JP2006125790A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006125790A
JP2006125790A JP2004317455A JP2004317455A JP2006125790A JP 2006125790 A JP2006125790 A JP 2006125790A JP 2004317455 A JP2004317455 A JP 2004317455A JP 2004317455 A JP2004317455 A JP 2004317455A JP 2006125790 A JP2006125790 A JP 2006125790A
Authority
JP
Japan
Prior art keywords
expander
compressor
refrigerant
heat exchanger
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004317455A
Other languages
Japanese (ja)
Other versions
JP4326004B2 (en
Inventor
Kazumiki Urata
和幹 浦田
Kenichi Nakamura
憲一 中村
Michiko Endo
道子 遠藤
Koji Naito
宏治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004317455A priority Critical patent/JP4326004B2/en
Publication of JP2006125790A publication Critical patent/JP2006125790A/en
Application granted granted Critical
Publication of JP4326004B2 publication Critical patent/JP4326004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently obtain power recovery effect in an expansion machine in time of both cooling operation and heating operation even in an air conditioner wherein an excessive refrigerant is generated. <P>SOLUTION: This air conditioner is provided with a main compressor 1 driven by an electric motor, a four-way valve 2, an outdoor heat exchanger 3, a liquid receiver 4, an indoor decompressor 5, and an indoor heat exchanger 6 are connected has: the expansion machine 11 provided on an outlet side of the liquid receiver 4; a sub compressor 12 driven by expansion power recovered by the expansion machine 11, having a discharge side connected to a suction side of the main compressor 1; and a bridge circuit 10 provided between the outdoor heat exchanger 3 and the liquid receiver 4, and combined with a check valve such that the refrigerant passes through the expansion machine 11 through the liquid receiver 4 in time of both the cooling and heating operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和装置の効率向上に係り、特に冷房運転時及び暖房運転時共に圧縮機の動力を低減するものに好適である。   The present invention relates to an improvement in the efficiency of an air conditioner, and is particularly suitable for reducing the power of a compressor during cooling operation and heating operation.

電動機(モータ)によって駆動される圧縮機の吐出側圧力を低く抑え、電動機の入力低減を行い、冷凍サイクルの運転効率向上を図ため、膨張機の膨張動力により駆動される副圧縮機の吸入側と、電動機によって駆動されるメイン圧縮機の吐出側と、を冷媒回路において直列に配管接続して冷媒の二段圧縮を行い、メイン圧縮機と副圧縮機で圧縮された冷媒をガスクーラで冷却し、冷却された高圧冷媒ガスを膨張機で減圧する際に膨張動力を回収し、この回収動力を副圧縮機に伝えることが、例えば特許文献1に記載されている。   The suction side of the sub-compressor driven by the expansion power of the expander in order to keep the discharge side pressure of the compressor driven by the motor (motor) low, reduce the input of the motor, and improve the operating efficiency of the refrigeration cycle And the discharge side of the main compressor driven by the motor are connected in series in the refrigerant circuit to perform two-stage compression of the refrigerant, and the refrigerant compressed by the main compressor and the sub compressor is cooled by the gas cooler. For example, Patent Document 1 discloses that expansion power is recovered when the cooled high-pressure refrigerant gas is decompressed by an expander, and the recovered power is transmitted to the sub-compressor.

また、幅広い運転範囲の中で高い動力回収効果を得るため、冷媒流れ(運転モード)による密度比の差異を小さくし、固定密度比として設計されている膨張機での動力回収の効率改善を行い、室内側熱交換器を蒸発器とする冷媒流れの場合には、副圧縮機の吐出側が圧縮機の吸入側となるように副圧縮機によって圧縮機に吸入される冷媒を加給(チャージャ)するようにし、室内側熱交換器を放熱器とする冷媒流れの場合には、圧縮機の吐出側が副圧縮機の吸入側となるように圧縮機から吐出された冷媒を更に加圧(エクスプレッサ)するようにすることが知られ、例えば特許文献2に記載されている。   In addition, in order to obtain a high power recovery effect within a wide operating range, the difference in density ratio due to refrigerant flow (operation mode) is reduced, and the efficiency of power recovery in an expander designed as a fixed density ratio is improved. In the case of the refrigerant flow using the indoor heat exchanger as an evaporator, the refrigerant sucked into the compressor by the sub compressor is supplied (charged) so that the discharge side of the sub compressor becomes the suction side of the compressor. In the case of the refrigerant flow using the indoor heat exchanger as a radiator, the refrigerant discharged from the compressor is further pressurized (expressor) so that the discharge side of the compressor becomes the suction side of the sub compressor For example, it is described in Patent Document 2.

特開2003−279179号公報(第2図)JP 2003-279179 A (FIG. 2)

特開2004−138332号公報(第1図)JP 2004-138332 A (FIG. 1)

特許文献1においては、余剰冷媒を貯留するために設けられたアキュムレータの影響が考慮されてなく、冷凍サイクルの低圧部を流れる冷媒の密度が小さいため冷媒の流速が早くなりアキュムレータにより圧力損失が増加し、冷凍能力が低下する。また、余剰冷媒により蒸発器での比エンタルピ差が減少し、膨張機で動力回収をしても冷凍能力が低下して冷凍サイクルの効率が低下する。また、特許文献2においては、余剰冷媒分が凝縮器内に溜まり、圧縮機吐出側の圧力が上昇し、圧縮機の入力増加となる。   In Patent Document 1, the influence of an accumulator provided to store surplus refrigerant is not taken into account, and the density of refrigerant flowing through the low-pressure part of the refrigeration cycle is small, so that the refrigerant flow rate increases and pressure loss increases by the accumulator. However, the refrigeration capacity is reduced. Further, the excess refrigerant reduces the specific enthalpy difference in the evaporator, and even if power is recovered by the expander, the refrigeration capacity is lowered and the efficiency of the refrigeration cycle is lowered. Moreover, in patent document 2, an excess refrigerant | coolant part accumulates in a condenser, the pressure of the compressor discharge side rises, and it becomes the input increase of a compressor.

本発明の目的は、上記従来の技術課題を解決し、余剰冷媒が発生する空気調和装置でも冷房運転時及び暖房運転時共に、膨張機での動力回収効果を充分得られる空気調和装置を提供することにある。   An object of the present invention is to solve the above-described conventional technical problems and provide an air conditioner that can sufficiently obtain a power recovery effect in an expander both during cooling operation and heating operation even in an air conditioner that generates excess refrigerant. There is.

上記目的を達成するため本発明は、電動機により駆動される主圧縮機、四方弁、室外熱交換器、受液器、室内減圧装置、室内熱交換器とが接続される空気調和装置において、前記受液器の出口側に設けられた膨張機と、前記膨張機で回収される膨張動力により駆動され、吐出側が前記主圧縮機の吸入側へ接続された副圧縮機と、前記室外熱交換器と受液器との間に設けられ、冷房及び暖房運転時共に、冷媒が前記受液器を介して前記膨張機を通るように逆止弁が組み合わされたブリッジ回路と、を備えたものである。
また、上記のものにおいて、前記ブリッジ回路に替えて、第2四方弁を用いて冷房運転時及び暖房運転時共に、冷媒が前記受液器を介して前記膨張機を通るようにしたことが望ましい。
To achieve the above object, the present invention provides an air conditioner to which a main compressor driven by an electric motor, a four-way valve, an outdoor heat exchanger, a liquid receiver, an indoor pressure reducing device, and an indoor heat exchanger are connected. An expander provided on the outlet side of the liquid receiver, a sub-compressor driven by the expansion power recovered by the expander and having a discharge side connected to the suction side of the main compressor, and the outdoor heat exchanger And a bridge circuit in which a check valve is combined so that the refrigerant passes through the expander via the liquid receiver during both cooling and heating operations. is there.
Further, in the above, it is desirable that the second four-way valve is used instead of the bridge circuit so that the refrigerant passes through the expander via the liquid receiver in both the cooling operation and the heating operation. .

さらに、上記のものにおいて、前記膨張機と前記ブリッジ回路との間に設けられ、主流部と副流部が設けられた過冷却熱交換器を備え、前記主流部の一方は前記膨張機出口に、他方は前記ブリッジ回路に配管接続され、前記副流部の一方は前記膨張機と前記主流部を接続する配管からバイパスされ過冷却膨張弁を介して接続され、他方は前記四方弁と前記副圧縮機の吸入側とを接続する配管に合流する過冷却バイパス戻り配管に接続されていることが望ましい。   Furthermore, in the above-mentioned, a supercooling heat exchanger provided between the expander and the bridge circuit and provided with a main flow portion and a subflow portion is provided, and one of the main flow portions is provided at the expander outlet. , The other is connected to the bridge circuit by piping, one of the subflow portions is bypassed from the piping connecting the expander and the main flow portion, and is connected via a supercooling expansion valve, and the other is connected to the four-way valve and the subflow portion. It is desirable to be connected to a subcooling bypass return pipe that joins a pipe connecting the suction side of the compressor.

さらに、上記のものにおいて、前記膨張機と前記ブリッジ回路との間に設けられ、主流部と副流部が設けられた過冷却熱交換器を備え、前記主流部の一方は前記膨張機出口に、他方は前記ブリッジ回路に配管接続され、前記副流部の一方は前記膨張機と前記主流部を接続する配管からバイパスされ過冷却膨張弁を介して接続され、他方は前記主圧縮機の吸入側に接続された過冷却バイパス戻り配管に接続されていることが望ましい。   Furthermore, in the above-mentioned, a supercooling heat exchanger provided between the expander and the bridge circuit and provided with a main flow portion and a subflow portion is provided, and one of the main flow portions is provided at the expander outlet. The other is connected to the bridge circuit by piping, and one of the secondary flow portions is bypassed from the piping connecting the expander and the main flow portion, and is connected via a supercooling expansion valve, and the other is suctioned from the main compressor It is desirable to be connected to a subcooling bypass return pipe connected to the side.

さらに、上記のものにおいて、前記空気調和装置に用いられる冷媒をフロン系冷媒としたことが望ましい。   Further, in the above, it is desirable that the refrigerant used in the air conditioner is a chlorofluorocarbon refrigerant.

本発明によれば、圧縮機吸入側の圧力損失増大や蒸発器での比エンタルピ差減少による冷凍能力低下を防止しながら、冷房運転時及び暖房運転時共に膨張機での減圧量を最大にすることができ、膨張機で回収できる膨張動力を最大限に副圧縮機に利用することができる。
また、電動機により駆動する主圧縮機の圧縮比を小さくすることができ、主圧縮機に吸込まれる冷媒密度を大きくできるため、主圧縮機での動力を低減できる。これにより冷凍能力の拡大を図ることができ、この冷凍能力の拡大分を電動機により駆動する主圧縮機の動力低減に利用することで、更に空気調和装置の効率向上を図ることができる。
According to the present invention, the amount of decompression in the expander is maximized during both the cooling operation and the heating operation, while preventing a decrease in refrigeration capacity due to an increase in pressure loss on the compressor suction side and a decrease in specific enthalpy difference in the evaporator. Therefore, the expansion power that can be recovered by the expander can be utilized to the maximum extent in the sub-compressor.
Moreover, since the compression ratio of the main compressor driven by the electric motor can be reduced and the refrigerant density sucked into the main compressor can be increased, the power in the main compressor can be reduced. As a result, the refrigeration capacity can be increased, and the increased efficiency of the air conditioner can be further improved by utilizing the increased refrigeration capacity for reducing the power of the main compressor driven by the electric motor.

オゾン破壊係数がゼロでありかつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素を冷媒として用いる冷凍サイクル装置が近年着目されている。二酸化炭素冷媒は、臨界温度が31.06℃と低く、この温度よりも高い温度を利用する場合には、冷凍サイクル装置の高圧側(圧縮機出口〜放熱器〜減圧器入口)では二酸化炭素冷媒の凝縮が生じない超臨界状態となり、従来のフロン系冷媒に比べて、冷凍サイクル装置の運転効率が低下する。このため、超臨界状態での冷凍サイクルの運転効率向上を図るために、冷凍サイクルの減圧装置として膨張機を設け、この膨張機で回収される膨張動力を圧縮機の駆動力の一部として利用する方法や、膨張機で回収される膨張動力により駆動される副圧縮機を二段圧縮となる位置に設ける方法等が種々提案されている。   In recent years, a refrigeration cycle apparatus using carbon dioxide as a refrigerant, which has an ozone depletion coefficient of zero and a global warming coefficient much smaller than that of fluorocarbons, has attracted attention. Carbon dioxide refrigerant has a critical temperature as low as 31.06 ° C., and when a temperature higher than this temperature is used, carbon dioxide refrigerant is used on the high pressure side (compressor outlet to radiator to decompressor inlet) of the refrigeration cycle apparatus. Therefore, the operation efficiency of the refrigeration cycle apparatus is reduced as compared with a conventional chlorofluorocarbon refrigerant. For this reason, in order to improve the operating efficiency of the refrigeration cycle in the supercritical state, an expander is provided as a decompression device for the refrigeration cycle, and the expansion power recovered by the expander is used as part of the driving force of the compressor. Various methods have been proposed, and a method of providing a sub-compressor driven by expansion power recovered by an expander at a position where two-stage compression is performed.

以下、本発明の一実施の形態を図1ないし図6を参照して説明する。
図1は、本発明の一実施形態を示す膨張機及び膨張機で回収される膨張動力により駆動する副圧縮機を搭載した空気調和装置の冷凍サイクル系統図である。室外機は、電動機9により駆動される主圧縮機1、四方弁2、室外熱交換器3、受液器4、液阻止弁8、ガス阻止弁7を配管接続して構成されている。また、室内機は、室内膨張弁5及び室内熱交換器6を備え、室外機に付設されたガス阻止弁7と液阻止弁8に配管接続されている。
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a refrigeration cycle system diagram of an air conditioner equipped with an expander and an auxiliary compressor driven by expansion power recovered by the expander according to an embodiment of the present invention. The outdoor unit is configured by connecting a main compressor 1 driven by an electric motor 9, a four-way valve 2, an outdoor heat exchanger 3, a liquid receiver 4, a liquid blocking valve 8, and a gas blocking valve 7. The indoor unit includes an indoor expansion valve 5 and an indoor heat exchanger 6, and is connected to a gas blocking valve 7 and a liquid blocking valve 8 attached to the outdoor unit by piping.

室外機において、受液器4の後流側には膨張機11が設けられ、この膨張機11には動力伝達軸13が取付けられ、動力伝達軸13の他端は副圧縮機12の駆動軸と連結されており、副圧縮機12は膨張機11の膨張動力により駆動される。副圧縮機12は四方弁2と主圧縮機1の間に設けられ、四方弁2と副圧縮機12の吸入側とが配管接続され、副圧縮機12の吐出側と主圧縮機1の吸入側とが配管接続されている。また、室外熱交換器3と受液器4との間には、受液器4から膨張器11への冷媒の流れ方向が冷房運転時及び暖房運転時共に同一方向となる様に、逆止弁4個が図のように組み合わされてブリッジ回路10が構成されている。   In the outdoor unit, an expander 11 is provided on the downstream side of the liquid receiver 4, and a power transmission shaft 13 is attached to the expander 11, and the other end of the power transmission shaft 13 is a drive shaft of the sub compressor 12. The sub compressor 12 is driven by the expansion power of the expander 11. The sub-compressor 12 is provided between the four-way valve 2 and the main compressor 1, and the four-way valve 2 and the suction side of the sub-compressor 12 are connected by piping, and the discharge side of the sub-compressor 12 and the suction of the main compressor 1 are connected. The pipe is connected to the side. In addition, a check is made between the outdoor heat exchanger 3 and the liquid receiver 4 so that the flow direction of the refrigerant from the liquid receiver 4 to the expander 11 is the same in both the cooling operation and the heating operation. The bridge circuit 10 is configured by combining four valves as shown in the figure.

次に、冷凍サイクルにおける冷媒の流動状態について説明する。図1において、冷媒の流れ方向は、暖房運転は実線矢印で、冷房運転は破線矢印により示されている。
冷房運転の場合、電動機9により駆動される主圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2を通り室外熱交換器3に流入し、室外熱交換器3で外気と熱交換することで放熱凝縮し液冷媒となり流出し、ブリッジ回路10を通り受液器4内に流入する。受液器4では、冷凍サイクルの運転で余剰となる冷媒が貯留され、受液器4から流出した液冷媒は、膨張機11で等エントロピ減圧され高圧と低圧の間の中間圧状態となり、ブリッジ回路10及び液阻止弁8を通り室内膨張弁5で減圧され低圧状態となり、室内熱交換器6に流入する。
Next, the flow state of the refrigerant in the refrigeration cycle will be described. In FIG. 1, the flow direction of the refrigerant is indicated by a solid line arrow in the heating operation and a broken line arrow in the cooling operation.
In the case of the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the main compressor 1 driven by the electric motor 9 flows into the outdoor heat exchanger 3 through the four-way valve 2, and exchanges heat with the outside air in the outdoor heat exchanger 3. As a result, the heat is condensed and discharged as liquid refrigerant, and flows into the receiver 4 through the bridge circuit 10. In the liquid receiver 4, surplus refrigerant is stored in the operation of the refrigeration cycle, and the liquid refrigerant flowing out of the liquid receiver 4 is isentropically depressurized by the expander 11 to be in an intermediate pressure state between high pressure and low pressure. The pressure is reduced by the indoor expansion valve 5 through the circuit 10 and the liquid blocking valve 8 to be in a low pressure state, and flows into the indoor heat exchanger 6.

室内熱交換器6では、室内空気と熱交換することで吸熱蒸発し低圧のガス冷媒として流出し、ガス阻止弁7及び四方弁2を通り副圧縮機12に吸込まれる。副圧縮機12は、膨張機11と動力伝達軸13で連結されているため、膨張機11での膨張動力により駆動され、副圧縮機12に吸込まれたガス冷媒は、膨張動力分だけ圧縮され、この圧縮されたガス冷媒が主圧縮機1に吸込まれる。   In the indoor heat exchanger 6, the heat is evaporated by exchanging heat with the room air, flows out as a low-pressure gas refrigerant, passes through the gas blocking valve 7 and the four-way valve 2, and is sucked into the sub-compressor 12. Since the subcompressor 12 is connected to the expander 11 by the power transmission shaft 13, the gas refrigerant driven by the expansion power in the expander 11 and sucked into the subcompressor 12 is compressed by the amount of expansion power. The compressed gas refrigerant is sucked into the main compressor 1.

暖房運転の場合、電動機9により駆動される主圧縮機1で圧縮された高温高圧のガス冷媒は、四方弁2及びガス阻止弁7を通り室内熱交換器6に流入し、室内熱交換器6で室内空気と熱交換することで放熱凝縮し液冷媒となり流出し、室内膨張弁5、液阻止弁8及びブリッジ回路10を通り受液器4内に流入する。受液器4では、能力の発生には余剰となる冷媒が貯留され、受液器4から流出した液冷媒は、膨張機11で等エントロピ減圧され低圧状態となり、ブリッジ回路10を通り室外熱交換器3に流入する。室外熱交換器3では、外気と熱交換することで吸熱蒸発し低圧のガス冷媒として流出し、四方弁2を通り副圧縮機12に吸込まれる。副圧縮機12は、膨張機11と動力伝達軸13で連結されているため、膨張機11での膨張動力により駆動され、前記副圧縮機12に吸込まれたガス冷媒は、膨張動力分だけ圧縮され、この圧縮されたガス冷媒が主圧縮機1に吸込まれる。   In the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the main compressor 1 driven by the electric motor 9 flows into the indoor heat exchanger 6 through the four-way valve 2 and the gas blocking valve 7, and the indoor heat exchanger 6 Then, heat exchange with room air causes heat radiation to condense and flow out into liquid refrigerant, and flows into the liquid receiver 4 through the indoor expansion valve 5, liquid blocking valve 8 and bridge circuit 10. In the liquid receiver 4, surplus refrigerant is stored for capacity generation, and the liquid refrigerant flowing out of the liquid receiver 4 is isentropically decompressed by the expander 11 to be in a low pressure state and passes through the bridge circuit 10 to perform outdoor heat exchange. Flows into the vessel 3. In the outdoor heat exchanger 3, the heat is evaporated by exchanging heat with the outside air and flows out as a low-pressure gas refrigerant, and is sucked into the sub compressor 12 through the four-way valve 2. Since the sub-compressor 12 is connected to the expander 11 by the power transmission shaft 13, the gas refrigerant driven by the expansion power in the expander 11 and sucked into the sub-compressor 12 is compressed by the amount of expansion power. The compressed gas refrigerant is sucked into the main compressor 1.

膨張機11を冷房運転時及び暖房運転時共に受液器4の常に後流側となるようにブリッジ回路10を構成したことにより、余剰冷媒を受液器4に貯留して最適な冷媒量を冷凍サイクルに供給しながら、膨張機11前後の圧力差を確保することができ、膨張機11で回収可能な膨張動力を最大にすることができる。これにより、冷房運転時及び暖房運転時共に、電動機9により駆動される主圧縮機1での圧縮動力を、膨張機11での膨張動力により駆動される副圧縮機12での圧縮動力、すなわち膨張動力分だけ少なくでき、冷凍サイクルの効率が向上する。   By configuring the bridge circuit 10 so that the expander 11 is always on the downstream side of the liquid receiver 4 during both the cooling operation and the heating operation, the surplus refrigerant is stored in the liquid receiver 4 and the optimum refrigerant amount is obtained. While supplying the refrigeration cycle, the pressure difference between the front and rear of the expander 11 can be secured, and the expansion power recoverable by the expander 11 can be maximized. Thereby, the compression power in the main compressor 1 driven by the electric motor 9 is used as the compression power in the sub-compressor 12 driven by the expansion power in the expander 11, that is, the expansion, during both the cooling operation and the heating operation. The power can be reduced and the efficiency of the refrigeration cycle is improved.

また、主圧縮機1の低圧側に副圧縮機12を配設しているため、主圧縮機1に吸込まれる冷媒の状態は、副圧縮機12が無い場合と比較して圧力が高くなり、主圧縮機1に吸込まれる冷媒の密度が大きくなる。そして、主圧縮機1での吐出量を少なくすることができ、主圧縮機1での圧縮動力をさらに低減できる。さらに、主圧縮機1の高圧側圧力と低圧側圧力の比は、副圧縮機12が無い場合と比較して副圧縮機12での圧力上昇分だけ小さくなるため、主圧縮機1の圧縮効率が向上し主圧縮機1での圧縮動力が低減できるため、冷凍サイクルの効率向上が可能となる。   In addition, since the sub compressor 12 is disposed on the low pressure side of the main compressor 1, the state of the refrigerant sucked into the main compressor 1 is higher than that without the sub compressor 12. The density of the refrigerant sucked into the main compressor 1 increases. And the discharge amount in the main compressor 1 can be decreased, and the compression power in the main compressor 1 can further be reduced. Furthermore, since the ratio between the high-pressure side pressure and the low-pressure side pressure of the main compressor 1 is reduced by the amount of pressure increase in the sub-compressor 12 compared to the case where there is no sub-compressor 12, the compression efficiency of the main compressor 1 is reduced. And the compression power in the main compressor 1 can be reduced, so that the efficiency of the refrigeration cycle can be improved.

また、逆止弁4個で構成されるブリッジ回路10は、図2に示す如く、第2四方弁14で置き換えることができる。   Further, the bridge circuit 10 including four check valves can be replaced with a second four-way valve 14 as shown in FIG.

次に、本発明の他の実施形態について図3ないし図4を参照して説明する。
図3は、他の実施形態を示す空気調和装置の冷凍サイクル系統図である。過冷却熱交換器15は膨張機11とブリッジ回路10との間に設けられ、膨張機11から流出する冷媒を過冷却する。過冷却熱交換器15は主流部と副流部が設けられ、主流部と副流部を流れる冷媒によりそれぞれ熱交換する。主流部は、一方を膨張機11の出口に、他方をブリッジ回路10に配管接続される。膨張機11と過冷却熱交換器15を接続する配管からバイパス管を設け、過冷却膨張弁16を介して副流部の一方に配管接続されている。副流部の他方は四方弁2と副圧縮機12の吸入側とを接続する配管に合流するように過冷却バイパス戻り配管17により接続されている。
Next, another embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a refrigeration cycle diagram of an air conditioner showing another embodiment. The supercooling heat exchanger 15 is provided between the expander 11 and the bridge circuit 10 and supercools the refrigerant flowing out of the expander 11. The subcooling heat exchanger 15 is provided with a main flow portion and a sub flow portion, and each performs heat exchange with a refrigerant flowing through the main flow portion and the sub flow portion. One of the main flow portions is pipe-connected to the outlet of the expander 11 and the other is connected to the bridge circuit 10. A bypass pipe is provided from a pipe connecting the expander 11 and the supercooling heat exchanger 15, and the pipe is connected to one of the subflow portions via the supercooling expansion valve 16. The other side of the subflow portion is connected by a supercooling bypass return pipe 17 so as to join a pipe connecting the four-way valve 2 and the suction side of the subcompressor 12.

次に、冷凍サイクルにおける冷媒の流動状態について説明する。図1と同様に、冷媒の流れ方向は、暖房運転は実線矢印で、冷房運転は破線矢印により示す。冷房運転時及び暖房運転時共に膨張機11までの冷媒の流れ及び状態は、図1に示す実施形態と同様であり、説明は省略する。   Next, the flow state of the refrigerant in the refrigeration cycle will be described. As in FIG. 1, the flow direction of the refrigerant is indicated by a solid arrow in the heating operation and by a broken arrow in the cooling operation. The refrigerant flow and state up to the expander 11 during both the cooling operation and the heating operation are the same as those in the embodiment shown in FIG.

膨張機11により等エントロピ減圧された冷媒は、過冷却熱交換器15の手前で2つに分流され、一方は過冷却熱交換器15の主流部に、他方は過冷却膨張弁16によりさらに減圧され副流部に流入し、主流部を流れる冷媒と副流部を流れる冷媒とで熱交換し、主流部を流れる冷媒の温度が低下して過冷却液が生成される。また、副流部を流れる冷媒は、主流部を流れる冷媒から吸熱して過熱されガス冷媒となり副圧縮機12の吸入側を流れる冷媒に合流される。   The refrigerant that is isentropically depressurized by the expander 11 is divided into two before the supercooling heat exchanger 15, one is further depressurized by the supercooling expansion valve 16, one at the main flow portion of the supercooling heat exchanger 15. Then, the refrigerant flows into the sidestream portion and exchanges heat between the refrigerant flowing through the mainstream portion and the refrigerant flowing through the sidestream portion, so that the temperature of the refrigerant flowing through the mainstream portion is lowered and supercooled liquid is generated. In addition, the refrigerant flowing in the substream portion absorbs heat from the refrigerant flowing in the mainstream portion and is heated to become a gas refrigerant, and is merged with the refrigerant flowing on the suction side of the subcompressor 12.

以上により、膨張機11から流出する冷媒を過冷却熱交換器15により過冷却することにより、蒸発側の比エンタルピ差を大きくすることができるため、蒸発性能を向上しながら膨張機11により膨張動力を回収でき、冷凍サイクルの効率向上が可能となる。また、過冷却熱交換器の副流部に流れる冷媒量分だけ蒸発器(冷房運転時は室内熱交換器、暖房運転時は室外熱交換器)に流れる冷媒量を低減できるため、蒸発器での圧力損失が低減でき、さらに冷凍サイクルの効率向上が可能となる。   As described above, since the specific enthalpy difference on the evaporation side can be increased by supercooling the refrigerant flowing out of the expander 11 by the supercooling heat exchanger 15, the expansion power is increased by the expander 11 while improving the evaporation performance. And the efficiency of the refrigeration cycle can be improved. In addition, the amount of refrigerant flowing in the evaporator (the indoor heat exchanger during cooling operation and the outdoor heat exchanger during heating operation) can be reduced by the amount of refrigerant flowing in the sub-flow part of the supercooling heat exchanger. The pressure loss of the refrigeration cycle can be improved.

さらに、図3の副流部の他方を四方弁2と副圧縮機12の吸入側とを接続する配管に合流するようにすることに替えて、図4に示す如く、過冷却バイパス戻り配管17を主圧縮機1の吸入側に戻すようにすることで、図3に示したものと比べて副圧縮機12で圧縮される冷媒量を低減できる。そのため、膨張機11での膨張動力回収分をより多く副圧縮機12の圧縮動力に使用することができ、より冷凍サイクルの効率向上を図ることができる。   Further, instead of joining the other side of the auxiliary flow part of FIG. 3 to the pipe connecting the four-way valve 2 and the suction side of the auxiliary compressor 12, as shown in FIG. By returning to the suction side of the main compressor 1, the amount of refrigerant compressed by the sub compressor 12 can be reduced as compared with that shown in FIG. Therefore, more of the expansion power recovered by the expander 11 can be used for the compression power of the sub-compressor 12, and the efficiency of the refrigeration cycle can be further improved.

また、図5に示す如く、副圧縮機12の替わりに膨張機11に設けられている動力伝達軸13と電動機(モータ)9の軸を同軸としてもよく、この場合は、副圧縮機12がないため空気調和装置の製造コストを大幅に低減することができる。
また、図6に示す如く、四方弁2と電動機(モータ)9で駆動される主圧縮機1の吸入側を接続し、主圧縮機1の吐出側と、膨張機11で回収される膨張動力により駆動する副圧縮機12の吸入側を接続しても良く、この場合は、副圧縮機12に吸込まれる冷媒の密度が小さくなるため、副圧縮機12の圧縮室を小さくすることができ、副圧縮機12を小型軽量化することができる。そして、空気調和装置の製造コストを低減するのに有利となる。
In addition, as shown in FIG. 5, the power transmission shaft 13 provided in the expander 11 and the shaft of the electric motor (motor) 9 may be coaxial instead of the sub compressor 12, and in this case, the sub compressor 12 Therefore, the manufacturing cost of the air conditioner can be greatly reduced.
Further, as shown in FIG. 6, the suction side of the main compressor 1 driven by the four-way valve 2 and the electric motor (motor) 9 is connected, and the discharge power of the main compressor 1 and the expansion power recovered by the expander 11 are connected. In this case, since the density of the refrigerant sucked into the sub compressor 12 is reduced, the compression chamber of the sub compressor 12 can be reduced. The sub compressor 12 can be reduced in size and weight. And it becomes advantageous to reduce the manufacturing cost of an air conditioning apparatus.

以上の空気調和装置において、冷媒として二酸化炭素等の超臨界サイクルを形成する冷媒を用いた場合に冷凍サイクルの効率向上効果が大きくなるが、HFC等のフロン系冷媒を用いた場合も冷凍サイクルの効率向上を図ることができる。   In the above air conditioner, the effect of improving the efficiency of the refrigeration cycle increases when a refrigerant that forms a supercritical cycle such as carbon dioxide is used as the refrigerant. However, the use of a chlorofluorocarbon refrigerant such as HFC also increases the efficiency of the refrigeration cycle. Efficiency can be improved.

本発明の一実施形態を示す空気調和装置の冷凍サイクル系統図。The refrigerating cycle system diagram of the air conditioning apparatus which shows one Embodiment of this invention. 他の実施形態を示す空気調和装置の冷凍サイクル系統図。The refrigeration cycle system | strain diagram of the air conditioning apparatus which shows other embodiment. さらに、他の実施形態を示す空気調和装置の冷凍サイクル系統図。Furthermore, the refrigeration cycle system | strain diagram of the air conditioning apparatus which shows other embodiment. さらに、他の実施形態を示す空気調和装置の冷凍サイクル系統図。Furthermore, the refrigeration cycle system | strain diagram of the air conditioning apparatus which shows other embodiment. さらに、他の実施形態を示す空気調和装置の冷凍サイクル系統図。Furthermore, the refrigeration cycle system | strain diagram of the air conditioning apparatus which shows other embodiment. さらに、他の実施形態を示す空気調和装置の冷凍サイクル系統図。Furthermore, the refrigeration cycle system | strain diagram of the air conditioning apparatus which shows other embodiment.

符号の説明Explanation of symbols

1…主圧縮機、2…四方弁、3…室外熱交換器、4…受液器、5…室内膨張弁、6…室内熱交換器、9…電動機(モータ)、10…ブリッジ回路、11…膨張機、12…副圧縮機、13…動力伝達軸、14…第2四方弁、15…過冷却熱交換器、16…過冷却膨張弁、17…過冷却バイパス戻り配管。
DESCRIPTION OF SYMBOLS 1 ... Main compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Liquid receiver, 5 ... Indoor expansion valve, 6 ... Indoor heat exchanger, 9 ... Electric motor (motor), 10 ... Bridge circuit, 11 DESCRIPTION OF SYMBOLS ... Expander, 12 ... Subcompressor, 13 ... Power transmission shaft, 14 ... Second four-way valve, 15 ... Supercooling heat exchanger, 16 ... Supercooling expansion valve, 17 ... Supercooling bypass return piping.

Claims (5)

電動機により駆動される主圧縮機、四方弁、室外熱交換器、受液器、室内減圧装置、室内熱交換器とが接続される空気調和装置において、
前記受液器の出口側に設けられた膨張機と、
前記膨張機で回収される膨張動力により駆動され、吐出側が前記主圧縮機の吸入側へ接続された副圧縮機と、
前記室外熱交換器と受液器との間に設けられ、冷房及び暖房運転時共に、冷媒が前記受液器を介して前記膨張機を通るように逆止弁が組み合わされたブリッジ回路と、
を備えたことを特徴とする空気調和装置。
In an air conditioner to which a main compressor driven by an electric motor, a four-way valve, an outdoor heat exchanger, a liquid receiver, an indoor pressure reducing device, and an indoor heat exchanger are connected,
An expander provided on the outlet side of the receiver;
A sub-compressor driven by expansion power recovered by the expander and having a discharge side connected to a suction side of the main compressor;
A bridge circuit which is provided between the outdoor heat exchanger and the liquid receiver, and in which a check valve is combined so that the refrigerant passes through the expander via the liquid receiver during cooling and heating operations;
An air conditioner comprising:
請求項1記載のものにおいて、前記ブリッジ回路に替えて、第2四方弁を用いて冷房運転時及び暖房運転時共に、冷媒が前記受液器を介して前記膨張機を通るようにしたことを特徴とする空気調和装置。   The thing of Claim 1 WHEREIN: Instead of the said bridge circuit, it was made to let a refrigerant | coolant pass the said expander via the said liquid receiver using the 2nd four-way valve both at the time of air_conditionaing | cooling operation and heating operation. An air conditioner characterized. 請求項1記載のものにおいて、前記膨張機と前記ブリッジ回路との間に設けられ、主流部と副流部が設けられた過冷却熱交換器を備え、前記主流部の一方は前記膨張機出口に、他方は前記ブリッジ回路に配管接続され、前記副流部の一方は前記膨張機と前記主流部を接続する配管からバイパスされ過冷却膨張弁を介して接続され、他方は前記四方弁と前記副圧縮機の吸入側とを接続する配管に合流する過冷却バイパス戻り配管に接続されていることを特徴とする空気調和装置。   2. The apparatus according to claim 1, further comprising a subcooling heat exchanger provided between the expander and the bridge circuit, wherein a main flow portion and a sub flow portion are provided, wherein one of the main flow portions is an outlet of the expander. The other is connected to the bridge circuit by piping, and one of the subflow portions is bypassed from the piping connecting the expander and the main flow portion and connected via a supercooled expansion valve, and the other is connected to the four-way valve and the An air conditioner connected to a subcooling bypass return pipe that joins a pipe connecting the suction side of the sub compressor. 請求項1記載のものにおいて、前記膨張機と前記ブリッジ回路との間に設けられ、主流部と副流部が設けられた過冷却熱交換器を備え、前記主流部の一方は前記膨張機出口に、他方は前記ブリッジ回路に配管接続され、前記副流部の一方は前記膨張機と前記主流部を接続する配管からバイパスされ過冷却膨張弁を介して接続され、他方は前記主圧縮機の吸入側に接続された過冷却バイパス戻り配管に接続されていることを特徴とする空気調和装置。   2. The apparatus according to claim 1, further comprising a subcooling heat exchanger provided between the expander and the bridge circuit, wherein a main flow portion and a sub flow portion are provided, wherein one of the main flow portions is an outlet of the expander. The other is connected to the bridge circuit by piping, and one of the subflow portions is bypassed from the piping connecting the expander and the main flow portion and connected via a supercooling expansion valve, and the other is connected to the main compressor. An air conditioner connected to a supercooling bypass return pipe connected to the suction side. 請求項1ないし4に記載のものにおいて、前記空気調和装置に用いられる冷媒をフロン系冷媒としたことを特徴とする空気調和装置。
5. The air conditioner according to claim 1, wherein the refrigerant used in the air conditioner is a chlorofluorocarbon refrigerant.
JP2004317455A 2004-11-01 2004-11-01 Air conditioner Expired - Fee Related JP4326004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317455A JP4326004B2 (en) 2004-11-01 2004-11-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317455A JP4326004B2 (en) 2004-11-01 2004-11-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006125790A true JP2006125790A (en) 2006-05-18
JP4326004B2 JP4326004B2 (en) 2009-09-02

Family

ID=36720704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317455A Expired - Fee Related JP4326004B2 (en) 2004-11-01 2004-11-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP4326004B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079850A (en) * 2007-09-27 2009-04-16 Panasonic Corp Refrigerating cycle device
WO2009147882A1 (en) * 2008-06-05 2009-12-10 三菱電機株式会社 Refrigeration cycle apparatus
WO2010128557A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
WO2011036741A1 (en) 2009-09-24 2011-03-31 三菱電機株式会社 Refrigeration cycle device
US9212825B2 (en) 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
WO2016114557A1 (en) * 2015-01-15 2016-07-21 Lg Electronics Inc. Air conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212681B1 (en) * 2010-11-08 2012-12-17 엘지전자 주식회사 air conditioner

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079850A (en) * 2007-09-27 2009-04-16 Panasonic Corp Refrigerating cycle device
US9212825B2 (en) 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
WO2009147882A1 (en) * 2008-06-05 2009-12-10 三菱電機株式会社 Refrigeration cycle apparatus
JP4906963B2 (en) * 2008-06-05 2012-03-28 三菱電機株式会社 Refrigeration cycle equipment
US8769983B2 (en) 2008-06-05 2014-07-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2010128557A1 (en) * 2009-05-08 2010-11-11 三菱電機株式会社 Air conditioner
CN102422099A (en) * 2009-05-08 2012-04-18 三菱电机株式会社 Air conditioner
JPWO2010128557A1 (en) * 2009-05-08 2012-11-01 三菱電機株式会社 Air conditioner
JP5442005B2 (en) * 2009-05-08 2014-03-12 三菱電機株式会社 Air conditioner
WO2011036741A1 (en) 2009-09-24 2011-03-31 三菱電機株式会社 Refrigeration cycle device
JP5599403B2 (en) * 2009-09-24 2014-10-01 三菱電機株式会社 Refrigeration cycle equipment
US9353975B2 (en) 2009-09-24 2016-05-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus with an expander to recover power from refrigerant
WO2016114557A1 (en) * 2015-01-15 2016-07-21 Lg Electronics Inc. Air conditioning system
US10619892B2 (en) 2015-01-15 2020-04-14 Lg Electronics Inc. Air conditioning system

Also Published As

Publication number Publication date
JP4326004B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP5239824B2 (en) Refrigeration equipment
JP5231002B2 (en) Vapor compression apparatus and method for performing a transcritical cycle associated therewith
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2006078087A (en) Refrigeration unit
JP2009270745A (en) Refrigerating system
JP2007178072A (en) Air conditioner for vehicle
JP5186949B2 (en) Refrigeration equipment
JP2009257706A (en) Refrigerating apparatus
JP2009299911A (en) Refrigeration device
JP4442237B2 (en) Air conditioner
JP4751851B2 (en) Refrigeration cycle
JP4326004B2 (en) Air conditioner
JP4622193B2 (en) Refrigeration equipment
JP6253370B2 (en) Refrigeration cycle equipment
JP3936027B2 (en) Air conditioner
JP4902585B2 (en) Air conditioner
JP2008292122A (en) Heat storage system and heat storage type air conditioner using same
JP2009257705A (en) Refrigerating apparatus
JP2009186054A (en) Refrigerating cycle device
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP4273588B2 (en) Air conditioner refrigerant circuit
JP5895662B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4326004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees