JP2008275249A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2008275249A
JP2008275249A JP2007119317A JP2007119317A JP2008275249A JP 2008275249 A JP2008275249 A JP 2008275249A JP 2007119317 A JP2007119317 A JP 2007119317A JP 2007119317 A JP2007119317 A JP 2007119317A JP 2008275249 A JP2008275249 A JP 2008275249A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pressure
compressor
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007119317A
Other languages
Japanese (ja)
Other versions
JP4751851B2 (en
Inventor
Kenji Matsumura
賢治 松村
Atsuhiko Yokozeki
敦彦 横関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2007119317A priority Critical patent/JP4751851B2/en
Publication of JP2008275249A publication Critical patent/JP2008275249A/en
Application granted granted Critical
Publication of JP4751851B2 publication Critical patent/JP4751851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve COP while preventing global warming in a refrigerating cycle. <P>SOLUTION: This refrigerating cycle is constituted by successively connecting a compressor 20, a gas cooler 30, a variable pressure reducing unit 90 and an evaporator 100 by a refrigerating pipe, and operated when the high pressure of a sealed CO<SB>2</SB>refrigerant exceeds critical pressure. This refrigerating cycle has an inside heat exchanger for exchanging heat between a high pressure CO<SB>2</SB>refrigerant coming out of the gas cooler 30 and a low pressure CO<SB>2</SB>refrigerant sucked in the compressor 20 by the coming-out of the evaporator 100, and a bypass circuit 94 for merging a part of the CO<SB>2</SB>refrigerant coming out of the gas cooler 30 into a low pressure side inlet of the inside heat exchanger 60. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷凍サイクルに係り、特にCO冷媒(二酸化炭素冷媒)の高圧圧力が臨界圧力を超えて動作する空調用途の冷凍サイクルに好適なものである。なお、このCO冷媒にはCO単独冷媒及びCO混合冷媒を含む。 The present invention relates to a refrigeration cycle, and is particularly suitable for a refrigeration cycle for air conditioning applications in which the high pressure of a CO 2 refrigerant (carbon dioxide refrigerant) operates above a critical pressure. The CO 2 refrigerant includes a CO 2 single refrigerant and a CO 2 mixed refrigerant.

近年のオゾン層保護の観点から、オゾン破壊係数がゼロであり且つ地球温暖化係数もフロン類に比べれば格段に小さい自然冷媒であるCO冷媒を用いる冷凍サイクルが着目されている。しかし、空調用途としてフロン冷媒と同じ冷凍サイクル構成でCO冷媒を用いると、COP(coefficient of performance:成績係数)が低下するため、広まっていない。CO冷媒を用いた冷凍サイクルでは高圧部が臨界圧力を超える遷臨界サイクルとすることができるため、給湯用途の冷凍サイクルに用いた場合には効率が高く、その分野で広く使用されつつある。そこで、環境負荷が小さいという利点があるCO冷媒を用いた冷凍サイクルのCOPを改善し、空調用途として拡大すること、給湯用途での効率をさらに向上することが望まれる。 In recent years, from the viewpoint of protecting the ozone layer, attention has been focused on a refrigeration cycle using a CO 2 refrigerant, which is a natural refrigerant that has an ozone depletion coefficient of zero and a global warming coefficient that is much smaller than that of chlorofluorocarbons. However, if a CO 2 refrigerant is used in an air conditioning application with the same refrigeration cycle configuration as that of a chlorofluorocarbon refrigerant, the COP (coefficient of performance) is lowered, so that it has not spread. In a refrigeration cycle using a CO 2 refrigerant, the high pressure part can be a transcritical cycle in which the critical pressure exceeds the critical pressure. Therefore, when used in a refrigeration cycle for hot water supply, the efficiency is high and it is being widely used in that field. Therefore, it is desired to improve the COP of the refrigeration cycle using the CO 2 refrigerant, which has the advantage that the environmental load is small, to expand it as an air conditioning application, and to further improve the efficiency in a hot water supply application.

CO冷媒を用いた従来の冷凍サイクルとして、内部熱交換器を用いた図5及び図7に示す冷凍サイクルがある。図5及び図7における実線が冷房時、破線が暖房時の冷媒の流れである。なお、図5の冷凍サイクルに関連するものとして特開2000−346466号公報(特許文献1)が挙げられ、図7の冷凍サイクルに関連するものとして特表平6−515570号公報(特許文献2)が挙げられる。 As a conventional refrigeration cycle using a CO 2 refrigerant, there are refrigeration cycles shown in FIGS. 5 and 7 using an internal heat exchanger. The solid line in FIGS. 5 and 7 is the flow of refrigerant during cooling, and the broken line is the flow of refrigerant during heating. Incidentally, JP 2000-346466 A (Patent Document 1) is cited as a thing related to the refrigeration cycle of FIG. 5, and JP 6-515570 A (Patent Document 2) as a thing related to the refrigeration cycle of FIG. ).

