧力検知手段(31〜36)とは、有線或いは無線の通信線で接続されている(図示せず)。負荷側ユニット制御・通信手段41と室外機制御、通信手段42とは有線或いは無線の通信線で接続されている(図示せず)。図5以降の冷媒回路でも各温度検知手段、圧力検知手段(31〜36)、負荷側ユニット制御・通信手段41、室外機制御、通信手段42を備え、同様に通信線で接続されているが説明を省略する。   1, 3, and 4, the load side control / communication means 41, the water pump 21, and the three-way valve 22 are connected by a wired or wireless communication line (not shown). The outdoor unit control and communication means 42 are the motor rotation control means of the compressor 1, the four-way valve 2, the pressure reducing devices 4a and 4b, the rotation speed control means of the outdoor fan motor 8, and the temperature / pressure detection means (31 to 36). Are connected by a wired or wireless communication line (not shown). The load side unit control / communication means 41 and the outdoor unit control / communication means 42 are connected by a wired or wireless communication line (not shown). Each of the refrigerant circuits in FIG. 5 and subsequent figures includes temperature detection means, pressure detection means (31 to 36), load side unit control / communication means 41, outdoor unit control, and communication means 42, which are similarly connected by communication lines. Description is omitted.

次に、各運転モードにおける冷媒と水の動作を図4を用いて説明する。
給湯運転する場合、室外機冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して水冷媒熱交換器3に流入し、ここで負荷側ユニットに温熱を供給して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4aで減圧されて中圧飽和液冷媒となってレシーバ5を介して減圧装置4bに流入し、ここで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して蒸発し、低圧ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して圧縮機1に戻る。
Next, the operation of the refrigerant and water in each operation mode will be described with reference to FIG.
In the case of hot water supply operation, in the outdoor unit refrigerant circuit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 3 through the four-way valve 2, where the heat is supplied to the load unit and condensed. And flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is decompressed by the decompression device 4a and becomes a medium-pressure saturated liquid refrigerant and flows into the decompression device 4b through the receiver 5, where it is decompressed and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 6 forcibly blown by the outdoor fan 7, where it evaporates by exchanging heat with ambient air and flows out as a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the four-way valve 2.

給湯運転する場合、負荷側ユニットでは、水ポンプ21を吐出した水は水冷媒熱交換器3に流入し、ここで室外機から温熱を受け取って水温上昇し、三方弁22を介して給湯タンク23内に設けたタンク内部熱交換器24に流入する。ここでタンク内の水に温熱を供給して水温低下し、水ポンプ21に戻る。三方弁22の切替により冷温水空気調和用熱交換器25に水は循環しない。   In the hot water supply operation, in the load side unit, the water discharged from the water pump 21 flows into the water / refrigerant heat exchanger 3 where the water temperature is received from the outdoor unit and the water temperature rises. It flows into the tank internal heat exchanger 24 provided in the inside. Here, hot water is supplied to the water in the tank to lower the water temperature and return to the water pump 21. By switching the three-way valve 22, water does not circulate in the heat exchanger 25 for cold / hot water air conditioning.

温水暖房運転する場合、室外機冷媒回路の冷媒動作は給湯運転と同一なので説明を省略する。温水暖房運転する場合、負荷側ユニットでは、水ポンプ21を吐出した水は水冷媒熱交換器3に流入し、ここで室外機から温熱を受け取って水温上昇し、三方弁22を介して冷温水空気調和用熱交換器25に流入する。ここで周囲空気と熱交換して水温低下し、水ポンプ21に戻る。三方弁22の切替により給湯タンク23内に設けたタンク内部熱交換器24に水は循環しない。   When the hot water heating operation is performed, the refrigerant operation of the outdoor unit refrigerant circuit is the same as the hot water supply operation, and thus the description thereof is omitted. When performing the hot water heating operation, in the load side unit, the water discharged from the water pump 21 flows into the water-refrigerant heat exchanger 3, where the water temperature is received from the outdoor unit to increase the water temperature, and cold water is supplied via the three-way valve 22. It flows into the air conditioner heat exchanger 25. Here, heat is exchanged with the ambient air to lower the water temperature, and the water pump 21 is returned. Water is not circulated to the tank internal heat exchanger 24 provided in the hot water supply tank 23 by switching the three-way valve 22.

冷水冷房運転する場合、室外機の冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4bで減圧されて中圧飽和液冷媒となってレシーバ5を介して減圧装置4aに流入し、ここで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は水冷媒熱交換器3に流入し、ここで負荷側ユニットに冷熱を供給して蒸発し、低圧ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して圧縮機1に戻る。   In the case of the cold water cooling operation, in the refrigerant circuit of the outdoor unit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 6 forcibly ventilated by the outdoor fan 7 through the four-way valve 2. It exchanges heat with ambient air, condenses, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is decompressed by the decompression device 4b and becomes a medium-pressure saturated liquid refrigerant and flows into the decompression device 4a through the receiver 5, where it is decompressed and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the water-refrigerant heat exchanger 3, where cold heat is supplied to the load side unit to evaporate, and flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the four-way valve 2.

冷水冷房運転する場合、負荷側ユニットでは、水ポンプ21を吐出した水は水冷媒熱交換器3に流入し、ここで室外機から冷熱を受け取って水温低下し、三方弁22を介して冷温水空気調和用熱交換器25に流入する。ここで周囲空気に冷熱を供給して水温上昇し、水ポンプ21に戻る。三方弁22の切替により給湯タンク23内に設けたタンク内部熱交換器24に水は循環しない。   In the cold water cooling operation, in the load side unit, the water discharged from the water pump 21 flows into the water / refrigerant heat exchanger 3 where the cold water is received from the outdoor unit and the water temperature is lowered. It flows into the air conditioner heat exchanger 25. Here, the cooling air is supplied to the ambient air, the water temperature rises, and the water pump 21 is returned. Water is not circulated to the tank internal heat exchanger 24 provided in the hot water supply tank 23 by switching the three-way valve 22.

運転時の冷媒回路制御手順について説明する。
第1ステップとして運転指令と要求能力が負荷側制御・通信手段41から室外機制御・通信手段42に伝達される。
第2ステップとして、室外機制御・通信手段42は温度・圧力検知手段(31〜36)が検知する値を収集する。
第3ステップとして、室外機制御・通信手段42は、要求能力と、室外機周囲乾球温度検知手段31が検知した室外機周囲乾球温度と、水冷媒熱交換器の入口水温検知手段32が検知した水冷媒熱交換器水入口温度から圧縮機モータの回転数を決定する。予め3つの値の関係をマップ化しておくと決定時間を短縮することができる。
第4ステップとして、室外機制御・通信手段42は、室外機周囲乾球温度検知手段31が検知した室外機周囲乾球温度から室外機ファンモータ回転数を決定する。
第5ステップとして、室外機制御・通信手段42は、給湯、温水暖房運転時には、圧縮機吐出圧力検知手段36が検知した圧縮機吐出圧力から凝縮器飽和液温度を算出し、水冷媒熱交換器の液管側冷媒温度検知手段34が検知した水冷媒熱交換器の液管接続口温度との値から凝縮器である水冷媒熱交換器の出口冷媒過冷却度を求め、求めた過冷却度値が所定の目標値になるように水冷媒熱交換器3と連通する減圧装置4aの開度を決定する。また、室外機制御・通信手段42は、冷水冷房運転時には、圧縮機吐出圧力検知手段36が検知した圧縮機吐出圧力から凝縮器飽和液温度を算出し、空冷式熱交換器の液管側冷媒温度検出手段33が検知した空冷式熱交換器の液管接続口温度との値から凝縮器である空冷式熱交換器の出口冷媒過冷却度を求め、求めた過冷却度値が所定の目標値になるように空冷式熱交換器6と連通する減圧装置4bの開度を決定する。
第6ステップとして、室外機制御・通信手段42は、第3から第5ステップで決定した圧縮機モータ回転数を圧縮機モータ回転数制御部(図示せず)へ、室外ファンモータ回転数を室外ファンモータ回転数制御部(図示せず)へ、減圧装置開度を減圧装置開度制御部(図示せず)へ送信して制御する。本制御は所定時間毎に実施する。所定時間は冷凍サイクルの安定性を考慮し、20秒から2分の間の値とする。
A refrigerant circuit control procedure during operation will be described.
As a first step, the operation command and required capacity are transmitted from the load side control / communication means 41 to the outdoor unit control / communication means 42.
As a second step, the outdoor unit control / communication means 42 collects values detected by the temperature / pressure detection means (31-36).
As a third step, the outdoor unit control / communication unit 42 includes the required capacity, the outdoor unit ambient dry bulb temperature detected by the outdoor unit ambient dry bulb temperature detection unit 31, and the inlet water temperature detection unit 32 of the water-refrigerant heat exchanger. The rotation speed of the compressor motor is determined from the detected water refrigerant heat exchanger water inlet temperature. If the relationship between the three values is mapped in advance, the determination time can be shortened.
As a fourth step, the outdoor unit control / communication unit 42 determines the outdoor unit fan motor rotation speed from the outdoor unit ambient dry bulb temperature detected by the outdoor unit ambient dry bulb temperature detection unit 31.
As a fifth step, the outdoor unit control / communication means 42 calculates the condenser saturated liquid temperature from the compressor discharge pressure detected by the compressor discharge pressure detection means 36 during hot water supply and hot water heating operation, and the water refrigerant heat exchanger The outlet refrigerant subcooling degree of the water refrigerant heat exchanger, which is a condenser, is obtained from the value of the liquid pipe connection port temperature of the water refrigerant heat exchanger detected by the liquid pipe side refrigerant temperature detecting means 34, and the obtained subcooling degree is obtained. The opening degree of the decompression device 4a communicating with the water-refrigerant heat exchanger 3 is determined so that the value becomes a predetermined target value. The outdoor unit control / communication means 42 calculates the condenser saturated liquid temperature from the compressor discharge pressure detected by the compressor discharge pressure detection means 36 during the cold water cooling operation, and the liquid pipe side refrigerant of the air-cooled heat exchanger The degree of refrigerant subcooling at the outlet of the air-cooled heat exchanger, which is a condenser, is obtained from the value of the liquid pipe connection port temperature of the air-cooled heat exchanger detected by the temperature detection means 33, and the obtained degree of supercooling is a predetermined target. The opening degree of the decompression device 4b communicating with the air-cooled heat exchanger 6 is determined so as to be a value.
As a sixth step, the outdoor unit control / communication means 42 sends the compressor motor rotational speed determined in the third to fifth steps to the compressor motor rotational speed control unit (not shown), and the outdoor fan motor rotational speed to the outdoor unit. A decompression device opening degree is transmitted to a decompression device opening degree control unit (not shown) and controlled to a fan motor rotation speed control unit (not shown). This control is performed every predetermined time. The predetermined time is set to a value between 20 seconds and 2 minutes in consideration of the stability of the refrigeration cycle.

運転時の水回路制御手順について説明する。水ポンプ21はモータ回転数が2段階に切り替えることができるものとする。数段階切替も可能である。
第1ステップとして、負荷側制御・通信手段41は、室外機へ運転要求するかしないか決定する。
第2ステップとして、負荷側制御・通信手段41は、室外機に運転要求しない場合には、水ポンプ21のモータ回転数を所定の最小回転数に決定する。ここで、必要最小モータ回転数とは、水回路周囲温度が0℃未満でも回路中の水が凍らないようにするために必要な流速を得るための回転数である。室外機に運転要求する場合には、負荷側制御・通信手段41は、水ポンプ21のモータ回転数を所定の最小回転数ではない回転数に決定する。
第3ステップとして、負荷側制御・通信手段41から室外機制御・通信手段42へ運転指令有無と負荷側の要求能力を伝達する。
The water circuit control procedure during operation will be described. It is assumed that the water pump 21 can switch the motor rotation speed to two stages. Several stages can be switched.
As a first step, the load side control / communication means 41 determines whether or not to request an operation from the outdoor unit.
As a second step, the load-side control / communication means 41 determines the motor rotation speed of the water pump 21 to be a predetermined minimum rotation speed when no operation request is made to the outdoor unit. Here, the necessary minimum motor rotation speed is a rotation speed for obtaining a flow rate necessary for preventing water in the circuit from freezing even when the ambient temperature of the water circuit is less than 0 ° C. When making an operation request to the outdoor unit, the load-side control / communication means 41 determines the motor rotation speed of the water pump 21 to a rotation speed that is not a predetermined minimum rotation speed.
As a third step, the presence / absence of the operation command and the required capacity on the load side are transmitted from the load side control / communication means 41 to the outdoor unit control / communication means 42.

給湯、冷温水空気調和装置において、従来技術である1つの減圧装置とアキュムレータの組合せ回路で生じる技術課題が、本発明の2減圧装置とレシーバの組み合わせ回路で解消できることを説明する。   In the hot water supply and cold / hot water air conditioner, it will be described that the technical problem caused by the conventional combination circuit of one decompression device and an accumulator can be solved by the combination circuit of the two decompression devices and the receiver of the present invention.

技術課題1.アキュムレータ回路ではデフロスト運転から給湯、温水暖房運転に切り替えたときの立ち上がりが遅い。 Technical issues In the accumulator circuit, the startup is slow when switching from defrost operation to hot water supply or hot water heating operation.

アキュムレータ回路におけるデフロスト運転、及びデフロスト運転終了後の給湯、温水暖房運転時の冷媒動作及び課題については発明が解決しようとする課題のところで説明したので、ここでは省略する。   Since the defrosting operation in the accumulator circuit, the hot water supply after the completion of the defrosting operation, the refrigerant operation and the problem during the hot water heating operation have been described in the problem to be solved by the invention, they are omitted here.

2つの減圧装置とレシーバの組合せ回路におけるデフロスト運転時の冷媒動作を図4を用いて説明する。デフロスト運転は冷媒を冷水冷房運転時と同様方向に冷媒を流通させるので、リバース方式と呼ばれることが多い。冷媒回路で圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して室外ファン7を停止した空冷式交換器6に流入し、ここで熱交換器6の表面に着いた霜と熱交換して凝縮し、凝縮熱により霜が溶け、冷媒は高圧液冷媒として流出する。流出した高圧液冷媒は開度全開の減圧装置4b、レシーバ5、減圧装置4aを介して水冷媒熱交換器3に流入し、ここで水回路側から吸熱して蒸発し、低圧ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して圧縮機1に戻る。   The refrigerant operation during the defrost operation in the combination circuit of the two decompression devices and the receiver will be described with reference to FIG. Since the defrost operation causes the refrigerant to flow in the same direction as in the cold water cooling operation, it is often called a reverse method. The high-pressure and high-temperature gas refrigerant discharged from the compressor 1 in the refrigerant circuit flows into the air-cooled exchanger 6 where the outdoor fan 7 is stopped via the four-way valve 2, and exchanges heat with frost on the surface of the heat exchanger 6. The frost is melted by the heat of condensation and the refrigerant flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out flows into the water-refrigerant heat exchanger 3 through the decompression device 4b, the receiver 5, and the decompression device 4a that are fully open, where they absorb heat from the water circuit side and evaporate to flow out as low-pressure gas refrigerant. To do. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the four-way valve 2.

デフロスト運転時は2つの減圧装置の開度を最大にすると冷媒流量が増加してデフロスト運転時間が短縮できるので、基本的には減圧装置の開度を最大にする。しかし、空冷式熱交換器表面の霜がほぼ溶け終わるデフロスト運転終了間際になっても2つの減圧装置の開度を最大のままに維持していると、空冷式熱交換器6に滞留していた液冷媒量は短時間で低減し、レシーバ5、水冷媒熱交換器3と連通する減圧装置4a、水冷媒熱交換器3、四方弁2を介して圧縮機吸入側に短時間かつ大量に戻ってくる。この液バック現象により圧縮機内の冷凍機油濃度は信頼性下限以下まで希釈され、圧縮機不良を引き起こす可能性が生じる。   At the time of defrost operation, if the opening degree of the two decompression devices is maximized, the refrigerant flow rate is increased and the defrost operation time can be shortened. Therefore, the opening degree of the decompression device is basically maximized. However, if the opening of the two decompression devices is maintained at the maximum even when the defrost operation is almost over, the frost on the surface of the air-cooled heat exchanger has almost melted, and the air-cooled heat exchanger 6 remains in the air-cooled heat exchanger 6. The amount of the liquid refrigerant is reduced in a short time, and in a short time and in a large amount to the compressor suction side via the receiver 5, the pressure reducing device 4 a communicating with the water refrigerant heat exchanger 3, the water refrigerant heat exchanger 3, and the four-way valve 2. Come back. Due to this liquid back phenomenon, the refrigeration oil concentration in the compressor is diluted to below the lower limit of reliability, which may cause a compressor failure.

そこで、デフロスト運転終了間際に水冷媒熱交換器3と連通する減圧装置4aの開度を小さめに設定すると、空冷式熱交換器6から流出した液冷媒をレシーバ5に滞留させて、圧縮機への液バック量を低減できる。   Therefore, when the opening of the decompression device 4a communicating with the water-refrigerant heat exchanger 3 is set to be small just before the end of the defrost operation, the liquid refrigerant flowing out from the air-cooled heat exchanger 6 is retained in the receiver 5 and sent to the compressor. The amount of liquid back can be reduced.

デフロスト運転を終了し、給湯、温水暖房運転を開始する場合、空冷式熱交換器と連通する減圧装置4bの開度を小さめに設定すると、レシーバ5に滞留している冷媒が圧縮機へ短時間かつ大量に戻ることを防ぐことができる。
一方で、給湯、温水暖房時にはレシーバ5に滞留している冷媒を水冷媒熱交換器に移動して吐出圧力を上昇させる必要がある。レシーバ5から水冷媒熱交換器3の途中には減圧装置4b、空冷式熱交換器6、四方弁2、圧縮機1、四方弁2があるが、途中に滞留容器が無いので冷媒移動は短時間で完了する。
When the defrosting operation is terminated and the hot water supply or hot water heating operation is started, if the opening of the decompression device 4b communicating with the air-cooled heat exchanger is set to be small, the refrigerant staying in the receiver 5 is briefly transferred to the compressor. And it can prevent returning in large quantities.
On the other hand, at the time of hot water supply or hot water heating, it is necessary to move the refrigerant staying in the receiver 5 to the water refrigerant heat exchanger to increase the discharge pressure. There are a decompressor 4b, an air-cooled heat exchanger 6, a four-way valve 2, a compressor 1, and a four-way valve 2 in the middle of the water-refrigerant heat exchanger 3 from the receiver 5; Complete in time.

以上より、従来技術であるアキュムレータ回路の給湯、冷温水空気調和装置ではデフロスト運転終了時にアキュムレータに滞留した液冷媒を、給湯、温水暖房開始時にアキュムレータから水冷媒熱交換器に移動するのに時間がかかり、給湯、温水暖房運転の開始が遅れるという課題があったが、2つの減圧装置とレシーバを備える本発明回路では、デフロスト運転終了から給湯、温水暖房運転への切替時に2つの減圧装置の開度を制御することでデフロスト運転中にレシーバに液冷媒を溜めながら圧縮機への液バック量を低減し、給湯、温水暖房開始時にはレシーバから水冷媒熱交換器への冷媒移動は短時間で完了するので、早急な給湯、温水暖房運転の開始が可能になる。   As described above, in the conventional hot water supply and cold / hot water air conditioner of the accumulator circuit, it takes time to move the liquid refrigerant accumulated in the accumulator at the end of the defrost operation from the accumulator to the water refrigerant heat exchanger at the start of hot water supply and hot water heating. However, in the circuit of the present invention having two pressure reducing devices and a receiver, the two pressure reducing devices are opened at the time of switching from the end of the defrost operation to the hot water supply and hot water heating operation. The amount of liquid back to the compressor is reduced while accumulating liquid refrigerant in the receiver during defrost operation, and the refrigerant transfer from the receiver to the water refrigerant heat exchanger is completed in a short time when hot water supply or hot water heating starts. Therefore, it is possible to start hot water supply and hot water heating operation immediately.

また、2つの減圧装置が別々に目標値を持って制御しているので立上り時間が短縮する。   Further, since the two pressure reducing devices are controlled separately with target values, the rise time is shortened.

技術課題2.アキュムレータ回路では低外気温度下での高温給湯運転のような冷凍サイクル高圧縮比運転時に、圧縮機周波数を低減して温熱能力を低下させる必要がある。   Technical problem 2. In the accumulator circuit, it is necessary to reduce the compressor frequency and reduce the heat capacity during refrigeration cycle high compression ratio operation such as high-temperature hot water supply operation at low outside air temperature.

アキュムレータ回路における冷媒動作及び課題については発明が解決しようとする課題のところで説明したので、ここでは省略する。   Since the refrigerant operation and problems in the accumulator circuit have been described in the problem to be solved by the invention, they are omitted here.

2つの減圧装置とレシーバの組合せ回路で給湯、温水暖房運転する場合の減圧装置の制御方法について説明する。室外機制御通信手段42は、水冷媒熱交換器3と連通する減圧装置4aの開度を水冷媒熱交換器3の出口冷媒過冷却度が目標値になるように制御する。具体的には、室外機制御通信手段42は、吐出圧力検知手段36によって検知された圧縮機の吐出圧力から飽和液温度CTlを算出し、これを水冷媒熱交換器3の出口冷媒の飽和液温度とみなす。つぎに、室外機制御通信手段42は、この飽和液温度CTlと水冷媒熱交換器3の液冷媒側冷媒温度検知手段34によって検知された温度Tcoとの差ΔTc(水冷媒熱交換器3の出口冷媒過冷却度)を次式により求め、この値が所定の目標値になるように減圧装置4aの開度を制御する。
ΔTc=CTl−Tco
A control method of the decompression device when hot water supply or hot water heating operation is performed by a combination circuit of two decompression devices and a receiver will be described. The outdoor unit control communication means 42 controls the opening degree of the decompression device 4a communicating with the water refrigerant heat exchanger 3 so that the outlet refrigerant subcooling degree of the water refrigerant heat exchanger 3 becomes a target value. Specifically, the outdoor unit control communication unit 42 calculates a saturated liquid temperature CTl from the compressor discharge pressure detected by the discharge pressure detection unit 36, and uses this to calculate the saturated liquid of the outlet refrigerant of the water refrigerant heat exchanger 3. Consider temperature. Next, the outdoor unit control communication means 42 determines the difference ΔTc between the saturated liquid temperature CTl and the temperature Tco detected by the liquid refrigerant side refrigerant temperature detection means 34 of the water refrigerant heat exchanger 3 (of the water refrigerant heat exchanger 3). The outlet refrigerant supercooling degree) is obtained by the following equation, and the opening degree of the decompression device 4a is controlled so that this value becomes a predetermined target value.
ΔTc = CT1-Tco

また、室外機制御通信手段42は、室外熱交換器6と連通する減圧装置4bの開度を圧縮機吐出温度或いは圧縮機吐出冷媒の過熱度が目標値になるように制御する。具体的には、室外機制御通信手段42は、吐出温度検知手段35によって検知された圧縮機の吐出温度Tdが所定の目標値になるように減圧装置4bの開度を制御する。或いは、室外機制御通信手段42は、吐出圧力検知手段36によって検知された圧縮機の吐出圧力から飽和ガス温度CTgを算出し、次に、この飽和ガス温度CTgと吐出温度検知手段35で検知した温度Tdとの差ΔTd(圧縮機吐出冷媒の過熱度)を次式により求め、この値が所定の目標値になるように減圧装置4bの開度を制御する。
ΔTd=Td−CTg
圧縮機吸入側に冷媒がたまる容器がないので減圧装置4bの開度を制御することで、圧縮機吐出冷媒の温度を自在に制御できる。そのとき圧縮機吸入冷媒状態も変化している。
The outdoor unit control communication means 42 controls the opening of the decompression device 4b communicating with the outdoor heat exchanger 6 so that the compressor discharge temperature or the degree of superheat of the compressor discharge refrigerant becomes a target value. Specifically, the outdoor unit control communication unit 42 controls the opening degree of the decompression device 4b so that the discharge temperature Td of the compressor detected by the discharge temperature detection unit 35 becomes a predetermined target value. Alternatively, the outdoor unit control communication means 42 calculates the saturated gas temperature CTg from the compressor discharge pressure detected by the discharge pressure detection means 36, and then detects the saturation gas temperature CTg and the discharge temperature detection means 35. A difference ΔTd (degree of superheat of the refrigerant discharged from the compressor) with respect to the temperature Td is obtained by the following equation, and the opening degree of the decompression device 4b is controlled so that this value becomes a predetermined target value.
ΔTd = Td−CTg
Since there is no container in which refrigerant accumulates on the compressor suction side, the temperature of the compressor discharge refrigerant can be freely controlled by controlling the opening of the decompression device 4b. At that time, the compressor suction refrigerant state also changes.

また、供給温水温度が上昇して圧縮機吐出冷媒の温度が信頼性上限値を超えた場合、室外機制御通信手段42は、室外熱交換器と連通する減圧装置4bの開度を開く方向で制御し、圧縮機吸入冷媒の乾き度を小さくすることで、圧縮機吐出冷媒の温度を信頼性上限値より低くすることができる。このとき、室外機制御通信手段42は、圧縮機運転周波数を低減しないので高温熱能力を確保できる。   When the supply hot water temperature rises and the temperature of the refrigerant discharged from the compressor exceeds the reliability upper limit value, the outdoor unit control communication means 42 opens the opening of the decompression device 4b communicating with the outdoor heat exchanger. By controlling and reducing the dryness of the refrigerant sucked from the compressor, the temperature of the refrigerant discharged from the compressor can be made lower than the reliability upper limit value. At this time, since the outdoor unit control communication means 42 does not reduce the compressor operating frequency, it can ensure the high temperature heat capacity.

室外機制御通信手段42は、水冷媒熱交換器3に連通する減圧装置4aを水冷媒熱交換器出口の液冷媒過冷却度が目標値になるように制御できるので、水冷媒熱交換器3を流通する冷媒により必要圧力を維持し、なおかつ水冷媒熱交換器3内に必要な冷媒量を確保することができる。その結果、高能力の供給と、冷凍サイクルの適正冷媒分布形成による信頼性向上を実現できる。   The outdoor unit control communication means 42 can control the pressure reducing device 4a communicating with the water refrigerant heat exchanger 3 so that the liquid refrigerant subcooling degree at the outlet of the water refrigerant heat exchanger becomes a target value. The required pressure is maintained by the refrigerant flowing through the refrigerant, and the necessary refrigerant amount can be secured in the water refrigerant heat exchanger 3. As a result, it is possible to improve reliability by supplying a high capacity and forming an appropriate refrigerant distribution in the refrigeration cycle.

次に、水冷媒熱交換器3にプレート式熱交換器を採用するメリットについて説明する。
まず、空冷式のフィンチューブ式熱交換器と伝熱面積、冷媒側容積を比較するとプレート式熱交換器の方が小さいことを説明する。
Next, the merit of employing a plate heat exchanger for the water refrigerant heat exchanger 3 will be described.
First, it will be explained that the plate type heat exchanger is smaller when the air-cooled fin tube type heat exchanger is compared with the heat transfer area and refrigerant side volume.

フィンチューブ式熱交換器では管内を冷媒が流通し、管外はファンから強制的に送られる風が流通する。管外風速は騒音などを考慮して1〜2m/secで設計され、管外熱伝達率αoは100W/m2K未満である。管外熱伝達率を100W/m2K、管内熱伝達率αiを5000W/m2K、管外面積Aoと管内面積Aiの比Ao/Aiを20とすると、凝縮器の熱通過率Kは(1)式から求めることができ、前記値を用いて計算するとK=71.4W/m2Kとなる。
1/K=(1/αo+(Ao/Ai)/αi) 式(1)
In the finned tube heat exchanger, the refrigerant circulates inside the pipe, and the wind forced from the fan circulates outside the pipe. The wind speed outside the tube is designed at 1-2 m / sec in consideration of noise and the like, and the heat transfer coefficient αo outside the tube is less than 100 W / m2K. When the heat transfer coefficient outside the tube is 100 W / m2K, the heat transfer coefficient αi in the tube is 5000 W / m2K, and the ratio Ao / Ai between the tube outside area Ao and the tube inside area Ai is 20, the heat transfer rate K of the condenser is expressed by equation (1) From the above value, K = 71.4 W / m2K.
1 / K = (1 / αo + (Ao / Ai) / αi) Equation (1)

次に、水冷媒熱交換器としてプレート式熱交換器を想定する。プレート式熱交換器では複数枚のプレートが積層され、その間を冷媒と水が交互に流通する。水の熱伝達率は1000〜10000W/m2Kとなる。水側熱伝達率αoを1000W/m2K、冷媒側熱伝達率αiを5000W/m2K、水側面積Aoと冷媒側面積Aiの比Ao/Aiを1とすると、凝縮器の熱通過率Kは(1)式から求めることができ、前記値を用いて計算するとK=833.3W/m2Kとなる。水冷媒熱交換器が二重管式であったり、水銅管周囲に冷媒銅管が巻きついた形状であったりしても、熱通過率はほぼ同等の値となる。   Next, a plate heat exchanger is assumed as the water refrigerant heat exchanger. In a plate heat exchanger, a plurality of plates are stacked, and refrigerant and water flow alternately between them. The heat transfer coefficient of water is 1000-10000W / m2K. When the water-side heat transfer coefficient αo is 1000 W / m2K, the refrigerant-side heat transfer coefficient αi is 5000 W / m2K, and the ratio Ao / Ai between the water-side area Ao and the refrigerant-side area Ai is 1, the heat transfer coefficient K of the condenser is ( It can be obtained from equation (1), and K = 833.3W / m2K when calculated using the above value. Even if the water-refrigerant heat exchanger is of a double tube type or has a shape in which a refrigerant copper tube is wound around the water-copper tube, the heat transfer rate is almost the same value.

従って、空冷式フィンチューブ熱交換器に対してプレート式水冷媒熱交換器の熱通過率は約10倍以上になる。熱交換性能は伝熱面積と熱通過率の積で求めることができるので、同一熱交換性能の場合、熱通過率が10倍になると伝熱面積は1/10でよい。従って、空冷式フィンチューブ熱交換器に対してプレート式熱交換器は伝熱面積を小さくすることができる。   Therefore, the plate-type water-refrigerant heat exchanger has a heat passing rate of about 10 times or more with respect to the air-cooled fin tube heat exchanger. Since the heat exchange performance can be obtained by the product of the heat transfer area and the heat transfer rate, in the case of the same heat exchange performance, the heat transfer area may be 1/10 when the heat transfer rate is increased 10 times. Therefore, the plate type heat exchanger can reduce the heat transfer area with respect to the air-cooled fin tube heat exchanger.

空冷式フィンチューブ熱交換器とプレート式熱交換器の冷媒側容積を比較する。定格能力9kWの4方向カセット形室内機に搭載されている空冷式フィンチューブ熱交換器の管内容積は1.5L、定格能力9kW相当のプレート式熱交換器(アルファラバル社製ACH30(商標)でプレートを30枚積層)の冷媒側容積は0.8Lとなる。従って、空冷式フィンチューブ熱交換器に対してプレート式熱交換器の冷媒容積を小さくすることができる。   The refrigerant side volume of the air-cooled fin tube heat exchanger and the plate heat exchanger is compared. The capacity of the air-cooled finned tube heat exchanger installed in the four-way cassette type indoor unit with a rated capacity of 9kW is 1.5L, and the plate type heat exchanger equivalent to the rated capacity of 9kW (Alpha Laval ACH30 (trademark) plate The volume on the refrigerant side of 30 sheets is 0.8L. Therefore, the refrigerant volume of the plate heat exchanger can be reduced with respect to the air-cooled fin tube heat exchanger.

次にプレート式熱交換器を使用することにより得られるメリットについて説明する。
(1)給湯、温水暖房運転開始時の立ち上がりが早い
(2)プレート式熱交換器は内容積が小さいので、冷媒滞留量が少量で済む。デフロスト運転終了後に給湯、温水暖房運転を短時間で立ち上げる場合、レシーバから水冷媒熱交換器であるプレート式熱交換器へ必要冷媒量を短時間に移動する必要がある。プレート式熱交換器は冷媒移動量がプレートフィン式熱交換器よりも少量で済むので能力立ち上がりに要する時間を短縮できる。尚、2つの減圧装置を備える回路だから可能であることは前に説明済みである。
(3)減圧装置入口冷媒状態の安定化
減圧装置は、入口冷媒状態が完全な液状態でないと制御が保障されない特性がある。そのため、凝縮器にプレートフィン式熱交換器を用いる場合には減圧装置の入口冷媒過冷却度を4deg以上確保する制御を導入して確実に液状態にする制御を導入している。一方、給湯、温水暖房運転する場合、減圧装置の上流側に接続されている水冷媒熱交換器の出口冷媒過冷却度を大きくすると凝縮温度が上昇して(図12)運転効率が低下したり、高温水供給時は装置の信頼性上限圧力を超えてしまったりすることがあるので、水冷媒熱交換器の出口冷媒過冷却度はできるだけ小さくしたい。プレート式熱交換器を使用し、冷媒を上から下に流す場合は熱交換器の構造の特性上、出口過冷却度が小さくても気泡の混じらない液冷媒にすることが可能である。具体的には過冷却度2degでも気泡が混じらない液冷媒を確保できることを実験で確認した。
Next, the merit obtained by using a plate heat exchanger will be described.
(1) Quick start-up at the start of hot water supply and hot water heating operation
(2) Since the plate-type heat exchanger has a small internal volume, a small amount of refrigerant can be retained. When hot water supply and hot water heating operation are started up in a short time after the defrost operation is completed, it is necessary to move the necessary amount of refrigerant from the receiver to the plate heat exchanger that is a water refrigerant heat exchanger in a short time. Since the plate type heat exchanger requires a smaller amount of refrigerant movement than the plate fin type heat exchanger, the time required for starting up the capacity can be shortened. It has already been explained that this is possible because the circuit includes two pressure reducing devices.
(3) Stabilization of refrigerant state at the inlet of the decompression device The decompression device has a characteristic that control is not guaranteed unless the state of the inlet refrigerant is a complete liquid state. Therefore, when a plate fin heat exchanger is used for the condenser, a control for ensuring the liquid refrigerant state is introduced by introducing a control for ensuring the degree of supercooling of the inlet refrigerant of the decompression device of 4 deg or more. On the other hand, when performing hot water supply or hot water heating operation, if the outlet refrigerant supercooling degree of the water refrigerant heat exchanger connected to the upstream side of the decompression device is increased, the condensation temperature rises (FIG. 12) and the operation efficiency decreases. When supplying high-temperature water, the reliability upper limit pressure of the apparatus may be exceeded, so the outlet refrigerant supercooling degree of the water refrigerant heat exchanger should be as small as possible. When a plate type heat exchanger is used and the refrigerant is allowed to flow from top to bottom, it is possible to make the liquid refrigerant free from bubbles even if the degree of subcooling at the outlet is small due to the characteristics of the structure of the heat exchanger. Specifically, it was confirmed by experiments that a liquid refrigerant without bubbles can be secured even at a supercooling degree of 2 deg.

圧縮機の構造について説明する。本発明の冷媒回路にはロータリー式圧縮機を適用するのが良い。ロータリー圧縮機の圧縮室は吐出口に弁がないので、過圧縮になることがない。そのため、スクロール式やレシプロ式に対して液バックに強い。また、圧縮比に対する運転効率は、ロータリー式の方がスクロール式より変動が小さいことは広く知られている。   The structure of the compressor will be described. A rotary compressor may be applied to the refrigerant circuit of the present invention. Since the compression chamber of the rotary compressor has no valve at the discharge port, it does not become overcompressed. Therefore, it is strong against liquid back compared to scroll type and reciprocating type. Further, it is well known that the operation efficiency with respect to the compression ratio has less fluctuation in the rotary type than in the scroll type.

本発明の冷媒回路では、圧縮機吸入側に冷媒滞留用容器がないため、運転モード切替時に減圧装置の制御で液バック量を低減はするが、ゼロにはできない。また通常の空気調和装置よりも運転温度条件が広い。例えば三菱電機パッケージエアコン5馬力MPLZ-WRP140BED(商標)の仕様書によると室内温度17〜28℃、室外温度-20〜21℃と明記されている。一方、給湯運転例として温水10〜60℃、室外温度-20〜43℃であり運転温度条件が広いことがわかる。その結果、冷凍サイクルの圧縮比範囲も広くなる。このような条件下では、スクロール圧縮機は低圧縮比運転では圧縮室内が過圧縮状態となり運転効率低下や信頼性低下が生じる。一方、高圧縮比運転の場合には圧縮室内が不足圧縮状態となり運転効率低下や信頼性低下を生じる。以上を考慮すると、ロータリー圧縮機を適用するのが良い。   In the refrigerant circuit of the present invention, since there is no refrigerant retention container on the compressor suction side, the liquid back amount can be reduced by controlling the pressure reducing device when the operation mode is switched, but it cannot be reduced to zero. In addition, the operating temperature conditions are wider than those of ordinary air conditioners. For example, according to the specification of Mitsubishi Electric Packaged Air Conditioner 5HP MPLZ-WRP140BED (trademark), the room temperature is specified as 17 to 28 ° C and the outdoor temperature is set as -20 to 21 ° C. On the other hand, as an example of hot water supply operation, warm water is 10 to 60 ° C., outdoor temperature is -20 to 43 ° C., and it can be seen that the operation temperature conditions are wide. As a result, the compression ratio range of the refrigeration cycle is widened. Under such conditions, the scroll compressor is over-compressed in a low compression ratio operation, resulting in a reduction in operating efficiency and reliability. On the other hand, in the case of high compression ratio operation, the compression chamber becomes undercompressed, resulting in a decrease in operating efficiency and reliability. Considering the above, it is better to apply a rotary compressor.

なお、スクロール圧縮機を適用する場合には、閉空間の圧縮室内が過圧縮状態になったら圧縮室外部へ圧縮室内の冷媒を逃がす弁などがついている圧縮機を採用するのが良い。   In the case of applying the scroll compressor, it is preferable to employ a compressor having a valve or the like for releasing the refrigerant in the compression chamber to the outside of the compression chamber when the compression chamber in the closed space becomes overcompressed.

また、スクロール圧縮機を適用する場合には、圧縮機クランク軸がある角度まで回転するまでは吸入配管と連通して圧縮仕事をしない構造を備える圧縮機を採用するのが良い。   When a scroll compressor is applied, it is preferable to employ a compressor having a structure that communicates with the suction pipe and does not perform compression work until the compressor crankshaft rotates to a certain angle.

また、圧縮機は、容量制御が可能な吸入アンロード機構を備えるスクロール式であるのが良い。   The compressor may be of a scroll type provided with a suction unload mechanism capable of capacity control.

次に、冷媒充填量について説明する。通常の空気調和装置では冷房運転、暖房運転で必要な冷媒量を求め、その多い方を充填冷媒量として決定するが、この方法で決定した充填冷媒量ではデフロスト運転時に冷媒不足になる。
例えば、空冷式熱交換器4L、プレート式熱交換器1Lの冷媒回路を例にとった場合、給湯、温水暖房に必要な冷媒量は1.0g、冷水冷房に必要な冷媒量が1.8kgとなり、1.8kgを充填冷媒量とした場合、デフロスト運転時にほとんどの冷媒量が空冷式熱交換器に滞留し、低圧側に滞留する冷媒量が過少となり冷媒回路を循環する冷媒量が低減することが実験的にわかった。デフロスト運転時に空冷式熱交換器容積の約1/2媒が0℃で滞留する。そこで、0℃飽和液冷媒が空冷式熱交換器容積の約半分を占有するときの冷媒重量を必要最小充填冷媒量とし、実際はこの値より多い値を充填冷媒量に設定する。R410A冷媒の場合、0℃飽和液密度は1170kg/m3であり、必要最小充填冷媒量は1170kg/m3×4L/1000×1/2=2.34kgとなる。よって、デフロスト運転時には1.04kg(2.84-1.8=1.04kg)の冷媒不足となる。
Next, the refrigerant charging amount will be described. In a normal air conditioner, the amount of refrigerant required for cooling operation and heating operation is obtained, and the larger amount is determined as the amount of charged refrigerant, but the amount of charged refrigerant determined by this method is insufficient for the defrost operation.
For example, when taking the refrigerant circuit of air-cooled heat exchanger 4L and plate-type heat exchanger 1L as an example, the amount of refrigerant required for hot water supply and hot water heating is 1.0 g, and the amount of refrigerant required for cold water cooling is 1.8 kg. When 1.8 kg is used as the charging refrigerant amount, an experiment is conducted in which almost all refrigerant amount stays in the air-cooled heat exchanger during the defrost operation, and the refrigerant amount that circulates in the refrigerant circuit decreases because the refrigerant amount stays on the low-pressure side becomes too small. I understood. During defrost operation, about 1/2 medium of air-cooled heat exchanger volume stays at 0 ℃. Therefore, the refrigerant weight when the 0 ° C. saturated liquid refrigerant occupies about half of the volume of the air-cooled heat exchanger is set as the required minimum charge refrigerant quantity, and a value larger than this value is actually set as the charge refrigerant quantity. In the case of the R410A refrigerant, the 0 ° C. saturated liquid density is 1170 kg / m 3, and the necessary minimum charge refrigerant amount is 1170 kg / m 3 × 4 L / 1000 × 1/2 = 2.34 kg. Therefore, 1.04 kg (2.84-1.8 = 1.04 kg) of refrigerant is insufficient during the defrost operation.

次に、使用冷媒について説明する。本発明装置では凝縮器出口の過冷却度を制御対象としていることから、凝縮器には必ず気液二相冷媒が一部にでも流通していることが必要である。図12に給湯運転時の水冷媒熱交換器内の冷媒と水の温度分布例を示す。水出口温度と気液二相冷媒温度のどちらが高いかは水冷媒熱交換器の仕様で決まる。熱交換性能が大きければ水出口温度の方が高くなり、熱交換性能が小さくなれば水出口温度の方が低くなるが、冷媒の臨界点温度が水出口温度より5℃以上高ければ、気液二相冷媒状態を生成する手段は確実にある。例えば冷媒にR410Aを採用すると臨界温度は72.1℃なので、最高の水冷媒熱交換器の水出口温度を65℃とした場合、冷媒の臨海点温度は、水出口温度より7.1℃高く、5℃以上高いという条件を満足するので、水冷媒熱交換器で気液二相冷媒状態を生成することができ、本発明装置の制御を適用することができる。   Next, the refrigerant used will be described. In the device according to the present invention, the degree of supercooling at the outlet of the condenser is controlled, and therefore it is necessary that the gas-liquid two-phase refrigerant is always circulated in the condenser. FIG. 12 shows an example of the temperature distribution of the refrigerant and water in the water-refrigerant heat exchanger during hot water supply operation. Whether the water outlet temperature or the gas-liquid two-phase refrigerant temperature is higher is determined by the specifications of the water refrigerant heat exchanger. If the heat exchange performance is high, the water outlet temperature is higher, and if the heat exchange performance is low, the water outlet temperature is lower.However, if the critical point temperature of the refrigerant is 5 ° C or higher than the water outlet temperature, There is definitely a means to generate a two-phase refrigerant state. For example, if R410A is used as the refrigerant, the critical temperature is 72.1 ° C, so if the water outlet temperature of the highest water refrigerant heat exchanger is 65 ° C, the critical point temperature of the refrigerant is 7.1 ° C higher than the water outlet temperature, 5 ° C or more Since the condition of high is satisfied, the gas-liquid two-phase refrigerant state can be generated by the water refrigerant heat exchanger, and the control of the apparatus of the present invention can be applied.

次に、給湯、温水暖房運転時に、室外機周囲湿球温度を推定することの効果について以下に説明する。室外周囲乾球温度が30℃の場合でも湿球温度は天候によって異なる。例えば快晴続きの天候なら湿球温度は20℃未満であり、雨なら28℃もありえる。また室外機設置場所の事情によっても異なる。例えば、空冷式熱交換器6を蒸発器で使用する場合には、周囲空気と熱交換するとき、周囲の水蒸気を冷やして液化する物質移動が生じる。そのため、周囲に存在する水蒸気量によって同一熱交換量に対する冷媒蒸発温度が異なる。水蒸気量が多い、すなわち湿球温度が高い場合には、熱交換量に占める物質移動分が多くなるため冷媒回路の蒸発温度が高くなる。上記を考慮すると、室外機周囲湿球温度を検知するのが効果的であることが容易に理解できるが、湿球温度センサは高価であり、かつ湿球温度センサを屋外で使用すると精度が保証できないという問題がある。   Next, the effect of estimating the outdoor unit ambient wet bulb temperature during hot water supply and hot water heating operation will be described below. Even when the outdoor ambient dry bulb temperature is 30 ° C, the wet bulb temperature varies depending on the weather. For example, the wet bulb temperature can be less than 20 ° C for sunny weather and 28 ° C for rain. It also depends on the circumstances of the outdoor unit installation location. For example, when the air-cooled heat exchanger 6 is used in an evaporator, when heat is exchanged with ambient air, mass transfer occurs that cools and liquefies the surrounding water vapor. Therefore, the refrigerant evaporation temperature with respect to the same heat exchange amount differs depending on the amount of water vapor present around. When the amount of water vapor is large, that is, when the wet bulb temperature is high, the amount of mass transfer in the amount of heat exchange increases, so the evaporation temperature of the refrigerant circuit increases. Considering the above, it can be easily understood that it is effective to detect the wet bulb temperature around the outdoor unit, but the wet bulb temperature sensor is expensive, and the accuracy is guaranteed when the wet bulb temperature sensor is used outdoors. There is a problem that you can not.

そこで、本発明装置では、冷媒回路の冷媒状態から湿球温度を推定し、圧縮機モータ回転数を補正する方法を提示した。具体的な制御手順を説明する。
第1ステップとして、室外機制御・通信手段42は、負荷側制御・通信手段41から受信した要求能力、計算上の室外機周囲乾球温度、水冷媒熱交換器の液管側冷媒温度検知手段34が検出した水冷媒熱交換器の水入口温度から計算上の圧縮機モータ回転数を決定する。この値を基本回転数とする。
第2ステップとして、室外機制御・通信手段42は、室外機周囲乾球温度検知手段31が検出した室外機周囲乾球温度から基本湿球温度を決定する。基本湿球温度は例えば東京の過去30年の天候データを参考に室外機周囲乾球温度と1対1の関係を予め設定しマップ化しておく。
第3ステップとして、室外機制御・通信手段42は、負荷側制御・通信手段41から受信した要求能力、第2ステップで決定した基本湿球温度から冷媒回路の基本冷媒蒸発温度を計算する。要求能力、湿球温度と冷媒蒸発温度の関係は試験結果やシミュレーション計算結果を参考に予め設定しマップ化しておく。
第4ステップとして、室外機制御・通信手段42は、基本冷媒蒸発温度と、実運転時の空冷式熱交換器の液管側冷媒温度を比較し、所定温度差以上の差があるかどうか判断する。所定温度差はセンサ誤差を考慮し1℃とするのが望ましい。
第5ステップとして、所定温度差以内の場合は、補正値ゼロとする。所定温度差以上の場合は実室外機周囲湿球温度が基本湿球温度と異なると判断する。その場合、計算で求めた室外機周囲湿球温度からマップを使って計算上の室外機周囲乾球温度を求め、要求能力、計算上の室外機周囲乾球温度、水冷媒熱交換器の液管側冷媒温度検知手段34が検出した水冷媒熱交換器の水入口温度から計算上の圧縮機モータ回転数を決定する。圧縮機モータ回転数は、事前の開発試験において、要求能力、計算上の室外機周囲乾球温度、水冷媒熱交換器の水入口温度との関係を定量化して作成したマップを用いて一意的に決定する。
基本回転数と計算上の回転数の差に係数を乗算した値を補正値として基本回転数に足す。
Therefore, in the present invention device, a method for estimating the wet bulb temperature from the refrigerant state of the refrigerant circuit and correcting the compressor motor rotation speed has been presented. A specific control procedure will be described.
As the first step, the outdoor unit control / communication unit 42 includes the required capacity received from the load side control / communication unit 41, the calculated outdoor unit ambient dry bulb temperature, the liquid refrigerant temperature detection unit of the water refrigerant heat exchanger. The compressor motor rotation speed calculated from the water inlet temperature of the water refrigerant heat exchanger detected by 34 is determined. This value is the basic rotation speed.
As a second step, the outdoor unit control / communication unit 42 determines the basic wet bulb temperature from the outdoor unit ambient dry bulb temperature detected by the outdoor unit ambient dry bulb temperature detection unit 31. The basic wet bulb temperature is set and mapped in advance in a one-to-one relationship with the outdoor unit ambient dry bulb temperature with reference to, for example, weather data for the past 30 years in Tokyo.
As a third step, the outdoor unit control / communication means 42 calculates the basic refrigerant evaporation temperature of the refrigerant circuit from the required capacity received from the load side control / communication means 41 and the basic wet bulb temperature determined in the second step. The relationship between the required capacity, the wet bulb temperature and the refrigerant evaporation temperature is set and mapped in advance with reference to the test results and simulation calculation results.
As a fourth step, the outdoor unit control / communication means 42 compares the basic refrigerant evaporating temperature with the liquid pipe side refrigerant temperature of the air-cooled heat exchanger during actual operation, and determines whether there is a difference greater than a predetermined temperature difference. To do. The predetermined temperature difference is preferably 1 ° C. in consideration of sensor error.
As a fifth step, if the difference is within the predetermined temperature, the correction value is set to zero. When the temperature difference is not less than the predetermined temperature difference, it is determined that the wet bulb temperature around the actual outdoor unit is different from the basic wet bulb temperature. In such a case, the calculated outdoor unit ambient dry bulb temperature is calculated from the calculated outdoor unit ambient wet bulb temperature using a map, and the required capacity, calculated outdoor unit ambient dry bulb temperature, water refrigerant heat exchanger liquid is calculated. The calculated compressor motor rotation speed is determined from the water inlet temperature of the water refrigerant heat exchanger detected by the pipe side refrigerant temperature detecting means 34. Compressor motor rotation speed is uniquely determined by using a map created by quantifying the relationship between required capacity, calculated outdoor unit ambient dry bulb temperature, and water refrigerant heat exchanger water inlet temperature in advance development tests. To decide.
A value obtained by multiplying the difference between the basic rotational speed and the calculated rotational speed by a coefficient is added as a correction value to the basic rotational speed.

計算上の室外機周囲湿球温度の精度は必ずしも高くないので、基本回転数と計算上の回転数の差に係数をかける。また、10分おきなど一定時間ごとに実施することで、精度の低さを制御に反映することで、回転数が大きく変動することを回避する。   Since the accuracy of the calculated wet bulb temperature around the outdoor unit is not necessarily high, a coefficient is applied to the difference between the basic rotational speed and the calculated rotational speed. In addition, by performing the operation at regular intervals, such as every 10 minutes, the low accuracy is reflected in the control, thereby avoiding large fluctuations in the rotational speed.

次に、給湯、温暖房運転をする場合、水冷媒熱交換器3の入口水温が所定温度以下の場合、冷媒回路の信頼性を向上させるには、プレート式熱交換器の冷媒出口過冷却度を、入口水温が所定温度以上の場合より大きくすると、凝縮圧力が上昇して冷媒回路の運転範囲を信頼性保証範囲内に収めることができる。例えば入口水温の所定温度は20℃、過冷却度は2degを6deg以上にする。
また、給湯、温水暖房運転をする場合、室外機周囲乾球温度が所定温度以下になった場合にも、冷媒回路の信頼性を向上させるには、プレート式熱交換器の冷媒出口過冷却度を、入口水温が所定温度以上の場合より大きくすると、凝縮圧力が上昇して冷媒回路の運転範囲を信頼性保証範囲内に収めることができる。例えば室外機周囲乾球温度の所定温度は-10℃、過冷却度は2degを6deg以上にする。
いずれも凝縮圧力を上昇させて、圧縮機の最低保証圧縮比を確保しつつ、冷媒回路の運転範囲を保証範囲内に収めるために実施するものである。
Next, when performing hot water supply and heating / heating operations, when the inlet water temperature of the water-refrigerant heat exchanger 3 is equal to or lower than a predetermined temperature, in order to improve the reliability of the refrigerant circuit, the refrigerant outlet subcooling degree of the plate heat exchanger If the inlet water temperature is higher than the case where the inlet water temperature is equal to or higher than the predetermined temperature, the condensing pressure increases and the operating range of the refrigerant circuit can be kept within the reliability guarantee range. For example, the predetermined temperature of the inlet water temperature is 20 ° C., and the degree of supercooling is 2 deg.
In order to improve the reliability of the refrigerant circuit even when hot water supply or hot water heating operation is performed and the dry bulb temperature around the outdoor unit falls below a predetermined temperature, the refrigerant outlet subcooling degree of the plate heat exchanger If the inlet water temperature is higher than the case where the inlet water temperature is equal to or higher than the predetermined temperature, the condensing pressure increases and the operating range of the refrigerant circuit can be kept within the reliability guarantee range. For example, the predetermined temperature of the outdoor unit ambient dry bulb temperature is −10 ° C., and the degree of supercooling is 2 deg.
In either case, the condensing pressure is increased to ensure the minimum guaranteed compression ratio of the compressor and to keep the operating range of the refrigerant circuit within the guaranteed range.

水回路の水流量は管内孔食などを生じないようにするため、最小流速を1.5m/secとする。これは室外機が運転していないときの水流速も1.5m/secとする。   The water flow rate in the water circuit is set to 1.5 m / sec as the minimum flow rate so as not to cause pitting corrosion in the pipe. The water flow rate when the outdoor unit is not in operation is also 1.5 m / sec.

実施の形態2.
次に、他の装置形態について説明する。
図5は、本発明の実施の形態2における給湯、冷温水空気調和装置の冷媒回路図である。
図5は、図4に冷温水空調機様熱交換器25を介して水回路を追加し、この水回路に空冷式熱交換器6の代わりに地中排熱用熱交換器26に変更したものである。これにより、地中熱利用の給湯、冷温水空気調和装置を実現できる。室外機の排熱を、一年を通じて温度が安定している地中に排することで、室外機冷媒回路中の冷媒分布を安定化することができ、その結果、冷媒回路の信頼性を確保することができる。
Embodiment 2. FIG.
Next, another apparatus configuration will be described.
FIG. 5 is a refrigerant circuit diagram of the hot water supply and cold / hot water air conditioner according to Embodiment 2 of the present invention.
5, a water circuit is added to the water circuit via a cold / hot water air conditioner-like heat exchanger 25 in FIG. 4, and the water circuit is changed to a ground heat exhaust heat exchanger 26 instead of the air-cooled heat exchanger 6. Is. Thereby, the hot water supply using geothermal heat and a cold / hot water air conditioner are realizable. By exhausting the exhaust heat of the outdoor unit into the ground where the temperature is stable throughout the year, the refrigerant distribution in the outdoor unit refrigerant circuit can be stabilized, and as a result, the reliability of the refrigerant circuit is ensured. can do.

実施の形態3.
他の装置形態について説明する。
図6は、本発明の実施の形態2における給湯、冷温水空気調和装置の冷媒回路図である。
図6に示すように冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、室外熱交換器6、室外ファン7、室外ファンモータ8から構成され、水回路は、水ポンプ21、三方弁22、給湯タンク23、水ポンプ27、および水水熱交換器28から構成されている。
図6は、図4の冷媒回路中において、給湯タンク23からタンク内部熱交換器24を除去する代わりに、水水熱交換器28を介して水回路を追加し、この水回路に水ポンプ27を配設したものである。
Embodiment 3 FIG.
Another device configuration will be described.
FIG. 6 is a refrigerant circuit diagram of the hot water supply and cold / hot water air conditioner in Embodiment 2 of the present invention.
As shown in FIG. 6, the refrigerant circuit includes a compressor 1, a four-way valve 2, a water / refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an outdoor heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit includes a water pump 21, a three-way valve 22, a hot water supply tank 23, a water pump 27, and a water / water heat exchanger 28.
6, in the refrigerant circuit of FIG. 4, instead of removing the tank internal heat exchanger 24 from the hot water supply tank 23, a water circuit is added via a water / water heat exchanger 28, and a water pump 27 is added to the water circuit. Is provided.

冷媒、水動作の説明は省略する。本システムを採用すると、給湯タンク内のタンク内部熱交換器24が不要となるため、給湯タンクの構造を簡易にすることができる。また、水水熱交換器(タンク内部熱交換器)28に不具合が発生したとき、タンク内部熱交換器24の交換は難しいが、水水熱交換器28の交換は簡易であるというメリットがある。   Description of refrigerant and water operations is omitted. When this system is employed, the tank internal heat exchanger 24 in the hot water tank is not necessary, and the structure of the hot water tank can be simplified. Further, when a malfunction occurs in the water / water heat exchanger (tank internal heat exchanger) 28, it is difficult to replace the tank internal heat exchanger 24, but there is an advantage that the water / water heat exchanger 28 is easily replaced. .

実施の形態4.
他の装置形態について説明する。
2つの減圧装置とレシーバの組合せ回路に、レシーバ内の冷媒と、室外熱交換器と圧縮機との間の冷媒とを熱交換する内部熱交換器を備えた冷媒回路を図7に示す。
Embodiment 4 FIG.
Another device configuration will be described.
FIG. 7 shows a refrigerant circuit provided with an internal heat exchanger for exchanging heat between the refrigerant in the receiver and the refrigerant between the outdoor heat exchanger and the compressor in the combination circuit of the two decompression devices and the receiver.

図7は、本発明の実施の形態4における給湯、冷温水空気調和装置の冷媒回路図である。
図7に示すように、冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、室外熱交換器6、室外ファン7、室外ファンモータ8、レシーバ内内部熱交換器9から構成され、水回路は、水ポンプ21、三方弁22、給湯タンク23、タンク内部熱交換器24、および冷温水空調機用熱交換器25から構成されている。
図7は、図4の冷媒回路中において、レシーバ5の内部にレシーバ内内部熱交換器9を追加したものである。
FIG. 7 is a refrigerant circuit diagram of the hot water supply and cold / hot water air conditioner in Embodiment 4 of the present invention.
As shown in FIG. 7, the refrigerant circuit includes a compressor 1, a four-way valve 2, a water / refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an outdoor heat exchanger 6, an outdoor fan 7, an outdoor fan motor 8, The internal heat exchanger 9 in the receiver includes a water pump 21, a three-way valve 22, a hot water supply tank 23, a tank internal heat exchanger 24, and a cold / hot water air conditioner heat exchanger 25.
FIG. 7 shows a configuration in which a receiver internal heat exchanger 9 is added inside the receiver 5 in the refrigerant circuit of FIG. 4.

次に、各運転モードにおける冷媒と水の動作について図7を用いて説明する。
給湯運転する場合、室外機冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して水冷媒熱交換器3に流入し、ここで負荷側ユニットに温熱を供給して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4aで減圧されて中圧の液リッチな気液二相冷媒となってレシーバ5に流入し、レシーバ5内の内部熱交換器9で、管内を流通する低圧ガス冷媒と熱交換して凝縮し、飽和液冷媒となって流出し、減圧装置4bで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して蒸発し、ガスリッチな気液二相冷媒あるいは飽和ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して内部熱交換器9に流入し、このレシーバ5内を流通する液冷媒と熱交換して過熱ガスとなり圧縮機1に戻る。温水暖房運転の室外機冷媒回路の冷媒動作は給湯運転と同様なので説明を省略する。給湯運転、温水暖房運転の負荷側システムの水の動作は図4の説明と同様なので説明を省略する。
Next, the operation of the refrigerant and water in each operation mode will be described with reference to FIG.
In the case of hot water supply operation, in the outdoor unit refrigerant circuit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 3 through the four-way valve 2, where the heat is supplied to the load unit and condensed. And flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is reduced in pressure by the decompression device 4a and becomes a medium-pressure liquid-rich gas-liquid two-phase refrigerant and flows into the receiver 5, and the low-pressure gas that circulates in the pipe by the internal heat exchanger 9 in the receiver 5. Heat exchange with the refrigerant condenses, flows out as a saturated liquid refrigerant, is decompressed by the decompression device 4b, and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 6 forcibly blown by the outdoor fan 7, where it evaporates by exchanging heat with the surrounding air, and flows out as a gas-rich gas-liquid two-phase refrigerant or a saturated gas refrigerant. To do. The low-pressure gas refrigerant that has flowed out flows into the internal heat exchanger 9 via the four-way valve 2, exchanges heat with the liquid refrigerant flowing through the receiver 5, becomes superheated gas, and returns to the compressor 1. Since the refrigerant operation of the outdoor unit refrigerant circuit in the hot water heating operation is the same as that in the hot water supply operation, the description thereof is omitted. The operation of the water in the load side system of the hot water supply operation and hot water heating operation is the same as the description of FIG.

冷水冷房運転する場合、室外機の冷媒回路では、圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4bで減圧されて中圧の液リッチな気液二相冷媒となってレシーバ5に流入し、レシーバ5内の内部熱交換器9で、管内を流通する低圧ガス冷媒と熱交換して凝縮し、飽和液冷媒となって流出し、減圧装置4aに流入し、ここで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は水冷媒熱交換器3に流入し、ここで負荷側ユニットに冷熱を供給して蒸発し、ガスリッチな気液二相冷媒あるいは飽和ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して内部熱交換器9に流入し、ここでレシーバ内の液冷媒と熱交換して過熱ガスとなり圧縮機1に戻る。負荷側システムの水の動作は図4の説明と同様なので説明を省略する。   In the case of the cold water cooling operation, in the refrigerant circuit of the outdoor unit, the high-pressure high-temperature gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 6 forcibly ventilated by the outdoor fan 7 through the four-way valve 2. It exchanges heat with ambient air, condenses, and flows out as a high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is decompressed by the decompression device 4b and becomes a medium-pressure liquid-rich gas-liquid two-phase refrigerant and flows into the receiver 5, and the low-pressure gas that circulates in the pipe by the internal heat exchanger 9 in the receiver 5. Heat exchange with the refrigerant condenses, flows out as a saturated liquid refrigerant, flows into the decompression device 4a, where it is decompressed and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the water-refrigerant heat exchanger 3, where the load-side unit supplies cold heat to evaporate, and flows out as a gas-rich gas-liquid two-phase refrigerant or a saturated gas refrigerant. The low-pressure gas refrigerant that has flowed out flows into the internal heat exchanger 9 via the four-way valve 2, where it exchanges heat with the liquid refrigerant in the receiver to become superheated gas and returns to the compressor 1. Since the operation of the water in the load side system is the same as the description of FIG.

レシーバ5内に内部熱交換器9を備える効果として、圧縮機吸入冷媒を過熱ガス状態にして圧縮機信頼性を確保し、かつ蒸発器出口の冷媒状態をガスリッチな気液二相冷媒或いは飽和ガス状態として、熱交換器の伝熱性能を高性能化できることが挙げられる。管内熱伝達率は液やガス単相で流すよりも気液二相で流す方が、伝熱性能が良いことはよく知られている。蒸発器の出口冷媒状態を過熱ガスにすると、出口付近はガス単相冷媒が流通することになり。管内熱伝達率が下がり、熱交換器の熱交換性能が低下する。一方、圧縮機の吸入冷媒を気液二相状態にすると、液圧縮による圧縮機故障を発生する可能性がある。内部熱交換器9を導入するとこれらの問題を回避することができる。   The effect of providing the internal heat exchanger 9 in the receiver 5 is that the compressor suction refrigerant is in a superheated gas state to ensure compressor reliability, and the refrigerant state at the outlet of the evaporator is a gas-rich gas-liquid two-phase refrigerant or saturated gas. The state is that the heat transfer performance of the heat exchanger can be improved. It is well known that the heat transfer performance in the pipe is better when the gas-liquid two-phase flow is better than the liquid or gas single-phase flow rate. If the outlet refrigerant state of the evaporator is superheated gas, the gas single-phase refrigerant will circulate in the vicinity of the outlet. The heat transfer coefficient in the pipe is lowered, and the heat exchange performance of the heat exchanger is lowered. On the other hand, if the refrigerant sucked into the compressor is in a gas-liquid two-phase state, a compressor failure due to liquid compression may occur. If the internal heat exchanger 9 is introduced, these problems can be avoided.

給湯運転は温水温度が常時変化する過渡運転であること、給湯、冷温水空気調和装置は空冷式の空気調和装置よりも冷媒滞留箇所が少ないため、回路中の冷媒分布が不安定になると圧縮機へ液バックしやすいことから、給湯、冷温水空気調和装置では特に効果が大きい。内部熱交換器9は図1、3、5,6の冷媒回路に適用しても同様の効果が得られる。   The hot water supply operation is a transient operation in which the hot water temperature constantly changes, and the hot water supply and cold / hot water air conditioners have fewer refrigerant retention points than the air-cooled air conditioner, so if the refrigerant distribution in the circuit becomes unstable, the compressor The effect is particularly great in hot water supply and cold / hot water air conditioners because of easy liquid back. The same effect can be obtained when the internal heat exchanger 9 is applied to the refrigerant circuit shown in FIGS.

実施の形態5.
他の装置形態について説明する。
図8は、本発明の実施の形態5における給湯、冷温水空気調和装置の冷媒回路図である。
図8に示すように、冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a〜4c、レシーバ5、空冷式熱交換器6、室外ファン7、室外ファンモータ8、内部熱交換器9、内部熱交換器11から構成され、水回路は、水ポンプ21、三方弁22、給湯タンク23、タンク内部熱交換器24、および冷温水空気調和用熱交換器25から構成されている。
図8は、図4の冷媒回路中において、レシーバ5の内部にレシーバ内内部熱交換器9を追加したものである。
Embodiment 5 FIG.
Another device configuration will be described.
FIG. 8 is a refrigerant circuit diagram of the hot water supply and cold / hot water air conditioner according to Embodiment 5 of the present invention.
As shown in FIG. 8, the refrigerant circuit includes a compressor 1, a four-way valve 2, a water / refrigerant heat exchanger 3, decompressors 4 a to 4 c, a receiver 5, an air-cooled heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. , The internal heat exchanger 9 and the internal heat exchanger 11, and the water circuit is composed of a water pump 21, a three-way valve 22, a hot water supply tank 23, a tank internal heat exchanger 24, and a cold / hot water air conditioning heat exchanger 25. It is configured.
FIG. 8 shows a configuration in which a receiver internal heat exchanger 9 is added inside the receiver 5 in the refrigerant circuit of FIG. 4.

負荷側システムの動作は図4と同じなので説明を省略する。給湯、温水暖房運転する場合の室外機冷媒回路の冷媒動作について説明する。圧縮機1を吐出した高圧高温ガス冷媒は四方弁2を介して水冷媒熱交換器3に流入し、ここで負荷側ユニットに温熱を供給して凝縮し、高圧液冷媒として流出する。流出した高圧液冷媒は減圧装置4aで減圧されて中圧の液リッチな気液二相冷媒となってレシーバ5に流入し、レシーバ5内の内部熱交換器9で、管内を流通する低圧ガス冷媒と熱交換して凝縮し、飽和液冷媒となって流出し、内部熱交換器2_11に流入する。ここで中圧飽和液冷媒は過冷却されて流出し、減圧装置4bで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は室外ファン7が強制送風している室外熱交換器6に流入し、ここで周囲空気と熱交換して蒸発し、ガスリッチな気液二相冷媒あるいは飽和ガス冷媒として流出する。流出した低圧ガス冷媒は四方弁2を介して内部熱交換器9に流入し、ここでレシーバ内の液冷媒と熱交換して過熱ガスとなり圧縮機1に戻る。内部熱交換器2_11を流出した中圧過冷却冷媒の一部は減圧装置4cに流入し、ここで減圧されて低圧気液二相冷媒となる。低圧気液二相冷媒は内部熱交換器2_11に流入し、ここで中圧液冷媒と熱交換して蒸発し、ガスリッチな気液二相冷媒となって内部熱交換器9の手前に戻る。   The operation of the load side system is the same as in FIG. The refrigerant operation of the outdoor unit refrigerant circuit when performing hot water supply and hot water heating operation will be described. The high-pressure and high-temperature gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 3 through the four-way valve 2, where the heat is supplied to the load-side unit to condense, and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is reduced in pressure by the decompression device 4a and becomes a medium-pressure liquid-rich gas-liquid two-phase refrigerant and flows into the receiver 5, and the low-pressure gas that circulates in the pipe by the internal heat exchanger 9 in the receiver 5. Heat is exchanged with the refrigerant to condense, flow out as a saturated liquid refrigerant, and flow into the internal heat exchanger 2_11. Here, the medium-pressure saturated liquid refrigerant is supercooled and flows out, and is decompressed by the decompression device 4b to become a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 6 forcibly blown by the outdoor fan 7, where it evaporates by exchanging heat with the surrounding air, and flows out as a gas-rich gas-liquid two-phase refrigerant or a saturated gas refrigerant. To do. The low-pressure gas refrigerant that has flowed out flows into the internal heat exchanger 9 via the four-way valve 2, where it exchanges heat with the liquid refrigerant in the receiver to become superheated gas and returns to the compressor 1. A part of the medium-pressure supercooled refrigerant that has flowed out of the internal heat exchanger 2_11 flows into the decompression device 4c, where it is decompressed and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant flows into the internal heat exchanger 2_11, where it exchanges heat with the medium-pressure liquid refrigerant and evaporates to return to the front of the internal heat exchanger 9 as a gas-rich gas-liquid two-phase refrigerant.

従来の冷凍空調装置にも、凝縮器と蒸発器との間の中間圧部分に気液分離器を設け、気液分離器で分離されたガス冷媒を圧縮機の中間圧部分にインジェクションし、暖房能力の向上をもたらすようにしたものがある。しかし、従来の冷凍空調装置には以下のような問題があった。まず、従来はレシーバ5に気液分離機能を備えていた。気液分離器を設けたインジェクションを行う場合、気液分離器内の液量がインジェクション量によって変化し、それに伴い冷凍サイクル内の液冷媒量分布が変動し、運転が不安定になるという問題があった。すなわち、インジェクションされるガス冷媒流量と気液分離器に流入する二相冷媒のうちのガス冷媒流量とが釣り合っている場合には、蒸発器側に流出するのは液冷媒のみとなり、気液分離器内の液冷媒量は安定するが、インジェクションされる冷媒流量が減少し気液分離器に流入するガス冷媒流量より少なくなると、蒸発器側にガス冷媒も流出する運転となり、気液分離器底部からガスが流出するために、気液分離器内の液はほとんど流出した運転となる。逆にインジェクションされる冷媒流量が増加すると、ガス冷媒が足りないため、ガス冷媒に混じって液冷媒もインジェクションされる状態となり、気液分離器頂部から液が流出するために、気液分離器内の液はほとんど満液となる。   A conventional refrigeration air conditioner is also provided with a gas-liquid separator at the intermediate pressure part between the condenser and the evaporator, and the gas refrigerant separated by the gas-liquid separator is injected into the intermediate pressure part of the compressor for heating. Some are designed to improve their abilities. However, the conventional refrigeration and air-conditioning apparatus has the following problems. First, the receiver 5 conventionally has a gas-liquid separation function. When performing injection with a gas-liquid separator, the amount of liquid in the gas-liquid separator changes depending on the amount of injection, and the liquid refrigerant amount distribution in the refrigeration cycle fluctuates accordingly. there were. That is, when the injected gas refrigerant flow rate and the gas refrigerant flow rate of the two-phase refrigerant flowing into the gas-liquid separator are balanced, only the liquid refrigerant flows out to the evaporator side, and the gas-liquid separation is performed. The amount of liquid refrigerant in the vessel is stable, but when the flow rate of injected refrigerant decreases and becomes less than the flow rate of gas refrigerant flowing into the gas-liquid separator, the gas refrigerant also flows out to the evaporator side, and the bottom of the gas-liquid separator Since the gas flows out of the gas, the liquid in the gas-liquid separator is almost discharged. Conversely, when the flow rate of the injected refrigerant increases, there is not enough gas refrigerant, so liquid refrigerant is also injected into the gas refrigerant and liquid flows out from the top of the gas-liquid separator. The liquid is almost full.

インジェクション流量は冷凍サイクルの高低圧や気液分離器の圧力、および圧縮機の運転容量などによって変動しやすいため、インジェクション流量が気液分離器に流入するガス冷媒流量と釣り合うことはほとんどなく、実際は気液分離器内の液冷媒量はほとんど0か満液の状態となり、運転状況に応じて、気液分離器内の冷媒量変動が生じやすい。その結果、冷凍サイクル内の冷媒量分布が変動し、運転の不安定が生じやすくなる。   The injection flow rate is likely to fluctuate depending on the high and low pressures of the refrigeration cycle, the pressure of the gas-liquid separator, the operating capacity of the compressor, etc., so the injection flow rate rarely matches the gas refrigerant flow rate flowing into the gas-liquid separator. The amount of liquid refrigerant in the gas-liquid separator is almost zero or full, and the amount of refrigerant in the gas-liquid separator is likely to vary depending on the operating conditions. As a result, the refrigerant amount distribution in the refrigeration cycle fluctuates and operation instability is likely to occur.

本実施の形態5では、気液分離器のかわりに内部熱交換器11を備えることで、ガスインジェクションされる冷媒流量を多量としても、圧縮機の吐出温度の低下を抑制し、室内熱交換器で十分な熱交換性能を発揮させることにより、低い外気温度条件の下で暖房能力が低下しやすい条件でも十分な暖房能力を確保することができるとともに、ガスインジェクションを行う冷媒を供給するときに、気液分離器によらず、バイパスされた冷媒を第2の内部熱交換でガス化し供給することで、気液分離器を用いることによる液量変動を回避し、より安定した装置の運転を実現し、圧縮機の吐出温度の低下を抑制しつつガスインジェクション量をさらに多くする事が可能となり、暖房能力の更なる向上が図れるとともに、除霜運転時の効率化を図る事ができるという効果を有する。その結果、低い外気温度条件下での暖房能力を従来よりも安定して供給できるようになった。
内部熱交換器11によるガスインジェクション回路とすることにより以下のような効果が得られる。まずガスインジェクションを行うことにより、圧縮機1から吐出される冷媒流量が増加し、圧縮機1から吐出される冷媒流量Gdisと圧縮機3で吸入される冷媒流量Gsucとインジェクションされる冷媒流量Ginjとの関係式は、
Gdis=Gsuc+Ginj となる。
従って、凝縮器となる熱交換器に流れる冷媒流量が増加するので、暖房運転の場合には、暖房能力が増加する。
In the fifth embodiment, the internal heat exchanger 11 is provided in place of the gas-liquid separator, so that a reduction in the discharge temperature of the compressor is suppressed even when the flow rate of the gas-injected refrigerant is large, and the indoor heat exchanger By exhibiting sufficient heat exchange performance, it is possible to ensure sufficient heating capacity even under conditions where the heating capacity tends to decrease under low outside air temperature conditions, and when supplying a refrigerant that performs gas injection, Regardless of the gas-liquid separator, the bypassed refrigerant is gasified and supplied by the second internal heat exchange, thereby avoiding fluctuations in the liquid volume due to the use of the gas-liquid separator and realizing more stable device operation. In addition, it is possible to further increase the gas injection amount while suppressing a decrease in the discharge temperature of the compressor, further improving the heating capacity and improving the efficiency during the defrosting operation. An effect that can be. As a result, the heating capacity under low outdoor temperature conditions can be supplied more stably than before.
By using a gas injection circuit with the internal heat exchanger 11, the following effects can be obtained. First, by performing gas injection, the refrigerant flow rate discharged from the compressor 1 increases, and the refrigerant flow rate Gdis discharged from the compressor 1, the refrigerant flow rate Gsuc sucked in the compressor 3, and the injected refrigerant flow rate Ginj The relational expression of
Gdis = Gsuc + Ginj
Therefore, since the flow rate of the refrigerant flowing through the heat exchanger serving as a condenser increases, the heating capacity increases in the heating operation.

ガスインジェクションを行う場合、効率改善効果が得られる。蒸発器となる熱交換器に流入する冷媒は、一般に気液二相冷媒であるが、このうちガス冷媒は冷房能力に寄与しない。圧縮機から見ると、この低圧のガス冷媒も、蒸発器で蒸発したガス冷媒と一緒に高圧に昇圧する仕事を行っている。ガスインジェクションを行うと、蒸発器に流入するガス冷媒のうちのいくらかを中間圧で抜き出して、インジェクションし、中間圧から高圧に昇圧し圧縮することになる。従ってインジェクションされるガス冷媒の流量については、低圧から中間圧まで昇圧する圧縮仕事が不要になり、この分効率改善される。この効果は冷暖房のいずれの運転でも得られる。   When performing gas injection, an efficiency improvement effect is obtained. The refrigerant flowing into the heat exchanger serving as an evaporator is generally a gas-liquid two-phase refrigerant, but among these, the gas refrigerant does not contribute to the cooling capacity. From the viewpoint of the compressor, this low-pressure gas refrigerant also works to increase the pressure together with the gas refrigerant evaporated in the evaporator. When gas injection is performed, some of the gas refrigerant flowing into the evaporator is extracted at an intermediate pressure, injected, boosted from the intermediate pressure to a high pressure, and compressed. Therefore, with respect to the flow rate of the injected gas refrigerant, the compression work for increasing the pressure from the low pressure to the intermediate pressure becomes unnecessary, and the efficiency is improved accordingly. This effect can be obtained in any operation of air conditioning.

図11のようにインジェクション回路に熱源12を加えると、圧縮機吐出温度の低下を抑制しつつ、更にインジェクション冷媒量を増加する事が可能となるため、更なる除霜時間の短縮化が図れ、また給湯、温水暖房運転復帰時にも使用する事で、給湯、温水暖房運転立ち上がりの更なる改善が実現できる。   When the heat source 12 is added to the injection circuit as shown in FIG. 11, it is possible to further increase the amount of the injection refrigerant while suppressing a decrease in the compressor discharge temperature, thereby further reducing the defrosting time. Further, by using it at the time of returning to hot water supply and hot water heating operation, further improvement of the start of hot water supply and hot water heating operation can be realized.

実施の形態6.
他の装置形態について説明する。
図9は、本発明の実施の形態6における給湯、冷温水空気調和装置の冷媒回路図である。
図9に示すように冷媒回路は、圧縮機1、四方弁2、水冷媒熱交換器3、減圧装置4a、4b、レシーバ5、室外熱交換器6、室外ファン7、室外ファンモータ8から構成され、水回路は、水ポンプ21、三方弁22、給湯タンク23、タンク内部熱交換器24、および冷温水空気調和用熱交換器25から構成されている。
Embodiment 6 FIG.
Another device configuration will be described.
FIG. 9 is a refrigerant circuit diagram of the hot water supply and cold / hot water air conditioner according to Embodiment 6 of the present invention.
As shown in FIG. 9, the refrigerant circuit includes a compressor 1, a four-way valve 2, a water / refrigerant heat exchanger 3, decompression devices 4 a and 4 b, a receiver 5, an outdoor heat exchanger 6, an outdoor fan 7, and an outdoor fan motor 8. The water circuit includes a water pump 21, a three-way valve 22, a hot water supply tank 23, a tank internal heat exchanger 24, and a cold / hot water / air conditioning heat exchanger 25.

冷媒の動作、水の動作は図4を使用して説明した内容と同様なので説明を省略する。   The operation of the refrigerant and the operation of water are the same as those described with reference to FIG.

本システムは一度に複数の負荷側システムに温熱を供給することができるが、他にも次に示す長所がある。水冷媒熱交換器3のうち冷媒上流側と熱交換する負荷側ユニットは温度の高い温熱を受け、冷媒下流側と熱交換する負荷側ユニットは温度の低い温熱を受ける。上流側は主に給湯用として、下流側は主に温水暖房用として使用すると、給湯と温水暖房を簡単に同時運転できる。システムに並列に冷温熱を供給できる冷媒回路を図10に示す。   Although this system can supply heat to a plurality of load-side systems at one time, there are other advantages as follows. Of the water-refrigerant heat exchanger 3, the load-side unit that exchanges heat with the refrigerant upstream receives heat at a high temperature, and the load-side unit that exchanges heat with the refrigerant downstream receives heat at a low temperature. If the upstream side is mainly used for hot water supply and the downstream side is mainly used for hot water heating, hot water supply and hot water heating can be easily and simultaneously operated. FIG. 10 shows a refrigerant circuit that can supply cold / hot heat to the system in parallel.

この発明の実施の形態1による給湯、冷温水空気調和装置図である。It is a hot-water supply and cold / hot water air conditioning apparatus figure by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による給湯、冷温水空気調和装置の別図である。It is another figure of the hot water supply and cold / hot water air conditioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1の水冷媒熱交換器を流れる水、冷媒の温度状態例である。It is an example of the temperature state of the water and the refrigerant | coolant which flow through the water refrigerant | coolant heat exchanger of Embodiment 1 of this invention. 給湯、冷温水空気調和装置の従来技術の構成例を示す図である。It is a figure which shows the structural example of the prior art of a hot water supply and a cold / hot water air conditioning apparatus.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 水冷媒熱交換器、4a〜4c 減圧装置、5 レシーバ、6 空冷式熱交換器、7 室外ファン、8 室外ファンモータ、9 レシーバ内内部熱交換器、10 アキュムレータ、11 内部熱交換器2、12 温熱源、21 水ポンプ、22 三方弁、23 給湯タンク、24 タンク内部熱交換器、25 水冷媒熱交換器2、26 地中排熱用熱交換器、27 水ポンプ、28 水水熱交換器、31 室外機周囲乾球温度検知手段、32 水冷媒熱交換器の入口水温検知手段、33 空冷式熱交換器の液管側冷媒温度検出手段、34 水冷媒熱交換器の液管側冷媒温度検知手段、35 圧縮機吐出温度検知手段、36 圧縮機吐出圧力検知手段、41 負荷側制御・通信手段、42 室外機制御・通信手段。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Water refrigerant | coolant heat exchanger, 4a-4c Pressure reducing device, 5 Receiver, 6 Air-cooling type heat exchanger, 7 Outdoor fan, 8 Outdoor fan motor, 9 Receiver internal heat exchanger, 10 Accumulator , 11 Internal heat exchanger 2, 12 Heat source, 21 Water pump, 22 Three-way valve, 23 Hot water tank, 24 Tank internal heat exchanger, 25 Water refrigerant heat exchanger 2, 26 Heat exchanger for underground heat exhaust, 27 Water pump, 28 Water / water heat exchanger, 31 Outdoor unit ambient dry bulb temperature detection means, 32 Water refrigerant heat exchanger inlet water temperature detection means, 33 Air-cooled heat exchanger liquid pipe side refrigerant temperature detection means, 34 Water refrigerant Liquid pipe side refrigerant temperature detection means of heat exchanger, 35 compressor discharge temperature detection means, 36 compressor discharge pressure detection means, 41 load side control / communication means, 42 outdoor unit control / communication means.

Claims (26)

室外機に設けられ、冷媒が、回転数可変な圧縮機、四方弁、水と熱交換を行う第1の熱交換器、空気と冷媒が熱交換を行う第2の熱交換器を順次循環する冷媒回路と、
水搬送手段と給湯タンクを備え、水が、この水搬送手段、前記第1の熱交換器、前記給湯タンクを順次循環する水回路と、
前記第1の熱交換器と前記第2の熱交換器を連通する配管に直列に設けられた2つの減圧装置と、
この2つの減圧装置の間に設けられ、前記冷媒を貯留するレシーバと、
前記冷媒が前記循環の方向とは逆の方向に循環するデフロスト運転中は、前記2つの減圧装置の開度を全開にし、デフロスト運転終了間際には、制御手段が上流側の減圧装置の開度を全開のままにして下流側の減圧装置の開度を小さく制御し、
給湯、温水暖房運転時には、前記第1、第2の熱交換器の内の凝縮器となる熱交換器の出口過冷却度が所定の目標値になるように上流側の減圧装置を制御すると共に圧縮機吐出温度または圧縮機吐出過熱度に基づいて前記下流側の減圧装置の開度を制御する制御手段と、を備えたことを特徴とする給湯、冷温水空気調和装置。
The refrigerant, which is provided in the outdoor unit, sequentially circulates through a compressor with variable rotation speed, a four-way valve, a first heat exchanger that exchanges heat with water, and a second heat exchanger that exchanges heat with air and refrigerant. A refrigerant circuit;
A water circuit comprising a water conveying means and a hot water tank , wherein water is circulated in turn through the water conveying means, the first heat exchanger , and the hot water tank;
Two decompression devices provided in series with a pipe communicating the first heat exchanger and the second heat exchanger;
A receiver provided between the two pressure reducing devices, and storing the refrigerant;
During the defrost operation in which the refrigerant circulates in the direction opposite to the direction of the circulation , the opening of the two pressure reducing devices is fully opened, and immediately before the end of the defrost operation, the control means opens the opening of the upstream pressure reducing device. With the fully open, the opening of the decompression device on the downstream side is controlled to be small,
At the time of hot water supply and hot water heating operation, the pressure reducing device on the upstream side is controlled so that the degree of subcooling at the outlet of the heat exchanger serving as the condenser of the first and second heat exchangers becomes a predetermined target value. A hot water supply and cold / hot water air conditioner, comprising: a control unit that controls an opening degree of the downstream pressure reducing device based on a compressor discharge temperature or a compressor discharge superheat degree.
前記制御手段は、冷水冷房運転時には、前記第1、第2の熱交換器の内の蒸発器となる熱交換器の出口過冷却度が所定の目標値になるように下流側の減圧装置を制御することを特徴とする請求項1記載の給湯、冷温水空気調和装置。   In the cold water cooling operation, the control means controls the downstream pressure reducing device so that the degree of subcooling at the outlet of the heat exchanger serving as an evaporator of the first and second heat exchangers becomes a predetermined target value. The hot water supply and cold / hot water air conditioner according to claim 1, wherein control is performed. 前記制御手段は、前記圧縮機の吐出温度が所定の目標値になるように下流側の減圧装置を制御することを特徴とする請求項1記載の給湯、冷温水空気調和装置。   The hot water supply / cold / hot water air conditioner according to claim 1, wherein the control unit controls a decompression device on the downstream side so that a discharge temperature of the compressor becomes a predetermined target value. 前記制御手段は、前記圧縮機の吐出過熱度が所定の目標値になるように下流側の減圧装置を制御することを特徴とする請求項1記載の給湯、冷温水空気調和装置。   The hot water supply / cold hot / cold water / air conditioning apparatus according to claim 1, wherein the control unit controls a decompression device on the downstream side so that a discharge superheat degree of the compressor becomes a predetermined target value. 前記水回路は、給湯タンクの代わりに冷暖房用熱交換器を備えたことを特徴とする請求項1〜4のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 1, wherein the water circuit includes a heat exchanger for cooling and heating instead of the hot water supply tank. 前記水回路は、さらに冷暖房用熱交換器を有するバイパスと、
このバイパスの分岐点に設けられた切替弁を備え、
前記制御手段は、前記冷暖房用熱交換器、前記給湯タンクのいずれか一方に水を通過させるように前記切替弁を制御することを特徴とする請求項1〜4のいずれかに記載の給湯、冷温水空気調和装置。
The water circuit further includes a bypass having a heat exchanger for cooling and heating,
A switching valve provided at the bypass branch point is provided,
The hot water supply according to any one of claims 1 to 4, wherein the control means controls the switching valve so that water passes through either the heat exchanger for cooling or heating or the hot water supply tank. Cold and hot water air conditioner.
室外に設けられ、水搬送手段と地中排熱用熱交換器を備え、水が、この水搬送手段、前記地中排熱用熱交換器、前記第2の熱交換器、を順次循環する水回路を備えたことを特徴とする請求項1〜6のいずれかに記載の給湯、冷温水空気調和装置。 An outdoor unit is provided with a water transfer means and an underground heat exhaust heat exchanger, and water sequentially circulates through the water transfer means, the underground heat exhaust heat exchanger, and the second heat exchanger . The hot water supply and cold / hot water air conditioner according to claim 1, further comprising a water circuit. 前記冷媒回路と前記水回路との間に設けられ、
前記水回路と熱交換する第3の熱交換器と、水搬送手段とを備え、
水が、前記第1の熱交換器、前記第3の熱交換器、前記水搬送手段を順次循環する中間回路を備え、
前記水回路において、水が前記第1の熱交換器の代わりに前記第3の熱交換器を通過することを特徴とする請求項1〜6のいずれかに記載の給湯、冷温水空気調和装置。
Provided between the refrigerant circuit and the water circuit;
A third heat exchanger for exchanging heat with the water circuit, and water transport means,
An intermediate circuit in which water circulates sequentially through the first heat exchanger, the third heat exchanger, and the water conveying means;
In the said water circuit, water passes the said 3rd heat exchanger instead of the said 1st heat exchanger, The hot water supply and cold / hot water air conditioning apparatus in any one of Claims 1-6 characterized by the above-mentioned. .
前記レシーバは、内部を通過する冷媒と、前記第1、第2の熱交換器内の蒸発器となる熱交換器と前記圧縮機との間を通過する冷媒と、の間で熱交換する内部熱交換器を備えたことを特徴とする請求項1〜8のいずれかに記載の給湯、冷温水空気調和装置。   The receiver is configured to exchange heat between the refrigerant passing through the interior and the refrigerant passing between the compressor and the heat exchanger serving as an evaporator in the first and second heat exchangers. The hot water supply and cold / hot water air conditioner in any one of Claims 1-8 characterized by the above-mentioned. 前記冷媒回路の前記レシーバと前記第2の熱交換器側の減圧装置との間の配管から分岐して設けられ、前記圧縮機にインジェクションするインジェクション回路と、
このインジェクション回路に設けられたインジェクション用減圧装置と、
前記インジェクション回路に設けられ、前記インジェクション用減圧装置で減圧された冷媒と、前記レシーバを通過した前記冷媒回路の冷媒とを熱交換するインジェクション用内部熱交換器と、
を備えたことを特徴とする請求項8記載の給湯、冷温水空気調和装置。
An injection circuit that is branched from a pipe between the receiver of the refrigerant circuit and the decompression device on the second heat exchanger side, and injects into the compressor;
A decompression device for injection provided in the injection circuit;
An internal heat exchanger for injection that is provided in the injection circuit and exchanges heat between the refrigerant decompressed by the decompression device for injection and the refrigerant in the refrigerant circuit that has passed through the receiver;
The hot water supply and cold / hot water air conditioner of Claim 8 characterized by the above-mentioned.
前記第1の熱交換器はプレート式熱交換器であることを特徴とする請求項1〜10のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 1, wherein the first heat exchanger is a plate heat exchanger. 前記室外機には、前記圧縮機の吐出温度を検知する圧縮機吐出温度検知手段と、前記圧縮機の吐出圧力を検知する圧縮機吐出圧力検知手段と、前記第1の熱交換器の液管接続口の温度を検知する水冷媒熱交換器液管接続口温度検知手段と、前記第2の熱交換器の液管接続口の温度を検知する空冷式熱交換器液管接続口温度検知手段と、室外機周囲の乾球温度を検知する室外機周囲乾球温度検知手段と、前記第1の熱交換器の水入口の温度を検知する水冷媒熱交換器水入口温度検知手段と、が設けられ、
前記制御手段は前記室外機に設けられた室外機制御・通信手段であり、
水回路側には、負荷用制御・通信手段が設けられ、
前記負荷用制御・通信手段は、水回路側からの要求能力を前記室外機制御・通信手段に伝達し、
この室外機制御・通信手段は、前記負荷用制御・通信手段からの要求能力と前記室外機周囲乾球温度検知手段の出力と前記水冷媒熱交換器水入口温度検知手段の出力とに基づいて前記圧縮機のモータの回転数を決定し、前記室外機周囲乾球温度検知手段の出力に基づいて前記室外機のファンモータの回転数を決定し、前記圧縮機吐出圧力検知手段の出力と前記水冷媒熱交換器液管接続口温度検知手段の出力から前記第1、第2の熱交換器の内の凝縮器となる熱交換器の出口過冷却度を計算し、その値が所定の目標値になるように上流側の減圧装置の開度を決定し、前記圧縮機吐出温度検知手段の出力が所定の目標値になるように下流側の減圧装置の開度を決定し、運転時に順次実行することを特徴とする請求項1〜9のいずれかに記載の給湯、冷温水空気調和装置。
The outdoor unit includes a compressor discharge temperature detecting means for detecting a discharge temperature of the compressor, a compressor discharge pressure detecting means for detecting a discharge pressure of the compressor, and a liquid pipe of the first heat exchanger. Water refrigerant heat exchanger liquid pipe connection port temperature detection means for detecting the temperature of the connection port, and air-cooled heat exchanger liquid pipe connection port temperature detection means for detecting the temperature of the liquid pipe connection port of the second heat exchanger And an outdoor unit ambient dry bulb temperature detecting means for detecting a dry bulb temperature around the outdoor unit, and a water refrigerant heat exchanger water inlet temperature detecting unit for detecting the temperature of the water inlet of the first heat exchanger. Provided,
The control means is an outdoor unit control / communication means provided in the outdoor unit,
On the water circuit side, load control and communication means are provided,
The load control / communication means transmits the required capacity from the water circuit side to the outdoor unit control / communication means,
The outdoor unit control / communication means is based on the required capacity from the load control / communication means, the output of the outdoor unit ambient dry bulb temperature detection means, and the output of the water refrigerant heat exchanger water inlet temperature detection means. The number of rotations of the compressor motor is determined, the number of rotations of the fan motor of the outdoor unit is determined based on the output of the outdoor unit ambient dry bulb temperature detection means, the output of the compressor discharge pressure detection means and the From the output of the water refrigerant heat exchanger liquid pipe connection port temperature detection means, the degree of subcooling at the outlet of the heat exchanger that becomes the condenser in the first and second heat exchangers is calculated, and the value is a predetermined target. The opening of the decompression device on the upstream side is determined so as to be a value, the opening of the decompression device on the downstream side is determined so that the output of the compressor discharge temperature detection means becomes a predetermined target value, and sequentially during operation It performs, The hot water supply in any one of Claims 1-9 characterized by the above-mentioned. Hot and cold water air-conditioning apparatus.
前記室外機制御・通信手段は、前記圧縮機吐出圧力検知手段の出力と前記水冷媒熱交換器液管接続口温度検知手段の出力から前記第1、第2の熱交換器の内の凝縮器となる熱交換器の出口過冷却度を計算する代わりに、前記圧縮機吐出圧力検知手段の出力と前記空冷式熱交換器液管接続口温度検知手段の出力から前記第1、第2の熱交換器の内の凝縮器となる熱交換器の出口過冷却度を計算することを特徴とする請求項12記載の給湯、冷温水空気調和装置。   The outdoor unit control / communication means includes a condenser in the first and second heat exchangers based on the output of the compressor discharge pressure detecting means and the output of the water refrigerant heat exchanger liquid pipe connection port temperature detecting means. Instead of calculating the degree of subcooling at the outlet of the heat exchanger, the first and second heats are obtained from the output of the compressor discharge pressure detecting means and the output of the air-cooled heat exchanger liquid pipe connection port temperature detecting means. The hot water supply and cold / hot water air conditioner according to claim 12, wherein the degree of supercooling at the outlet of the heat exchanger that serves as a condenser in the exchanger is calculated. 前記室外機制御・通信手段は、前記圧縮機吐出温度検知手段の出力が所定の目標値になるように下流側の減圧装置の開度を決定する代わりに、前記圧縮機吐出圧力検知手段の出力と前記圧縮機吐出温度検知手段の出力とから前記圧縮機の吐出過熱度を計算し、その値が所定の目標値になるように下流側の減圧装置の開度を決定することを特徴とする請求項12記載の給湯、冷温水空気調和装置。   The outdoor unit control / communication means outputs the output of the compressor discharge pressure detection means instead of determining the opening of the downstream pressure reducing device so that the output of the compressor discharge temperature detection means becomes a predetermined target value. And the output of the compressor discharge temperature detection means, the discharge superheat degree of the compressor is calculated, and the opening of the decompression device on the downstream side is determined so that the value becomes a predetermined target value. The hot water supply and cold / hot water air conditioner of Claim 12. 前記制御手段は、低外気温度下で給湯、温水暖房する場合、デフロスト運転中は上流側になる前記第2の熱交換器と連通する減圧装置の開度を全開、下流側になる前記第1の熱交換器と連通する減圧装置の開度を全開より小さい所定開度とし、デフロストを終了して給湯、温水暖房立ち上げるときには所定時間、上流側の前記第1の熱交換器と連通する減圧装置の開度を下流側になる前記第2の熱交換器と連通する減圧装置の開度より小さい開度に設定することを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   When the hot water supply or hot water heating is performed at a low outside air temperature, the control means fully opens the opening of the decompression device communicating with the second heat exchanger on the upstream side during the defrost operation, and the first on the downstream side. The pressure reducing device communicating with the first heat exchanger is set to a predetermined opening smaller than the full opening, and when the defrosting is finished and the hot water supply and hot water heating are started up, the pressure reducing device communicates with the first heat exchanger on the upstream side for a predetermined time. The hot water supply / cooling temperature according to any one of claims 1 to 11, wherein the opening degree of the apparatus is set to an opening degree smaller than the opening degree of the decompression device communicating with the second heat exchanger on the downstream side. Water air conditioner. 前記冷媒回路に直列に設けられた複数の第1の熱交換器と、
この第1の熱交換器毎に設けられ、冷暖房用熱交換器と給湯タンクと切替弁とを有する複数の水回路と、を備え、
前記制御手段は、上流側の第1の熱交換器を介して接続される水回路を主に給湯用とし、下流側の第1の熱交換器を介して接続される水回路を主に冷温水空気調和用となるように前記切替弁を制御することを特徴とする請求項1〜4のいずれかに記載の給湯、冷温水空気調和装置。
A plurality of first heat exchangers provided in series in the refrigerant circuit;
A plurality of water circuits provided for each of the first heat exchangers, each having a heat exchanger for cooling and heating, a hot water supply tank, and a switching valve;
The control means mainly uses a water circuit connected via the first heat exchanger on the upstream side for hot water supply, and mainly cools and cools the water circuit connected via the first heat exchanger on the downstream side. The hot water supply / cold hot / cold water / air conditioning apparatus according to claim 1, wherein the switching valve is controlled so as to be used for water / air conditioning.
前記インジェクション回路に冷媒加熱用熱源を備えたことを特徴とする請求項10記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 10, wherein the injection circuit includes a heat source for heating the refrigerant. 前記圧縮機はロータリー式であることを特徴とする請求項1〜10のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 1, wherein the compressor is a rotary type. 前記圧縮機は、圧縮室内が過圧縮状態になると過圧縮ガスを圧縮室外へ放出する弁を備えたスクロール式であることを特徴とする請求項1〜10のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply or cold / hot water according to any one of claims 1 to 10, wherein the compressor is of a scroll type provided with a valve that discharges the overcompressed gas to the outside of the compression chamber when the compression chamber is overcompressed. Air conditioner. 前記圧縮機は、吸入アンロード機構を備えるスクロール式であることを特徴とする請求項1〜10のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 1, wherein the compressor is of a scroll type provided with a suction unload mechanism. 前記室外機の冷媒回路において、0℃飽和液冷媒が室外熱交換器容積の1/2を占有した場合の冷媒重量を必要最小充填冷媒量とすることを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   12. The refrigerant circuit of the outdoor unit, wherein the refrigerant weight when the 0 ° C. saturated liquid refrigerant occupies 1/2 of the outdoor heat exchanger volume is set as a necessary minimum charged refrigerant amount. Hot water supply and cold / hot water air conditioner as described in Crab. 使用冷媒の臨界点温度は水冷媒熱交換器出口水温より少なくとも5℃高いことを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply and cold / hot water air conditioner according to claim 1, wherein a critical point temperature of the refrigerant used is at least 5 ° C. higher than an outlet water temperature of the water refrigerant heat exchanger. 前記制御手段は、給湯、温水暖房運転する場合、負荷側ユニットにおける水冷媒熱交換器入口水温が所定温度以下のとき、水冷媒熱交換器の出口冷媒の過冷却度が所定温度以上のときより大きくなるように前記第1の熱交換器と連通する減圧装置を制御することを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   In the case of hot water supply or hot water heating operation, the control means is configured such that when the water refrigerant heat exchanger inlet water temperature in the load side unit is equal to or lower than a predetermined temperature, the degree of subcooling of the outlet refrigerant of the water refrigerant heat exchanger is equal to or higher than a predetermined temperature. The hot water supply / cold hot / cold water / air conditioning apparatus according to claim 1, wherein a pressure reducing device communicating with the first heat exchanger is controlled to be large. 前記制御手段は、給湯、温水暖房運転する場合、室外機周囲乾球温度が所定温度以下のとき、水冷媒熱交換器の出口冷媒の過冷却度が所定温度以上のときより大きくなるように前記第1の水冷媒熱交換器と連通する減圧装置を制御することを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   In the hot water supply or hot water heating operation, the control means is configured such that when the outdoor unit ambient dry bulb temperature is equal to or lower than a predetermined temperature, the degree of supercooling of the outlet refrigerant of the water refrigerant heat exchanger is higher than that at a predetermined temperature or higher. The hot water supply and cold / hot water air conditioner according to any one of claims 1 to 11, wherein a decompression device communicating with the first water refrigerant heat exchanger is controlled. 前記制御手段は、冷水冷房運転する場合、封入冷媒量に関わらず水冷媒熱交換器の出口冷媒の乾き度を常時1未満にすることを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   The said control means always makes the dryness of the exit refrigerant | coolant of a water-refrigerant heat exchanger less than 1 irrespective of the amount of refrigerant | coolants enclosed, when carrying out cold water cooling operation, The one of Claims 1-11 characterized by the above-mentioned. Hot water supply and cold / hot water air conditioner. 前記水搬送手段は、前記水回路または前記中間回路中の水流速が1.5m/sec以下に抑えられるものであることを特徴とする請求項1〜11のいずれかに記載の給湯、冷温水空気調和装置。   The hot water supply or cold / hot water air according to any one of claims 1 to 11, wherein the water conveying means is configured such that a water flow velocity in the water circuit or the intermediate circuit is suppressed to 1.5 m / sec or less. Harmony device.
JP2006265105A 2006-09-28 2006-09-28 Hot water supply, cold and hot water air conditioner Active JP4799347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265105A JP4799347B2 (en) 2006-09-28 2006-09-28 Hot water supply, cold and hot water air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265105A JP4799347B2 (en) 2006-09-28 2006-09-28 Hot water supply, cold and hot water air conditioner

Publications (2)

Publication Number Publication Date
JP2008082653A JP2008082653A (en) 2008-04-10
JP4799347B2 true JP4799347B2 (en) 2011-10-26

Family

ID=39353701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265105A Active JP4799347B2 (en) 2006-09-28 2006-09-28 Hot water supply, cold and hot water air conditioner

Country Status (1)

Country Link
JP (1) JP4799347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351826B1 (en) * 2012-03-28 2014-01-15 주식회사 신진에너텍 Heat pump apparatus for heating and cooling using ground water for green house
US11592203B2 (en) 2017-09-26 2023-02-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL193004A0 (en) * 2008-07-23 2009-08-03 Joul Srhan Deviding unit of the air-conditioner
KR101516431B1 (en) 2008-08-05 2015-05-04 엘지전자 주식회사 Water circulation system associated with refrigerant cycle and method for controlling the same
JP4869320B2 (en) * 2008-12-09 2012-02-08 三菱電機株式会社 Refrigeration cycle apparatus and water heater equipped with the same
JP5042262B2 (en) * 2009-03-31 2012-10-03 三菱電機株式会社 Air conditioning and hot water supply complex system
KR101610958B1 (en) * 2009-11-30 2016-04-08 엘지전자 주식회사 Water circulation system associated with refrigerant cycle and the method of controlling the same
JP2011127778A (en) * 2009-12-15 2011-06-30 Mitsubishi Electric Corp Fluid utilization system and operation control method of the same
JP5452628B2 (en) 2010-02-10 2014-03-26 三菱電機株式会社 Air conditioner
KR101116927B1 (en) 2010-03-15 2012-02-27 한밭대학교 산학협력단 Heat pump system using ground heat source
JP5601885B2 (en) * 2010-05-31 2014-10-08 三菱重工業株式会社 Heat pump type hot water supply / air conditioner
KR101141420B1 (en) 2010-12-01 2012-07-12 엘지전자 주식회사 Heat pump system for cooling and heating simultaneously
JP5763361B2 (en) * 2011-02-16 2015-08-12 株式会社コロナ Geothermal heat pump device
JP5573740B2 (en) * 2011-03-18 2014-08-20 三菱電機株式会社 Heat pump water heater
KR101270606B1 (en) * 2011-11-28 2013-06-03 엘지전자 주식회사 An air conditioner
WO2013080244A1 (en) * 2011-11-29 2013-06-06 三菱電機株式会社 Refrigerating/air-conditioning device
CN104024752B (en) * 2011-12-12 2017-06-23 三菱电机株式会社 Outdoor unit and conditioner
JP5898537B2 (en) * 2012-03-19 2016-04-06 サンデンホールディングス株式会社 Heat pump heating system
KR101265477B1 (en) * 2012-10-24 2013-05-29 유필재 Thermohygrostat with improved reheating type using geothermal heat
JP2014119157A (en) * 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
TWI591301B (en) 2013-03-04 2017-07-11 強生控制科技公司 Outside air handling unit and method ofdelivering conditioned air to individual heating/cooling zones of a building
CN103196170B (en) * 2013-04-11 2014-04-30 山西大学工程学院 Absorption heat-pump heating system capable of recycling exhaust heat of exhaust gas from power station boiler
JP6180165B2 (en) * 2013-04-17 2017-08-16 三菱電機株式会社 Air conditioner
WO2014181401A1 (en) * 2013-05-08 2014-11-13 三菱電機株式会社 Circulation and heating apparatus
CN103968603B (en) * 2014-03-24 2016-08-17 中国铁道科学研究院 A kind of ultra-low-loop temperature air source heat pump and finned heat exchanger defrosting method thereof
JP6359398B2 (en) * 2014-09-22 2018-07-18 株式会社コロナ Combined heat source heat pump device
JP2016095039A (en) * 2014-11-12 2016-05-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device
US10429086B2 (en) * 2015-05-12 2019-10-01 Mitsubishi Electric Corporation Heat-pump equipment
JP6437120B2 (en) * 2015-08-05 2018-12-12 三菱電機株式会社 Chilling unit
EP3680565B1 (en) * 2017-09-07 2021-11-10 Mitsubishi Electric Corporation Air conditioning device
JP7233845B2 (en) * 2018-03-27 2023-03-07 株式会社富士通ゼネラル air conditioner
CN108692485B (en) * 2018-07-09 2024-04-09 中国科学院广州能源研究所 Ultralow-temperature air-source heat pump unit capable of quickly defrosting
CN109520172A (en) * 2018-12-13 2019-03-26 吴建龙 Household non-outdoor unit energy-saving and emission-reduction cold/hot air-conditioning and hot water three-way set
EP3995752B1 (en) * 2019-07-04 2023-09-27 Mitsubishi Electric Corporation Hot water supply system
JP6802589B1 (en) * 2020-02-14 2020-12-16 株式会社久保田商工 Heat recovery method, heat recovery unit and heat recovery system equipped with it
US20230375193A1 (en) * 2020-12-07 2023-11-23 Mitsubishi Electric Corporation Hot-water supply and heating system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155562A (en) * 1984-08-24 1986-03-20 ダイキン工業株式会社 Refrigerator using mixed refrigerant
JPS62186084A (en) * 1986-02-12 1987-08-14 Mitsubishi Electric Corp Scroll compressor
JPS63189739A (en) * 1987-01-30 1988-08-05 Daikin Ind Ltd Heat pump system
JPH03195855A (en) * 1989-12-25 1991-08-27 Daikin Ind Ltd Operation control device for air conditioner
JP2540254B2 (en) * 1991-09-18 1996-10-02 リンナイ株式会社 Air conditioner
JPH0835731A (en) * 1994-07-22 1996-02-06 Tokyo Gas Co Ltd Heat pump
JP3421915B2 (en) * 1997-12-19 2003-06-30 三菱電機株式会社 Refrigeration cycle
JP2001065888A (en) * 1999-08-27 2001-03-16 Daikin Ind Ltd Carbon dioxide refrigerating machine
JP3760259B2 (en) * 2000-04-21 2006-03-29 株式会社日立製作所 Air conditioner
JP2002257366A (en) * 2001-03-02 2002-09-11 Sekisui Chem Co Ltd Hot water supplying/heating system
JP2003106672A (en) * 2001-09-28 2003-04-09 Kansai Electric Power Co Inc:The Water heater
JP4147930B2 (en) * 2002-12-18 2008-09-10 株式会社デンソー Vapor compression refrigerator
JP2004278987A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005127612A (en) * 2003-10-23 2005-05-19 Nippon Steel Corp Underground heat utilizing system with underground water tank water heat source heat pump
JP2005201618A (en) * 2003-12-16 2005-07-28 Noritz Corp Hot water heating system
JP4273493B2 (en) * 2004-02-16 2009-06-03 三菱電機株式会社 Refrigeration air conditioner
JP4599910B2 (en) * 2004-07-01 2010-12-15 ダイキン工業株式会社 Water heater
JP2006132831A (en) * 2004-11-05 2006-05-25 Sanyo Electric Co Ltd Heat pump type hot water supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351826B1 (en) * 2012-03-28 2014-01-15 주식회사 신진에너텍 Heat pump apparatus for heating and cooling using ground water for green house
US11592203B2 (en) 2017-09-26 2023-02-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2008082653A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
US10563872B2 (en) Regenerative air conditioner
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5452138B2 (en) Refrigeration air conditioner
JP4486133B2 (en) Cooling device for communication device and cooling control method thereof
WO2012128229A1 (en) Binary refrigeration cycle device
US20140290292A1 (en) Refrigerating and air-conditioning apparatus
US11384965B2 (en) Refrigeration cycle apparatus performing a refrigerant circulation operation using a liquid pump
JP2004183913A (en) Air conditioner
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JPWO2019064332A1 (en) Refrigeration cycle equipment
EP2918921B1 (en) Hot water generator
WO2018025935A1 (en) Heat pump device and control method therefor
JP6110187B2 (en) Refrigeration cycle equipment
KR20100059176A (en) Storage system
JP2015218911A (en) Refrigeration device
JP2004278825A (en) Air conditioner
JP2006284034A (en) Air conditioner and its expansion valve control method
JP2009293887A (en) Refrigerating device
KR20100005735U (en) storage system
JP6698312B2 (en) Control device, control method, and heat source system
JP2015087020A (en) Refrigeration cycle device
JP6381712B2 (en) Refrigeration cycle equipment
JP6847023B2 (en) Control method of heat pump device and heat pump device
WO2016207992A1 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4799347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250