JP2007178042A - Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it - Google Patents

Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it Download PDF

Info

Publication number
JP2007178042A
JP2007178042A JP2005375780A JP2005375780A JP2007178042A JP 2007178042 A JP2007178042 A JP 2007178042A JP 2005375780 A JP2005375780 A JP 2005375780A JP 2005375780 A JP2005375780 A JP 2005375780A JP 2007178042 A JP2007178042 A JP 2007178042A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
stage
expansion device
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005375780A
Other languages
Japanese (ja)
Inventor
Tetsuei Yokoyama
哲英 横山
Toshihide Koda
利秀 幸田
Shin Sekiya
慎 関屋
Kei Sasaki
圭 佐々木
Hideaki Maeyama
英明 前山
So Nomoto
宗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005375780A priority Critical patent/JP2007178042A/en
Publication of JP2007178042A publication Critical patent/JP2007178042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical vapor compression type refrigerating cycle provided with a two-stage compressor reducing suction heating loss and having high efficiency with a heat radiation side of carbon dioxide refrigerant operating in a supercritical zone. <P>SOLUTION: In this supercritical vapor compression type refrigerating cycle having the two-stage compressor having an intermediate connection circuit to compress the refrigerant in two stages, a first expansion device for reducing the pressure of the refrigerant to an intermediate pressure, a gas-liquid separator for separating the refrigerant into gas and liquid, an injection circuit for injecting the gas phase side refrigerant after separating into gas and liquid into the intermediate connection circuit, and a second expansion device, an expulsion volume ratio of expulsion volume on a high stage side to expulsion volume on a low stage side is higher than the adiabatic index root of a ratio of a suction pressure of the two-stage compressor to a refrigerant saturated liquid pressure in the first expansion device. Opening or degree of suction heating of the first and second expansion devices is controlled to keep the refrigerant injected into the intermediate connection circuit in a gas phase state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、冷媒を二段圧縮するとともに中間圧に冷媒をインジェクションする二段圧縮機を備える超臨界蒸気圧縮式冷凍サイクルおよびこれを用いる冷暖房空調設備とヒートポンプ給湯機とに関するものである。   The present invention relates to a supercritical vapor compression refrigeration cycle including a two-stage compressor that compresses a refrigerant in two stages and injects the refrigerant to an intermediate pressure, an air conditioning and air conditioning facility using the same, and a heat pump water heater.

冷暖房空調設備に用いられていた特定フロンは、オゾン層の破壊や地球温暖化などの問題があり規制されている。また、新しく開発された代替冷媒は、オゾン層を破壊しないが、地球温暖化係数が二酸化炭素冷媒の数百から数千倍である。このような背景から、二酸化炭素が地球環境にやさしい冷媒として再び注目されている。
しかし、二酸化炭素の臨界温度は約31℃であり、空調用冷凍サイクルの作動流体として使った場合、通常の放熱側環境温度(冷房時室外:25℃〜35℃程度、暖房時室内:15℃〜25℃程度)で圧縮された冷媒は、二酸化炭素の臨界温度と7.38MPaの臨界圧力を超えるようになり、超臨界蒸気圧縮式冷凍サイクルを形成する。超臨界蒸気圧縮式冷凍サイクルの放熱過程において、二酸化炭素冷媒が超臨界圧力状態になっているため、従来冷媒のような潜熱ではなく顕熱の形で放熱が行われ、従来の冷凍サイクルに比べサイクル効率が低下してしまう問題があった。
Specified chlorofluorocarbons used in air conditioning and air conditioning facilities are regulated due to problems such as ozone layer destruction and global warming. Also, newly developed alternative refrigerants do not destroy the ozone layer, but have a global warming potential that is several hundred to several thousand times that of carbon dioxide refrigerants. Against this background, carbon dioxide is attracting attention as a refrigerant that is friendly to the global environment.
However, the critical temperature of carbon dioxide is about 31 ° C, and when used as a working fluid in an air-conditioning refrigeration cycle, the normal heat radiation side environmental temperature (outside of cooling room: about 25 ° C to 35 ° C, indoor of heating time: 15 ° C) The refrigerant compressed at about ˜25 ° C. exceeds the critical temperature of carbon dioxide and the critical pressure of 7.38 MPa, and forms a supercritical vapor compression refrigeration cycle. In the heat dissipation process of the supercritical vapor compression refrigeration cycle, the carbon dioxide refrigerant is in a supercritical pressure state, so heat is released in the form of sensible heat instead of latent heat like conventional refrigerants, compared to conventional refrigeration cycles. There was a problem that the cycle efficiency was lowered.

そこで、二酸化炭素を冷媒に用いた超臨界蒸気圧縮式冷凍サイクルの効率を向上させるために、内部熱交換器とガスインジェクションとを用いたサイクルが提案されている(例えば、特許文献1参照)。
また、二段圧縮機の中間圧にガスインジェクションする冷凍サイクルに適した排除容積比について、HFC冷媒(R410A)、HCFC冷媒(R22)に関して検討している(例えば、特許文献2参照)。
また、内部中間圧型二酸化炭素冷媒ニ段ロータリ圧縮機において一段目に対する二段目の排除容積比を1対0.56〜0.8の範囲(特に0.65を推奨)に設定し、起動時の圧力変動を小さくしてオイルフォーミングが抑制できることが開示されている(例えば、特許文献3参照)。
Therefore, in order to improve the efficiency of a supercritical vapor compression refrigeration cycle using carbon dioxide as a refrigerant, a cycle using an internal heat exchanger and gas injection has been proposed (see, for example, Patent Document 1).
Further, an exclusion volume ratio suitable for a refrigeration cycle in which gas is injected into an intermediate pressure of a two-stage compressor is examined for the HFC refrigerant (R410A) and the HCFC refrigerant (R22) (see, for example, Patent Document 2).
Also, in the internal intermediate pressure type carbon dioxide refrigerant two-stage rotary compressor, the excluded volume ratio of the second stage to the first stage is set in the range of 0.56 to 0.8 (especially 0.65 is recommended), It is disclosed that oil forming can be suppressed by reducing the pressure fluctuation (see, for example, Patent Document 3).

特開2001−116376号公報JP 2001-116376 A 特開2000−87892号公報JP 2000-87892 A 特開2001−73976号公報JP 2001-73976 A

しかし、従来提案では中間圧にガスインジェクションする冷凍サイクルであるが、高圧側が臨界動作する二酸化炭素冷媒を用いた場合については考慮されていない。また、別の従来提案では内部中間圧型二段ロータリ圧縮機で二酸化炭素冷媒を用いた冷凍サイクルであるが、中間圧にガスインジェクションする場合に適した排除容積比については検討していない。
二酸化炭素を冷媒に用いた超臨界蒸気圧縮式冷凍サイクルにおいては、高圧放熱器で超臨界状態に達するため、従来の提案に従って二段圧縮機の排除容積比を決定しても、気液分離が適切に行なえず中間インジェクションによる性能改善効果と信頼性向上効果とが十分に得られないという問題がある。
However, in the conventional proposal, although it is a refrigeration cycle in which gas is injected to an intermediate pressure, the case where carbon dioxide refrigerant whose critical operation is performed on the high pressure side is not taken into consideration. Another conventional proposal is a refrigeration cycle using a carbon dioxide refrigerant in an internal intermediate pressure type two-stage rotary compressor, but an excluded volume ratio suitable for gas injection to an intermediate pressure has not been studied.
In the supercritical vapor compression refrigeration cycle using carbon dioxide as the refrigerant, the supercritical state is reached with a high-pressure radiator, so gas-liquid separation is not possible even if the excluded volume ratio of the two-stage compressor is determined according to the conventional proposal. There is a problem that the performance improvement effect and the reliability improvement effect due to the intermediate injection cannot be obtained sufficiently because the intermediate injection cannot be performed properly.

この発明の目的は、吸入加熱損失が小さく高効率の高圧シェル型の二段圧縮機を備え、二酸化炭素冷媒の放熱側が超臨界域で動作する超臨界蒸気圧縮式冷凍サイクルを提供することである。   An object of the present invention is to provide a supercritical vapor compression refrigeration cycle that includes a high-efficiency high-pressure shell-type two-stage compressor that has a small suction heating loss and that operates on the heat dissipation side of carbon dioxide refrigerant in the supercritical region. .

この発明に係わる超臨界蒸気圧縮式冷凍サイクルは、低圧の冷媒が低段側回転圧縮要素で中間圧まで圧縮された冷媒が中間連結回路を経由して高段側回転圧縮要素に吸入され、上記高段側回転圧縮要素で高圧まで圧縮される二段圧縮機と、高圧に圧縮される冷媒を飽和液圧以下まで減圧する第1の膨張装置と、飽和液圧以下で湿りガス状態になった冷媒を気液分離する気液分離器と、気液分離後の気相側冷媒を上記中間連結回路にインジェクションするインジェクション回路と、気液分離後の液相側冷媒を低圧まで減圧する第2の膨張装置と、低圧まで減圧される冷媒を蒸発させる蒸発器と、を有する超臨界蒸気圧縮式冷凍サイクルにおいて、上記高段側回転圧縮要素の排除容積の上記低段側回転圧縮要素の排除容積に対する排除容積比は、上記二段圧縮機の吸入圧力の上記第1の膨張装置における冷媒飽和液圧に対する比の等エントロピ指数の乗根以上であり、上記第1の膨張装置または上記第2の膨張装置の開度または吸入加熱度を、上記中間連結回路にインジェクションする冷媒を気相状態に保つように制御する。   In the supercritical vapor compression refrigeration cycle according to the present invention, the refrigerant in which the low-pressure refrigerant is compressed to the intermediate pressure by the low-stage side rotary compression element is sucked into the high-stage side rotary compression element via the intermediate connection circuit. A two-stage compressor that is compressed to a high pressure by a high-stage rotary compression element, a first expansion device that decompresses the refrigerant that is compressed to a high pressure to a saturation liquid pressure or less, and a wet gas state that is below the saturation liquid pressure A gas-liquid separator that gas-liquid separates the refrigerant; an injection circuit that injects the gas-phase refrigerant after gas-liquid separation into the intermediate connection circuit; and a second that depressurizes the liquid-phase refrigerant after gas-liquid separation to a low pressure In a supercritical vapor compression refrigeration cycle having an expansion device and an evaporator for evaporating a refrigerant whose pressure is reduced to a low pressure, an exclusion volume of the high-stage rotary compression element is smaller than an exclusion volume of the low-stage rotary compression element Excluded volume ratio is It is equal to or higher than the root of the isentropic exponent of the ratio of the suction pressure of the two-stage compressor to the refrigerant saturated liquid pressure in the first expansion device, and the opening degree of the first expansion device or the second expansion device The degree of suction heating is controlled so that the refrigerant injected into the intermediate coupling circuit is kept in a gas phase state.

この発明に係わる超臨界蒸気圧縮式冷凍サイクルの効果は、二段圧縮機に中間インジェクションする冷媒主成分を気相状態に保つことができ、液相冷媒を多量注入することによって起こりうる圧縮機効率の低下と信頼性の低下を防ぐことができる。   The effect of the supercritical vapor compression refrigeration cycle according to the present invention is that the refrigerant main component that is intermediately injected into the two-stage compressor can be maintained in the gas phase, and the compressor efficiency that can occur by injecting a large amount of liquid phase refrigerant. And reliability can be prevented.

実施の形態1.
図1は、この発明の実施の形態1に係わる気液分離器を用いた超臨界蒸気圧縮式冷凍サイクルの回路図である。
この発明の実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルは、冷媒を二段で圧縮する二段圧縮機1と冷媒を二段で膨張する第1の膨張装置3および第2の膨張装置7とを備える二段圧縮二段膨張方式を採用している。冷媒としては、二酸化炭素を用いている。
実施の形態1に係わる二段圧縮機1では、冷媒を密閉容器13に内包される低段側回転圧縮要素11および高段側回転圧縮要素12で順に圧縮して超臨界状態まで昇圧し、高段側回転圧縮要素12の吐出口dから密閉容器13内に吐出する。その後、密閉容器13から外部回路へ吐出された冷媒は、高圧放熱器2で放熱冷却された後、第1の膨張装置3で飽和圧力以下まで減圧し、湿りガス状態になった冷媒を気液分離器4で気液分離する。低段側回転圧縮要素11の吐出口dと高段側回転圧縮要素12の吸入口Sが中間連結回路15により連結されている。
Embodiment 1 FIG.
1 is a circuit diagram of a supercritical vapor compression refrigeration cycle using a gas-liquid separator according to Embodiment 1 of the present invention.
A supercritical vapor compression refrigeration cycle according to Embodiment 1 of the present invention includes a two-stage compressor 1 that compresses refrigerant in two stages, a first expansion device 3 that expands refrigerant in two stages, and a second expansion device. 7 is adopted. Carbon dioxide is used as the refrigerant.
In the two-stage compressor 1 according to the first embodiment, the refrigerant is sequentially compressed by the low-stage side rotary compression element 11 and the high-stage side rotary compression element 12 contained in the hermetic container 13, and the pressure is increased to a supercritical state. It discharges into the sealed container 13 from the discharge port d 2 of the stage side rotary compressing element 12. Thereafter, the refrigerant discharged from the hermetic container 13 to the external circuit is radiated and cooled by the high-pressure radiator 2, and then depressurized to a saturation pressure or less by the first expansion device 3. Gas-liquid separation is performed by the separator 4. The discharge port d 1 of the low-stage side rotary compression element 11 and the suction port S 2 of the high-stage side rotary compression element 12 are connected by an intermediate connection circuit 15.