図5の冷凍サイクルについて説明する。冷房時において、圧縮機10から出た冷媒は、四方弁20を通りガスクーラとなる熱源側熱交換器30で冷却され、全開となる熱源側可変減圧装置40を通り内部熱交換器62で冷却され、阻止弁70aを通り利用側可変減圧装置90で低圧低温に減圧され、蒸発器となる利用側熱交換器100で空気を冷却しつつ、自身は加熱され、接続管80b及び阻止弁70bを通り内部熱交換器62で加熱され、圧縮機10に吸入される。暖房時においては、冷媒の流れが逆となり、可変減圧器90が全開、可変減圧器40で減圧させる構成となる。   The refrigeration cycle in FIG. 5 will be described. During cooling, the refrigerant discharged from the compressor 10 is cooled by the heat source side heat exchanger 30 serving as a gas cooler through the four-way valve 20, and is cooled by the internal heat exchanger 62 through the heat source side variable pressure reducing device 40 that is fully opened. The pressure is reduced to low pressure and low temperature by the use side variable pressure reducing device 90 through the blocking valve 70a, and while the air is cooled by the use side heat exchanger 100 serving as an evaporator, it is heated and passes through the connecting pipe 80b and the blocking valve 70b. Heated by the internal heat exchanger 62 and sucked into the compressor 10. During heating, the flow of the refrigerant is reversed, and the variable pressure reducer 90 is fully opened and the variable pressure reducer 40 reduces the pressure.

この冷凍サイクルの冷房時の効果を図6のp−h線図(モリエル蒸気圧線図)で説明する。図6においてアルファベットは図5に示すアルファベットの位置と同じである。また、図6の破線が内部熱交換器62を使わない場合のサイクルのp−h線図、実線が内部熱交換器62を使った場合のサイクルのp−h線図である。図6から明らかなようにCDとFAとで熱交換することで、蒸発器側の比エンタルピ差EFが伸びることとなり、性能が向上する。なお、図5に示す冷凍サイクルにフロン冷媒を用いると、蒸発器側の比エンタルピ差が伸びるが、同時に圧縮機部の等エントロピ線の傾きが大きくなることで圧縮機動力が増えてしまい、COPの向上効果が得られない。   The effect of this refrigeration cycle during cooling will be described with reference to the ph diagram (Mollier vapor pressure diagram) in FIG. In FIG. 6, the alphabet is the same as the position of the alphabet shown in FIG. 6 is a ph diagram of a cycle when the internal heat exchanger 62 is not used, and a solid line is a ph diagram of a cycle when the internal heat exchanger 62 is used. As is clear from FIG. 6, by exchanging heat between CD and FA, the specific enthalpy difference EF on the evaporator side is extended, and the performance is improved. Note that when chlorofluorocarbon refrigerant is used in the refrigeration cycle shown in FIG. 5, the specific enthalpy difference on the evaporator side increases, but at the same time, the inclination of the isentropic line of the compressor section increases, resulting in increased compressor power and COP. The improvement effect cannot be obtained.

図7の冷凍サイクルについて説明する。この冷凍サイクルは、図5に示す冷凍サイクルに冷媒量調整用のアキュームレータ200を追加したものである。このアキュームレータ200は四方弁20と内部熱交換器60の低圧側との間に設置されている。この図7に示す冷凍サイクルの場合、アキュームレータ200の出口の冷媒はかわき度の高い状態に自動的に制御されるため、内部熱交換器60の低圧側が冷媒の過熱に使われる。   The refrigeration cycle in FIG. 7 will be described. This refrigeration cycle is obtained by adding an accumulator 200 for adjusting the refrigerant amount to the refrigeration cycle shown in FIG. The accumulator 200 is installed between the four-way valve 20 and the low pressure side of the internal heat exchanger 60. In the case of the refrigeration cycle shown in FIG. 7, since the refrigerant at the outlet of the accumulator 200 is automatically controlled to a high degree of prestige, the low pressure side of the internal heat exchanger 60 is used for superheating the refrigerant.

一方、フロン冷媒を用いた冷凍サイクルとして、内部熱交換器を用いた図8に示す冷凍サイクルがある。図8における実線が冷房時、破線が暖房時の冷媒の流れである。   On the other hand, as a refrigeration cycle using a chlorofluorocarbon refrigerant, there is a refrigeration cycle shown in FIG. 8 using an internal heat exchanger. The solid line in FIG. 8 is the refrigerant flow during cooling, and the broken line is the refrigerant flow during heating.

この図8に示す冷凍サイクルでは、冷房時に、凝縮器30から流出される冷媒の一部がバイパスとして取り出され、可変減圧装置95で減圧されてバイパス熱交換器64に流れ、バイパス熱交換器64で凝縮器30から流出される残りの冷媒と熱交換し、この残りの冷媒を冷却すると共に自身は過熱された後、圧縮機に吸入される。これによって、バイパス冷媒の冷熱はバイパス熱交換器で回収しつつ、接続配管、蒸発器に流れる冷媒流量を減らせるため、冷媒圧力損失の低減から、性能向上が可能である。   In the refrigeration cycle shown in FIG. 8, during cooling, a part of the refrigerant flowing out of the condenser 30 is taken out as a bypass, decompressed by the variable decompression device 95 and flows to the bypass heat exchanger 64, and the bypass heat exchanger 64. Then, heat is exchanged with the remaining refrigerant flowing out of the condenser 30, the remaining refrigerant is cooled, and it is overheated and then sucked into the compressor. As a result, the cold flow of the bypass refrigerant can be recovered by the bypass heat exchanger, and the flow rate of the refrigerant flowing through the connection pipe and the evaporator can be reduced. Therefore, the performance can be improved because the refrigerant pressure loss is reduced.

特開2000−346466号公報JP 2000-346466 A 特表平6−515570号公報Japanese translation of PCT publication No. 6-515570

しかし、図5及び図7に示す冷凍サイクルでは、接続配管及び蒸発器に全ての冷媒が流れるため、冷媒圧力損失が大きくなり、性能低下を招いていた。また、内部熱交換器62で過熱された冷媒が圧縮機10に吸込まれるため、冷媒の温度が異常に上昇した場合に圧縮機の信頼性を低下するおそれがあった。なお、特許文献1の冷凍サイクルでは、圧縮機に吸入される冷媒温度が上昇した際に内部熱交換器をバイパスして冷媒の一部を流すようにして冷媒の温度上昇を抑えるようにしているが、接続配管、蒸発器を流れた冷媒をバイパスしているため、効率の低下を招いていた。   However, in the refrigeration cycle shown in FIGS. 5 and 7, since all the refrigerant flows through the connection pipe and the evaporator, the refrigerant pressure loss is increased, resulting in performance degradation. In addition, since the refrigerant overheated by the internal heat exchanger 62 is sucked into the compressor 10, there is a possibility that the reliability of the compressor may be lowered when the temperature of the refrigerant rises abnormally. In the refrigeration cycle of Patent Document 1, when the temperature of the refrigerant sucked into the compressor rises, the internal heat exchanger is bypassed so that a part of the refrigerant flows so as to suppress the temperature rise of the refrigerant. However, since the refrigerant flowing through the connection pipe and the evaporator is bypassed, the efficiency is lowered.

さらには、図8に示す冷凍サイクルでは、フロン冷媒を用いた冷凍サイクルの性能向上を目的としており、CO冷媒を用いた冷凍サイクルへの適用は配慮されていなかった。 Furthermore, the refrigeration cycle shown in FIG. 8 aims at improving the performance of the refrigeration cycle using the chlorofluorocarbon refrigerant, and application to the refrigeration cycle using the CO 2 refrigerant has not been considered.

本発明の目的は、地球温暖化防止を図りつつ、COP向上を図ることができる冷凍サイクルを得ることにある。   The objective of this invention is obtaining the refrigerating cycle which can aim at COP improvement, aiming at prevention of global warming.

前述の目的を達成するための本発明の第1の態様は、圧縮機、ガスクーラ、可変減圧器及び蒸発器を冷媒配管で順次接続して構成され、封入されたCO冷媒の高圧圧力が臨界圧力を超えて動作され、前記ガスクーラから出た高圧のCO冷媒と前記蒸発器から出て前記圧縮機に吸込まれる低圧のCO冷媒とを熱交換させる内部熱交換器を備えた冷凍サイクルにおいて、前記ガスクーラから出たCO冷媒の一部を前記内部熱交換器の低圧側入口部に合流させるバイパス回路を設けたことにある。 The first aspect of the present invention for achieving the above object is configured by sequentially connecting a compressor, a gas cooler, a variable pressure reducer, and an evaporator with refrigerant piping, and the high pressure of the enclosed CO 2 refrigerant is critical. A refrigeration cycle having an internal heat exchanger that is operated over pressure and exchanges heat between the high-pressure CO 2 refrigerant exiting from the gas cooler and the low-pressure CO 2 refrigerant exiting from the evaporator and sucked into the compressor And a bypass circuit that joins a part of the CO 2 refrigerant that has come out of the gas cooler to the low-pressure side inlet of the internal heat exchanger is provided.

また、本発明の第2の態様は、圧縮機、切替弁、熱源側熱交換器、可変減圧器及び利用側熱交換器を冷媒配管で順次接続して構成され、封入されたCO冷媒の高圧圧力が臨界圧力を超えて動作され、前記熱源側熱交換器または前記利用側熱交換器から出た高圧のCO冷媒と前記利用側熱交換器または前記熱源側熱交換器から出て前記圧縮機に吸込まれる低圧のCO冷媒とを熱交換させる内部熱交換器を備え、前記切替弁は、冷房時に前記圧縮機、前記熱源側熱交換器、前記可変減圧器及び前記利用側熱交換器の順にCO冷媒を流すように切替え且つ暖房時に前記圧縮機、前記利用側熱交換器、前記可変減圧器及び前記熱源側熱交換器の順にCO冷媒を流すように切替えるように動作する冷凍サイクルにおいて、前記冷房時に前記熱源側熱交換器から出たCO冷媒の一部を前記内部熱交換器の低圧側入口部にバイパスすると共に前記暖房時に前記利用側熱交換器から出たCO冷媒の一部を前記内部熱交換器の低圧側入口部に合流させるバイパス回路を設けたことにある。 The second aspect of the present invention, the compressor, the switching valve, the heat source-side heat exchanger is configured variable pressure reducer and the use side heat exchanger are sequentially connected by refrigerant pipes, encapsulated CO 2 refrigerant The high-pressure pressure is operated above the critical pressure, and the high-pressure CO 2 refrigerant discharged from the heat source side heat exchanger or the usage side heat exchanger and the usage side heat exchanger or the heat source side heat exchanger are An internal heat exchanger that exchanges heat with the low-pressure CO 2 refrigerant sucked into the compressor, and the switching valve includes the compressor, the heat source side heat exchanger, the variable pressure reducer, and the use side heat during cooling. Switch so that the CO 2 refrigerant flows in the order of the exchanger, and operate to switch the CO 2 refrigerant to flow in the order of the compressor, the use side heat exchanger, the variable pressure reducer, and the heat source side heat exchanger during heating. In the refrigeration cycle The inner part of the CO 2 refrigerant discharged from the utilization-side heat exchanger during the heating with a portion of the CO 2 refrigerant discharged from the heat source-side heat exchanger is bypassed to the low pressure side inlet of the internal heat exchanger A bypass circuit for joining the low pressure side inlet of the heat exchanger is provided.

係る本発明におけるより好ましい具体的構成例は次の通りである。
(1)前記内部熱交換器の高圧側の流れと低圧側の流れとが前記冷房時及び前記暖房時の何れも対向流になるように構成したこと。
(2)前記内部熱交換器の低圧側入口に冷媒量調整用のアキュームレータを設け、前記バイパス回路にバイパス可変減圧器を設け、前記圧縮機の吐出温度を調節するようにバイパス可変減圧器を制御する制御装置を設けたこと。
A more preferable specific configuration example in the present invention is as follows.
(1) The high-pressure side flow and the low-pressure side flow of the internal heat exchanger are configured to face each other during the cooling and the heating.
(2) An accumulator for adjusting the refrigerant amount is provided at the low pressure side inlet of the internal heat exchanger, a bypass variable pressure reducer is provided in the bypass circuit, and the bypass variable pressure reducer is controlled so as to adjust the discharge temperature of the compressor. A control device is provided.

係る本発明の冷凍サイクルによれば、地球温暖化防止を図りつつ、COP向上を図ることができる。   According to the refrigeration cycle of the present invention, COP can be improved while preventing global warming.

以下、本発明の複数の実施形態について図1から図4を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。図1から図4における実線が冷房時、破線が暖房時の冷媒の流れである。
(第1実施形態)
本発明の第1実施形態の冷凍サイクルを図1を用いて説明する。
Hereinafter, a plurality of embodiments of the present invention will be described with reference to FIGS. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent. The solid line in FIGS. 1 to 4 is the flow of refrigerant during cooling, and the broken line is the flow of refrigerant during heating.
(First embodiment)
The refrigeration cycle of the first embodiment of the present invention will be described with reference to FIG.

本実施形態の冷凍サイクルは、圧縮機10、切替弁である四方弁20、熱源側熱交換器である室外熱交換器30、熱源側可変減圧器40、利用側可変減圧器90及び利用側熱交換器である室内熱交換器100を冷媒配管で順次接続して構成されている。この冷凍サイクルは、封入されたCO冷媒の高圧圧力が臨界圧力を超えて動作される遷臨界サイクルである。CO冷媒を用いることにより地球温暖化防止を図ることができる。 The refrigeration cycle of the present embodiment includes a compressor 10, a four-way valve 20 that is a switching valve, an outdoor heat exchanger 30 that is a heat source side heat exchanger, a heat source side variable pressure reducer 40, a use side variable pressure reducer 90, and a use side heat. The indoor heat exchanger 100 which is an exchanger is sequentially connected by refrigerant piping. This refrigeration cycle is a transcritical cycle in which the high pressure of the enclosed CO 2 refrigerant is operated above the critical pressure. Global warming can be prevented by using a CO 2 refrigerant.

四方弁20は、冷房時に圧縮機10、室外熱交換器30、熱源側可変減圧器40、利用側可変減圧器90及び室内熱交換器100の順に冷媒を流すように切替え、暖房時に圧縮機10、室内熱交換器100、利用側可変減圧器90、熱源側可変減圧器40及び室外熱交換器30の順に冷媒を流すように切替えるように動作する。   The four-way valve 20 is switched so that the refrigerant flows in the order of the compressor 10, the outdoor heat exchanger 30, the heat source side variable decompressor 40, the use side variable decompressor 90, and the indoor heat exchanger 100 during cooling, and the compressor 10 during heating. Then, the indoor heat exchanger 100, the use side variable pressure reducer 90, the heat source side variable pressure reducer 40, and the outdoor heat exchanger 30 are operated so as to switch the refrigerant to flow in this order.

この冷凍サイクルには、室外熱交換器30または室内熱交換器100から出た高圧のCO冷媒と室内熱交換器100または室外熱交換器30から出て圧縮機10に吸込まれる低圧のCO冷媒とを熱交換させる内部熱交換器60が備えられている。 In this refrigeration cycle, the high-pressure CO 2 refrigerant exiting from the outdoor heat exchanger 30 or the indoor heat exchanger 100 and the low-pressure CO 2 exiting from the indoor heat exchanger 100 or the outdoor heat exchanger 30 and sucked into the compressor 10 are used. An internal heat exchanger 60 for exchanging heat with the two refrigerants is provided.

さらには、冷房時に室外熱交換器30から出た高圧の冷媒の一部を内部熱交換器60の低圧側入口部にバイパスすると共に暖房時に室内熱交換器100から出た冷媒の一部を内部熱交換器60の低圧側入口部にバイパスするバイパス回路94が設けられている。このバイパス回路94には、バイパス可変減圧器95が設けられている。   Further, a part of the high-pressure refrigerant exiting from the outdoor heat exchanger 30 during cooling is bypassed to the low-pressure side inlet of the internal heat exchanger 60 and a part of the refrigerant exiting from the indoor heat exchanger 100 during heating is internally A bypass circuit 94 that bypasses the low pressure side inlet of the heat exchanger 60 is provided. The bypass circuit 94 is provided with a bypass variable pressure reducer 95.

まず、冷房時の動作について説明する。圧縮機10からの高温高圧の冷媒は、四方弁20を通り、ガスクーラとなる室外熱交換器30で室外送風機(熱源側送風機)50により通風される室外空気に熱を放出する。室外熱交換器30から出た冷媒は、減圧量を限界まで少なくした熱源側可変減圧器40を通って内部熱交換器60の高圧側流路に導かれ、この高圧側流路で低圧側流路を流れる冷媒により冷却された後、阻止弁70a及び接続配管80aを通り、利用側可変減圧器90で減圧される。この減圧された冷媒は、蒸発器となる室内熱交換器(利用側熱交換器)100で送風機110により通風される室内空気から熱を奪い、接続配管80b及び阻止弁70bを経て、再び四方弁20を通り、内部熱交換器60の低圧側流路に導かれ、この低圧側流路で高圧側流路を流れる冷媒により加熱された後に、再び圧縮機10に吸込まれる。   First, the operation during cooling will be described. The high-temperature and high-pressure refrigerant from the compressor 10 passes through the four-way valve 20 and releases heat to the outdoor air ventilated by the outdoor fan (heat source side fan) 50 in the outdoor heat exchanger 30 serving as a gas cooler. The refrigerant discharged from the outdoor heat exchanger 30 is guided to the high-pressure side flow path of the internal heat exchanger 60 through the heat-source-side variable pressure reducer 40 in which the amount of pressure reduction is reduced to the limit. After being cooled by the refrigerant flowing through the passage, the pressure is reduced by the use side variable pressure reducer 90 through the blocking valve 70a and the connection pipe 80a. The decompressed refrigerant removes heat from the indoor air ventilated by the blower 110 in the indoor heat exchanger (use side heat exchanger) 100 serving as an evaporator, and again passes through the connection pipe 80b and the blocking valve 70b, and again becomes a four-way valve. 20, guided to the low pressure side flow path of the internal heat exchanger 60, heated by the refrigerant flowing through the high pressure side flow path in this low pressure side flow path, and then sucked into the compressor 10 again.

また、ガスクーラとなる室外熱交換器30から出た内部熱交換器60に入る前の高圧冷媒の一部をバイパスとして取り出し、バイパス可変減圧装置95で減圧し、内部熱交換器60の低圧側流路の入口に合流させている。ここで、バイパス回路94に設けたバイパス可変減圧器95により、圧縮機吐出温度を調節するようにバイパス流量を制御する。   Further, a part of the high-pressure refrigerant before entering the internal heat exchanger 60 that has exited from the outdoor heat exchanger 30 serving as a gas cooler is taken out as a bypass, decompressed by the bypass variable decompression device 95, and the low-pressure side flow of the internal heat exchanger 60 It joins the road entrance. Here, the bypass flow rate is controlled by the variable bypass pressure reducer 95 provided in the bypass circuit 94 so as to adjust the compressor discharge temperature.

この冷凍サイクルの冷房時には、内部熱交換器60の本来の比エンタルピ差を増大させて性能を向上させる効果と、高圧冷媒の一部をバイパスすることによる接続配管80a、蒸発器となる室内熱交換器100の圧力損失の低減とが同時に可能となり、COP向上を図ることができる。また、なお、バイパス冷媒の冷熱は内部熱交換器60で自身に回収されるため、その損失はない。   During cooling of this refrigeration cycle, the effect of improving the performance by increasing the inherent specific enthalpy difference of the internal heat exchanger 60, and the connection pipe 80a by bypassing part of the high-pressure refrigerant, the indoor heat exchange that becomes the evaporator The pressure loss of the vessel 100 can be reduced at the same time, and the COP can be improved. In addition, since the cold heat of the bypass refrigerant is recovered by the internal heat exchanger 60, there is no loss.

以上は冷房時の運転であり、四方弁20を切替えて冷媒の流れを破線の矢印とすれば暖房の運転となる。この場合、可変減圧器90の減圧量は限界まで下げ、可変減圧器40で減圧する構成となる。この冷凍サイクルでは、接続配管80aの圧力損失の低減効果はなくなるが、蒸発器となる室外熱交換器30の圧力損失の低減は可能であるため、内部熱交換器60の本来の比エンタルピ差を増大させて性能を向上させる効果と、高圧冷媒の一部をバイパスすることによる室外熱交換器30の圧力損失の低減とが同時に可能となり、COP向上を図ることができる。これによって、空調用途として拡大すること、給湯用途での効率をさらに向上することが可能となる。なお、暖房時のバイパス冷媒の冷熱も内部熱交換器60で自身に回収されるため、その損失はない。   The above is the operation at the time of cooling. When the four-way valve 20 is switched and the flow of the refrigerant is set to the broken arrow, the operation of heating is performed. In this case, the pressure reduction amount of the variable pressure reducer 90 is reduced to the limit and the pressure is reduced by the variable pressure reducer 40. In this refrigeration cycle, the effect of reducing the pressure loss of the connecting pipe 80a is lost, but the pressure loss of the outdoor heat exchanger 30 serving as an evaporator can be reduced. Therefore, the inherent specific enthalpy difference of the internal heat exchanger 60 is reduced. The effect of increasing the performance and increasing the performance and the reduction of the pressure loss of the outdoor heat exchanger 30 by bypassing a part of the high-pressure refrigerant can be simultaneously achieved, and the COP can be improved. As a result, it can be expanded as an air conditioning application, and the efficiency in a hot water supply application can be further improved. In addition, since the cold heat of the bypass refrigerant at the time of heating is also collected by the internal heat exchanger 60, there is no loss.

以上説明したように、本実施形態によれば、地球温暖化防止を図りつつ、圧縮機の信頼性確保とCOP向上を図ることができる。
(第2実施形態)
次に、本発明の第2実施形態の冷凍サイクルについて図2を用いて説明する。この第2実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
As described above, according to the present embodiment, it is possible to ensure the reliability of the compressor and improve the COP while preventing global warming.
(Second Embodiment)
Next, the refrigerating cycle of 2nd Embodiment of this invention is demonstrated using FIG. The second embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第2実施形態の冷凍サイクルでは、第1実施形態の冷凍サイクルに、内部熱交換器の低圧側入口に冷媒量調整用のアキュームレータを設け、前記バイパス回路にバイパス可変減圧器を設け、前記圧縮機の吐出温度を調節するようにバイパス可変減圧器を制御する制御装置を追加して設けている。   In the refrigeration cycle of the second embodiment, in the refrigeration cycle of the first embodiment, an accumulator for adjusting the refrigerant amount is provided at the low-pressure side inlet of the internal heat exchanger, a bypass variable decompressor is provided in the bypass circuit, and the compression An additional control device for controlling the bypass variable pressure reducer is provided to adjust the discharge temperature of the machine.

アキュームレータ200は一般的にサイクル内の冷媒量を調整する有効な手段であるが、内部熱交換器60と併用する場合、圧縮機吸入冷媒の温度を上げてしまい、高圧力比等の圧縮機でその吐出温度が高温となる条件では、その吐出温度が信頼性を低下するまで上昇する危険がある。   The accumulator 200 is generally an effective means for adjusting the amount of refrigerant in the cycle. However, when used in combination with the internal heat exchanger 60, the accumulator 200 raises the temperature of the refrigerant sucked by the compressor, and the compressor has a high pressure ratio or the like. Under the condition that the discharge temperature becomes high, there is a risk that the discharge temperature will rise until the reliability is lowered.

しかし、この第2実施形態では、バイパス可変減圧器95の減圧量を調整し、より多くの冷媒をバイパスすることで、圧縮機吸込み冷媒の温度を調整することが可能となり、信頼性を向上することができる。なお、この場合のバイパス冷媒の冷熱は内部熱交換器60で回収しているため、大きなCOPの低下はない。
(第3実施形態)
次に、本発明の第3実施形態の冷凍サイクルについて図3を用いて説明する。この第3実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
However, in the second embodiment, by adjusting the pressure reduction amount of the bypass variable pressure reducer 95 and bypassing more refrigerant, the temperature of the compressor suction refrigerant can be adjusted, and the reliability is improved. be able to. In this case, since the cold heat of the bypass refrigerant is recovered by the internal heat exchanger 60, there is no significant COP reduction.
(Third embodiment)
Next, the refrigeration cycle of 3rd Embodiment of this invention is demonstrated using FIG. The third embodiment is different from the first embodiment in the points described below, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第3実施形態では、逆止弁120を4個追加して、内部熱交換器60の高圧側流路の流れと低圧側流路の流れとが冷房時及び暖房時の何れも対向流になるように構成したものである。具体的には、内部熱交換器60と可変減圧器40の直列回路に対して、2つの逆止弁120の直列回路を並列に2列設け、一方の逆止弁120の直列回路の中間点に室外熱交換器30の一側を接続し、他方の逆止弁120の直列回路の中間点に室内熱交換器100の一側を接続したものである。この第3実施形態によれば、冷房時・暖房時とも内部熱交換器60の高圧側流路と低圧側流路が対向流となり、熱交換能力が向上するのに加え、可変減圧装置40を1つで構成することが可能となるため、安価なものとすることができる。
(第4実施形態)
次に、本発明の第4実施形態の冷凍サイクルについて図4を用いて説明する。この第4実施形態は、次に述べる点で第1実施形態と相違するものであり、その他の点については第1実施形態と基本的には同一であるので、重複する説明を省略する。
In the third embodiment, four check valves 120 are added, and the flow of the high-pressure side flow path and the flow of the low-pressure side flow path of the internal heat exchanger 60 are opposed to each other during cooling and heating. It is comprised so that it may become. Specifically, two series of two check valves 120 are provided in parallel to the series circuit of the internal heat exchanger 60 and the variable pressure reducer 40, and the intermediate point of the series circuit of one check valve 120 is provided. One side of the outdoor heat exchanger 30 is connected to the other side, and one side of the indoor heat exchanger 100 is connected to an intermediate point of the series circuit of the other check valve 120. According to the third embodiment, the high pressure side flow path and the low pressure side flow path of the internal heat exchanger 60 are opposed to each other during cooling and heating, so that the heat exchange capability is improved and the variable pressure reducing device 40 is installed. Since it can be configured by one, it can be made inexpensive.
(Fourth embodiment)
Next, the refrigeration cycle of 4th Embodiment of this invention is demonstrated using FIG. The fourth embodiment is different from the first embodiment in the following points, and the other points are basically the same as those in the first embodiment, and thus redundant description is omitted.

この第4実施形態はヒートポンプ式給湯機に利用した例である。具体的には、四方弁20、阻止弁70a、70b、接続配管80a、80bがなく、利用側熱交換器として水と冷媒とが熱交換する水・冷媒熱交換器300を用いたしたものである。水・冷媒熱交換器300は、給湯に用いられる水回路300aと、ガスクーラに用いられる冷媒回路300bとを有している。水ポンプ310により水回路300aに給水され、水・冷媒熱交換器300で加熱された後に出湯される。このヒートポンプ式給湯機において、給水の温度が高いと、圧縮機10の吐出圧力が上がってしまうため、バイパス可変減圧器95を調整することで冷媒を蒸発器30に多く流し、適切な吐出圧力に調整できる。   This 4th Embodiment is an example utilized for the heat pump type water heater. Specifically, there is no four-way valve 20, blocking valves 70a and 70b, connection pipes 80a and 80b, and a water / refrigerant heat exchanger 300 that exchanges heat between water and refrigerant is used as a use side heat exchanger. is there. The water / refrigerant heat exchanger 300 includes a water circuit 300a used for hot water supply and a refrigerant circuit 300b used for a gas cooler. Water is supplied to the water circuit 300a by the water pump 310, heated by the water / refrigerant heat exchanger 300, and discharged. In this heat pump type water heater, if the temperature of the feed water is high, the discharge pressure of the compressor 10 will increase. Therefore, by adjusting the bypass variable pressure reducer 95, a large amount of refrigerant flows through the evaporator 30, and the discharge pressure becomes an appropriate discharge pressure. Can be adjusted.

本発明の第1実施形態の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of 1st Embodiment of this invention. 本発明の第2実施形態の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of 2nd Embodiment of this invention. 本発明の第3実施形態の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of 3rd Embodiment of this invention. 本発明の第4実施形態の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of 4th Embodiment of this invention. 従来例1の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the prior art example 1. 図5の冷凍サイクルのp−h線図である。FIG. 6 is a ph diagram of the refrigeration cycle in FIG. 5. 従来例2の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the prior art example 2. 従来例3の冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle of the prior art example 3.

符号の説明Explanation of symbols

10…圧縮機、20…四方弁、30…室外熱交換器(熱源側熱交換器、冷房時のガスクーラ)、40…熱源側可変減圧器、50…室外送風機(熱源側送風機)、60…内部熱交換器、70a・70b…阻止弁、80a・80b…接続配管、90…利用側可変減圧器、94…バイパス回路、95…バイパス可変減圧器、100…室内熱交換器(利用側熱交換器、暖房時のガスクーラ)、110…室内送風機(利用側送風機)、120…逆止弁、200…アキュームレータ、300…利用側熱交換器、310…水ポンプ。   DESCRIPTION OF SYMBOLS 10 ... Compressor, 20 ... Four-way valve, 30 ... Outdoor heat exchanger (heat source side heat exchanger, gas cooler at the time of cooling), 40 ... Heat source side variable decompressor, 50 ... Outdoor fan (heat source side fan), 60 ... Inside Heat exchanger, 70a, 70b ... blocking valve, 80a, 80b ... connection piping, 90 ... use side variable pressure reducer, 94 ... bypass circuit, 95 ... bypass variable pressure reducer, 100 ... indoor heat exchanger (use side heat exchanger) Gas cooler during heating), 110 ... indoor blower (use side blower), 120 ... check valve, 200 ... accumulator, 300 ... use side heat exchanger, 310 ... water pump.

Claims (4)

圧縮機、ガスクーラ、可変減圧器及び蒸発器を冷媒配管で順次接続して構成され、
封入されたCO冷媒の高圧圧力が臨界圧力を超えて動作され、
前記ガスクーラから出た高圧のCO冷媒と前記蒸発器から出て前記圧縮機に吸込まれる低圧のCO冷媒とを熱交換させる内部熱交換器を備えた冷凍サイクルにおいて、
前記ガスクーラから出たCO冷媒の一部を前記内部熱交換器の低圧側入口部に合流させるバイパス回路を設けたことを特徴とする冷凍サイクル。
A compressor, a gas cooler, a variable pressure reducer and an evaporator are sequentially connected by refrigerant piping,
The high pressure of the enclosed CO 2 refrigerant is operated above the critical pressure,
In the refrigeration cycle comprising an internal heat exchanger for exchanging heat between the high-pressure CO 2 refrigerant coming out of the gas cooler and the low-pressure CO 2 refrigerant coming out of the evaporator and sucked into the compressor,
A refrigeration cycle, comprising a bypass circuit that joins a part of the CO 2 refrigerant that has come out of the gas cooler to the low-pressure side inlet of the internal heat exchanger.
圧縮機、切替弁、熱源側熱交換器、可変減圧器及び利用側熱交換器を冷媒配管で順次接続して構成され、
封入されたCO冷媒の高圧圧力が臨界圧力を超えて動作され、
前記熱源側熱交換器または前記利用側熱交換器から出た高圧のCO冷媒と前記利用側熱交換器または前記熱源側熱交換器から出て前記圧縮機に吸込まれる低圧のCO冷媒とを熱交換させる内部熱交換器を備え、
前記切替弁は、冷房時に前記圧縮機、前記熱源側熱交換器、前記可変減圧器及び前記利用側熱交換器の順にCO冷媒を流すように切替え且つ暖房時に前記圧縮機、前記利用側熱交換器、前記可変減圧器及び前記熱源側熱交換器の順にCO冷媒を流すように切替えるように動作する冷凍サイクルにおいて、
前記冷房時に前記熱源側熱交換器から出たCO冷媒の一部を前記内部熱交換器の低圧側入口部にバイパスすると共に前記暖房時に前記利用側熱交換器から出たCO冷媒の一部を前記内部熱交換器の低圧側入口部に合流させるバイパス回路を設けたことを特徴とする冷凍サイクル。
A compressor, a switching valve, a heat source side heat exchanger, a variable pressure reducer, and a use side heat exchanger are sequentially connected by a refrigerant pipe,
The high pressure of the enclosed CO 2 refrigerant is operated above the critical pressure,
CO 2 pressure refrigerant sucked into the compressor out of the heat source-side heat exchanger or said high-pressure CO 2 refrigerant discharged from the utilization-side heat exchanger utilization side heat exchanger or the heat source-side heat exchanger An internal heat exchanger that exchanges heat with
The switching valve switches so that CO 2 refrigerant flows in the order of the compressor, the heat source side heat exchanger, the variable pressure reducer, and the usage side heat exchanger during cooling, and the compressor, the usage side heat during heating. In the refrigeration cycle that operates to switch the CO 2 refrigerant to flow in the order of the exchanger, the variable pressure reducer, and the heat source side heat exchanger,
A part of the CO 2 refrigerant exiting from the heat source side heat exchanger during the cooling is bypassed to the low pressure side inlet of the internal heat exchanger and one of the CO 2 refrigerant exiting from the use side heat exchanger during the heating. A refrigeration cycle, characterized in that a bypass circuit is provided for joining a part to the low-pressure side inlet of the internal heat exchanger.
請求項2において、前記内部熱交換器の高圧側の流れと低圧側の流れとが前記冷房時及び前記暖房時の何れも対向流になるように構成したことを特徴とする冷凍サイクル。   3. The refrigeration cycle according to claim 2, wherein the flow on the high-pressure side and the flow on the low-pressure side of the internal heat exchanger are opposed to each other during the cooling and the heating. 請求項1または2において、前記内部熱交換器の低圧側入口に冷媒量調整用のアキュームレータを設け、前記バイパス回路にバイパス可変減圧器を設け、前記圧縮機の吐出温度を調節するようにバイパス可変減圧器を制御する制御装置を設けたことを特徴とする冷凍サイクル。   3. The variable bypass according to claim 1 or 2, wherein an accumulator for adjusting the amount of refrigerant is provided at a low pressure side inlet of the internal heat exchanger, a bypass variable decompressor is provided in the bypass circuit, and a discharge temperature of the compressor is adjusted. A refrigeration cycle comprising a control device for controlling a decompressor.
JP2007119317A 2007-04-27 2007-04-27 Refrigeration cycle Expired - Fee Related JP4751851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119317A JP4751851B2 (en) 2007-04-27 2007-04-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119317A JP4751851B2 (en) 2007-04-27 2007-04-27 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2008275249A true JP2008275249A (en) 2008-11-13
JP4751851B2 JP4751851B2 (en) 2011-08-17

Family

ID=40053406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119317A Expired - Fee Related JP4751851B2 (en) 2007-04-27 2007-04-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP4751851B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161725A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
KR20150047224A (en) * 2013-10-24 2015-05-04 엘지전자 주식회사 Air conditioner
CN107314518A (en) * 2017-08-31 2017-11-03 广东美的制冷设备有限公司 Air conditioner and its efficiency computational methods
JP2021004699A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Refrigeration machine unit for transportation and refrigerator vehicle
CN112629082A (en) * 2021-01-08 2021-04-09 珠海格力电器股份有限公司 Heating control system, multi-split air conditioning system and heating control method
WO2021098317A1 (en) * 2019-11-18 2021-05-27 珠海格力电器股份有限公司 Air conditioner and air conditioner control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367964A (en) * 1989-08-05 1991-03-22 Mitsubishi Electric Corp Air conditioner
JP2000065434A (en) * 1998-08-21 2000-03-03 Daikin Ind Ltd Double tube type heat exchanger
JP2005351557A (en) * 2004-06-11 2005-12-22 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367964A (en) * 1989-08-05 1991-03-22 Mitsubishi Electric Corp Air conditioner
JP2000065434A (en) * 1998-08-21 2000-03-03 Daikin Ind Ltd Double tube type heat exchanger
JP2005351557A (en) * 2004-06-11 2005-12-22 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161725A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
CN104246393A (en) * 2012-04-23 2014-12-24 三菱电机株式会社 Refrigeration cycle system
JPWO2013161725A1 (en) * 2012-04-23 2015-12-24 三菱電機株式会社 Refrigeration cycle system
CN104246393B (en) * 2012-04-23 2016-06-22 三菱电机株式会社 Freezing cyclic system
US9822994B2 (en) 2012-04-23 2017-11-21 Mitsubishi Electric Corporation Refrigeration cycle system with internal heat exchanger
KR20150047224A (en) * 2013-10-24 2015-05-04 엘지전자 주식회사 Air conditioner
KR102125093B1 (en) * 2013-10-24 2020-06-19 엘지전자 주식회사 Air conditioner
CN107314518A (en) * 2017-08-31 2017-11-03 广东美的制冷设备有限公司 Air conditioner and its efficiency computational methods
JP2021004699A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Refrigeration machine unit for transportation and refrigerator vehicle
JP7328023B2 (en) 2019-06-26 2023-08-16 三菱重工サーマルシステムズ株式会社 refrigerated vehicle
WO2021098317A1 (en) * 2019-11-18 2021-05-27 珠海格力电器股份有限公司 Air conditioner and air conditioner control method
CN112629082A (en) * 2021-01-08 2021-04-09 珠海格力电器股份有限公司 Heating control system, multi-split air conditioning system and heating control method

Also Published As

Publication number Publication date
JP4751851B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5984914B2 (en) Air conditioner
JP4771721B2 (en) Air conditioner
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
WO2009150761A1 (en) Refrigeration cycle device and control method therefor
JP6019837B2 (en) Heat pump system
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JPWO2011048662A1 (en) Heat pump equipment
JP2009228979A (en) Air conditioner
EP1873466A2 (en) Refrigeration cycle and water heater
JP2006078087A (en) Refrigeration unit
JP4751851B2 (en) Refrigeration cycle
JP2009257706A (en) Refrigerating apparatus
WO2016079834A1 (en) Air conditioning device
JP2013076541A (en) Heat pump
JP4442237B2 (en) Air conditioner
JP6110187B2 (en) Refrigeration cycle equipment
JP2008039233A (en) Refrigerating device
JP5659908B2 (en) Heat pump equipment
KR101823469B1 (en) High temperature hot water supply and heating and air conditioning system with partial load using dual cycle
JP4918450B2 (en) Air conditioning / hot water heat pump system
WO2013080497A1 (en) Refrigeration cycle device and hot water generating apparatus comprising same
JP4902585B2 (en) Air conditioner
JP2006003023A (en) Refrigerating unit
JP5790675B2 (en) heat pump
JP2006125790A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees