JP6381712B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6381712B2
JP6381712B2 JP2017044895A JP2017044895A JP6381712B2 JP 6381712 B2 JP6381712 B2 JP 6381712B2 JP 2017044895 A JP2017044895 A JP 2017044895A JP 2017044895 A JP2017044895 A JP 2017044895A JP 6381712 B2 JP6381712 B2 JP 6381712B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
heat exchanger
compressor
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017044895A
Other languages
Japanese (ja)
Other versions
JP2017138096A (en
Inventor
青木 正則
正則 青木
柴 広有
広有 柴
高橋 佳宏
佳宏 高橋
康巨 鈴木
康巨 鈴木
昌彦 高木
昌彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017044895A priority Critical patent/JP6381712B2/en
Publication of JP2017138096A publication Critical patent/JP2017138096A/en
Application granted granted Critical
Publication of JP6381712B2 publication Critical patent/JP6381712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来の冷凍サイクル装置は、冷媒にR32冷媒を使用しているか否かを判断し、R32冷媒を使用していると判断したときには、圧縮機の吸入側の温度と蒸発器の温度との差であるスーパーヒートSHを検出し、このスーパーヒートSHが0.85〜0.75の範囲内か否かを判断し、スーパーヒートSHが範囲内でない場合には、圧縮機の回転数又は膨張弁の開度を制御し、圧縮機の吐出側の冷媒温度を所定範囲になるように運転制御している(例えば、特許文献1参照)。   The conventional refrigeration cycle apparatus determines whether or not R32 refrigerant is used as the refrigerant. When it is determined that R32 refrigerant is used, the difference between the temperature on the suction side of the compressor and the temperature of the evaporator is determined. A certain superheat SH is detected, and it is determined whether or not the superheat SH is within the range of 0.85 to 0.75. If the superheat SH is not within the range, the rotation speed of the compressor or the expansion valve The opening degree is controlled and operation control is performed so that the refrigerant temperature on the discharge side of the compressor falls within a predetermined range (see, for example, Patent Document 1).

特開2001−194015号公報(第5−7頁、第1−3図)Japanese Patent Laid-Open No. 2001-194015 (page 5-7, FIG. 1-3)

従来の冷凍サイクル装置は、圧縮機の吐出温度を下げて圧縮機の潤滑性や磨耗といった信頼性を確保する反面、能力を犠牲にして運転効率COPを低下させたり、圧縮機と膨張弁の制御により吐出温度を所定範囲になるように制御しているが、R32冷媒の温度上昇特性に起因した圧縮機のハンチング動作を引き起こす虞があるという課題があった。   The conventional refrigeration cycle device lowers the discharge temperature of the compressor to ensure reliability such as lubrication and wear of the compressor, but at the cost of the ability to lower the operating efficiency COP and control the compressor and the expansion valve. However, there is a problem that the compressor hunting operation may be caused due to the temperature rise characteristic of the R32 refrigerant.

本発明は、前記のような課題を解決するためになされたもので、ハンチング動作を引き起こすことなく、圧縮機から吐出される冷媒の温度を制御し、性能低下や保護装置の作動による異常停止を抑制できる冷凍サイクル装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and controls the temperature of the refrigerant discharged from the compressor without causing a hunting operation, thereby preventing an abnormal stop due to performance degradation or protection device operation. It aims at obtaining the refrigerating-cycle apparatus which can be suppressed.

本発明に係る冷凍サイクル装置は、圧縮機、四方弁、室外熱交換器、冷媒流れの上流側及び下流側に膨張弁を有するレシーバ及び室内熱交換器が順に冷媒配管により接続された冷媒回路と、圧縮機の外殻を構成するケースの温度を検出する温度センサーと、温度センサーにより検出されるケースの温度から時間当たりの温度上昇の早さに応じた予測のケース温度が予め設定された上限値を超えないように、レシーバに対して冷媒流れの上流側に位置する膨張弁の開度を制御する制御装置とを備えたものである。 A refrigeration cycle apparatus according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a receiver having an expansion valve on the upstream side and the downstream side of the refrigerant flow, and a refrigerant circuit in which an indoor heat exchanger is sequentially connected by a refrigerant pipe. , A temperature sensor for detecting the temperature of the case constituting the outer shell of the compressor, and an upper limit in which a predicted case temperature according to the speed of temperature rise per hour from the temperature of the case detected by the temperature sensor is preset And a control device for controlling the opening degree of the expansion valve located on the upstream side of the refrigerant flow with respect to the receiver so as not to exceed the value.

本発明においては、温度センサーにより検出されるケースの温度の変化から当該温度が予め設定された上限値を超えないように、レシーバに対して冷媒流れの上流側に位置する膨張弁の開度を制御するようにしている。この構成により、圧縮機から吐出される冷媒の温度上昇を抑制するための圧縮機の運転周波数を下げる必要が無くなり、そのため、圧縮機の運転周波数のダウンによる性能低下を抑えることができ、これに伴い圧縮機がハンチング動作を引き起こすようなことがなくなり、保護装置の作動による異常停止を防止できる。   In the present invention, the degree of opening of the expansion valve located upstream of the refrigerant flow with respect to the receiver is set so that the temperature does not exceed a preset upper limit value from the change in the temperature of the case detected by the temperature sensor. I try to control it. With this configuration, it is not necessary to lower the operating frequency of the compressor for suppressing the temperature rise of the refrigerant discharged from the compressor, and therefore, it is possible to suppress the performance degradation due to the reduction in the operating frequency of the compressor. Accordingly, the compressor does not cause a hunting operation, and an abnormal stop due to the operation of the protective device can be prevented.

本発明に係る冷凍サイクル装置の実施の形態1としての空気調和機の概略構成を示す冷媒回路図。1 is a refrigerant circuit diagram showing a schematic configuration of an air conditioner as Embodiment 1 of a refrigeration cycle apparatus according to the present invention. 本発明に係る冷凍サイクル装置の実施の形態2としての空気調和機の概略構成を示す冷媒回路図。The refrigerant circuit figure which shows schematic structure of the air conditioner as Embodiment 2 of the refrigeration cycle apparatus which concerns on this invention.

実施の形態1.
図1は本発明に係る冷凍サイクル装置の実施の形態1としての空気調和機の概略構成を示す冷媒回路図である。
実施の形態1は、例えばR410A冷媒が使用可能な空気調和機に低GWPのR32冷媒を使用したものである。
この空気調和機は、図1に示すように、圧縮機1と、四方弁2と、室外熱交換器3と、第2膨張弁4bと、レシーバ6と、第1膨張弁4aと、室内熱交換器5と、レシーバ6内に設置された第1内部熱交換器7とが順に冷媒配管(以下、「ガス管8、液管9」という)により接続されて構成される冷媒回路と、制御装置31とを備えている。圧縮機1には、インバータにより回転数が制御されるモーターが内蔵されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram showing a schematic configuration of an air conditioner as Embodiment 1 of a refrigeration cycle apparatus according to the present invention.
In the first embodiment, for example, a low GWP R32 refrigerant is used in an air conditioner that can use an R410A refrigerant.
As shown in FIG. 1, this air conditioner includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a second expansion valve 4b, a receiver 6, a first expansion valve 4a, and indoor heat. A refrigerant circuit configured by connecting an exchanger 5 and a first internal heat exchanger 7 installed in the receiver 6 in order by refrigerant pipes (hereinafter referred to as “gas pipe 8, liquid pipe 9”), and control Device 31. The compressor 1 incorporates a motor whose rotational speed is controlled by an inverter.

圧縮機1は、吸入冷媒を直接圧縮室に取り込んで圧縮する高圧タイプである。四方弁2は、制御装置31からの制御に基づいて冷媒の流れを切り替える四路切替弁である。この四方弁2は、冷房運転時には、圧縮機1の吐出冷媒が室外熱交換器3へ流れるように流路を切り替え、暖房運転時には、圧縮機1の吐出冷媒が室内熱交換器5へ流れるように流路を切り替える。室外熱交換器3は、冷房運転時に凝縮器として作動し、暖房運転時に蒸発器として作動する。   The compressor 1 is a high-pressure type that takes in a refrigerant directly into a compression chamber and compresses it. The four-way valve 2 is a four-way switching valve that switches the flow of the refrigerant based on the control from the control device 31. The four-way valve 2 switches the flow path so that the refrigerant discharged from the compressor 1 flows to the outdoor heat exchanger 3 during the cooling operation, and the refrigerant discharged from the compressor 1 flows to the indoor heat exchanger 5 during the heating operation. Switch the flow path to. The outdoor heat exchanger 3 operates as a condenser during the cooling operation, and operates as an evaporator during the heating operation.

第1膨張弁4a及び第2膨張弁4bは、制御装置31からの制御に応じて開度が制御され、液冷媒の圧力を低下させる。レシーバ6は、冷媒回路を循環する冷媒の余剰を溜めるタンクである。室内熱交換器5は、冷房運転時に蒸発器として作動し、暖房運転時に凝縮器として作動する。第1内部熱交換器7は、四方弁2と圧縮機1の吸入部とを接続するガス管8の一部がレシーバ6内に設置されて構成され、四方弁2を介して流入する低温のガス冷媒を、レシーバ6内に貯留されている高温の液冷媒と熱交換する。   The opening degree of the first expansion valve 4a and the second expansion valve 4b is controlled according to control from the control device 31, and the pressure of the liquid refrigerant is reduced. The receiver 6 is a tank that stores surplus refrigerant that circulates in the refrigerant circuit. The indoor heat exchanger 5 operates as an evaporator during the cooling operation, and operates as a condenser during the heating operation. The first internal heat exchanger 7 is configured such that a part of a gas pipe 8 that connects the four-way valve 2 and the suction portion of the compressor 1 is installed in the receiver 6, and a low-temperature inflow through the four-way valve 2. The gas refrigerant exchanges heat with the high-temperature liquid refrigerant stored in the receiver 6.

また、空気調和機の冷媒回路上には、複数の温度センサー21〜29が設置されている。温度センサー21は圧縮機1の吐出側配管に設置され、温度センサー22は圧縮機1の外殻を構成するケースに設置され、温度センサー23は四方弁2と室外熱交換器3との間のガス管8に設置され、温度センサー24は室外熱交換器3の中間部の冷媒流路上に設置されている。   A plurality of temperature sensors 21 to 29 are installed on the refrigerant circuit of the air conditioner. The temperature sensor 21 is installed in the discharge side piping of the compressor 1, the temperature sensor 22 is installed in a case constituting the outer shell of the compressor 1, and the temperature sensor 23 is provided between the four-way valve 2 and the outdoor heat exchanger 3. Installed in the gas pipe 8, the temperature sensor 24 is installed on the refrigerant flow path in the middle of the outdoor heat exchanger 3.

更に、温度センサー25は室外熱交換器3と第2膨張弁4bとの間の液管9に設置され、温度センサー26はレシーバ6と第1膨張弁4aとの間の液管9に設置され、温度センサー29は圧縮機1の吸入側配管に設置されている。また、温度センサー27は室内熱交換器5と第1膨張弁4aとの間の液管9に設置され、温度センサー28は室内熱交換器5の中間部の冷媒流路上に設置されている。温度センサー24、28により、室外熱交換器3及び室内熱交換器5の各中間部で気液二相冷媒となっている冷媒温度を検出することで、高低圧の冷媒飽和温度を検知することができる。   Furthermore, the temperature sensor 25 is installed in the liquid pipe 9 between the outdoor heat exchanger 3 and the second expansion valve 4b, and the temperature sensor 26 is installed in the liquid pipe 9 between the receiver 6 and the first expansion valve 4a. The temperature sensor 29 is installed in the suction side piping of the compressor 1. Further, the temperature sensor 27 is installed in the liquid pipe 9 between the indoor heat exchanger 5 and the first expansion valve 4 a, and the temperature sensor 28 is installed on the refrigerant flow path in the middle part of the indoor heat exchanger 5. By detecting the temperature of the refrigerant that is a gas-liquid two-phase refrigerant at each intermediate portion of the outdoor heat exchanger 3 and the indoor heat exchanger 5 by the temperature sensors 24 and 28, the high and low pressure refrigerant saturation temperature is detected. Can do.

制御装置31は、複数の温度センサー21〜29により検出される各部位の冷媒温度、空気調和機の運転(冷房又は暖房)などに基づいて、圧縮機1の運転、室外熱交換器3及び室内熱交換器5の各送風装置(図示せず)の風量、第1及び第2膨張弁4a、4bの開度を制御する。   The control device 31 operates the compressor 1, the outdoor heat exchanger 3 and the indoors based on the refrigerant temperature of each part detected by the plurality of temperature sensors 21 to 29, the operation of the air conditioner (cooling or heating), and the like. The air volume of each blower (not shown) of the heat exchanger 5 and the opening degree of the first and second expansion valves 4a and 4b are controlled.

この制御装置31は、空気調和機の運転時に、温度センサー21により検出される圧縮機1の吐出冷媒の温度を一定時間毎にサンプリングし、サンプリングした吐出冷媒の温度が目標吐出温度になるように、第1膨張弁4a又は第2膨張弁4bの開度を制御する。なお、冷房運転時には第2膨張弁4bの開度を制御し、暖房運転時には第1膨張弁4aの開度を制御する。目標吐出温度は、温度センサー24により検出される室外熱交換器3の冷媒飽和温度と温度センサー28により検出される室内熱交換器5の冷媒飽和温度との温度差を基に得られる温度値である。   This control device 31 samples the temperature of the refrigerant discharged from the compressor 1 detected by the temperature sensor 21 at regular intervals during the operation of the air conditioner so that the sampled temperature of the discharged refrigerant becomes the target discharge temperature. The opening degree of the first expansion valve 4a or the second expansion valve 4b is controlled. The opening of the second expansion valve 4b is controlled during the cooling operation, and the opening of the first expansion valve 4a is controlled during the heating operation. The target discharge temperature is a temperature value obtained based on the temperature difference between the refrigerant saturation temperature of the outdoor heat exchanger 3 detected by the temperature sensor 24 and the refrigerant saturation temperature of the indoor heat exchanger 5 detected by the temperature sensor 28. is there.

また、制御装置31は、温度センサー22により検出される圧縮機1のケース温度(シェル温度)を一定時間毎にサンプリングし、サンプリングしたケース温度の変化から当該温度が予め設定された上限値を超えると予測したときに、第1膨張弁4a又は第2膨張弁4bの開度を制御する。なお、ケース温度は、圧縮機1の吐出冷媒の温度と略同じタイミングでサンプリングしても良いし、また、異なるタイミングで、かつケース温度のサンプリング間隔を吐出冷媒の温度よりも短くしても良い。   Further, the control device 31 samples the case temperature (shell temperature) of the compressor 1 detected by the temperature sensor 22 at regular intervals, and the temperature exceeds a preset upper limit value from the change in the sampled case temperature. Is predicted, the opening degree of the first expansion valve 4a or the second expansion valve 4b is controlled. Note that the case temperature may be sampled at substantially the same timing as the temperature of the refrigerant discharged from the compressor 1, or at a different timing and the sampling interval of the case temperature may be shorter than the temperature of the refrigerant discharged. .

ケース温度は、吐出冷媒の温度と比べ、温度上昇の勾配が大きくなるため、一定時間当たりのケース温度の変化からケース温度が上限値に達すると予測した場合に、前述の制御を行うようにしている。この制御は、R32冷媒が、R410A冷媒と比べ、温度上昇が速い(例えば15〜30K)という特性を有しているため、その温度上昇で冷媒回路上の各部品を高温から保護する保護装置の作動温度値に達しないようにしている。つまり、上限値は、保護装置の作動温度値よりも低く設定されており、R32冷媒の温度上昇により保護装置が作動しないようにしている。   Since the temperature gradient of the case temperature is larger than the temperature of the discharged refrigerant, the control described above should be performed when it is predicted that the case temperature will reach the upper limit value from the change in the case temperature per certain time. Yes. This control has a characteristic that the R32 refrigerant has a characteristic that the temperature rises faster than the R410A refrigerant (for example, 15 to 30 K). Therefore, the protection device protects each component on the refrigerant circuit from the high temperature by the temperature rise. The operating temperature value is not reached. That is, the upper limit value is set lower than the operating temperature value of the protective device, and the protective device is prevented from operating due to the temperature rise of the R32 refrigerant.

前記のように構成された実施の形態1の空気調和機において、冷房運転時の動作について説明する。
圧縮機1より高温高圧のガス冷媒が吐出される。この高温高圧のガス冷媒は、四方弁2を通って室外熱交換器3に入る。そのガス冷媒は、室外熱交換器3により外気と熱交換されて液状の冷媒となり、第2膨張弁4bを通過することで減圧されて乾き度0.1以内の高温二相冷媒となる。この高温二相冷媒は、レシーバ6に入り、レシーバ6内の第1内部熱交換器7に流れる低温低圧のガス冷媒により飽和液状態まで冷却され、レシーバ6を出る。
In the air conditioner of Embodiment 1 configured as described above, the operation during cooling operation will be described.
High-temperature and high-pressure gas refrigerant is discharged from the compressor 1. This high-temperature and high-pressure gas refrigerant enters the outdoor heat exchanger 3 through the four-way valve 2. The gas refrigerant is heat-exchanged with the outside air by the outdoor heat exchanger 3 to become a liquid refrigerant, and is reduced in pressure by passing through the second expansion valve 4b to become a high-temperature two-phase refrigerant having a dryness within 0.1. This high-temperature two-phase refrigerant enters the receiver 6, is cooled to a saturated liquid state by the low-temperature and low-pressure gas refrigerant flowing in the first internal heat exchanger 7 in the receiver 6, and exits the receiver 6.

ここでの冷却により、室内熱交換器5の入口のエンタルピーが小さくなるため、いわゆる冷凍効果と呼ばれる室内熱交換器5の出入口のエンタルピー差が大きくなる。すなわち、レシーバ6を流出した飽和液冷媒は、第1膨張弁4aによって乾き度0.2〜0.3の低温低圧の二相冷媒となり室内熱交換器5に入る。この低温低圧の二相冷媒は、室内熱交換器5により室内の空気と熱交換されて蒸発し、乾き度0.9〜1.0の低温低圧の二相冷媒となり、四方弁2を介してレシーバ6内の第1内部熱交換器7を通過する。この時、第1内部熱交換器7に入った高乾き度の低温低圧の二相冷媒は、レシーバ6内を流れる高温高圧の二相冷媒と熱交換されて低圧の過熱ガス冷媒となり、圧縮機1に吸入される。この冷房運転中に、冷媒回路の循環中に発生した余剰冷媒は、飽和液冷媒としてレシーバ6内に貯留される。   Since the enthalpy at the entrance of the indoor heat exchanger 5 is reduced by the cooling here, the difference in enthalpy at the entrance and exit of the indoor heat exchanger 5 called the so-called refrigeration effect is increased. That is, the saturated liquid refrigerant that has flowed out of the receiver 6 becomes a low-temperature and low-pressure two-phase refrigerant having a dryness of 0.2 to 0.3 by the first expansion valve 4 a and enters the indoor heat exchanger 5. This low-temperature and low-pressure two-phase refrigerant is heat-exchanged with indoor air by the indoor heat exchanger 5 and evaporates to become a low-temperature and low-pressure two-phase refrigerant having a dryness of 0.9 to 1.0, via the four-way valve 2. It passes through the first internal heat exchanger 7 in the receiver 6. At this time, the low-temperature and low-pressure two-phase refrigerant of high dryness that has entered the first internal heat exchanger 7 is heat-exchanged with the high-temperature and high-pressure two-phase refrigerant flowing in the receiver 6 to become a low-pressure superheated gas refrigerant. 1 is inhaled. During this cooling operation, excess refrigerant generated during circulation of the refrigerant circuit is stored in the receiver 6 as saturated liquid refrigerant.

以上のように、内部に第1内部熱交換器7が設置されたレシーバ6に、冷媒循環中に発生した余剰冷媒を溜めるようにしたため、アキュムレータをなくすことができ、圧力損失を低減し冷凍サイクルのCOPを向上させることができる。また、レシーバ6内の高温高圧の二相冷媒と第1内部熱交換器7を流れる低圧低温の二相冷媒を熱交換させるので、例えば冷房時においては蒸発器である室内熱交換器5の入口エンタルピーが小さくなり、冷凍効果と呼ばれる蒸発器側の出入口のエンタルピー差が大きくなる。これにより、所定の能力を得るために必要な冷媒循環量が小さくなり、圧力損失をさらに低減することが可能となり、冷凍サイクルのCOPをより一層向上させることができる。   As described above, since the excess refrigerant generated during the circulation of the refrigerant is stored in the receiver 6 in which the first internal heat exchanger 7 is installed, the accumulator can be eliminated, the pressure loss is reduced, and the refrigeration cycle COP can be improved. In addition, since the high-temperature and high-pressure two-phase refrigerant in the receiver 6 and the low-pressure and low-temperature two-phase refrigerant flowing through the first internal heat exchanger 7 are heat-exchanged, for example, at the time of cooling, the inlet of the indoor heat exchanger 5 that is an evaporator The enthalpy is reduced, and the difference in enthalpy at the evaporator side called the refrigeration effect is increased. Thereby, the refrigerant circulation amount necessary for obtaining a predetermined capacity is reduced, the pressure loss can be further reduced, and the COP of the refrigeration cycle can be further improved.

また、レシーバ6内に存在する温度の高い液冷媒と、第1内部熱交換器7を流れる低温の冷媒とが熱交換を行うことで、圧縮機1に吸入する冷媒の乾き度を高めることができる。そして、この液冷媒が戻ることによる圧縮機1内の冷凍機油の濃度低下を抑制して、圧縮機1の信頼性を保持することができる。   Moreover, the dryness of the refrigerant | coolant suck | inhaled to the compressor 1 can be improved by heat-exchanging the liquid refrigerant | coolant with high temperature which exists in the receiver 6, and the low temperature refrigerant | coolant which flows through the 1st internal heat exchanger 7. it can. And the fall of the density | concentration of the refrigerating machine oil in the compressor 1 by this liquid refrigerant returning can be suppressed, and the reliability of the compressor 1 can be hold | maintained.

また、冷房運転および暖房運転の何れの運転においても、レシーバ6からの液冷媒の流量を制御することにより、圧縮機1の吸入冷媒の乾き度を調整できる。   In any of the cooling operation and the heating operation, the degree of dryness of the refrigerant sucked in the compressor 1 can be adjusted by controlling the flow rate of the liquid refrigerant from the receiver 6.

次に、この空気調和機の冷房運転時における制御動作について説明する。
制御装置31は、先ず、圧縮機1の容量、第1及び第2膨張弁4a、4bの各開度を初期値に設定し、所定時間を経過したときに、室内温度が設定温度となるように、圧縮機1の容量を制御する。
Next, the control operation during the cooling operation of the air conditioner will be described.
First, the control device 31 sets the capacity of the compressor 1 and the opening degrees of the first and second expansion valves 4a and 4b to initial values, and when a predetermined time has elapsed, the room temperature becomes the set temperature. In addition, the capacity of the compressor 1 is controlled.

また、制御装置31は、温度センサー24により検出される高圧冷媒の飽和温度を読み込み、温度センサー25により検出される室外熱交換器3の出口温度を読み込む。そして、制御装置31は、読み込んだ高圧冷媒の飽和温度と室外熱交換器3の出口温度との温度差で得られる室外熱交換器3の出口の冷媒過冷却度SCが予め設定された目標値(例えば10℃)になるように、第2膨張弁4bの開度を制御する。   The control device 31 reads the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 24 and reads the outlet temperature of the outdoor heat exchanger 3 detected by the temperature sensor 25. Then, the control device 31 sets a preset target value of the refrigerant supercooling degree SC at the outlet of the outdoor heat exchanger 3 obtained by the temperature difference between the saturation temperature of the read high-pressure refrigerant and the outlet temperature of the outdoor heat exchanger 3. The opening degree of the second expansion valve 4b is controlled so as to be (for example, 10 ° C.).

更に、制御装置31は、温度センサー29により検出される圧縮機1の吸入温度を読み込み、温度センサー28により検出される低圧冷媒の飽和温度を読み込む。そして、制御装置31は、読み込んだ圧縮機1の吸入温度と低圧冷媒の飽和温度との温度差で得られる圧縮機1の吸入の冷媒過熱度SHが予め設定された目標値(例えば10℃)になるように、第1膨張弁4aの開度を制御する。   Further, the control device 31 reads the intake temperature of the compressor 1 detected by the temperature sensor 29 and reads the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 28. Then, the control device 31 sets a target value (for example, 10 ° C.) in which the refrigerant superheat degree SH of the compressor 1 obtained by the temperature difference between the read intake temperature of the compressor 1 and the saturation temperature of the low-pressure refrigerant is set in advance. The opening of the first expansion valve 4a is controlled so that

制御装置31は、温度センサー21により検出される圧縮機1の吐出冷媒の温度を一定時間毎にサンプリングしており、その吐出冷媒の温度が目標吐出温度になるように第2膨張弁4bの開度を制御する。また、制御装置31は、温度センサー22により検出される圧縮機1のケース温度を一定時間毎にサンプリングしており、そのケース温度の変化から当該温度が予め設定された上限値を超えると予測したときに、ケース温度が上限値以下となるように、第2膨張弁4bの開度を制御する。なお、暖房運転時において、ケース温度が上限値以下となるようにする場合、第1膨張弁4aの開度を制御する。   The control device 31 samples the temperature of the refrigerant discharged from the compressor 1 detected by the temperature sensor 21 at regular intervals, and opens the second expansion valve 4b so that the temperature of the discharged refrigerant becomes the target discharge temperature. Control the degree. Further, the control device 31 samples the case temperature of the compressor 1 detected by the temperature sensor 22 every predetermined time, and predicts that the temperature exceeds the preset upper limit value from the change in the case temperature. Sometimes, the opening degree of the second expansion valve 4b is controlled so that the case temperature is equal to or lower than the upper limit value. In the heating operation, the opening degree of the first expansion valve 4a is controlled when the case temperature is equal to or lower than the upper limit value.

このように、圧縮機1のケース温度が保護装置の作動温度値より低い上限値以下となるように、第1膨張弁4a又は第2膨張弁4bの開度を制御している。この構成により、圧縮機1の吐出冷媒の温度上昇を抑制するための圧縮機1の運転周波数を下げる必要が無くなり、そのため、圧縮機の運転周波数のダウンによる性能低下を抑えることができ、これに伴い圧縮機がハンチング動作を引き起こすようなことがなくなり、保護装置の作動による異常停止を防止できる。   Thus, the opening degree of the first expansion valve 4a or the second expansion valve 4b is controlled so that the case temperature of the compressor 1 is equal to or lower than the upper limit value lower than the operating temperature value of the protection device. With this configuration, it is not necessary to lower the operating frequency of the compressor 1 for suppressing the rise in the temperature of the refrigerant discharged from the compressor 1, and therefore, it is possible to suppress a decrease in performance due to a decrease in the operating frequency of the compressor. Accordingly, the compressor does not cause a hunting operation, and an abnormal stop due to the operation of the protective device can be prevented.

実施の形態2.
図2は本発明に係る冷凍サイクル装置の実施の形態2としての空気調和機の概略構成を示す冷媒回路図である。なお、図1で説明した実施の形態1と同様の部分には同じ符号を付している。
実施の形態2に係る空気調和機は、実施の形態1の空気調和機に第2内部熱交換器10とインジェクション回路11とが付加されて構成され、冷媒として低GWPのR32が用いられている。なお、圧縮機1は、実施の形態1と同様に、インバータにより回転数が制御されるモーターが内蔵されている。
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram showing a schematic configuration of an air conditioner as Embodiment 2 of the refrigeration cycle apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the part similar to Embodiment 1 demonstrated in FIG.
The air conditioner according to the second embodiment is configured by adding the second internal heat exchanger 10 and the injection circuit 11 to the air conditioner of the first embodiment, and uses low GWP R32 as a refrigerant. . The compressor 1 has a built-in motor whose rotational speed is controlled by an inverter, as in the first embodiment.

第2内部熱交換器10は、第2膨張弁4bとレシーバ6との間に設けられている。インジェクション回路11は、レシーバ6と第2内部熱交換器10との間の液管9より分岐し、第3膨張弁4c及び第2内部熱交換器10を介して圧縮機1の圧縮室と接続されて構成されている。第3膨張弁4cは、インジェクション用の減圧装置である。   The second internal heat exchanger 10 is provided between the second expansion valve 4 b and the receiver 6. The injection circuit 11 branches from the liquid pipe 9 between the receiver 6 and the second internal heat exchanger 10 and is connected to the compression chamber of the compressor 1 via the third expansion valve 4 c and the second internal heat exchanger 10. Has been configured. The third expansion valve 4c is a pressure reducing device for injection.

実施の形態2における制御装置31は、温度センサー21により検出される圧縮機1の吐出温度を一定時間毎にサンプリングし、その吐出温度が目標吐出温度になるように第3膨張弁4cの開度を制御する。なお、この場合、冷房運転時あるいは暖房運転時の何れの場合でも第3膨張弁4cの開度を制御する。   The control device 31 in the second embodiment samples the discharge temperature of the compressor 1 detected by the temperature sensor 21 at regular intervals, and the opening degree of the third expansion valve 4c so that the discharge temperature becomes the target discharge temperature. To control. In this case, the opening degree of the third expansion valve 4c is controlled in any of the cooling operation and the heating operation.

また、制御装置31は、温度センサー22により検出される圧縮機1のケース温度を一定時間毎にサンプリングし、そのケース温度の変化から当該温度が予め設定された上限値を超えると予測したときに、ケース温度が上限値以下となるように、第1膨張弁4a又は第2膨張弁4bの開度を制御する。   The control device 31 samples the case temperature of the compressor 1 detected by the temperature sensor 22 every predetermined time, and predicts that the temperature exceeds a preset upper limit value from the change in the case temperature. The opening degree of the first expansion valve 4a or the second expansion valve 4b is controlled so that the case temperature becomes equal to or lower than the upper limit value.

前記のように構成された実施の形態2の空気調和機において、暖房運転時の動作について説明する。
圧縮機1より高温高圧のガス冷媒が吐出される。この高温高圧のガス冷媒は、四方弁2を通ってガス管8に流入し、室内熱交換器5に入る。その高温高圧のガス冷媒は、室内熱交換器5において放熱しながら凝縮液化し高圧低温の液冷媒となる。この時、冷媒から放熱された熱を負荷側の空気や水などの負荷側媒体に与えることで室内が暖房される。室内熱交換器5を出た低温高圧の液冷媒は、液管9に流入して第1膨張弁4aで若干減圧された後、レシーバ6に流入し、レシーバ6内の第1内部熱交換器7で圧縮機1に吸入される低温のガス冷媒に熱を与えて冷却される。
In the air conditioner of Embodiment 2 configured as described above, the operation during heating operation will be described.
High-temperature and high-pressure gas refrigerant is discharged from the compressor 1. This high-temperature and high-pressure gas refrigerant flows into the gas pipe 8 through the four-way valve 2 and enters the indoor heat exchanger 5. The high-temperature and high-pressure gas refrigerant is condensed and liquefied while dissipating heat in the indoor heat exchanger 5 and becomes a high-pressure and low-temperature liquid refrigerant. At this time, the room is heated by applying heat radiated from the refrigerant to a load-side medium such as air or water on the load side. The low-temperature and high-pressure liquid refrigerant exiting the indoor heat exchanger 5 flows into the liquid pipe 9 and is slightly depressurized by the first expansion valve 4a, and then flows into the receiver 6, where the first internal heat exchanger in the receiver 6 7, the low-temperature gas refrigerant sucked into the compressor 1 is heated and cooled.

そして、レシーバ6を出た液冷媒の一部は、インジェクション回路11に流入して、第3膨張弁4cで中間圧まで減圧されて低温の二相冷媒となり、残りの液冷媒は第2内部熱交換器10に入る。第2内部熱交換器10を通る高圧の液冷媒は、インジェクション回路11の第3膨張弁4cを通った二相冷媒と熱交換されて更に冷却される。   A part of the liquid refrigerant exiting the receiver 6 flows into the injection circuit 11 and is reduced to an intermediate pressure by the third expansion valve 4c to become a low-temperature two-phase refrigerant, and the remaining liquid refrigerant is second internal heat. Enter the exchanger 10. The high-pressure liquid refrigerant passing through the second internal heat exchanger 10 is further cooled by exchanging heat with the two-phase refrigerant passing through the third expansion valve 4 c of the injection circuit 11.

その後、第2内部熱交換器10を通過した液冷媒は、第2膨張弁4bで低圧まで減圧され二相冷媒となる。その二相冷媒は、室外熱交換器3に流入して吸熱され、低温低圧のガス冷媒となる。そのガス冷媒は、四方弁2を経て第1内部熱交換器7で高圧の液冷媒と熱交換されて加熱され、圧縮機1に吸入される。   Thereafter, the liquid refrigerant that has passed through the second internal heat exchanger 10 is depressurized to a low pressure by the second expansion valve 4b to become a two-phase refrigerant. The two-phase refrigerant flows into the outdoor heat exchanger 3 to absorb heat and becomes a low-temperature and low-pressure gas refrigerant. The gas refrigerant passes through the four-way valve 2, is heat-exchanged with the high-pressure liquid refrigerant in the first internal heat exchanger 7, is heated, and is sucked into the compressor 1.

一方、インジェクション回路11の第3膨張弁4cにより減圧されて低温となった二相冷媒は、第2内部熱交換器10で高圧の液冷媒と熱交換して加熱され、圧縮機1にインジェクションされる。圧縮機1の内部では、吸入されたガス冷媒が中間圧まで圧縮、加熱された後で、インジェクションされる冷媒と合流し、温度低下した後で、高圧まで圧縮されて高温高圧のガス冷媒となり吐出される。   On the other hand, the two-phase refrigerant, which has been decompressed by the third expansion valve 4 c of the injection circuit 11 and becomes a low temperature, is heated by exchanging heat with the high-pressure liquid refrigerant in the second internal heat exchanger 10, and is injected into the compressor 1. The Inside the compressor 1, the sucked gas refrigerant is compressed and heated to an intermediate pressure and then merged with the injected refrigerant. After the temperature is lowered, the refrigerant is compressed to a high pressure and discharged as a high-temperature and high-pressure gas refrigerant. Is done.

レシーバ6内での熱交換は、主に気液二相冷媒のうちガス冷媒が吸入配管と触れて凝縮液化して熱交換される。従って、レシーバ6内に滞留する液冷媒量が少ないほどガス冷媒と吸入配管が接触する面積が多くなり、熱交換量は増加する。逆に、レシーバ6内に滞留する液冷媒の量が多いと、ガス冷媒と吸入配管が接触する面積が少なくなり、熱交換量は減少する。   The heat exchange in the receiver 6 is mainly performed by exchanging the gas refrigerant out of the gas-liquid two-phase refrigerant into contact with the suction pipe to be condensed and liquefied. Therefore, the smaller the amount of liquid refrigerant staying in the receiver 6, the more the area where the gas refrigerant and the suction pipe are in contact with each other, and the amount of heat exchange increases. Conversely, if the amount of the liquid refrigerant staying in the receiver 6 is large, the area where the gas refrigerant and the suction pipe are in contact with each other decreases, and the heat exchange amount decreases.

この空気調和機における冷媒回路の構成は、凝縮器となる室内熱交換器5を出た後で中間圧まで減圧された冷媒のうちガス冷媒を圧縮機1にインジェクションする、いわゆるガスインジェクション回路となっている。ガスインジェクションを行うことにより、圧縮機1から吐出される冷媒流量が増加し、圧縮機1から吐出される冷媒流量=圧縮機1で吸入される冷媒流量+インジェクションされる冷媒流量となる。したがって、凝縮器となる室内熱交換器5に流れる冷媒流量が増加するので、暖房運転の場合には暖房能力が増加する。   The configuration of the refrigerant circuit in this air conditioner is a so-called gas injection circuit that injects the gas refrigerant into the compressor 1 out of the refrigerant that has been discharged from the indoor heat exchanger 5 serving as a condenser and then has been reduced to an intermediate pressure. ing. By performing gas injection, the flow rate of refrigerant discharged from the compressor 1 increases, and the flow rate of refrigerant discharged from the compressor 1 = the flow rate of refrigerant sucked by the compressor 1 + the flow rate of refrigerant injected. Therefore, since the refrigerant | coolant flow volume which flows into the indoor heat exchanger 5 used as a condenser increases, in the case of heating operation, a heating capability increases.

以上のように、インジェクション回路により暖房低温時の低圧低下による冷媒循環量の低下を抑え、また第2内部熱交換器10によりインジェクション冷媒の乾き度を高めることで、圧縮機の電力増加を抑えることができる。したがって、暖房低温時の能力低下を抑制しつつ効率の良い運転が可能になる。   As described above, the injection circuit suppresses a decrease in refrigerant circulation due to a low pressure drop during heating and low temperature, and the second internal heat exchanger 10 increases the dryness of the injection refrigerant, thereby suppressing an increase in power of the compressor. Can do. Therefore, efficient operation is possible while suppressing a decrease in capacity at the time of heating and low temperature.

次に、この空気調和機の暖房運転時における制御動作について説明する。
制御装置31は、先ず、圧縮機1の容量、第1及び第2膨張弁4a、4bの各開度を初期値に設定し、所定時間を経過したときに、室内温度が設定温度となるように、圧縮機1の容量を制御する。
Next, the control operation during the heating operation of the air conditioner will be described.
First, the control device 31 sets the capacity of the compressor 1 and the opening degrees of the first and second expansion valves 4a and 4b to initial values, and when a predetermined time has elapsed, the room temperature becomes the set temperature. In addition, the capacity of the compressor 1 is controlled.

また、制御装置31は、温度センサー28により検出される高圧冷媒の飽和温度を読み込み、温度センサー27により検出される室内熱交換器5の出口温度を読み込む。そして、制御装置31は、読み込んだ高圧冷媒の飽和温度と室内熱交換器5の出口温度との温度差で得られる室内熱交換器5の出口の冷媒過冷却度SCが予め設定された目標値(例えば10℃)になるように、第1膨張弁4aの開度を制御する。   The control device 31 reads the saturation temperature of the high-pressure refrigerant detected by the temperature sensor 28 and reads the outlet temperature of the indoor heat exchanger 5 detected by the temperature sensor 27. Then, the control device 31 sets a target value in which the refrigerant subcooling degree SC at the outlet of the indoor heat exchanger 5 obtained by the temperature difference between the read saturation temperature of the high-pressure refrigerant and the outlet temperature of the indoor heat exchanger 5 is set in advance. The opening degree of the first expansion valve 4a is controlled so as to be (for example, 10 ° C.).

次に、制御装置31は、温度センサー29により検出される圧縮機1の吸入温度を読み込み、温度センサー24により検出される低圧冷媒の飽和温度を読み込む。そして、制御装置31は、読み込んだ圧縮機1の吸入温度と低圧冷媒の飽和温度との温度差で得られる圧縮機1の吸入の冷媒過熱度SHが予め設定された目標値(例えば10℃)になるように、第2膨張弁4bの開度を制御する。   Next, the control device 31 reads the intake temperature of the compressor 1 detected by the temperature sensor 29 and reads the saturation temperature of the low-pressure refrigerant detected by the temperature sensor 24. Then, the control device 31 sets a target value (for example, 10 ° C.) in which the refrigerant superheat degree SH of the compressor 1 obtained by the temperature difference between the read intake temperature of the compressor 1 and the saturation temperature of the low-pressure refrigerant is set in advance. The opening of the second expansion valve 4b is controlled so that

制御装置31は、温度センサー21により検出される圧縮機1の吐出温度を一定時間毎にサンプリングしており、その吐出温度が目標吐出温度になるように第3膨張弁4cの開度を制御する。また、制御装置31は、温度センサー22により検出される圧縮機1のケース温度を一定時間毎にサンプリングしており、そのケース温度の変化から当該温度が予め設定された上限値を超えると予測したときに、ケース温度が上限値以下となるように、第1膨張弁4aの開度を制御する。なお、冷房運転時においては、ケース温度の変化から当該温度が予め設定された上限値を超えると予測したときに、第2膨張弁4bの開度を制御する。   The control device 31 samples the discharge temperature of the compressor 1 detected by the temperature sensor 21 at regular intervals, and controls the opening of the third expansion valve 4c so that the discharge temperature becomes the target discharge temperature. . Further, the control device 31 samples the case temperature of the compressor 1 detected by the temperature sensor 22 every predetermined time, and predicts that the temperature exceeds the preset upper limit value from the change in the case temperature. Sometimes, the opening degree of the first expansion valve 4a is controlled so that the case temperature becomes the upper limit value or less. In the cooling operation, the opening degree of the second expansion valve 4b is controlled when it is predicted from the change in the case temperature that the temperature exceeds a preset upper limit value.

このように、圧縮機1のケース温度が保護装置の作動温度値より低い上限値以下となるように、第1膨張弁4a又は第2膨張弁4bの開度を制御している。この構成により、圧縮機1の吐出冷媒の温度上昇を抑制するための圧縮機1の運転周波数を下げる必要が無くなり、そのため、圧縮機の運転周波数のダウンによる性能低下を抑えることができ、これに伴い圧縮機がハンチング動作を引き起こすようなことがなくなり、保護装置の作動による異常停止を防止できる。   Thus, the opening degree of the first expansion valve 4a or the second expansion valve 4b is controlled so that the case temperature of the compressor 1 is equal to or lower than the upper limit value lower than the operating temperature value of the protection device. With this configuration, it is not necessary to lower the operating frequency of the compressor 1 for suppressing the rise in the temperature of the refrigerant discharged from the compressor 1, and therefore, it is possible to suppress a decrease in performance due to a decrease in the operating frequency of the compressor. Accordingly, the compressor does not cause a hunting operation, and an abnormal stop due to the operation of the protective device can be prevented.

1 圧縮機、2 四方弁、3 室外熱交換器、4a 第1膨張弁、4b 第2膨張弁、4c 第3膨張弁、5 室内熱交換器、6 レシーバ、7 第1内部熱交換器、8 ガス管、9 液管、10 第2内部熱交換器、11 インジェクション回路、21、22、23、24、25、26、27、28、29 温度センサー、31 制御装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4a 1st expansion valve, 4b 2nd expansion valve, 4c 3rd expansion valve, 5 Indoor heat exchanger, 6 Receiver, 7 1st internal heat exchanger, 8 Gas pipe, 9 liquid pipe, 10 second internal heat exchanger, 11 injection circuit, 21, 22, 23, 24, 25, 26, 27, 28, 29 temperature sensor, 31 control device.

Claims (5)

圧縮機、四方弁、室外熱交換器、冷媒流れの上流側及び下流側に膨張弁を有するレシーバ及び室内熱交換器が順に冷媒配管により接続された冷媒回路と、
前記圧縮機の外殻を構成するケースの温度を検出する温度センサーと、
前記温度センサーにより検出される前記ケースの温度から時間当たりの温度上昇の早さに応じた予測のケース温度が予め設定された上限値を超えないように、前記レシーバに対して冷媒流れの上流側に位置する前記膨張弁の開度を制御する制御装置と
を備えたことを特徴とする冷凍サイクル装置。
A refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, a receiver having an expansion valve on the upstream side and the downstream side of the refrigerant flow, and an indoor heat exchanger are sequentially connected by a refrigerant pipe;
A temperature sensor for detecting the temperature of the case constituting the outer shell of the compressor;
An upstream side of the refrigerant flow with respect to the receiver so that a predicted case temperature according to the speed of the temperature rise per hour from the temperature of the case detected by the temperature sensor does not exceed a preset upper limit value. And a control device for controlling the opening degree of the expansion valve located in the refrigeration cycle device.
前記レシーバの内部に前記四方弁と前記圧縮機とを接続する第1内部熱交換器が設置されたことを特徴とする請求項1記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein a first internal heat exchanger that connects the four-way valve and the compressor is installed inside the receiver. 前記室外熱交換器と前記レシーバとの間の冷媒配管上に設けられた第2内部熱交換器と、
前記レシーバと前記第2内部熱交換器との間の冷媒配管から分岐し、当該第2内部熱交換器を介して前記圧縮機に接続されて構成されたインジェクション回路と
を備えたことを特徴とする請求項2記載の冷凍サイクル装置。
A second internal heat exchanger provided on a refrigerant pipe between the outdoor heat exchanger and the receiver;
An injection circuit that branches off from a refrigerant pipe between the receiver and the second internal heat exchanger and is connected to the compressor via the second internal heat exchanger; The refrigeration cycle apparatus according to claim 2.
前記圧縮機の吐出配管の温度を検出する吐出温度センサーを備え、
前記制御装置は、前記吐出温度センサーにより検出される吐出冷媒温度が予め設定された目標吐出温度となるように、前記レシーバに対して冷媒流れの上流側に位置する前記膨張弁の開度を制御することを特徴とする請求項1〜の何れか1項に記載の冷凍サイクル装置。
A discharge temperature sensor for detecting the temperature of the discharge pipe of the compressor;
The control device controls an opening degree of the expansion valve located on the upstream side of the refrigerant flow with respect to the receiver so that a discharge refrigerant temperature detected by the discharge temperature sensor becomes a preset target discharge temperature. The refrigeration cycle apparatus according to any one of claims 1 to 3 , wherein:
前記冷媒回路を循環する冷媒にR32が使用されていることを特徴とする請求項1〜の何れか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4 , wherein R32 is used as a refrigerant circulating in the refrigerant circuit.
JP2017044895A 2017-03-09 2017-03-09 Refrigeration cycle equipment Active JP6381712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044895A JP6381712B2 (en) 2017-03-09 2017-03-09 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044895A JP6381712B2 (en) 2017-03-09 2017-03-09 Refrigeration cycle equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013077051A Division JP6110187B2 (en) 2013-04-02 2013-04-02 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2017138096A JP2017138096A (en) 2017-08-10
JP6381712B2 true JP6381712B2 (en) 2018-08-29

Family

ID=59565696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044895A Active JP6381712B2 (en) 2017-03-09 2017-03-09 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP6381712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990482B (en) * 2017-11-28 2020-07-03 宁波奥克斯电气股份有限公司 Explosion-proof control method and air conditioner

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159284A (en) * 1995-12-05 1997-06-20 Matsushita Electric Ind Co Ltd Expansion valve control device for air conditioner
JP3483711B2 (en) * 1996-07-25 2004-01-06 株式会社エヌ・ティ・ティ ファシリティーズ Air conditioner and its control method
JP3421915B2 (en) * 1997-12-19 2003-06-30 三菱電機株式会社 Refrigeration cycle
JP3956589B2 (en) * 1999-10-18 2007-08-08 ダイキン工業株式会社 Refrigeration equipment
JP3719364B2 (en) * 1999-12-15 2005-11-24 三菱電機株式会社 Refrigeration cycle
JP4100052B2 (en) * 2002-05-31 2008-06-11 三菱電機株式会社 Air conditioner
JP4100135B2 (en) * 2002-11-07 2008-06-11 三菱電機株式会社 Refrigeration cycle apparatus and control method for refrigeration cycle apparatus
JP2009180427A (en) * 2008-01-30 2009-08-13 Daikin Ind Ltd Refrigerating device
JP4906894B2 (en) * 2009-08-21 2012-03-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP5618801B2 (en) * 2010-12-09 2014-11-05 三菱電機株式会社 Air conditioner
JP5688961B2 (en) * 2010-12-13 2015-03-25 シャープ株式会社 Air conditioner, expansion valve opening control method and program

Also Published As

Publication number Publication date
JP2017138096A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
JP6351848B2 (en) Refrigeration cycle equipment
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5318099B2 (en) Refrigeration cycle apparatus and control method thereof
JP5452138B2 (en) Refrigeration air conditioner
JP5992089B2 (en) Air conditioner
JP4069947B2 (en) Refrigeration equipment
US20110036119A1 (en) Refrigeration apparatus
JP2017142039A (en) Air conditioner
JP5264874B2 (en) Refrigeration equipment
JPWO2013111176A1 (en) Air conditioner
JPWO2014068967A1 (en) Refrigeration equipment
JP6110187B2 (en) Refrigeration cycle equipment
JP2017142038A (en) Refrigeration cycle device
JP5734031B2 (en) Refrigeration air conditioner
JP2010181146A (en) Refrigerating air conditioner
JP2015148406A (en) Refrigeration device
WO2005024313A1 (en) Freezer device
GB2566381A (en) Refrigeration cycle system
JP2017161182A (en) Heat pump device
EP3228954A2 (en) Cooling apparatus
JP5659908B2 (en) Heat pump equipment
JP6758506B2 (en) Air conditioner
JP6723375B2 (en) Refrigeration cycle equipment
JP2008275249A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250