気液分離器4内の気相を主成分とする冷媒は、インジェクション回路5から二段圧縮機1の中間連結回路15の途中にある冷媒混合器14に中間インジェクションされ、低段側回転圧縮要素11から吐出された冷媒に混合されてから高段側回転圧縮要素12に吸入される。
インジェクション回路5には、流量調整弁16が介設されており、インジェクション量を調整する。
一方、気液分離器4内の液相冷媒は、第2の膨張装置7でさらに減圧され、蒸発器8で吸熱加熱され気相状態まで蒸発されて、再び二段圧縮機1の低段側回転圧縮要素11の吸入口Sから吸入される。
The refrigerant mainly composed of the gas phase in the gas-liquid separator 4 is intermediately injected from the injection circuit 5 to the refrigerant mixer 14 in the middle of the intermediate connection circuit 15 of the two-stage compressor 1, and the low-stage side rotary compression element. After being mixed with the refrigerant discharged from 11, the refrigerant is sucked into the high-stage rotary compression element 12.
The injection circuit 5 is provided with a flow rate adjusting valve 16 for adjusting the injection amount.
On the other hand, the liquid-phase refrigerant in the gas-liquid separator 4 is further depressurized by the second expansion device 7, endothermically heated by the evaporator 8, evaporated to a gas phase state, and again on the lower stage side of the two-stage compressor 1. It is sucked from the suction port S 1 rotary compression element 11.

また、二段圧縮機1において、中間圧が冷媒の臨界圧力以下になるように、低段側回転圧縮要素11の排除容積に対する高段側回転圧縮要素12の排除容積の割合(以下、排除容積比と称す。)は、二段圧縮機1の吸入圧力を第1膨脹装置3における冷媒飽和液圧で除算した商の等エントロピ指数乗根以上である。   In the two-stage compressor 1, the ratio of the excluded volume of the high-stage rotary compression element 12 to the excluded volume of the low-stage rotary compression element 11 (hereinafter referred to as the excluded volume) so that the intermediate pressure is equal to or lower than the critical pressure of the refrigerant. (Referred to as a ratio) is equal to or higher than the isentropic exponent root of the quotient obtained by dividing the suction pressure of the two-stage compressor 1 by the refrigerant saturated liquid pressure in the first expansion device 3.

また、実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルは、温度計20、21が第1の膨張装置3の上流側と下流側に、温度計22が気液分離器4に連なる液相側配管23に、温度計24が気液分離器4に連なるインジェクション回路5に、温度計25、26が低段側回転圧縮要素11の吐出口dから高段側回転圧縮要素12の吸入口Sとを連結する中間連結回路15のインジェクション回路5が接続される位置の前後に、温度計27、28が高圧放熱器2の前後に、温度計29、30が蒸発器8の前後にそれぞれ取り付けられ、測定した温度から冷媒の状態を推定する。そして、気液分離器4の吸入前の冷媒が飽和液圧以下で、湿りガス状態にするために、気液分離器4の吸入前の温度計21の温度から飽和液温度以下、すなわち湿りガス状態であるか否かを判断し、気液分離器4に吸入される直前の冷媒の温度が液温度帯であれば、第1の膨脹装置3を絞って中間圧を下げるように調節する。 Further, in the supercritical vapor compression refrigeration cycle according to the first embodiment, the thermometers 20 and 21 are on the upstream side and the downstream side of the first expansion device 3, and the thermometer 22 is connected to the gas-liquid separator 4. The side pipe 23, the thermometer 24 is connected to the injection circuit 5 connected to the gas-liquid separator 4, and the thermometers 25 and 26 are connected from the discharge port d 1 of the low stage side rotary compression element 11 to the suction port of the high stage side rotary compression element 12. before and after the position where the injection circuit 5 of the intermediate connecting circuit 15 for coupling the S 2 is connected, in the longitudinal thermometer 27 and 28 of the high-pressure radiator 2, thermometer 29 and 30 respectively before and after the evaporator 8 The state of the refrigerant is estimated from the temperature measured. Then, in order to make the refrigerant before suction of the gas-liquid separator 4 less than the saturated liquid pressure and the wet gas state, the temperature of the thermometer 21 before suction of the gas-liquid separator 4 is less than the saturated liquid temperature, that is, the wet gas. It is determined whether or not the refrigerant is in a state, and if the temperature of the refrigerant immediately before being sucked into the gas-liquid separator 4 is a liquid temperature range, the first expansion device 3 is throttled to adjust the intermediate pressure to be lowered.

図2は、この発明の実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルのP−h線図である。
次に、中間インジェクションを行う効果について図2を参照して説明する。なお、二段圧縮機1の低段側吸入圧力をPS1(二段圧縮機1の吸入圧力PSSに等しい)、中間圧力をP(低段側吐出圧力Pd1と高段側吸入圧力PS2とに等しい)、高段側吐出圧力をPd2(二段圧縮機1の吐出圧力Pに等しい)で表す。また、蒸発器8を循環する循環量をGeV、中間インジェクション量をGinj、ガスクーラ側循環流量をGgCで表す。ここで、ガスクーラ側循環流量GgCは、GgC=GeV+Ginjから求まり、中間インジェクション量の割合αを、α=Ginj/GeVで定義する。
FIG. 2 is a Ph diagram of the supercritical vapor compression refrigeration cycle according to Embodiment 1 of the present invention.
Next, the effect of performing the intermediate injection will be described with reference to FIG. The low-stage suction pressure of the two-stage compressor 1 is P S1 (equal to the suction pressure P SS of the two-stage compressor 1), and the intermediate pressure is P m (low-stage discharge pressure P d1 and high-stage suction pressure). equal to the P S2), representative of the high-stage discharge pressure P d2 (equal to the discharge pressure P d of the two-stage compressor 1). Further, the circulation amount circulating through the evaporator 8 is represented by G eV , the intermediate injection amount is represented by G inj , and the gas cooler side circulation flow rate is represented by G gC . Here, the gas cooler-side circulation flow rate G gC is obtained from G gC = G eV + G inj, and the ratio α of the intermediate injection amount is defined as α = G inj / G eV .

二段圧縮における中間インジェクションによる成績係数(Coefficient of Performanceの略語COPと称す。)の改善は、圧縮機効率とサイクル効率とが改善される。
まず、サイクル効率の改善効果について説明する。
(1)空調冷房用途では、二段圧縮インジェクションによって凝縮器側のエンタルピ差が増加し、冷房能力と冷房成績係数が向上する。
(2)空調暖房用途では、ガスクーラ側冷媒循環量が増加して暖房能力と成績係数が向上するが、空調冷房用途に比べると効果は小さい。
(3)給湯用途においても空調暖房用途と同様の効果があるが、吐出温度が下がるためインジェクション量が制約される。
(4)高圧シェル型圧縮機を高圧縮比で運転すると、高段側吐出温度が異常に高温となり二段圧縮機1の信頼性が損なわれる。この対策として中間インジェクションすることによって、成績係数を低下させずに高段側吐出温度の異常上昇を抑えることができる。
The improvement in the coefficient of performance (referred to as COP for Coefficient of Performance) by intermediate injection in the two-stage compression improves the compressor efficiency and the cycle efficiency.
First, the effect of improving cycle efficiency will be described.
(1) In air conditioning and cooling applications, the difference in enthalpy on the condenser side is increased by two-stage compression injection, and the cooling capacity and the cooling performance coefficient are improved.
(2) In air-conditioning / heating applications, the gas cooler-side refrigerant circulation rate is increased and the heating capacity and coefficient of performance are improved, but the effect is small compared to air-conditioning / cooling applications.
(3) The hot water supply application has the same effect as the air conditioning heating application, but the injection amount is restricted because the discharge temperature is lowered.
(4) When the high pressure shell compressor is operated at a high compression ratio, the high stage discharge temperature becomes abnormally high and the reliability of the two stage compressor 1 is impaired. By performing intermediate injection as a countermeasure, it is possible to suppress an abnormal increase in the high-stage discharge temperature without reducing the coefficient of performance.

図3は、この発明の実施の形態1に係わる二段圧縮機1の高段側回転圧縮要素12の吸入口SでのP−h線図を示す。なお、図3において、Aは、インジェクション無しの理想状態、すなわち、体積効率が1で、吸入加熱損失がない場合、Aは、インジェクション有りの理想状態、すなわち、体積効率が1で、吸入加熱損失がない場合、Bは、インジェクション無しで体積効率が実体積効率、吸入加熱損失がない場合、Bは、インジェクション有りで体積効率が実体積効率、吸入加熱損失がない場合、Cは、インジェクション無しの実状態、すなわち、体積効率が実体積効率、吸入加熱損失がある場合、Cは、インジェクション有りの実状態、すなわち、体積効率が実体積効率、吸入加熱損失がある場合のそれぞれの高段側回転圧縮要素12の吸入口Sにおけるエンタルピと圧力を示す。
また、中間圧は、インジェクション有りの方が無しの場合より大きい。また、実状態の中間圧の方が理想状態の中間圧より大きい。
Figure 3 illustrates a P-h diagram of the suction port S 2 of the high-stage rotary compression element 12 of the embodiment two-stage compressor 1 according to the first embodiment of the present invention. In FIG. 3, A 0 is an ideal state without injection, that is, volumetric efficiency is 1, and when there is no suction heating loss, A 1 is an ideal state with injection, that is, volumetric efficiency is 1, When there is no heating loss, B 0 is volume efficiency with actual volume efficiency without injection and there is no suction heating loss, B 1 is with C 0 when volume efficiency is actual volume efficiency and there is no suction heating loss, C 0 the real state without injection, i.e., the volumetric efficiency is the actual volumetric efficiency, if there is a suction heat loss, C 1 is the actual state of there injection, i.e., the volumetric efficiency is the actual volumetric efficiency, in the case where there is a suction heat loss shows the enthalpy and pressure at the suction port S 2 of each of the high-stage side rotary compressing element 12.
Also, the intermediate pressure is greater with and without injection. Further, the intermediate pressure in the actual state is larger than the intermediate pressure in the ideal state.

次に、二段圧縮インジェクションサイクルが成立するために必要な排除容積比の条件について説明する。
1)インジェクションが行われないときの理想状態、すなわち、体積効率が1で中間加熱が行われていないときについて説明する。(図3のAの状態のときである。)
このとき、理想的な中間圧P adは、低段側回転圧縮要素11において等エントロピ圧縮されたときの低段側吐出圧力Pd1 adに等しく、式(1)により求められる。但し、VSt1は低段側排除容積、VSt2は高段側排除容積、ρS1は低段側の吸入冷媒密度、ρd1adは等エントロピ圧縮されたときの低段側吐出冷媒密度、PS1は二段圧縮機1の低段側吸入圧力、Pは二段圧縮機1の中間圧力、nは等エントロピ指数である。
Next, the condition of the excluded volume ratio necessary for establishing the two-stage compression injection cycle will be described.
1) An ideal state when no injection is performed, that is, a case where volumetric efficiency is 1 and intermediate heating is not performed will be described. (It is the state of A 0 in FIG. 3.)
At this time, the ideal intermediate pressure P m ad is equal to the low-stage discharge pressure P d1 ad when the isentropic compression is performed in the low-stage rotary compression element 11, and is obtained by Expression (1). Where V St1 is the low-stage excluded volume, V St2 is the high-stage excluded volume, ρ S1 is the low-stage suction refrigerant density, ρ d1ad is the low-stage discharge refrigerant density when isentropic compression, and P S1 the low-stage suction pressure of the two-stage compressor 1, P m is the intermediate pressure of the two-stage compressor 1, n is an isentropic exponent.

ad=Pd1 ad=PS1×(ρd1ad/ρS1
=PS1×(VSt1/VSt2 ・・・(1)
P m ad = P d1 ad = P S1 × (ρ d1ad / ρ S1 ) n
= P S1 × (V St1 / V St2 ) n (1)

等エントロピ指数nは、REFPROP第7版のデータベースから、n=LN(P/PS1)÷LN(ρ/ρS1)を用いて計算することにより求められ、等エントロピ指数nは約1.3となる。
また、二段圧縮機1の高段側吸入圧力PS2は、理想的な中間圧P adに等しい。
The isentropic index n is obtained by calculating from the REFPROP 7th edition database using n = LN (P m / P S1 ) ÷ LN (ρ m / ρ S1 ), and the isentropic index n is about 1 .3.
Further, the high-stage suction pressure P S2 of the two-stage compressor 1 is equal to the ideal intermediate pressure P m ad.

2)次に、インジェクションが行われ、体積効率が実体積効率で、且つ中間加熱が行われないときについて説明する。(図3のBの状態のときである。)
このとき、質量保存式は式(2)で表される。但し、ηV1は低段側体積効率、ηV2は高段側体積効率、ρS2は高段側の吸入冷媒密度である。
2) Next, the case where injection is performed, volumetric efficiency is actual volumetric efficiency, and intermediate heating is not performed will be described. (It is the state of B 1 in FIG.)
At this time, the mass conservation formula is represented by the formula (2). However, eta V1 is low-stage volumetric efficiency, eta V2 is higher stage volumetric efficiency, the [rho S2 is suction refrigerant density of the high-stage side.

St1×ηV1×ρS1×(1+α)=VSt2×ηV2×ρS2 ・・・(2) V St1 × η V1 × ρ S1 × (1 + α) = V St2 × η V2 × ρ S2 (2)

インジェクションされた冷媒が低段側吐出口dから高段側吸入口Sまで等圧変化するとき、混合した冷媒のエネルギーが保存され、式(3)が成り立つ。そして、排除容積比VSt2/VSt1は、式(3)を式(2)に代入して得られる式(4)で求められる。 When the injected refrigerant changes at the same pressure from the low-stage discharge port d 1 to the high-stage suction port S 2 , the energy of the mixed refrigerant is stored, and Equation (3) is established. Then, the excluded volume ratio V St2 / V St1 is obtained by Expression (4) obtained by substituting Expression (3) into Expression (2).

ρS2={(1+α)×ρd1×ρinj}/(ρd1×α+ρinj) ・・・(3)
St2/VSt1=(ηV1/ηV2)×(1+α)×(ρS1/ρS2
=(ηV1/ηV2)×(1+α×ρd1/ρinj)×(ρS1/ρd1) ・・・(4)
ρ S2 = {(1 + α) × ρ d1 × ρ inj } / (ρ d1 × α + ρ inj ) (3)
V St2 / V St1 = (η V1 / η V2 ) × (1 + α) × (ρ S1 / ρ S2 )
= (Η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (ρ S1 / ρ d1 ) (4)

そして、気液分離後にガスインジェクションすることができるための必要条件は、理想状態の中間圧力P adが第1の膨張装置3の飽和液圧力Pliqより小さいことである。この必要条件を書き直すと、式(5)、さらに式(6)となる。ここで、低段側吐出口dが理想的低段側吐出口d adに等しいとすると、必要条件は式(7)となる。 The prerequisite for that can be gas injection after a gas-liquid separation is that the intermediate pressure P m ad of the ideal state is less than the saturated liquid pressure P liq the first expansion device 3. When this necessary condition is rewritten, Equation (5) and Equation (6) are obtained. Here, the when the low-stage discharge port d 1 is equal to the ideal low-stage discharge port d 1 ad, requirement formula (7).

S1×(ρd1 ad/ρS1<Pliq<Pcrt ・・・(5)
ρS1/ρd ad>(Ps1/Pliq1/n>(Ps1/Pcrt1/n ・・・(6)
ρS1/ρd>(Ps1/Pliq1/n>(Ps1/Pcrt1/n ・・・(7)
P S1 × (ρ d1 ad / ρ S1 ) n <P liq <P crt (5)
ρ S1 / ρd 1 ad > (P s1 / P liq ) 1 / n > (P s1 / P crt ) 1 / n (6)
ρ S1 / ρd 1 > (P s1 / P liq ) 1 / n > (P s1 / P crt ) 1 / n (7)

ゆえに、排除容積比VSt2/VSt1についての必要条件は、式(4)と式(7)から式(8)となる。 Therefore, the necessary condition for the excluded volume ratio V St2 / V St1 is expressed by Equation (4) and Equation (7) to Equation (8).

St2/VSt1>(ηV1/ηV2)×(1+α×ρd1/ρinj)×(Ps1/Pliq1/n
>(ηV1/ηV2)×(1+α×ρd1/ρinj)×(Ps1/Pcrt1/n ・・・(8)
V St2 / V St1 > (η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (P s1 / P liq ) 1 / n
> (Η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (P s1 / P crt ) 1 / n (8)

通常、ロータリ式の回転圧縮要素を同じシリンダ(内径と厚みが等しい)を用いて構成すると、漏れ感度(=漏れ面積÷排除容積)は排除容積が小さいほど大きくなることが知られている。通常、低段側排除容積VSt1が高段側排除容積VSt2より大きいので、(すなわち、ここでは、VSt2/VSt1<1とすると、)低段側体積効率ηV1が高段側体積効率ηV2より大きくて、式(9)の関係が成り立つ。また、式(4)の(1+α×ρd1/ρinj)に関して式(10)の関係が成り立つので、排除容積比VSt2/VSt1についての必要条件は、式(11)となる。 Normally, it is known that when the rotary type rotary compression element is configured using the same cylinder (with the same inner diameter and thickness), the leakage sensitivity (= leakage area / exclusion volume) increases as the rejection volume decreases. Usually, since the low-stage excluded volume V St1 is larger than the high-stage excluded volume V St2 (that is, here, assuming that V St2 / V St1 <1), the low-stage side volume efficiency η V1 is the high-stage side volume. The relationship of the formula (9) is established when the efficiency is larger than η V2 . Further, since the relationship of the equation (10) is established with respect to (1 + α × ρ d1 / ρ inj ) of the equation (4), the necessary condition for the excluded volume ratio V St2 / V St1 is the equation (11).

ηV1/ηV2>1 ・・・(9)
(1+α×ρd1/ρinj)>1 ・・・(10)
St2/VSt1>(Ps1/Pliq1/n>(Ps1/Pcrt1/n ・・・(11)
η V1 / η V2 > 1 (9)
(1 + α × ρ d1 / ρ inj )> 1 (10)
V St2 / V St1 > (P s1 / P liq ) 1 / n > (P s1 / P crt ) 1 / n (11)

3)次に、インジェクションが行われ、体積効率が実体積効率で、且つ中間加熱が行われているときについて説明する。(図3のCの状態のときである。)
各種圧縮機損失の発生により、中間圧の冷媒は等圧のまま過熱され温度上昇すると、吐出される中間圧の冷媒密度ρd1 は、低段側回転圧縮要素11で等エントロピ圧縮された後での低段側吐出冷媒密度ρd1 adより大きくなり、式(12)の関係式が成り立つ。また、式(4)のρd1にρd1 を代入すると、式(13)が得られる。この式(13)のρd1 をρd1 adで置き換え、関係式(12)から式(14)が得られる。
3) Next, the case where injection is performed, volumetric efficiency is actual volumetric efficiency, and intermediate heating is performed will be described. (It is the state of C 1 in FIG.)
Due to the occurrence of various compressor losses, when the intermediate pressure refrigerant is heated to a constant pressure and the temperature rises, the refrigerant density ρ d1 r of the discharged intermediate pressure is isentropically compressed by the low-stage rotary compression element 11. The lower-stage-side discharged refrigerant density ρ d1 ad in FIG . Also, substituting [rho d1 r in [rho d1 of formula (4), equation (13) is obtained. By replacing ρ d1 r in this equation (13) with ρ d1 ad , equation (14) is obtained from relational equation (12).

ρd1 ad<ρd1 ・・・(12)
St2/VSt1=(ηV1/ηV2)×(1+α×ρd1/ρinj)×(ρS1/ρd1 ) ・・・(13)
St2/VSt1>(ηV1/ηV2)×(1+α×ρd1/ρinj)×(ρS1/ρd1 ad
=(ηV1/ηV2)×(1+α×ρd1/ρinj)×(PS1/P ad) ・・・(14)
ρ d1 add1 r (12)
V St2 / V St1 = (η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (ρ S1 / ρ d1 r ) (13)
V St2 / V St1 > (η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (ρ S1 / ρ d1 ad )
= (Η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (P S1 / P m ad ) (14)

なお、気液分離後ガスインジェクションを行えるための排除容積比に関する必要条件は、式(8)、さらに式(11)となる。   In addition, the necessary condition regarding the excluded volume ratio for performing gas injection after gas-liquid separation is Expression (8), and further Expression (11).

4)図3のAの状態のときは、式(8)のαを零とし、ηV1=ηV2とすればよい。図3のBの状態のときは、式(8)のαを零とし、ρd1 ad=ρd1 とすればよい。図3のCの状態のときは、式(8)のαを零とし、ρd1 ad<ρd1 とすればよい。
また、図3のAの状態のときは、式(8)のα>0とし、ηV1=ηV2とすればよい。
また、気液分離後ガスインジェクションを行えるための排除容積比に関する必要条件は、式(8)、さらに式(11)となる。
4) In the state of A 0 in FIG. 3, α in the equation (8) is set to zero and η V1 = η V2 may be set. In the state of B 0 in FIG. 3, α in Expression (8) may be set to zero and ρ d1 ad = ρ d1 r . In the state of C 0 in FIG. 3, α in Expression (8) may be zero and ρ d1 add1 r .
Further, when the state of the A 1 in FIG. 3, and alpha> 0 of the formula (8) may be set to η V1 = η V2.
Moreover, the necessary condition regarding the excluded volume ratio for performing gas injection after gas-liquid separation is Expression (8), and further Expression (11).

次に、実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルの効果について説明する。
表1には、住宅用二酸化炭素冷媒ヒートポンプ給湯機に用いられる代表的な環境条件と運転条件を示す。この環境条件は、日本冷凍空調工業会標準規格「JRA4050−2005」に記載される温度条件および(財)ベターリビング制定の優良住宅部品性能試験方法書(BLT EH:2003)で定められた値から引用した。SHはSuper−Heatの略で吸入加熱度を表し、ここでは約10℃を仮定した。添字Sは吸入、dは吐出、expは膨張弁前を意味する。運転条件に示す吸入、吐出、膨張弁前の温度と圧力は、環境条件温度から現実的な範囲でほぼ一様に定められる。
Next, the effect of the supercritical vapor compression refrigeration cycle according to Embodiment 1 will be described.
Table 1 shows typical environmental conditions and operating conditions used for residential carbon dioxide refrigerant heat pump water heaters. This environmental condition is quoted from the temperature conditions described in the Japan Refrigeration and Air Conditioning Industry Association Standard “JRA4050-2005” and the values specified in the Better Living Enacted Good Housing Parts Performance Test Method (BLT EH: 2003). did. SH is an abbreviation for Super-Heat and represents the degree of suction heating. Here, about 10 ° C. was assumed. The subscript S means suction, d means discharge, and exp means before the expansion valve. The temperatures and pressures before the suction, discharge, and expansion valve shown in the operating conditions are determined almost uniformly within the practical range from the environmental condition temperature.

Figure 2007178042
Figure 2007178042

表2には、実施の形態1の効果を比較するために用いるロータリ式の二段圧縮機1の基本仕様を示す。   Table 2 shows the basic specifications of the rotary type two-stage compressor 1 used for comparing the effects of the first embodiment.

Figure 2007178042
また、表3には、二段圧縮機1の性能特性のうち、中間圧の予測値と実験値を示す。なお、予測方法は、技術文献1(福田充宏、他3名、「R410A用2段ロータリ圧縮機の性能予測」、平成10年度日本冷凍空調学会学術講演会講演論文集、日本冷凍空調学会、平成10年10月、p.41−44)や技術文献2(角田昌之、他1名、「回転式容積形圧縮機の内部漏れの解析と評価」、第19回空気調和・冷凍連合講演会講演論文集、日本冷凍空調学会、1985年4月、p.17−19)に記載されている解析手段を適用する。
Figure 2007178042
Table 3 shows predicted values and experimental values of the intermediate pressure among the performance characteristics of the two-stage compressor 1. The prediction method is described in Technical Document 1 (Fukuda Mitsuhiro and three others, “Performance Prediction of R410A Two-Stage Rotary Compressor”, 1998 Proc. October 2010, p.41-44) and Technical Document 2 (Masayuki Tsunoda and one other, "Analysis and Evaluation of Internal Leakage of Rotary Displacement Type Compressor", 19th Air Conditioning and Refrigeration Union Lecture Lecture The analysis means described in the paper collection, Japan Society of Refrigerating and Air Conditioning, April 1985, p.17-19) is applied.

Figure 2007178042
Figure 2007178042

環境条件が給湯定格およびJRAIA冬(冬季高温加熱)において、インジェクション量の割合(α)が10%のときにインジェクションを行った場合と行わない場合とで中間圧を予測すると、表3に示すように、理想状態(A)の中間圧予測値より実体積効率を考慮した状態(B)の中間圧予測値のほうが大きく、さらに、吸入加熱損失を考慮した状態(C)の中間圧予測値のほうが大きくなり、実測値とよく一致することが確認できた。 Table 3 shows the intermediate pressure predicted when the injection rate is 10% when the ratio (α) of the injection amount is 10% in the hot water supply rating and JRAIA winter (high temperature heating in winter). In addition, the intermediate pressure prediction value in the state (B 1 ) considering the actual volume efficiency is larger than the intermediate pressure prediction value in the ideal state (A 1 ), and the intermediate pressure in the state (C 1 ) in consideration of the suction heating loss. The predicted value was larger and it was confirmed that it was in good agreement with the measured value.

次に、気液分離式の二段圧縮ガスインジェクションサイクルにおいて、二段圧縮機1の排除容積比が0.65と0.85との場合の中間インジェクションによる性能改善効果を予測し比較した結果を説明する。予測するときの計算条件として、表1に示す給湯定格の運転条件を用いている。また、インジェクション量の割合は、気液分離後の気相ガスが最大限にガスインジェクションする場合を仮定した。   Next, in the gas-liquid separation type two-stage compressed gas injection cycle, the performance improvement effect by the intermediate injection when the excluded volume ratio of the two-stage compressor 1 is 0.65 and 0.85 is predicted and compared. explain. As calculation conditions for prediction, operating conditions of hot water supply ratings shown in Table 1 are used. Moreover, the ratio of the injection amount assumed that the gas phase gas after gas-liquid separation was gas-injected to the maximum.

図4は、排除容積比およびインジェクションの有無をパラメータとする全圧縮比Pd2/PS1に対する圧縮機効率の関係を示すグラフである。図5は、排除容積比およびインジェクションの有無をパラメータとする全圧縮比Pd2/PS1に対する給湯加熱成績係数(COP)の関係を示すグラフである。
図4と図5から分かるように、インジェクション無しの場合には、排除容積比0.85の二段圧縮機1は全圧縮比2.5以下で圧縮機効率および給湯加熱成績係数などの性能が優れており、排除容積比0.65の二段圧縮機1は全圧縮比2.5より大きい領域で性能が優れている。一方、インジェクション有りの場合には、全圧縮比が約2から約4の範囲で排除容積比0.85の二段圧縮機1の性能が優れている。
FIG. 4 is a graph showing the relationship of the compressor efficiency with respect to the total compression ratio P d2 / P S1 with the excluded volume ratio and the presence or absence of injection as parameters. FIG. 5 is a graph showing the relationship of the hot water supply heating coefficient of performance (COP) with respect to the total compression ratio P d2 / P S1 with the excluded volume ratio and the presence or absence of injection as parameters.
As can be seen from FIG. 4 and FIG. 5, in the case of no injection, the two-stage compressor 1 with a rejection volume ratio of 0.85 has a total compression ratio of 2.5 or less and performance such as compressor efficiency and hot water heating performance coefficient. The two-stage compressor 1 having an excluded volume ratio of 0.65 is excellent, and the performance is excellent in a region where the total compression ratio is larger than 2.5. On the other hand, when there is injection, the performance of the two-stage compressor 1 having an overall compression ratio in the range of about 2 to about 4 and an excluded volume ratio of 0.85 is excellent.

図6は、排除容積比をパラメータとする全圧縮比に対するガスインジェクション量の割合の関係を示すグラフである。
気液分離式ガスインジェクションをするためには、第1膨脹装置3で減圧された冷媒が飽和液圧Pliq以下で、湿りガス状態になることが必要条件であり、乾き度βが大きいほどインジェクション量の割合αが大きくなる。ところが、排除容積比0.65の場合には、中間圧が比較的高いので、全圧縮比2.5以下で気液分離できない。全圧縮比2.5を超えても乾き度βが小さいので大きなインジェクション量は得られない。
FIG. 6 is a graph showing the relationship of the ratio of the gas injection amount to the total compression ratio with the excluded volume ratio as a parameter.
In order to perform gas-liquid separation type gas injection, it is a necessary condition that the refrigerant decompressed by the first expansion device 3 is not higher than the saturated liquid pressure P liq and becomes a wet gas state, and the higher the dryness β, the more the injection is performed. The amount ratio α increases. However, when the rejection volume ratio is 0.65, the intermediate pressure is relatively high, so that gas-liquid separation cannot be performed at a total compression ratio of 2.5 or less. Even if the total compression ratio exceeds 2.5, the dryness β is small, so that a large injection amount cannot be obtained.

図7は、排除容積比0.85の二段圧縮機1におけるインジェクションの有無をパラメータとする全圧縮比に対する低段側圧縮比および高段側圧縮比の関係を示すグラフである。図8は、排除容積比0.65の二段圧縮機1におけるインジェクションの有無をパラメータとする全圧縮比に対する低段側圧縮比および高段側圧縮比の関係を示すグラフである。なお、図7と図8とには、全圧縮比に対する圧縮比の最適値も合わせて示す。なお、一般的に二段圧縮機1では、低段側圧縮比と高段側圧縮比とがそれぞれ全圧縮比の2乗根で、中間圧が二段圧縮機1の吸入圧力と吐出圧力との積の2乗根であるとき圧縮機効率が最もよいことが知られているので、低段側圧縮比と高段側圧縮比の最適値としてこの全圧縮比の2乗根を用いている。   FIG. 7 is a graph showing the relationship between the low-stage compression ratio and the high-stage compression ratio with respect to the total compression ratio with the presence or absence of injection in the two-stage compressor 1 having an excluded volume ratio of 0.85 as a parameter. FIG. 8 is a graph showing the relationship between the low-stage compression ratio and the high-stage compression ratio with respect to the total compression ratio with the presence or absence of injection in the two-stage compressor 1 having an excluded volume ratio of 0.65 as a parameter. 7 and 8 also show the optimum value of the compression ratio with respect to the total compression ratio. In general, in the two-stage compressor 1, the low-stage compression ratio and the high-stage compression ratio are the square roots of the total compression ratio, respectively, and the intermediate pressure is the suction pressure and discharge pressure of the two-stage compressor 1. Since it is known that the compressor efficiency is best when the square root of the product of, the square root of this total compression ratio is used as the optimum value of the low-stage compression ratio and the high-stage compression ratio. .

排除容積比が0.85の二段圧縮機1の場合、図7に示すように、インジェクションを行うと、中間圧が上昇し、低段側圧縮比Pd1/PS1と高段側圧縮比Pd2/PS2がともに最適値に近づいて、圧縮機効率が改善できる。
一方、排除容積比が0.65の二段圧縮機1の場合、インジェクションを行っても、低段側圧縮比と高段側圧縮比が変わらないので、圧縮機効率が改善できない。
In the case of the two-stage compressor 1 with an excluded volume ratio of 0.85, as shown in FIG. 7, when injection is performed, the intermediate pressure increases, and the low-stage compression ratio P d1 / PS1 and the high-stage compression ratio Both P d2 / P S2 are close to the optimum values, and the compressor efficiency can be improved.
On the other hand, in the case of the two-stage compressor 1 having an excluded volume ratio of 0.65, the compressor efficiency cannot be improved because the low-stage compression ratio and the high-stage compression ratio do not change even if injection is performed.

このような気液分離器を用いた二段圧縮インジェクションサイクルにおいては、特開2001−73976号公報に開示される排除容積比0.65は最適値ではない。ガスインジェクションによる性能改善効果を得るためには、まず、第1の膨脹装置3で減圧された冷媒が飽和液圧Pliq以下で、湿りガス状態になることが必要であり、また排除容積比に関する関係式(8)または関係式(11)が必要条件である。 In a two-stage compression injection cycle using such a gas-liquid separator, the excluded volume ratio 0.65 disclosed in Japanese Patent Laid-Open No. 2001-73976 is not an optimum value. In order to obtain the performance improvement effect by gas injection, first, it is necessary that the refrigerant decompressed by the first expansion device 3 be in a wet gas state at a saturated fluid pressure P liq or less, and also regarding the excluded volume ratio. Relational expression (8) or relational expression (11) is a necessary condition.

このようにすることにより、第1の膨張装置3で減圧された冷媒の圧力が飽和液圧以下となり、且つ、排除容積比が二段圧縮機1の吸入圧力の飽和液圧に対する比の等エントロピ指数の乗根以上となっているので、圧縮機効率と信頼性とを改善することができる。   By doing so, the pressure of the refrigerant depressurized by the first expansion device 3 becomes equal to or lower than the saturated hydraulic pressure, and the isosteric volume ratio is the isentropy of the ratio of the suction pressure of the two-stage compressor 1 to the saturated hydraulic pressure. Since it is more than the root of the index, the compressor efficiency and reliability can be improved.

また、中間圧が二段圧縮機1の吸入圧力と吐出圧力との積の2乗根より小さければ、二段圧縮機1の中間圧に冷媒を中間インジェクションすることによって、中間圧が二段圧縮機1の吸入圧力と吐出圧力との積の2乗根に漸近して圧縮機効率が改善されるとともに信頼性が向上する。ここで、式(8)の飽和液圧Pliqを二段圧縮機1の吸入圧力と吐出圧力との積の2乗根で置き換えれば、式(15)、式(16)が必要条件の式となる。 Further, if the intermediate pressure is smaller than the square root of the product of the suction pressure and the discharge pressure of the two-stage compressor 1, the intermediate pressure is compressed by two-stage compression by intermediately injecting the refrigerant into the intermediate pressure of the two-stage compressor 1. Asymptotically approaches the square root of the product of the suction pressure and the discharge pressure of the machine 1, the compressor efficiency is improved and the reliability is improved. Here, if the saturated hydraulic pressure P liq in the equation (8) is replaced with the square root of the product of the suction pressure and the discharge pressure of the two-stage compressor 1, the equations (15) and (16) are necessary conditions. It becomes.

St2/VSt1>(ηV1/ηV2)×(1+α×ρd1/ρinj)×(Ps1/Pd21/2n ・・・(15)
St2/VSt1>(Ps1/Pd21/2n ・・・(16)
V St2 / V St1 > (η V1 / η V2 ) × (1 + α × ρ d1 / ρ inj ) × (P s1 / P d2 ) 1 / 2n (15)
V St2 / V St1 > (P s1 / P d2 ) 1 / 2n (16)

次に、実施の形態1に係わる中間圧に冷媒をインジェクションする効果について別の視点から説明する。
表4には、二酸化炭素冷媒を用いた空調冷暖房設備の一般的な運転条件を示す。図9は、乾き度をパラメータとし、表4の冷房定格の条件の下、体積効率が1、中間加熱無しの理想条件で、二段圧縮機1の中間圧が最適値(P/P1/2に一致する排除容積比を示すグラフである。図10は、乾き度をパラメータとし、表4の冷房定格の条件の下、体積効率が実体積効率、中間加熱の影響を考慮した実条件で、二段圧縮機1の中間圧が最適値(P/P1/2に一致する排除容積比を示すグラフである。
Next, the effect of injecting the refrigerant into the intermediate pressure according to the first embodiment will be described from another viewpoint.
Table 4 shows general operating conditions of an air conditioning heating / cooling facility using a carbon dioxide refrigerant. FIG. 9 shows the dryness as a parameter, and under the conditions of the cooling rating shown in Table 4, the volume efficiency is 1, ideal condition without intermediate heating, and the intermediate pressure of the two-stage compressor 1 is the optimum value (P S / P d ) It is a graph showing an excluded volume ratio corresponding to 1/2 . FIG. 10 shows the optimum value of the intermediate pressure of the two-stage compressor 1 under the conditions of the cooling rating shown in Table 4 under the conditions of the cooling rating shown in Table 4 under the actual conditions taking into account the effects of the actual volumetric efficiency and intermediate heating. it is a graph showing the displacement volume ratio that matches P S / P d) 1/2.

Figure 2007178042
Figure 2007178042

冷媒インジェクション量の割合(α)が0%のとき、逆算した排除容積比は0.79となり、冷媒インジェクション量の割合が増加するほど最適な排除容積比は大きくなる。冷媒インジェクション量の割合が60%までインジェクション量を増やすと、排除容積比は理想条件で0.79〜1.12の範囲、実条件で0.84〜1.15の範囲で変化すると予測される。低段側吸入過熱度(SH)が大きいほど排除容積比は小さくなる、また、中間インジェクション冷媒の乾き度が小さいほど排除容積比は小さくなる傾向を示す。   When the ratio (α) of the refrigerant injection amount is 0%, the excluded volume ratio calculated backward is 0.79, and the optimum excluded volume ratio increases as the ratio of the refrigerant injection amount increases. When the ratio of the refrigerant injection amount is increased to 60%, the rejection volume ratio is predicted to change in the range of 0.79 to 1.12 in the ideal condition and in the range of 0.84 to 1.15 in the actual condition. . The larger the lower-stage suction superheat (SH), the smaller the excluded volume ratio, and the smaller the dryness of the intermediate injection refrigerant, the smaller the excluded volume ratio tends to be.

ガス主成分で冷媒をインジェクションする割合は冷凍サイクルの安定性を考慮すると少なすぎず大きすぎないことが必要であり、通常10%〜50%の範囲である。最適な排除容積比はαによって変化するが、(P/P1/2n以上の範囲が必要条件であり、通常考えられる冷房定格条件では0.8以上の値である。
また、このとき(P/Pcrt1/2n<(P/P1/2nの関係式が成り立つので、気液分離インジェクションが成り立つための必要条件式(16)を満足する。以上のように排除容積比を適切に設定すれば、中間インジェクションによって中間圧が最適値に近づいて圧縮機効率が改善する効果が得られる。
The ratio of injecting the refrigerant with the gas main component needs to be not too small and not too large considering the stability of the refrigeration cycle, and is usually in the range of 10% to 50%. The optimum excluded volume ratio varies depending on α, but a range of (P S / P d ) 1 / 2n or more is a necessary condition, and is a value of 0.8 or more in a normally considered cooling rated condition.
Moreover, since this time (P S / P crt) 1 / 2n <(P S / P d) 1 / 2n of the equation is satisfied, satisfying requirement equation for gas-liquid separation injection is established (16). If the excluded volume ratio is appropriately set as described above, the intermediate pressure approaches the optimum value by the intermediate injection, and the effect of improving the compressor efficiency can be obtained.

実施の形態2.
図11は、この発明の実施の形態2に係わる気液分離器を用いた二段圧縮二段膨脹方式の超臨界蒸気圧縮式冷凍サイクルの回路図である。
この発明の実施の形態2に係わる超臨界蒸気圧縮式冷凍サイクルは、実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルに中間連結回路15に介設される逆止弁19と低段側から吐出する冷媒ガスを気液分離器4に戻す戻し回路18とを追加することが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
実施の形態2に係わる超臨界蒸気圧縮式冷凍サイクルは、気液分離器4が液相状態となりインジェクションできないときのために、低段側回転圧縮要素11から吐出する冷媒ガスを中間連結回路15から分岐する逆止弁19と、分岐された冷媒ガスを気液分離器4に戻す戻り回路18を備える。
Embodiment 2. FIG.
FIG. 11 is a circuit diagram of a two-stage compression / two-stage expansion supercritical vapor compression refrigeration cycle using a gas-liquid separator according to Embodiment 2 of the present invention.
The supercritical vapor compression refrigeration cycle according to the second embodiment of the present invention includes a check valve 19 provided in the intermediate coupling circuit 15 in the supercritical vapor compression refrigeration cycle according to the first embodiment and a low-stage side. The difference is that a return circuit 18 for returning the discharged refrigerant gas to the gas-liquid separator 4 is added, and the rest is the same, so the same reference numerals are given to the same parts and the description is omitted.
In the supercritical vapor compression refrigeration cycle according to the second embodiment, the refrigerant gas discharged from the low-stage side rotary compression element 11 is discharged from the intermediate coupling circuit 15 when the gas-liquid separator 4 is in a liquid phase state and cannot be injected. A check valve 19 that branches and a return circuit 18 that returns the branched refrigerant gas to the gas-liquid separator 4 are provided.

このように低段側回転圧縮要素11から吐出する冷媒ガスを高段側吸入口Sに送らずに、戻り回路18を経由して気液分離器4内に戻すと、気液分離器4内で液相冷媒と混合・熱交換して乾き度を高めて、気相の冷媒をインジェクション回路5から高段側吸入口Sに注入することができる。
このようにすることにより、二段圧縮機1に中間インジェクションする冷媒主成分を気相状態に保つことができ、液相冷媒を多量注入することにより起る圧縮機効率の低下と信頼性の低下を防ぐことができる。
The refrigerant gas discharging this way from the low-stage side rotary compressing element 11 without transmitting the high-stage suction port S 2, when via the return circuit 18 back to the gas-liquid separator 4, the gas-liquid separator 4 to increase the degree of dryness by mixing and heat exchange with the liquid phase refrigerant in the inner, it is possible to inject the gas-phase refrigerant from the injection circuit 5 to the high-stage suction port S 2.
By doing so, the refrigerant main component that is intermediately injected into the two-stage compressor 1 can be kept in a gas phase, and the compressor efficiency and reliability are reduced by injecting a large amount of liquid phase refrigerant. Can be prevented.

実施の形態3.
図12は、この発明の実施の形態3に係わる内部熱回収型熱交換器を用いた二段圧縮一段膨脹方式の超臨界蒸気圧縮式冷凍サイクルの回路図である。
この発明の実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルは、実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルと気液分離器4の代わりに内部熱回収型熱交換器10を用いることと、高圧放熱器2から第2の膨張装置7により低段側回転圧縮要素11への吸入圧力まで減圧することが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
Embodiment 3 FIG.
FIG. 12 is a circuit diagram of a supercritical vapor compression refrigeration cycle of a two-stage compression / one-stage expansion system using an internal heat recovery heat exchanger according to Embodiment 3 of the present invention.
The supercritical vapor compression refrigeration cycle according to Embodiment 3 of the present invention uses an internal heat recovery heat exchanger 10 instead of the supercritical vapor compression refrigeration cycle and gas-liquid separator 4 according to Embodiment 1. This is different from that of the high-pressure radiator 2 by the second expansion device 7 to the suction pressure to the low-stage side rotary compression element 11, and the rest is the same. Additional description will be omitted.

また、実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルは、インジェクション回路5と中間連結回路15の合流点に冷媒混合器14を備える。冷媒混合器14では、インジェクション回路5から供給される気相が主成分の冷媒を低段側回転圧縮要素11から吐出される冷媒に混合させてガス化してから、高段側回転圧縮要素12に吸入させる。   Further, the supercritical vapor compression refrigeration cycle according to the third embodiment includes a refrigerant mixer 14 at the junction of the injection circuit 5 and the intermediate connection circuit 15. In the refrigerant mixer 14, the main component of the gas phase supplied from the injection circuit 5 is mixed with the refrigerant discharged from the low-stage rotary compression element 11 and gasified, and then the high-stage rotary compression element 12 is supplied to the refrigerant mixer 14. Inhale.

図13は、冷媒混合器14の一例の構成図である。
冷媒混合器14は、図13に示すように、中間連結回路15の周囲に巻き付けられたねじり管方式の冷媒−冷媒熱交換器14aを備える。この冷媒−冷媒熱交換器14aの一端はインジェクション回路5に接続され、他端が中間連結回路15の途中に接続される。
この冷媒混合器14では、インジェクション回路5から送られる液混じりのインジェクション冷媒と低段側回転圧縮要素11から吐出されたガス冷媒の間で熱交換され、乾き度が高められたインジェクション冷媒が中間連結回路15に合流され、高段側回転圧縮要素12に送られる。
FIG. 13 is a configuration diagram of an example of the refrigerant mixer 14.
As shown in FIG. 13, the refrigerant mixer 14 includes a torsion tube type refrigerant-refrigerant heat exchanger 14 a wound around the intermediate coupling circuit 15. One end of the refrigerant-refrigerant heat exchanger 14 a is connected to the injection circuit 5, and the other end is connected in the middle of the intermediate coupling circuit 15.
In this refrigerant mixer 14, heat exchange is performed between the liquid-mixed injection refrigerant sent from the injection circuit 5 and the gas refrigerant discharged from the low-stage rotary compression element 11, and the injection refrigerant whose dryness is increased is intermediately connected. It is joined to the circuit 15 and sent to the high stage side rotary compression element 12.

図14は、冷媒混合器14の他の例の構成図である。
また、別の冷媒混合器14は、図14に示すように、バッファタンク14bを備え、バッファタンク14b内で注入する冷媒が旋回流になるように、インジェクション回路5をバッファタンク14bに接続する。このようにインジェクション回路5から注入される冷媒が旋回されて混合されるので、十分に混合される。
なお、この冷媒混合機能をシェル内部で構成して二段圧縮機1をコンパクト化することも可能である。
FIG. 14 is a configuration diagram of another example of the refrigerant mixer 14.
Further, as shown in FIG. 14, another refrigerant mixer 14 includes a buffer tank 14b, and connects the injection circuit 5 to the buffer tank 14b so that the refrigerant injected into the buffer tank 14b is swirled. Since the refrigerant injected from the injection circuit 5 is swirled and mixed in this way, it is sufficiently mixed.
It is also possible to make the two-stage compressor 1 compact by configuring this refrigerant mixing function inside the shell.

このようにすることにより、インジェクション回路5から液相冷媒を多量に流入する運転状態においても高段側回転圧縮要素12に液注入することを回避できるので信頼性の低下を防ぐことができる。
また、実施の形態3においても、排除容積比を実施の形態1と同様に適切に設定することにより、実施の形態1と同様に、二段圧縮機1に中間インジェクションする冷媒主成分を気相状態に保つことができ、液相冷媒を多量注入することによって起こる圧縮機効率の低下と信頼性の低下を防ぐことができる。
By doing so, it is possible to avoid liquid injection into the high-stage rotary compression element 12 even in an operation state in which a large amount of liquid-phase refrigerant flows from the injection circuit 5, thereby preventing a decrease in reliability.
Also in the third embodiment, by appropriately setting the excluded volume ratio in the same manner as in the first embodiment, as in the first embodiment, the refrigerant main component that is intermediately injected into the two-stage compressor 1 is used as the gas phase. The state can be maintained, and the reduction in the compressor efficiency and the reliability caused by injecting a large amount of the liquid phase refrigerant can be prevented.

次に、実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルの効果を説明する。
図15は、実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルにおいて、インジェクション量の割合に対する暖房成績係数の関係を示すグラフである。
計算方法は、技術文献3(畝崎史武、「冷凍空調機器におけるシミュレーション技術」、冷凍、日本冷凍空調学会、2003年7月、第78巻、第909号、p.573−578)のサイクルシミュレーションを用いて、表4の暖房定格の運転条件で計算した。冷媒インジェクション量の割合(α)を約20%以上50%以下の範囲で暖房成績係数(COP)が最も良くて6%〜7%改善できる。αが10%以下、60%以上で性能が低下する。
図16は、実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルにおいて、過熱度(SH)をパラメータとするインジェクション量の割合に対する排除容積比の関係を示すグラフである。
図16に示す排除容量比は、まず表4の暖房定格の条件の下、適切なインジェクション量の割合、乾き度、中間圧力をそれぞれ計算し、これを満たす排除容積比を理想的な条件(ηV1=ηV2、中間加熱無し)から逆算して求める。
図16から分かるように、インジェクション量の割合が増加するほど排除容積比は大きくなる。標準的な低段側吸入口Sの過熱度は10℃程度であり、過熱度を小さくすると排除容積比は大きくなる。
また、図15と図16からわかるように、高い暖房成績係数(COP)が得られるのはインジェクション量の割合が20%以上50%以下の範囲であり、これは排除容積比が0.8〜1.1の範囲に相当する。
通常は、排除容積比が1以下の範囲であるが、多量の冷媒を中間にインジェクションする場合には、排除容積比が1以上の場合も有効である。
Next, the effect of the supercritical vapor compression refrigeration cycle according to Embodiment 3 will be described.
FIG. 15 is a graph showing the relationship between the coefficient of heating performance and the ratio of the injection amount in the supercritical vapor compression refrigeration cycle according to the third embodiment.
The calculation method is the cycle of Technical Document 3 (Fumitake Amagasaki, “Simulation Technology in Refrigeration and Air Conditioning Equipment”, Refrigeration, Japan Society of Refrigeration and Air Conditioning, July 2003, Vol. 78, No. 909, p. 573-578). Using simulation, calculation was performed under the heating rated operating conditions in Table 4. When the ratio (α) of the refrigerant injection amount is in the range of about 20% to 50%, the heating performance coefficient (COP H ) is the best and can be improved by 6% to 7%. When α is 10% or less and 60% or more, the performance deteriorates.
FIG. 16 is a graph showing the relationship of the rejection volume ratio to the ratio of the injection amount with the superheat degree (SH) as a parameter in the supercritical vapor compression refrigeration cycle according to the third embodiment.
16 is calculated under the conditions of the heating ratings shown in Table 4 by calculating the appropriate ratio of injection amount, dryness, and intermediate pressure, respectively. V1 = η V2 , without intermediate heating).
As can be seen from FIG. 16, the excluded volume ratio increases as the ratio of the injection amount increases. Standard low-stage side superheat of the suction port S 1 is about 10 ° C., displacement volume ratio to reduce the degree of superheat is increased.
Further, as can be seen from FIGS. 15 and 16, a high heating coefficient of performance (COP H ) is obtained when the ratio of the injection amount is in the range of 20% to 50%, which is an excluded volume ratio of 0.8. It corresponds to the range of -1.1.
Normally, the excluded volume ratio is in the range of 1 or less. However, when a large amount of refrigerant is injected in the middle, it is also effective when the excluded volume ratio is 1 or more.

実施の形態4.
図17は、この発明の実施の形態4に係わる二段圧縮機の回転圧縮要素の断面図である。
低段側回転圧縮要素11と高段側回転圧縮要素12は、図17に示すように、共用のクランク軸30の主軸30aの周りに、それぞれ、ピン軸30b、シリンダ31、ローラ32、ベーン33、ベーン支持バネ34から構成される。通常、これらの部品寸法は排除容積の値に合わせて決定される。
Embodiment 4 FIG.
FIG. 17 is a cross-sectional view of a rotary compression element of a two-stage compressor according to Embodiment 4 of the present invention.
As shown in FIG. 17, the low-stage side rotary compression element 11 and the high-stage side rotary compression element 12 are arranged around the main shaft 30a of the common crankshaft 30, respectively, a pin shaft 30b, a cylinder 31, a roller 32, and a vane 33. The vane support spring 34. Usually, these part dimensions are determined according to the value of the excluded volume.

そして、この発明においては排除容積比を1になるようにインジェクション量を調整するので、これら部品寸法を共通化し、製造コストを低減することができる。
但し、体積流量は低段側のほうが高段側より大きいので、吸入口35と吐出口36との内径寸法は低段側回転圧縮要素11のほうが高段側回転圧縮要素12より大きくすることが好ましい。また、ローラ32の隙間寸法も低段側回転圧縮要素11と高段側回転圧縮要素12では異なる。
In the present invention, since the injection amount is adjusted so that the excluded volume ratio becomes 1, these component dimensions can be made common and the manufacturing cost can be reduced.
However, since the volume flow rate is higher on the lower stage side than on the higher stage side, the inner diameter dimensions of the suction port 35 and the discharge port 36 may be larger in the low stage side rotary compression element 11 than in the higher stage side rotary compression element 12. preferable. Further, the gap size of the roller 32 is different between the low-stage side rotary compression element 11 and the high-stage side rotary compression element 12.

実施の形態5.
図18は、この発明の実施の形態5に係わる超臨界蒸気圧縮式冷凍サイクルの回路図である。
この発明の実施の形態5に係わる超臨界蒸気圧縮式冷凍サイクルは、実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルの気液分離器4と第2の膨張装置7との間に内部熱交換器6を追加したことが異なっており、それ以外は同様であるので、同様な部分に同じ符号を付記して説明は省略する。
Embodiment 5 FIG.
FIG. 18 is a circuit diagram of a supercritical vapor compression refrigeration cycle according to Embodiment 5 of the present invention.
The supercritical vapor compression refrigeration cycle according to the fifth embodiment of the present invention has an internal heat between the gas-liquid separator 4 and the second expansion device 7 of the supercritical vapor compression refrigeration cycle according to the first embodiment. The difference is that the exchanger 6 has been added, and the rest is the same, so the same reference numerals are given to the same parts, and the description will be omitted.

実施の形態5に係わる超臨界蒸気圧縮式冷凍サイクルでは、気液分離器4で分離された液相の冷媒が内部熱交換器6内で、蒸発器8で吸熱加熱され気相状態まで蒸発され第2の気液分離器9で気液分離された気相冷媒との間で熱交換されるので、成績係数が実施の形態1の場合より向上する。   In the supercritical vapor compression refrigeration cycle according to the fifth embodiment, the liquid-phase refrigerant separated by the gas-liquid separator 4 is endothermically heated by the evaporator 8 in the internal heat exchanger 6 and evaporated to the gas phase state. Since heat exchange is performed with the gas-phase refrigerant separated by the second gas-liquid separator 9, the coefficient of performance is improved as compared with the case of the first embodiment.

なお、実施の形態1乃至5のいずれにおいて、ロータリ式二段圧縮機の各段(低段と高段それぞれの)排除容積を理論排除容積(理論押しのけ量)VSt thとして、式(17)から求めている。但し、Rはシリンダ半径、rはローラ半径、Lはシリンダ長さである。 In any of the first to fifth embodiments, each stage (low stage and high stage) excluded volume of the rotary type two-stage compressor is defined as a theoretical excluded volume (theoretical displacement) V St th. Seeking from. However, R is a cylinder radius, r is a roller radius, and L is a cylinder length.

St th=π(R−r)L ・・・(17) V St th = π (R 2 −r 2 ) L (17)

通常は、VSt1>VSt2であるので、低段側シリンダ長さ(L)>高段側シリンダ長さ(L)とするか、または、低段側ローラ半径(r)<高段側ローラ半径(r)とすると2種類の回転圧縮要素を用いて構成する。
さらに、通常、吸入口がベーン位置と重ならいように、吸入位相を遅れさせて吸入角度(θ:図17参照、単位は度=degreeで表示)をつける。30度未満の吸入角度θを加味した実排除容積は理論排除容量と比べて小さいが、その差は1%以内に収まる。従って、実施の形態1乃至5において排除容積比の範囲を指定した数値には1%以内の誤差が含まれている。
また、吸入角度θが約50度遅れると、実排除容積は理論排除容量より2〜3%小さくなるので、吸入角度θを遅らせることにより、排除容積比を0.8〜1.0の範囲で可変できる。
Usually, since V St1 > V St2 , the lower stage cylinder length (L 1 )> the higher stage cylinder length (L 2 ), or the lower stage roller radius (r 1 ) <high. If the step-side roller radius (r 2 ) is used, it is configured using two types of rotary compression elements.
Further, normally, the suction phase is delayed so that the suction port overlaps the vane position, and the suction angle (θ S : see FIG. 17, the unit is expressed in degrees = degree) is set. Although the actual excluded volume taking into consideration the suction angle θ S of less than 30 degrees is smaller than the theoretical excluded capacity, the difference is within 1%. Therefore, the numerical values specifying the range of the excluded volume ratio in the first to fifth embodiments include an error of 1% or less.
In addition, when the suction angle θ S is delayed by about 50 degrees, the actual excluded volume becomes 2-3% smaller than the theoretical excluded capacity. Therefore, by delaying the suction angle θ S , the excluded volume ratio becomes 0.8 to 1.0. Variable in range.

実施の形態1乃至5において得られた計算結果から、排除容積比が0.8以上、1以下であれば、圧縮機効率の改善と信頼性の向上ができると予測した。そこで、実施の形態1乃至5の超臨界蒸気圧縮式サイクルを超臨界で動作する二酸化炭素冷媒の冷暖房空調設備に適用する。例えば、冷房時室内温度25℃(ETは15℃)、冷房時室外温度30℃(Texpは35℃)、暖房時室内温度20℃(Texpは25℃)、暖房時室外温度1.2℃(ETは10℃)を仮定すると、冷房時圧縮比は約1.8〜1.9、暖房時圧縮比は約1.9〜2.1程度である。このように、二酸化炭素冷媒はフロン冷媒に比べて比較的低い圧縮比条件で動作するため、排除容積比をフロン冷媒に比べて大きめに設定することが可能である。そして、二酸化炭素冷媒を低圧縮比の条件下で運転する場合、設計条件として排除容積比を0.8以上、1以下の範囲から選定すれば、圧縮機効率の改善と信頼性の向上が図られる。 From the calculation results obtained in Embodiments 1 to 5, it was predicted that the compressor efficiency and the reliability could be improved if the excluded volume ratio was 0.8 or more and 1 or less. Therefore, the supercritical vapor compression cycle according to Embodiments 1 to 5 is applied to a cooling / heating air conditioning facility of carbon dioxide refrigerant that operates supercritically. For example, the indoor temperature during cooling is 25 ° C. (ET is 15 ° C.), the outdoor temperature during cooling is 30 ° C. (T exp is 35 ° C.), the indoor temperature during heating is 20 ° C. (T exp is 25 ° C.), and the outdoor temperature during heating is 1.2 Assuming ℃ (ET is 10 ° C), the compression ratio during cooling is approximately 1.8 to 1.9, and the compression ratio during heating is approximately 1.9 to 2.1. As described above, since the carbon dioxide refrigerant operates under a relatively low compression ratio condition as compared with the chlorofluorocarbon refrigerant, the excluded volume ratio can be set larger than that of the chlorofluorocarbon refrigerant. When the carbon dioxide refrigerant is operated under a low compression ratio, the compressor efficiency can be improved and the reliability can be improved by selecting the excluded volume ratio as a design condition from the range of 0.8 to 1. It is done.

また、実施の形態1乃至5の超臨界蒸気圧縮式サイクルを超臨界で動作する二酸化炭素冷媒のヒートポンプ給湯機に適用する。日本冷凍空調工業会標準規格の給湯定格の条件では、圧縮比は2.5程度である。このように、二酸化炭素冷媒はフロン冷媒に比べて比較的低い圧縮比条件で動作するため、排除容積比をフロン冷媒に比べて大きめに設定することが可能である。   Further, the supercritical vapor compression cycle according to Embodiments 1 to 5 is applied to a carbon dioxide refrigerant heat pump water heater operating in a supercritical state. Under the condition of the hot water supply rating of the Japan Refrigeration and Air Conditioning Industry Association Standard, the compression ratio is about 2.5. As described above, since the carbon dioxide refrigerant operates under a relatively low compression ratio condition as compared with the chlorofluorocarbon refrigerant, the excluded volume ratio can be set larger than that of the chlorofluorocarbon refrigerant.

また、実施の形態1乃至5において得られた計算結果と実験結果は、高圧シェル型圧縮機を想定して説明したが、低圧シェル型や中間圧シェル型においても同様の計算結果と事件結果が得られ、同様な方法で排除容積比を設定すれば、中間圧が適切に設定され、圧縮機効率が高く且つ信頼性に優れた冷暖房空調設備やヒートポンプ給湯機を提供することができる。   In addition, the calculation results and experimental results obtained in Embodiments 1 to 5 have been described assuming a high-pressure shell type compressor, but similar calculation results and incident results are also obtained in the low-pressure shell type and the intermediate pressure shell type. As a result, if the excluded volume ratio is set by the same method, it is possible to provide an air-conditioning / air-conditioning facility or a heat pump water heater in which the intermediate pressure is appropriately set, the compressor efficiency is high, and the reliability is excellent.

また、実施の形態1乃至5において得られた計算結果と実験結果は、ロータリ式二段圧縮機を想定して説明したが、スクロール式、スイング式、レシプロ式、その他圧縮方式の場合も、ロータリ式と同様の計算結果と実験結果が得られ、同様な方法で排除容積比を設定すれば、中間圧が適切に設定され、圧縮機効率が高く且つ信頼性に優れた冷暖房空調設備やヒートポンプ給湯機を提供することができる。   The calculation results and experimental results obtained in Embodiments 1 to 5 have been described assuming a rotary type two-stage compressor. However, in the case of a scroll type, a swing type, a reciprocating type, and other compression types, a rotary type compressor is used. Calculation results and experimental results similar to the equation are obtained, and if the volume ratio is set in the same way, the intermediate pressure is set appropriately, the compressor efficiency is high, and the air conditioning and air conditioning equipment and heat pump hot water supply that are highly reliable Machine can be provided.

また、実施の形態1乃至5においては、高圧側が超臨界で動作するサイクルの冷媒として二酸化炭素を用いたが、臨界温度の特性から同様に超臨界サイクルを構成しうる冷媒としてはエタン、アセチレン、二酸化窒素、クロロトリフルオロメタン(R13)、トリフルオロメタン(R23)、フルオロメタン(R41)を用いることができる。
また、二酸化炭素にジフオロメタン(R32)を20w%以内で混入した混合冷媒も用いることができる。これらの冷媒を用いた超臨界蒸気圧縮式冷凍サイクルにおいても、実施の形態1乃至5と同様な方法で排除容積比を設定すれば、中間圧が適切に設定され、圧縮機効率が高く且つ信頼性に優れる。但し、排除容積比の数値範囲は冷媒により多少異なる。
In the first to fifth embodiments, carbon dioxide is used as a refrigerant in a cycle in which the high pressure side operates in a supercritical state. However, ethane, acetylene, Nitrogen dioxide, chlorotrifluoromethane (R13), trifluoromethane (R23), or fluoromethane (R41) can be used.
A mixed refrigerant in which difluoromethane (R32) is mixed in carbon dioxide within 20 w% can also be used. Even in the supercritical vapor compression refrigeration cycle using these refrigerants, the intermediate pressure can be set appropriately, the compressor efficiency is high, and the reliability can be achieved by setting the excluded volume ratio in the same manner as in the first to fifth embodiments. Excellent in properties. However, the numerical range of the excluded volume ratio differs somewhat depending on the refrigerant.

この発明の実施の形態1に係わる気液分離器を用いた超臨界蒸気圧縮式冷凍サイクルの回路図である。1 is a circuit diagram of a supercritical vapor compression refrigeration cycle using a gas-liquid separator according to Embodiment 1 of the present invention. この発明の実施の形態1に係わる超臨界蒸気圧縮式冷凍サイクルのP−h線図である。1 is a Ph diagram of a supercritical vapor compression refrigeration cycle according to Embodiment 1 of the present invention. FIG. この発明の実施の形態1に係わる二段圧縮機の高段側回転圧縮要素の吸入口でのP−h線図である。It is a Ph diagram at the inlet of the high stage side rotary compression element of the two stage compressor concerning Embodiment 1 of this invention. 排除容積比およびインジェクションの有無をパラメータとする全圧縮比に対する圧縮機効率の関係を示すグラフである。It is a graph which shows the relationship of the compressor efficiency with respect to the total compression ratio which makes an exclusion volume ratio and the presence or absence of injection a parameter. 排除容積比およびインジェクションの有無をパラメータとする全圧縮比に対する給湯加熱成績係数の関係を示すグラフである。It is a graph which shows the relationship of the hot_water | molten_metal heating performance coefficient with respect to the total compression ratio which uses the exclusion volume ratio and the presence or absence of injection as a parameter. 排除容積比をパラメータとする全圧縮比に対するガスインジェクション量の割合の関係を示すグラフである。It is a graph which shows the relationship of the ratio of the gas injection quantity with respect to the total compression ratio which makes an exclusion volume ratio a parameter. 排除容積比0.85の二段圧縮機におけるインジェクションの有無をパラメータとする全圧縮比に対する低段側圧縮比および高段側圧縮比の関係を示すグラフである。It is a graph which shows the relationship between the low stage side compression ratio and the high stage side compression ratio with respect to the total compression ratio which makes the parameter the presence or absence of the injection in the two-stage compressor of exclusion volume ratio 0.85. 排除容積比0.65の二段圧縮機におけるインジェクションの有無をパラメータとする全圧縮比に対する低段側圧縮比および高段側圧縮比の関係を示すグラフである。It is a graph which shows the relationship of the low stage side compression ratio and the high stage side compression ratio with respect to the total compression ratio which makes the parameter the presence or absence of injection in the two-stage compressor of exclusion volume ratio 0.65. 乾き度をパラメータとし、理想条件で二段圧縮機の中間圧が最適値に一致する排除容積比を示すグラフである。It is a graph which shows the excluded volume ratio which uses dryness as a parameter and the intermediate pressure of a two-stage compressor corresponds to an optimal value on ideal conditions. 乾き度をパラメータとし、実条件で二段圧縮機の中間圧が最適値に一致する排除容積比を示すグラフである。It is a graph which shows the excluded volume ratio which uses dryness as a parameter and the intermediate pressure of a two-stage compressor corresponds to an optimal value on real conditions. この発明の実施の形態2に係わる気液分離器を用いた二段圧縮二段膨脹方式の超臨界蒸気圧縮式冷凍サイクルの回路図である。It is a circuit diagram of the supercritical vapor compression refrigerating cycle of the two-stage compression two-stage expansion system using the gas-liquid separator concerning Embodiment 2 of this invention. この発明の実施の形態3に係わる内部熱回収型熱交換器を用いた二段圧縮一段膨脹方式の超臨界蒸気圧縮式冷凍サイクルの回路図である。It is a circuit diagram of the supercritical vapor compression refrigerating cycle of the two-stage compression one-stage expansion system using the internal heat recovery type heat exchanger concerning Embodiment 3 of this invention. 冷媒混合器の一例の構成図である。It is a block diagram of an example of a refrigerant mixer. 冷媒混合器の他の例の構成図である。It is a block diagram of the other example of a refrigerant mixer. 実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルにおいて、インジェクション量の割合に対する暖房成績係数の関係を示すグラフである。6 is a graph showing a relationship of a heating performance coefficient with respect to a ratio of an injection amount in a supercritical vapor compression refrigeration cycle according to Embodiment 3. 実施の形態3に係わる超臨界蒸気圧縮式冷凍サイクルにおいて、過熱度をパラメータとするインジェクション量の割合に対する排除容積比の関係を示すグラフである。7 is a graph showing a relationship of an excluded volume ratio with respect to a ratio of an injection amount having a superheat degree as a parameter in a supercritical vapor compression refrigeration cycle according to Embodiment 3. この発明の実施の形態4に係わる二段圧縮機の回転圧縮要素の断面図である。It is sectional drawing of the rotary compression element of the two-stage compressor concerning Embodiment 4 of this invention. この発明の実施の形態5に係わる超臨界蒸気圧縮式冷凍サイクルの回路図である。It is a circuit diagram of the supercritical vapor compression refrigeration cycle concerning Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 二段圧縮機、2 高圧放熱器、3、7 膨張装置、4、9 気液分離器、5 インジェクション回路、6 内部熱交換器、8 蒸発器、10 内部熱回収型熱交換器、11 低段側回転圧縮要素、12 高段側回転圧縮要素、13 密閉容器、14 冷媒混合器、14a 冷媒−冷媒熱交換器、14b バッファタンク、15 中間連結回路、16 流量調整弁、18 戻り回路、19 逆止弁、20、21、22、24、25 温度計、23 液相側配管、30a 主軸、30b ピン軸、31 シリンダ、32 ローラ、33 ベーン、34 ベーン支持バネ、35 吸入口、36 吐出口。   1 Two-stage compressor, 2 High pressure radiator, 3, 7 Expansion device, 4, 9 Gas-liquid separator, 5 Injection circuit, 6 Internal heat exchanger, 8 Evaporator, 10 Internal heat recovery type heat exchanger, 11 Low Stage side rotary compression element, 12 High stage side rotary compression element, 13 Airtight container, 14 Refrigerant mixer, 14a Refrigerant-refrigerant heat exchanger, 14b Buffer tank, 15 Intermediate connection circuit, 16 Flow rate adjusting valve, 18 Return circuit, 19 Check valve, 20, 21, 22, 24, 25 Thermometer, 23 Liquid phase side piping, 30a Main shaft, 30b Pin shaft, 31 Cylinder, 32 Roller, 33 vane, 34 Vane support spring, 35 Suction port, 36 Discharge port .

Claims (8)

低圧の冷媒が低段側回転圧縮要素で中間圧まで圧縮された冷媒が中間連結回路を経由して高段側回転圧縮要素に吸入され、上記高段側回転圧縮要素で高圧まで圧縮される二段圧縮機と、高圧に圧縮される冷媒を飽和液圧以下まで減圧する第1の膨張装置と、飽和液圧以下で湿りガス状態になった冷媒を気液分離する気液分離器と、気液分離後の気相側冷媒を上記中間連結回路にインジェクションするインジェクション回路と、気液分離後の液相側冷媒を低圧まで減圧する第2の膨張装置と、低圧まで減圧される冷媒を蒸発させる蒸発器と、を有する超臨界蒸気圧縮式冷凍サイクルにおいて、
上記高段側回転圧縮要素の排除容積の上記低段側回転圧縮要素の排除容積に対する排除容積比は、上記二段圧縮機の吸入圧力の上記第1の膨張装置における冷媒飽和液圧に対する比の等エントロピ指数乗根以上であり、
上記第1の膨張装置または上記第2の膨張装置の開度または吸入加熱度を、上記中間連結回路にインジェクションする冷媒を気相状態に保つように制御することを特徴とする超臨界蒸気圧縮式冷凍サイクル。
The low-pressure refrigerant is compressed to the intermediate pressure by the low-stage side rotary compression element, and is sucked into the high-stage side rotary compression element via the intermediate connection circuit, and is compressed to the high pressure by the high-stage side rotary compression element. A first stage compressor, a first expansion device that depressurizes the refrigerant compressed to a high pressure to a saturation liquid pressure or less, a gas-liquid separator that gas-liquid separates the refrigerant in a wet gas state below the saturation liquid pressure, An injection circuit that injects the gas-phase refrigerant after liquid separation into the intermediate coupling circuit, a second expansion device that depressurizes the liquid-phase refrigerant after gas-liquid separation to a low pressure, and a refrigerant that is depressurized to a low pressure. In a supercritical vapor compression refrigeration cycle having an evaporator,
The rejection volume ratio of the displacement volume of the high-stage rotational compression element to the displacement volume of the low-stage rotation compression element is the ratio of the suction pressure of the two-stage compressor to the refrigerant saturation fluid pressure in the first expansion device. Greater than or equal to the isentropic exponent
The supercritical vapor compression system, wherein the opening degree or the suction heating degree of the first expansion device or the second expansion device is controlled so as to keep the refrigerant injected into the intermediate connection circuit in a gas phase state. Refrigeration cycle.
低圧の冷媒が低段側回転圧縮要素で中間圧まで圧縮される冷媒が中間連結回路を経由して高段側回転圧縮要素に吸入され、上記高段側回転圧縮要素で高圧まで圧縮される二段圧縮機と、高圧に圧縮された冷媒を冷却して2系統に分割する高圧放熱器と、分割された一方の冷媒を中間圧まで減圧する第1の膨張装置と、上記第1の膨張装置で中間圧まで減圧された冷媒が内部熱回収する熱交換器と、上記内部熱回収した冷媒を上記中間連結回路にインジェクションするインジェクション回路と、分割された他方の冷媒を低圧まで減圧する第2の膨張装置と、低圧まで減圧された冷媒を蒸発させる蒸発器と、を有する超臨界蒸気圧縮式冷凍サイクルにおいて、
上記高段側回転圧縮要素の排除容積の上記低段側回転圧縮要素の排除容積に対する排除容積比は、上記二段圧縮機の吸入圧力の上記第1の膨張装置における冷媒飽和液圧に対する比の等エントロピ指数乗根以上であり、
上記第1の膨張装置の開度または吸入加熱度を、上記中間連結回路にインジェクションする冷媒の乾き度を高い状態に保つように制御することを特徴とする超臨界蒸気圧縮式冷凍サイクル。
The low-pressure refrigerant is compressed to the intermediate pressure by the low-stage rotary compression element, and the refrigerant is sucked into the high-stage rotary compression element via the intermediate connection circuit and compressed to the high pressure by the high-stage rotary compression element. A stage compressor, a high-pressure radiator that cools a refrigerant compressed to a high pressure and divides the refrigerant into two systems, a first expansion device that decompresses one of the divided refrigerants to an intermediate pressure, and the first expansion device A heat exchanger that recovers the internal heat of the refrigerant that has been reduced to an intermediate pressure, an injection circuit that injects the refrigerant that has recovered the internal heat into the intermediate connection circuit, and a second that reduces the other divided refrigerant to a low pressure. In a supercritical vapor compression refrigeration cycle having an expansion device and an evaporator for evaporating the refrigerant decompressed to a low pressure,
The rejection volume ratio of the displacement volume of the high-stage rotational compression element to the displacement volume of the low-stage rotation compression element is the ratio of the suction pressure of the two-stage compressor to the refrigerant saturation fluid pressure in the first expansion device. Greater than or equal to the isentropic exponent
A supercritical vapor compression refrigeration cycle characterized in that the opening degree or the suction heating degree of the first expansion device is controlled so as to keep the dryness of the refrigerant injected into the intermediate coupling circuit at a high level.
低圧の冷媒が低段側回転圧縮要素で中間圧まで圧縮される冷媒が中間連結回路を経由して高段側回転圧縮要素に吸入され、上記高段側回転圧縮要素で高圧まで圧縮される二段圧縮機と、高圧に圧縮される冷媒を飽和液圧以下まで減圧する第1の膨張装置と、飽和液圧以下で湿りガス状態になった冷媒を気液分離する気液分離器と、気液分離後の気相側冷媒を上記中間連結回路にインジェクションするインジェクション回路と、上記気液分離後の液相側冷媒を低圧まで減圧する第2の膨張装置と、低圧まで減圧される冷媒を蒸発させる蒸発器と、を有する超臨界蒸気圧縮式冷凍サイクルにおいて、
上記高段側回転圧縮要素の排除容積の上記低段側回転圧縮要素の排除容積に対する排除容積比は、上記二段圧縮機の吸入圧力の上記二段圧縮機の吐出圧力に対する比の等エントロピ指数の2倍の乗根以上であり、
上記第1の膨張装置または上記第2の膨張装置の開度を、上記中間連結回路にインジェクションする冷媒の圧力を上記吸入圧力と上記吐出圧力との積の2乗根に近づくように制御することを特徴とする超臨界蒸気圧縮式冷凍サイクル。
The low-pressure refrigerant is compressed to the intermediate pressure by the low-stage rotary compression element, and the refrigerant is sucked into the high-stage rotary compression element via the intermediate connection circuit and compressed to the high pressure by the high-stage rotary compression element. A first stage compressor, a first expansion device that depressurizes the refrigerant compressed to a high pressure to a saturation liquid pressure or less, a gas-liquid separator that gas-liquid separates the refrigerant in a wet gas state below the saturation liquid pressure, An injection circuit that injects the gas-phase refrigerant after liquid separation into the intermediate connection circuit, a second expansion device that depressurizes the liquid-phase refrigerant after gas-liquid separation to a low pressure, and evaporates the refrigerant depressurized to a low pressure. A supercritical vapor compression refrigeration cycle comprising:
The ratio of the excluded volume of the high-stage rotary compression element to the excluded volume of the low-stage rotary compression element is the isentropic index of the ratio of the suction pressure of the two-stage compressor to the discharge pressure of the two-stage compressor More than twice the root of
Controlling the opening of the first expansion device or the second expansion device so that the pressure of the refrigerant injected into the intermediate connection circuit approaches the square root of the product of the suction pressure and the discharge pressure. Supercritical vapor compression refrigeration cycle.
低圧の冷媒が低段側回転圧縮要素で中間圧まで圧縮される冷媒が中間連結回路を経由して高段側回転圧縮要素に吸入され、上記高段側回転圧縮要素で高圧まで圧縮される二段圧縮機と、高圧に圧縮された冷媒を冷却して2系統に分割する高圧放熱器と、分割された一方の冷媒を中間圧まで減圧する第1の膨張装置と、上記第1の膨張装置で中間圧まで減圧された冷媒に上記高圧放熱器から出力される冷媒から熱交換して内部熱回収する熱交換器と、上記内部熱回収した冷媒を上記中間連結回路にインジェクションするインジェクション回路と、分割された他方の冷媒を低圧まで減圧する第2の膨張装置と、低圧まで減圧された冷媒を蒸発させる蒸発器と、を有する超臨界蒸気圧縮式冷凍サイクルにおいて、
上記高段側回転圧縮要素の排除容積の上記低段側回転圧縮要素の排除容積に対する排除容積比は、上記二段圧縮機の吸入圧力の上記二段圧縮機の吐出圧力に対する比の等エントロピ指数の2倍の乗根以上であり、
上記第1の膨張装置の開度を、上記中間連結回路にインジェクションする冷媒の圧力を上記吸入圧力と上記吐出圧力との積の2乗根に近づくように制御することを特徴とする超臨界蒸気圧縮式冷凍サイクル。
The low-pressure refrigerant is compressed to the intermediate pressure by the low-stage rotary compression element, and the refrigerant is sucked into the high-stage rotary compression element via the intermediate connection circuit and compressed to the high pressure by the high-stage rotary compression element. A stage compressor, a high-pressure radiator that cools a refrigerant compressed to a high pressure and divides the refrigerant into two systems, a first expansion device that decompresses one of the divided refrigerants to an intermediate pressure, and the first expansion device A heat exchanger for exchanging heat from the refrigerant output from the high-pressure radiator to the refrigerant decompressed to an intermediate pressure and recovering internal heat, and an injection circuit for injecting the refrigerant recovered from the internal heat into the intermediate connection circuit; In a supercritical vapor compression refrigeration cycle having a second expansion device that depressurizes the other divided refrigerant to a low pressure, and an evaporator that evaporates the refrigerant depressurized to a low pressure.
The ratio of the excluded volume of the high-stage rotary compression element to the excluded volume of the low-stage rotary compression element is the isentropic index of the ratio of the suction pressure of the two-stage compressor to the discharge pressure of the two-stage compressor More than twice the root of
Supercritical steam, characterized in that the opening degree of the first expansion device is controlled so that the pressure of the refrigerant injected into the intermediate connection circuit approaches the square root of the product of the suction pressure and the discharge pressure. Compression refrigeration cycle.
冷媒は、二酸化炭素からなり、
上記排除容積比が0.8以上、1.1以下であることを特徴とする請求項1乃至4のいずれか一項に記載する超臨界蒸気圧縮式冷凍サイクル。
The refrigerant consists of carbon dioxide,
The supercritical vapor compression refrigeration cycle according to any one of claims 1 to 4, wherein the excluded volume ratio is 0.8 or more and 1.1 or less.
上記排除容積比が1であることを特徴とする請求項1乃至4のいずれか一項に記載する超臨界蒸気圧縮式冷凍サイクル。   The supercritical vapor compression refrigeration cycle according to any one of claims 1 to 4, wherein the excluded volume ratio is 1. 冷媒が二酸化炭素からなる請求項1乃至6のいずれか一項に記載する超臨界蒸気圧縮式冷凍サイクルを用いることを特徴とする冷暖房空調設備。   A cooling / heating air-conditioning system using the supercritical vapor compression refrigeration cycle according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide. 冷媒が二酸化炭素からなる請求項1乃至6のいずれか一項に記載する超臨界蒸気圧縮式冷凍サイクルを用いることを特徴とするヒートポンプ式給湯機。   A heat pump type water heater using the supercritical vapor compression refrigeration cycle according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide.
JP2005375780A 2005-12-27 2005-12-27 Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it Pending JP2007178042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375780A JP2007178042A (en) 2005-12-27 2005-12-27 Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375780A JP2007178042A (en) 2005-12-27 2005-12-27 Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009269912A Division JP4833330B2 (en) 2009-11-27 2009-11-27 Supercritical vapor compression refrigeration cycle, air conditioning equipment and heat pump water heater using the same

Publications (1)

Publication Number Publication Date
JP2007178042A true JP2007178042A (en) 2007-07-12

Family

ID=38303410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375780A Pending JP2007178042A (en) 2005-12-27 2005-12-27 Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it

Country Status (1)

Country Link
JP (1) JP2007178042A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232263A (en) * 2006-02-28 2007-09-13 Daikin Ind Ltd Refrigeration unit
WO2008081899A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
KR100947606B1 (en) * 2007-12-26 2010-04-01 엘지전자 주식회사 Air conditioning system
WO2010150344A1 (en) * 2009-06-23 2010-12-29 三菱電機株式会社 Vapor compression cycle device
JP2011521195A (en) * 2008-05-14 2011-07-21 キャリア コーポレイション Transport refrigeration system and method of operation
JP2011208841A (en) * 2010-03-29 2011-10-20 Nippon Soken Inc Heat pump cycle
JP2012504220A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Control of the flash tank economizer cycle
WO2012027063A1 (en) 2010-08-23 2012-03-01 Dresser-Rand Company Process for throttling a compressed gas for evaporative cooling
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
JP2012193897A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Refrigeration cycle device
WO2013031218A1 (en) * 2011-09-01 2013-03-07 ダイキン工業株式会社 Refrigeration device
CN103291624A (en) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 Single two-stage totally sealed refrigeration compressor with external mixing chamber
KR101321548B1 (en) 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
JP2014016119A (en) * 2012-07-10 2014-01-30 Sharp Corp Heat pump type heating device
WO2014091909A1 (en) * 2012-12-14 2014-06-19 シャープ株式会社 Heat pump-type heating device
US8790097B2 (en) 2009-06-11 2014-07-29 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
KR101460717B1 (en) 2007-12-24 2014-11-13 엘지전자 주식회사 Air conditioning system
US9459028B2 (en) 2013-01-25 2016-10-04 GM Global Technology Operations LLC Vehicle heat pump system and method utilizing intermediate gas recompression
EP3037744A4 (en) * 2013-09-27 2016-11-02 Panasonic Healthcare Holdings Co Ltd Refrigeration device
CN106196685A (en) * 2016-07-22 2016-12-07 西安交通大学 A kind of critical-cross carbon dioxide refrigeration system
JPWO2017138420A1 (en) * 2016-02-08 2018-11-29 パナソニックIpマネジメント株式会社 Refrigeration equipment
JPWO2017138419A1 (en) * 2016-02-08 2018-11-29 パナソニックIpマネジメント株式会社 Refrigeration equipment
US10156392B2 (en) 2015-09-11 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
US10161655B2 (en) 2015-09-11 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
EP3388761A4 (en) * 2015-12-11 2019-07-31 Gree Electric Appliances, Inc. of Zhuhai Air replenishment and enthalpy increase control method and apparatus for two-stage compressor and equipment
JP2020026920A (en) * 2018-08-10 2020-02-20 富士電機株式会社 Heat pump device and refrigerant flow rate calculation method
JP2020079651A (en) * 2018-11-12 2020-05-28 パナソニックIpマネジメント株式会社 Air conditioner
CN111486609A (en) * 2020-04-02 2020-08-04 珠海格力节能环保制冷技术研究中心有限公司 Air conditioning system and control method
WO2020203707A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle device
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443261A (en) * 1990-06-06 1992-02-13 Mitsubishi Electric Corp Freezing device
JPH06229637A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Device for two-stage compression refrigeration
JPH10288411A (en) * 1997-01-09 1998-10-27 Nippon Soken Inc Vapor pressure compression type refrigerating cycle
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2005127167A (en) * 2003-10-22 2005-05-19 Hitachi Home & Life Solutions Inc Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443261A (en) * 1990-06-06 1992-02-13 Mitsubishi Electric Corp Freezing device
JPH06229637A (en) * 1993-01-29 1994-08-19 Sanyo Electric Co Ltd Device for two-stage compression refrigeration
JPH10288411A (en) * 1997-01-09 1998-10-27 Nippon Soken Inc Vapor pressure compression type refrigerating cycle
JP2001133058A (en) * 1999-11-05 2001-05-18 Matsushita Electric Ind Co Ltd Refrigeration cycle
JP2005127167A (en) * 2003-10-22 2005-05-19 Hitachi Home & Life Solutions Inc Compressor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232263A (en) * 2006-02-28 2007-09-13 Daikin Ind Ltd Refrigeration unit
US7914267B2 (en) 2006-12-28 2011-03-29 Mitsubishi Heavy Industries, Ltd. Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
WO2008081899A1 (en) * 2006-12-28 2008-07-10 Mitsubishi Heavy Industries, Ltd. Multistage compressor
JP2008163894A (en) * 2006-12-28 2008-07-17 Mitsubishi Heavy Ind Ltd Multiple stage compressor
KR101460717B1 (en) 2007-12-24 2014-11-13 엘지전자 주식회사 Air conditioning system
KR100947606B1 (en) * 2007-12-26 2010-04-01 엘지전자 주식회사 Air conditioning system
JP2009222357A (en) * 2008-02-18 2009-10-01 Daikin Ind Ltd Refrigeration device
JP2011521195A (en) * 2008-05-14 2011-07-21 キャリア コーポレイション Transport refrigeration system and method of operation
JP2012504220A (en) * 2008-09-29 2012-02-16 キャリア コーポレイション Control of the flash tank economizer cycle
US8790097B2 (en) 2009-06-11 2014-07-29 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
US9011121B2 (en) 2009-06-11 2015-04-21 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
JP5383802B2 (en) * 2009-06-23 2014-01-08 三菱電機株式会社 Vapor compression cycle equipment
WO2010150344A1 (en) * 2009-06-23 2010-12-29 三菱電機株式会社 Vapor compression cycle device
KR101321548B1 (en) 2009-11-18 2013-10-25 엘지전자 주식회사 Air conditioning system
JP2011208841A (en) * 2010-03-29 2011-10-20 Nippon Soken Inc Heat pump cycle
EP2609379A4 (en) * 2010-08-23 2016-07-27 Dresser Rand Co Process for throttling a compressed gas for evaporative cooling
WO2012027063A1 (en) 2010-08-23 2012-03-01 Dresser-Rand Company Process for throttling a compressed gas for evaporative cooling
JP2012180945A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Water heater system
JP2012193897A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Refrigeration cycle device
JP2013053764A (en) * 2011-09-01 2013-03-21 Daikin Industries Ltd Refrigeration device
US9803897B2 (en) 2011-09-01 2017-10-31 Daikin Industries, Ltd. Refrigeration apparatus which injects an intermediate-gas liquid refrigerant from multi-stage expansion cycle into the compressor
CN103765124A (en) * 2011-09-01 2014-04-30 大金工业株式会社 Refrigeration device
AU2012303446B2 (en) * 2011-09-01 2015-05-28 Daikin Industries, Ltd. Refrigeration apparatus
CN103765124B (en) * 2011-09-01 2015-11-25 大金工业株式会社 Refrigerating plant
WO2013031218A1 (en) * 2011-09-01 2013-03-07 ダイキン工業株式会社 Refrigeration device
CN103291624A (en) * 2012-02-22 2013-09-11 珠海格力节能环保制冷技术研究中心有限公司 Single two-stage totally sealed refrigeration compressor with external mixing chamber
JP2014016119A (en) * 2012-07-10 2014-01-30 Sharp Corp Heat pump type heating device
WO2014091909A1 (en) * 2012-12-14 2014-06-19 シャープ株式会社 Heat pump-type heating device
US9459028B2 (en) 2013-01-25 2016-10-04 GM Global Technology Operations LLC Vehicle heat pump system and method utilizing intermediate gas recompression
US10598415B2 (en) 2013-09-27 2020-03-24 Phc Holdings Corporation Refrigeration apparatus with dry ice occurrence suppression structure
EP3037744A4 (en) * 2013-09-27 2016-11-02 Panasonic Healthcare Holdings Co Ltd Refrigeration device
US10156392B2 (en) 2015-09-11 2018-12-18 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
US10161655B2 (en) 2015-09-11 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
US10480835B2 (en) 2015-12-11 2019-11-19 Gree Electric Appliances, Inc. Of Zhuhai Gas-replenishing and enthalpy-increasing control method, device and apparatus for two-stage compressor
EP3388761A4 (en) * 2015-12-11 2019-07-31 Gree Electric Appliances, Inc. of Zhuhai Air replenishment and enthalpy increase control method and apparatus for two-stage compressor and equipment
JPWO2017138419A1 (en) * 2016-02-08 2018-11-29 パナソニックIpマネジメント株式会社 Refrigeration equipment
JPWO2017138420A1 (en) * 2016-02-08 2018-11-29 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN106196685A (en) * 2016-07-22 2016-12-07 西安交通大学 A kind of critical-cross carbon dioxide refrigeration system
US11320170B2 (en) 2017-10-16 2022-05-03 Denso Corporation Heat pump cycle
JP2020026920A (en) * 2018-08-10 2020-02-20 富士電機株式会社 Heat pump device and refrigerant flow rate calculation method
JP7151262B2 (en) 2018-08-10 2022-10-12 富士電機株式会社 Heat pump device and refrigerant flow rate calculation method
JP2020079651A (en) * 2018-11-12 2020-05-28 パナソニックIpマネジメント株式会社 Air conditioner
WO2020203707A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle device
JP2020165646A (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Refrigeration cycle apparatus
CN111486609A (en) * 2020-04-02 2020-08-04 珠海格力节能环保制冷技术研究中心有限公司 Air conditioning system and control method
US20230184469A1 (en) * 2021-08-24 2023-06-15 Nihon Itomic Co., Ltd. Heat pump device
US11965680B2 (en) * 2021-08-24 2024-04-23 Nihon Itomic Co., Ltd. Heat pump device

Similar Documents

Publication Publication Date Title
JP2007178042A (en) Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP4833330B2 (en) Supercritical vapor compression refrigeration cycle, air conditioning equipment and heat pump water heater using the same
EP2752627B1 (en) Refrigeration device
Ko et al. The selection of volume ratio of two-stage rotary compressor and its effects on air-to-water heat pump with flash tank cycle
US20120036854A1 (en) Transcritical thermally activated cooling, heating and refrigerating system
US10018389B2 (en) Air-conditioning apparatus
JP3614330B2 (en) Supercritical vapor compression refrigeration cycle
JP5409715B2 (en) Air conditioner
Li et al. Theoretical analysis on optimal configurations of heat exchanger and compressor in a two-stage compression air source heat pump system
WO2008150289A1 (en) Refrigerant system with cascaded circuits and performance enhancement features
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
JP2007003169A (en) Refrigeration, hot water supply, and heating system using carbon dioxide as refrigerant, and condensing system used therein
Pitarch et al. Analysis and optimisation of different two-stage transcritical carbon dioxide cycles for heating applications
JP2016520187A (en) Heat pump for using environmentally friendly refrigerants
JP5367100B2 (en) Dual refrigeration equipment
JP4442237B2 (en) Air conditioner
Wang et al. Performance analysis and comprehensive comparison between CO2 and CO2/ethane azeotropy mixture as a refrigerant used in single-stage and two-stage vapor compression transcritical cycles
JP6080939B2 (en) Air conditioner
Luo Theoretical study of R32 in an oil flooded compression cycle with a scroll machine
JP2000292037A (en) Air conditioner
JP2018119708A (en) Refrigerant circuit system and control method
JPH1114167A (en) Air conditioner
JP4326004B2 (en) Air conditioner
JP7375167B2 (en) heat pump
CN105371516A (en) Carbon dioxide two-stage cold and heat co-generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070927

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A02