WO2020203707A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020203707A1
WO2020203707A1 PCT/JP2020/013872 JP2020013872W WO2020203707A1 WO 2020203707 A1 WO2020203707 A1 WO 2020203707A1 JP 2020013872 W JP2020013872 W JP 2020013872W WO 2020203707 A1 WO2020203707 A1 WO 2020203707A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
heat exchanger
state
compression
Prior art date
Application number
PCT/JP2020/013872
Other languages
French (fr)
Japanese (ja)
Inventor
和志 久山
柯壁 陳
岡本 哲也
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020203707A1 publication Critical patent/WO2020203707A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • Patent Document 1 discloses an air conditioner.
  • a low-stage compressor, a high-stage compressor, a condenser, a first decompression device, and an evaporator are sequentially connected to form a refrigeration cycle. Further, in this air conditioner, the compression ratio of the low-stage compressor is larger than the compression ratio of the high-stage compressor during the heating operation.
  • the first aspect of the present disclosure relates to a refrigerating cycle apparatus, in which the refrigerating cycle apparatus compresses and discharges a first compressor (21) and a refrigerant discharged from the first compressor (21).
  • a refrigerant circuit (20) having a second compressor (22) that compresses and discharges, a heat source side heat exchanger (24), an expansion mechanism (26), and a user side heat exchanger (27), and the above.
  • a part of the refrigerant flowing from the heat exchanger serving as the radiator to the expansion mechanism (26) is part of the second compressor (22). It is equipped with an injection circuit (30) that supplies the suction side.
  • the compression ratio (Pr1) in the first compressor (21) is always in the steady operation of heating in which the heat exchanger (27) on the utilization side serves as a radiator and the heat exchanger (24) on the heat source side serves as an evaporator. Is smaller than the compression ratio (Pr2) in the second compressor (22).
  • the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), whereby the first compressor It is possible to suppress an increase in the temperature of the refrigerant discharged from (21) (hereinafter referred to as “discharge temperature”). As a result, the first compressor (21) can be protected from destruction due to high temperature.
  • a second aspect of the present disclosure in the first aspect, further comprises an intermediate heat exchanger (40), wherein the injection circuit (30) is an injection expansion valve (30) that depressurizes the refrigerant flowing through the injection circuit (30). 31), the intermediate heat exchanger (40) is a refrigerant flowing out from the heat exchanger serving as a radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27). It is a refrigeration cycle apparatus characterized by heat exchange with a refrigerant decompressed by the injection expansion valve (31).
  • the refrigerant flowing out from the heat exchanger (heat source side heat exchanger (24) or user side heat exchanger (27)) serving as a radiator in the intermediate heat exchanger (40) and the injection expansion valve (31).
  • the refrigerant flowing out from the heat exchanger serving as the radiator can be overcooled.
  • the operating efficiency (for example, COP) of the refrigerating cycle apparatus (10) can be improved.
  • the second compressor (22) has a compression chamber for compressing the refrigerant, and the refrigerant can be supplied to the compression chamber in the middle of compression.
  • the injection circuit (30) is configured from the heat exchanger serving as the radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27) to the expansion mechanism (26).
  • the state of the injection circuit (30) can be switched between the first state and the second state, the increase in the discharge temperature of the second compressor (22) is appropriately suppressed by using the injection. can do.
  • the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
  • the second compressor (22) has a compression chamber for compressing the refrigerant, and the refrigerant can be supplied to the compression chamber in the middle of compression.
  • the injection circuit (30) is configured from the heat exchanger serving as the radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27) to the expansion mechanism (26).
  • a refrigeration cycle characterized in that it is possible to switch between two states and a third state in which a part of the refrigerant is supplied to both the suction side of the second compressor (22) and the compression chamber during compression. It is a device.
  • the state of the injection circuit (30) can be switched between the first state, the second state, and the third state, the injection temperature of the second compressor (22) rises by using the injection. Can be appropriately suppressed. As a result, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
  • a fifth aspect of the present disclosure is the injection according to a physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in the third or fourth aspect. It is a refrigeration cycle apparatus characterized in that the state of the circuit (30) can be switched.
  • the injection circuit (30) can be appropriately switched by switching the state of the injection circuit (30) according to the physical quantity (X).
  • a sixth aspect of the present disclosure is the physical quantity (X) and the second compressor (22) that correlate with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in the third aspect. ),
  • the state of the injection circuit (30) is switched according to the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2). Is.
  • the ratio (Prr) of the physical quantity (X) to the compression ratio (Pr2) in the second compressor (22) to the compression ratio (Pr1) in the first compressor (21) (hereinafter, “compression ratio”).
  • the injection circuit (30) has a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth) and a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth).
  • the first state is set, and the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth) and the first state with respect to the compression ratio (Pr2) in the second compressor (22).
  • the refrigeration cycle apparatus is characterized in that the second state is obtained when the ratio (Prr) of the compression ratio (Pr1) in the compressor (21) is less than the ratio threshold value (Pth1).
  • the injection circuit (30) can be put into the first state.
  • the first state of the injection circuit (30) can suppress an increase in the discharge temperature of the first compressor (21) as compared with the second state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively low, the injection circuit (30) is set to the first state to obtain the first compressor (21). The effect of suppressing an increase in the discharge temperature can be improved.
  • the injection circuit (30) when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high (the discharge temperature of the second compressor (22) tends to rise relatively easily.
  • the injection circuit (30) can be put into the second state according to the compression ratio ratio (Prr).
  • the second state of the injection circuit (30) can suppress an increase in the discharge temperature of the second compressor (22) as compared with the first state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high, the injection circuit (30) is put into the second state according to the ratio of the compression ratio (Prr). Therefore, the rise in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  • the eighth aspect of the present disclosure is the refrigeration cycle apparatus according to the seventh aspect, wherein the ratio threshold value (Pth1) gradually increases as the physical quantity (X) increases.
  • the compression ratio (Pr2) in the second compressor (22) increases, and the second The discharge temperature of the compressor (22) tends to rise. Therefore, by gradually increasing the ratio threshold value (Pth1) as the physical quantity (X) increases, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, resulting in the second compressor (Pe).
  • the injection circuit (30) can be put into the second state at a stage where the compression ratio (Pr2) in the second compressor (22) is relatively low. As a result, an increase in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  • a ninth aspect of the present disclosure is a physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in any one of the first to eighth aspects. As the value increases, the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) gradually decreases. It is a refrigeration cycle device.
  • the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is increased by gradually lowering the compression ratio ratio (Prr) as the physical quantity (X) increases.
  • the compression ratio corresponding to the product of the compression ratio (compression ratio (Pr1) in the first compressor (21) and the compression ratio (Pr2) in the second compressor (22)) required for the refrigeration cycle apparatus (10) due to the increase. ) Increases, the increase in the compression ratio (Pr1) in the first compressor (21) can be suppressed. As a result, it is possible to suppress an increase in the load on the first compressor (21).
  • the heat source side heat exchanger (24) serves as a radiator
  • the user side heat exchanger (27) serves as an evaporator.
  • the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). It is a refrigeration cycle device.
  • the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that the steady operation of heating is performed.
  • the rise in the discharge temperature of the first compressor (21) can be suppressed, and the first compressor (21) can be protected from destruction due to high temperature.
  • the eleventh aspect of the present disclosure is characterized in that, in any one of the first to tenth aspects, the first compressor (21) is a rotary type or a swing piston type compressor. It is a refrigeration cycle device.
  • the first compressor (21) is composed of a rotary type or a swing piston type compressor, so that the first compressor (21) is composed of a scroll type compressor. It is possible to reduce the size and speed of the first compressor (21). As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low.
  • the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
  • a twelfth aspect of the present disclosure is a refrigerating cycle apparatus according to any one of the first to tenth aspects, wherein the first compressor (21) is a turbo type compressor. ..
  • the first compressor (21) is composed of a turbo type compressor, and the first compressor (21) is composed of a scroll type, rotary type, or swing piston type compressor. It is possible to realize a smaller size and a higher speed of the first compressor (21) than in the case. As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low.
  • the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
  • FIG. 1 is a piping diagram illustrating the configuration of the refrigeration cycle apparatus of the first embodiment.
  • FIG. 2 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the first state.
  • FIG. 3 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the second state.
  • FIG. 4 is a flowchart for explaining the compression ratio control.
  • FIG. 5 is a graph for explaining the relationship between the compression ratio and the differential pressure.
  • FIG. 6 is a graph for explaining switching of the state of the injection circuit in the first embodiment.
  • FIG. 7 is a piping diagram illustrating the configuration of the refrigeration cycle apparatus of the second embodiment.
  • FIG. 8 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the third state.
  • FIG. 9 is a graph for explaining switching of the state of the injection circuit in the second embodiment.
  • FIG. 1 illustrates the configuration of the refrigeration cycle apparatus (10) according to the first embodiment.
  • the refrigeration cycle device (10) has a heating operation for heating the air-conditioned space by heating water (an example of a fluid on the user side) supplied to the air-conditioned space (not shown), and an air-conditioned space. It constitutes an air conditioner that performs a cooling operation that cools the air-conditioned space by cooling the water supplied to the air conditioner.
  • the refrigeration cycle device (10) includes a refrigerant circuit (20), an injection circuit (30), an intermediate heat exchanger (40), and a control unit (100).
  • the heating operation includes steady operation.
  • Steady operation in heating operation (hereinafter referred to as “steady operation of heating”) is operation in which the heating capacity is stable.
  • the steady operation of heating is an operation in which the fluctuation amount of the heating capacity per unit time is within a predetermined allowable amount, and does not include the operation in a transient state including the start-up time.
  • the steady operation of heating is simply referred to as "heating operation”.
  • the cooling operation includes a steady operation.
  • Steady operation in cooling operation (hereinafter referred to as “steady operation of cooling”) is an operation in which the cooling capacity is stable.
  • the steady operation of cooling is an operation in which the fluctuation amount of the cooling capacity per unit time is within a predetermined allowable amount, and does not include the operation in a transient state including the start-up.
  • the steady operation of cooling is simply referred to as "cooling operation”.
  • the refrigerant circuit (20) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), a heat source side heat exchanger (24), and a check valve bridge (25). ), An expansion mechanism (26), a heat exchanger (27) on the user side, an accumulator (28), and a bypass check valve (29).
  • the refrigerant circuit (20) is filled with a refrigerant, and the refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (20).
  • the refrigerant is, for example, R410A, R32, R407C and the like.
  • the first compressor (21) compresses the sucked refrigerant and discharges the compressed refrigerant.
  • the first compressor (21) is a rotary compressor.
  • the first compressor (21) may be a swing piston type compressor.
  • the rotary type compressor is a compressor in which the piston and the blade (vane) are separate bodies.
  • a swing piston type compressor is a compressor in which a piston and a blade are integrated.
  • the rotation speed of the first compressor (21) is variable.
  • the first compressor (21) is inside the first compressor (21) by changing the output frequency of an inverter (not shown) electrically connected to the first compressor (21).
  • the rotation speed of the provided motor changes, and as a result, the rotation speed (operating frequency) of the first compressor (21) changes.
  • the second compressor (22) compresses the sucked refrigerant and discharges the compressed refrigerant.
  • the second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression.
  • the second compressor (22) is provided with a suction port, an intermediate port, and a discharge port.
  • the suction port communicates with the compression chamber (low-pressure compression chamber) in the suction stroke of the second compressor (22).
  • the intermediate port communicates with the compression chamber (intermediate pressure compression chamber) in the middle of the compression stroke of the second compressor (22).
  • the discharge port communicates with the compression chamber (high-pressure compression chamber) in the discharge stroke of the second compressor (22).
  • the second compressor (22) may be a scroll type compressor, a rotary type compressor, a swing piston type compressor, or a turbo. It may be a type compressor, or it may be another compressor.
  • the rotation speed of the second compressor (22) is variable.
  • the second compressor (22) is inside the second compressor (22) by changing the output frequency of an inverter (not shown) electrically connected to the second compressor (22).
  • the rotation speed of the provided motor changes, and as a result, the rotation speed (operating frequency) of the second compressor (22) changes.
  • the second compressor (22) is configured to compress the refrigerant discharged from the first compressor (21).
  • the suction side (suction port) of the second compressor (22) is connected to the discharge side of the first compressor (21) via the first refrigerant pipe (P1).
  • the first port of the four-way switching valve (23) is connected to the discharge side of the second compressor (22) via the second refrigerant pipe (P2).
  • the second port of the four-way switching valve (23) is connected to the suction side of the first compressor (21) via the third refrigerant pipe (P3).
  • the third port of the four-way switching valve (23) is connected to the gas side of the heat source side heat exchanger (24) via the fourth refrigerant pipe (P4).
  • the fourth port of the four-way switching valve (23) is connected to the gas side of the user side heat exchanger (27) via the fifth refrigerant pipe (P5).
  • the four-way switching valve (23) has a first flow path state (state shown by a solid line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other, and a first. It is switched to the second flow path state (the state shown by the broken line in FIG. 1) in which the port and the third port communicate with each other and the second port and the fourth port communicate with each other.
  • the heat source side heat exchanger (24) exchanges heat between the refrigerant and the heat source side fluid.
  • the heat source side heat exchanger (24) exchanges heat between the refrigerant and air (an example of a heat source side fluid).
  • ⁇ Check valve bridge> The check valve bridge (25) expands the refrigerant flowing out of the heat exchanger (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27) (26). And the refrigerant flowing out from the expansion mechanism (26) is supplied to the heat exchanger that becomes the evaporator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27).
  • the check valve bridge (25) includes a first check valve (C1), a second check valve (C2), a third check valve (C3), and a fourth check valve (C4).
  • Each of the first to fourth check valves (C1 to C4) allows the flow of the refrigerant in the direction indicated by the arrow in FIG. 1 and obstructs the flow of the refrigerant in the opposite direction.
  • the first check valve (C1) and the second check valve (C2) are connected in series, and the third check valve (C3) and the fourth check valve (C4) are connected in series. Further, the first check valve (C1) and the third check valve (C3) are connected to each other, and the second check valve (C2) and the fourth check valve (C4) are connected to each other.
  • the first connection point (Q1) which is the connection point between the first check valve (C1) and the second check valve (C2), is the heat source side heat exchanger (24) via the sixth refrigerant pipe (P6). ) Is connected to the liquid side.
  • the second connection point (Q2) which is the connection point between the third check valve (C3) and the fourth check valve (C4), is a heat exchanger on the user side (P7) via the seventh refrigerant pipe (P7). It is connected to the liquid side of 27).
  • the third connection point (Q3) which is the connection point between the first check valve (C1) and the third check valve (C3), is connected to the expansion mechanism (26) via the eighth refrigerant pipe (P8). Be connected.
  • the fourth connection point (Q4) which is the connection point between the second check valve (C2) and the fourth check valve (C4), is connected to the expansion mechanism (26) via the ninth refrigerant pipe (P9). Be connected.
  • the expansion mechanism (26) expands the refrigerant to reduce the pressure of the refrigerant.
  • the expansion mechanism (26) is composed of an expansion valve (for example, an electronic expansion valve) whose opening degree can be adjusted.
  • the user-side heat exchanger (27) exchanges heat between the refrigerant and the user-side fluid.
  • the utilization side heat exchanger (27) exchanges heat between the refrigerant and water (an example of the utilization side fluid).
  • the accumulator (28) is provided in the third refrigerant pipe (P3).
  • the third refrigerant pipe (P3) includes a first pipe portion (P31) that connects the second port of the four-way switching valve (23) and the inlet side of the accumulator (28), and the accumulator (28). It has a second piping section (P32) that connects the outlet side of the first compressor (21) and the suction side of the first compressor (21).
  • the bypass check valve (29) bypasses the first compressor (21) and supplies the refrigerant to the suction side of the second compressor (22) when the first compressor (21) is stopped. It is provided in. Specifically, the middle part of the second pipe portion (P32) of the third refrigerant pipe (P3) is connected to the middle part of the first refrigerant pipe (P1) via the bias pipe (PB). The bypass check valve (29) is provided in the bias piping (PB). The bypass check valve (29) allows the flow of the refrigerant in the direction from the third refrigerant pipe (P3) to the first refrigerant pipe (P1), and obstructs the flow of the refrigerant in the opposite direction.
  • the injection circuit (30) uses a part of the refrigerant that goes from the heat exchanger, which is the condenser (radiator), to the expansion mechanism (26) of the heat source side heat exchanger (24) and the user side heat exchanger (27). It is supplied to the suction side of the second compressor (22). In this example, the injection circuit (30) can be switched between the first state and the second state.
  • the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the suction side of the second compressor (22).
  • the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22).
  • the injection circuit (30) has an injection expansion valve (31), an on-off valve (32), and an injection check valve (33). Further, the injection circuit (30) is provided with a first injection pipe (PJ1), a second injection pipe (PJ2), and a third injection pipe (PJ3). One end of the first injection pipe (PJ1) is connected to the middle part of the eighth refrigerant pipe (P8).
  • the second injection pipe (PJ2) connects the other end of the first injection pipe (PJ1) to the middle part of the first refrigerant pipe (P1).
  • the third injection pipe (PJ3) connects the other end of the first injection pipe (PJ1) to the intermediate port of the second compressor (22).
  • An injection expansion valve (31) is provided in the first injection pipe (PJ1).
  • An on-off valve (32) is provided in the second injection pipe (PJ2).
  • An injection check valve (33) is provided in the third injection pipe (PJ3).
  • the injection expansion valve (31) depressurizes the refrigerant flowing through the injection circuit (30) (in this example, the refrigerant flowing through the first injection pipe (PJ1)).
  • the on-off valve (32) can be switched between an open state and a closed state.
  • the injection check valve (33) allows the flow of refrigerant from the first injection pipe (PJ1) to the intermediate port of the second compressor (22) and obstructs the flow of refrigerant in the opposite direction.
  • the injection check valve (33) may be provided in the second compressor (22).
  • the injection circuit (30) is in the first state (a state in which a part of the refrigerant is supplied to the suction side of the second compressor (22)). become.
  • the injection circuit (30) is in the second state (a state in which a part of the refrigerant is supplied to the compression chamber during compression of the second compressor (22)).
  • the intermediate heat exchanger (40) includes the refrigerant flowing out from the heat exchanger that is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), and the injection expansion valve (31). ) Exchanges heat with the decompressed refrigerant.
  • the intermediate heat exchanger (40) is one end (third connection point Q3) of the eighth refrigerant pipe (P8) of the eighth refrigerant pipe (P8), the eighth refrigerant pipe (P8), and the first injection. It is connected to the piping section between the connection point with the piping (PJ1).
  • the intermediate heat exchanger (40) includes the injection expansion valve (31) of the first injection pipe (PJ1) and the other ends of the first injection pipe (PJ1) (first injection pipe (PJ1) and second and second injection pipes (PJ1). 3 It is connected to the piping section between the injection piping (connection point with PJ2, PJ3)). Then, the intermediate heat exchanger (40) exchanges heat with the refrigerant flowing through these piping portions.
  • the refrigeration cycle device (10) is provided with various sensors (not shown) such as a temperature sensor for detecting the temperature of the refrigerant and the like and a pressure sensor for detecting the pressure of the refrigerant and the like.
  • sensors such as a temperature sensor for detecting the temperature of the refrigerant and the like and a pressure sensor for detecting the pressure of the refrigerant and the like.
  • the detection results (signals) of these various sensors are transmitted to the control unit (100).
  • the control unit (100) controls each part of the refrigeration cycle device (10) based on the signals of various sensors provided in the refrigeration cycle device (10) and the control signal from the outside to control the refrigeration cycle device (10). Control the operation.
  • the control unit (100) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), an expansion mechanism (26), and an injection expansion valve ( 31) and the on-off valve (32) are controlled.
  • the control unit (100) is composed of a processor and a memory that is electrically connected to the processor and stores programs and information for operating the processor.
  • a single-stage compression operation and a two-stage compression operation are performed.
  • the single-stage compression operation one of the first compressor (21) and the second compressor (22) is stopped, and the other of the first compressor (21) and the second compressor (22) is driven.
  • the first compressor (21) is stopped and the second compressor (22) is driven.
  • both the first compressor (21) and the second compressor (22) are driven.
  • a single-stage compression / heating operation and a single-stage compression / cooling operation are performed, and as a two-stage compression operation, a two-stage compression / heating operation and a two-stage compression / cooling operation are performed.
  • ⁇ Single-stage compression heating operation> In the single-stage compression heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the user side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first flow path state (the state shown by the solid line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) is appropriately adjusted. The injection expansion valve (31) is set to the fully closed state. Then, the first compressor (21) is stopped and the second compressor (22) is driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the user-side fluid in the user-side heat exchanger (27), and condenses.
  • the refrigerant flowing out of the user-side heat exchanger (27) passes through the check valve bridge (25) and is depressurized in the expansion mechanism (26).
  • the refrigerant decompressed in the expansion mechanism (26) passes through the check valve bridge (25), absorbs heat from the heat source side fluid in the heat source side heat exchanger (24), and evaporates.
  • the refrigerant flowing out from the heat source side heat exchanger (24) passes through the four-way switching valve (23), the accumulator (28), and the bypass check valve (29) in order, and is sucked into the second compressor (22). Is compressed.
  • ⁇ Single-stage compression cooling operation> a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator.
  • the four-way switching valve (23) is set to the second flow path state (the state shown by the broken line in FIG. 1).
  • the amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) is appropriately adjusted.
  • the injection expansion valve (31) is set to the fully closed state. Then, the first compressor (21) is stopped and the second compressor (22) is driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the heat source side fluid in the heat source side heat exchanger (24), and condenses.
  • the refrigerant flowing out of the heat source side heat exchanger (24) passes through the check valve bridge (25) and is depressurized in the expansion mechanism (26).
  • the refrigerant decompressed in the expansion mechanism (26) passes through the check valve bridge (25), absorbs heat from the user-side fluid in the user-side heat exchanger (27), and evaporates.
  • the refrigerant flowing out from the heat exchanger (27) on the user side passes through the four-way switching valve (23), the accumulator (28), and the bypass check valve (29) in order, and is sucked into the second compressor (22). Is compressed.
  • the heat source side heat exchanger (24) and the user side heat exchanger Of (27) a part of the refrigerant heading from the heat exchanger serving as the condenser (radiator) to the expansion mechanism (26) may be supplied to the compression chamber in the middle of compression of the second compressor (22).
  • ⁇ Two-stage compression heating operation> In the two-stage compression heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the user side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first flow path state (the state shown by the solid line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Then, both the first compressor (21) and the second compressor (22) are driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the user-side fluid in the user-side heat exchanger (27), and condenses.
  • the refrigerant flowing out from the user side heat exchanger (27) passes through the check valve bridge (25) and flows through the eighth refrigerant pipe (P8), and in the intermediate heat exchanger (40), the first of the injection circuit (30). 1 Heat is radiated to the refrigerant flowing through the injection pipe (PJ1) and overcooled.
  • a part of the refrigerant flowing out of the intermediate heat exchanger (40) and flowing through the eighth refrigerant pipe (P8) is supplied to the injection circuit (30), and the rest is supplied to the expansion mechanism (26).
  • the refrigerant supplied to the expansion mechanism (26) is decompressed by the expansion mechanism (26), passes through the check valve bridge (25), and is endothermic from the heat source side fluid in the heat source side heat exchanger (24) and evaporates. ..
  • the refrigerant flowing out of the heat source side heat exchanger (24) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed.
  • the refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
  • the refrigerant supplied to the injection circuit (30) flows through the first injection pipe (PJ1), is depressurized at the injection expansion valve (31), and goes through the eighth refrigerant pipe (P8) at the intermediate heat exchanger (40). It absorbs heat from the flowing refrigerant.
  • the refrigerant that flows out of the intermediate heat exchanger (40) and flows through the first injection pipe (PJ1) depends on the state of the injection circuit (30) (specifically, the open / closed state of the on-off valve (32)). It is supplied to one of the suction side of the compressor (22) and the compression chamber during compression of the second compressor (22).
  • the refrigerant flowing through the first injection pipe (PJ1) is the on-off valve (32) in the open state. It is supplied to the middle part of the first refrigerant pipe (P1) through the above.
  • the refrigerant supplied to the first refrigerant pipe (P1) merges with the refrigerant discharged from the first compressor (21), is sucked into the second compressor (22), and is compressed. As a result, the refrigerant sucked into the second compressor (22) is cooled.
  • the state of the refrigerant in the refrigeration cycle is as shown by the solid line in FIG.
  • the refrigerant flowing through the first injection pipe (PJ1) uses the injection check valve (33). It passes through and is supplied to the intermediate port of the second compressor (22).
  • the refrigerant supplied to the intermediate port of the second compressor (22) is supplied to the compression chamber during compression of the second compressor (22) and mixed with the refrigerant in the compression chamber. As a result, the refrigerant in the compression chamber of the second compressor (22) is cooled.
  • ⁇ Two-stage compression cooling operation> In the two-stage compression cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second flow path state (the state shown by the broken line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Then, both the first compressor (21) and the second compressor (22) are driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the heat source side fluid in the heat source side heat exchanger (24), and condenses.
  • the refrigerant flowing out from the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the eighth refrigerant pipe (P8), and in the intermediate heat exchanger (40), the first of the injection circuit (30). 1 Heat is radiated to the refrigerant flowing through the injection pipe (PJ1) and overcooled.
  • a part of the refrigerant flowing out of the intermediate heat exchanger (40) and flowing through the eighth refrigerant pipe (P8) is supplied to the injection circuit (30), and the rest is supplied to the expansion mechanism (26).
  • the refrigerant supplied to the expansion mechanism (26) is decompressed by the expansion mechanism (26), passes through the check valve bridge (25), and is endothermic from the utilization side fluid in the utilization side heat exchanger (27) and evaporates. ..
  • the refrigerant flowing out from the user-side heat exchanger (27) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed.
  • the refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
  • the refrigerant supplied to the injection circuit (30) flows through the first injection pipe (PJ1), is depressurized at the injection expansion valve (31), and goes through the eighth refrigerant pipe (P8) at the intermediate heat exchanger (40). It absorbs heat from the flowing refrigerant.
  • the refrigerant that flows out of the intermediate heat exchanger (40) and flows through the first injection pipe (PJ1) depends on the state of the injection circuit (30) (specifically, the open / closed state of the on-off valve (32)). It is supplied to one of the suction side of the compressor (22) and the compression chamber during compression of the second compressor (22).
  • the second state of the injection circuit (30) is the temperature of the refrigerant discharged from the second compressor (22) rather than the first state of the injection circuit (30) (hereinafter, “discharge temperature”. It can be said that it is in a state where the increase of) can be suppressed. Further, it can be said that the first state of the injection circuit (30) is a state in which an increase in the discharge temperature of the first compressor (21) can be suppressed as compared with the second state of the injection circuit (30).
  • the compression ratio (Pr1) in the first compressor (21) is smaller than the compression ratio (Pr2) in the second compressor (22). Further, in this example, even in the two-stage compression cooling operation, the compression ratio (Pr1) in the first compressor (21) is smaller than the compression ratio (Pr2) in the second compressor (22). Specifically, in the steady operation of heating in which the two-stage compression operation is performed, the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). ing. Even in the steady operation of cooling in which the two-stage compression operation is performed, the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). ..
  • the control unit (100) performs the following processing (steps (S11 to S14)) at the start of the two-stage compression operation.
  • the compression ratio (Pr) in the refrigeration cycle apparatus (10) is described as “overall compression ratio (Pr)", and the compression ratio (Pr1) in the first compressor (21) is referred to as “first compression”.
  • the ratio (Pr1) is described, and the compression ratio (Pr2) in the second compressor (22) is described as the “second compression ratio (Pr2)”.
  • the control unit (100) calculates the target high pressure, which is the target value of the high pressure (Pc) of the refrigerant circuit (20), and the target low pressure, which is the target value of the low pressure (Pe) of the refrigerant circuit (20). Specifically, the control unit (100) calculates the target high voltage and the target low voltage from the heat load.
  • the heat load is derived, for example, based on the difference between the temperature of the air in the air-conditioned space and the target temperature determined in the air-conditioned space.
  • the control unit (100) calculates the overall compression ratio (Pr) based on the target high pressure and the target low pressure calculated in step (S11). For example, the control unit (100) calculates the value obtained by dividing the target high voltage by the target low voltage as the total compression ratio (Pr).
  • the control unit (100) uses the total compression ratio (Pr) calculated in step (S12), the predetermined total compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr1). Based on the relationship with Pr2), the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are calculated. For example, the control unit (100) stores a relational expression showing the relationship between the total compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr2), and steps (steps) (Pr2) in the relational expression.
  • the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are calculated.
  • the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are derived based on the following equations (1) and (2).
  • Pr1 A ⁇ In (Pr2) + B ... (1)
  • Pr Pr1 ⁇ Pr2 ... (2)
  • “In” is a natural logarithm
  • "A” and "B” are predetermined coefficients.
  • the relationship between the overall compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr2) is shown in a graph as shown in FIG.
  • the vertical axis of FIG. 5 indicates the compression ratio
  • the horizontal axis of FIG. 5 indicates the difference (differential pressure) between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20).
  • the state of the injection circuit (30) is switched according to the physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20). ..
  • the state of the injection circuit (30) is the ratio of the physical quantity (X) to the compression ratio (Pr2) in the second compressor (22) to the compression ratio (Pr1) in the first compressor (21) (Prr1). ) (Hereinafter referred to as "compression ratio ratio (Prr)").
  • the control unit (100) switches the state of the injection circuit (30) according to the physical quantity (X) and the ratio of the compression ratio (Prr).
  • the physical quantity (X) will be described in detail later.
  • FIG. 6 the region with the hatching downward to the left indicates the region where the injection circuit (30) is switched to the first state, and the region with the hatching downward to the right indicates the region where the injection circuit (30) is switched.
  • the area that can be switched to the second state is shown.
  • the injection circuit (30) when the physical quantity (X) is less than the predetermined physical quantity threshold value (Xth), the injection circuit (30) is in the first state.
  • the physical quantity (X) is equal to or greater than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is equal to or greater than a predetermined ratio threshold value (Pth1)
  • the injection circuit (30) is in the first state. It becomes.
  • the injection circuit (30) is in the second state.
  • the ratio threshold value (Pth1) gradually increases. Specifically, as the physical quantity (X) increases, the ratio threshold value (Pth1) gradually increases from the first ratio (Prr1). Further, as the physical quantity (X) increases, the compression ratio ratio (Prr) gradually decreases. Specifically, when the physical quantity (X) becomes equal to or higher than the physical quantity threshold value (Xth), the compression ratio ratio (Prr) gradually decreases from 1 as the physical quantity (X) increases.
  • the physical quantity (X) is an amount that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20).
  • Discharge pressure Pressure of the refrigerant discharged from the compression mechanism composed of the first compressor (21) and the second compressor (22)
  • Discharge temperature Temperature of the refrigerant discharged from the compression mechanism
  • Condensation pressure Condensing pressure of the refrigerant in the heat exchanger that becomes the compressor among the heat source side heat exchanger (24) and the utilization side heat exchanger (27)
  • Condensation temperature In the heat exchanger that becomes the condenser Refrigerant condensation temperature (5)
  • High pressure High pressure (Pc) detected by the refrigerant pressure sensor (not shown)
  • Hot water temperature Temperature of water flowing out from the user side heat exchanger (27) in heating operation when the user side heat exchanger (27) exchanges heat between the refrigerant and water (7)
  • Heating outlet temperature Utilization When the side heat exchanger (27) exchanges heat between the refrigerant and air (an example of the utilization side fluid), the temperature of the air flowing out from the utilization side heat exchanger (27) in the heating operation (8) Heating suction temperature
  • Suction pressure Pressure of the refrigerant sucked into the compression mechanism composed of the first compressor (21) and the second compressor (22)
  • Suction temperature Temperature of the refrigerant sucked into the compression mechanism
  • Evaporation pressure Evaporation pressure of the refrigerant in the heat exchanger that is the evaporator of the heat source side heat exchanger (24) and the utilization side heat exchanger (27)
  • Evaporation temperature In the heat exchanger that is the evaporator Refrigerant evaporation temperature
  • Low pressure Low pressure (Pe) detected by the refrigerant pressure sensor (not shown)
  • Cooling water temperature The temperature of the water flowing out from the user side heat exchanger (27) in the cooling operation when the user side heat exchanger (27) exchanges heat between the refrigerant and water.
  • Cooling outlet temperature The temperature of the air flowing out from the user side heat exchanger (27) in the cooling operation when the user side heat exchanger (27) exchanges heat between the refrigerant and air
  • Cooling suction temperature The user side heat exchanger (27) ) Is the temperature of the air flowing into the utilization side heat exchanger (27) in the cooling operation when heat is exchanged between the refrigerant and air.
  • Heating outside air temperature The heat source side heat exchanger (24) exchanges the refrigerant and air. Parameters that correlate with the low pressure (Pe) in the refrigerant circuit (20) above the temperature of the air flowing into the heat source side heat exchanger (24) in the heating operation when heat is exchanged are provided in the refrigeration cycle device (10). It can be obtained by various sensors.
  • the physical quantity (X) for example, (1) the difference between the discharge pressure and the suction pressure, (2) the difference between the discharge temperature and the suction temperature, (3) the difference between the condensation pressure and the evaporation pressure, (4). Difference between condensation temperature and evaporation temperature, (5) Difference between high pressure (Pc) and low pressure (Pe), (6) Difference between hot water temperature and heating outside air temperature, (7) Cooling outside air temperature and cooling water temperature Difference, (8) Difference between heating outlet temperature and heating outside air temperature, (9) Difference between heating suction temperature and heating outside air temperature, (10) Difference between cooling outside air temperature and cooling outlet temperature, (11) Cooling outside air temperature It is possible to utilize the difference between the temperature and the cooling suction temperature.
  • the discharge temperature of the second compressor (22) is set to a specified value. Even if it can be suppressed to the following, the discharge temperature of the first compressor (21) may not be suppressed to the specified value or less. Therefore, it is difficult to protect the low-stage compressor from destruction due to high temperature.
  • the compression ratio (Pr1) in the first compressor (21) is the compression ratio (Pr2) in the second compressor (22). Therefore, it is possible to suppress an increase in the discharge temperature of the first compressor (21).
  • the refrigerating cycle apparatus (10) of the present embodiment compresses and discharges the first compressor (21) that compresses and discharges the refrigerant, and compresses and discharges the refrigerant discharged from the first compressor (21).
  • a refrigerant circuit (20) having a second compressor (22), a heat source side heat exchanger (24), an expansion mechanism (26), and a user side heat exchanger (27), and a heat source side heat exchanger.
  • the compression ratio (Pr1) in the first compressor (21) is always the same. 2 It is smaller than the compression ratio (Pr2) in the compressor (22).
  • the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that the first compressor (Pr2) It is possible to suppress an increase in the temperature of the compressor discharged from 21) (hereinafter referred to as "discharge temperature"). As a result, the first compressor (21) can be protected from destruction due to high temperature.
  • the refrigeration cycle apparatus (10) of the present embodiment further includes an intermediate heat exchanger (40), and the injection circuit (30) includes an injection expansion valve (31) for reducing the pressure of the refrigerant flowing through the injection circuit (30).
  • the intermediate heat exchanger (40) includes the refrigerant flowing out from the heat exchanger that serves as the radiator among the heat source side heat exchanger (24) and the user side heat exchanger (27), and the injection expansion valve (31). Heat exchanges with the refrigerant decompressed by.
  • the refrigerant flowing out from the heat exchanger (heat source side heat exchanger (24) or user side heat exchanger (27)) serving as a radiator in the intermediate heat exchanger (40) and the injection expansion valve (31).
  • the refrigerant flowing out from the heat exchanger serving as the radiator can be overcooled.
  • the operating efficiency (for example, COP) of the refrigerating cycle apparatus (10) can be improved.
  • the second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression.
  • the injection circuit (30) is a second compressor that uses a part of the refrigerant that goes from the heat exchanger, which is the radiator, to the expansion mechanism (26) of the heat source side heat exchanger (24) and the user side heat exchanger (27). It is possible to switch between the first state of supplying the refrigerant to the suction side of (22) and the second state of supplying a part of the refrigerant to the compression chamber during compression of the second compressor (22).
  • the state of the injection circuit (30) can be switched between the first state and the second state, so that the injection is used to appropriately suppress the rise in the discharge temperature of the second compressor (22). be able to.
  • the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
  • the injection circuit (30) can be appropriately switched by switching the state of the injection circuit (30) according to the physical quantity (X).
  • the ratio of the physical quantity (X) and the compression ratio (Prr) (the ratio of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) (Prr)
  • the injection circuit (30) is switched more appropriately than when the state of the injection circuit (30) is switched based only on the physical quantity (X). be able to.
  • the injection circuit (30) has a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth) and a case where the physical quantity (X) is equal to or larger than the physical quantity threshold value (Xth).
  • the injection circuit (30) can be put into the first state.
  • the first state of the injection circuit (30) can suppress an increase in the discharge temperature of the first compressor (21) as compared with the second state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively low, the injection circuit (30) is set to the first state to obtain the first compressor (21). The effect of suppressing an increase in the discharge temperature can be improved.
  • the injection circuit (30) when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high (when the discharge temperature of the second compressor (22) is relatively likely to rise). ), The injection circuit (30) can be put into the second state according to the ratio of the compression ratio (Prr). The second state of the injection circuit (30) can suppress an increase in the discharge temperature of the second compressor (22) as compared with the first state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high, the injection circuit (30) is put into the second state according to the ratio of the compression ratio (Prr). Therefore, the rise in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  • the ratio threshold value (Pth1) gradually increases as the physical quantity (X) increases.
  • the compression ratio (Pr2) in the second compressor (22) increases, and the second compression
  • the discharge temperature of the machine (22) tends to rise. Therefore, by gradually increasing the ratio threshold value (Pth1) as the physical quantity (X) increases, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, resulting in the second compressor (Pe).
  • the injection circuit (30) can be put into the second state at a stage where the compression ratio (Pr2) in the second compressor (22) is relatively low. As a result, an increase in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  • the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is increased by gradually lowering the compression ratio ratio (Prr) as the physical quantity (X) increases.
  • compression ratio ratio corresponding to the product of the compression ratio (Pr1) in the first compressor (21) and the compression ratio (Pr2) in the second compressor (22)
  • the increase in the compression ratio (Pr1) in the first compressor (21) can be suppressed. As a result, it is possible to suppress an increase in the load on the first compressor (21).
  • the first compression is always performed even in the steady operation of cooling in which the heat source side heat exchanger (24) serves as a radiator and the user side heat exchanger (27) serves as an evaporator.
  • the compression ratio (Pr1) in the machine (21) is smaller than the compression ratio (Pr2) in the second compressor (22).
  • the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that during the steady operation of heating.
  • the rise in the discharge temperature of the first compressor (21) can be suppressed, and the first compressor (21) can be protected from destruction due to high temperature.
  • the compression ratio (Pr2) in the second compressor (22) can be made relatively large, the degree of supercooling in the refrigeration cycle of the refrigerant circuit (20) can be increased. As a result, the enthalpy difference in the heat exchanger (27) on the utilization side, which serves as an evaporator, can be increased, so that the operating efficiency of the refrigeration cycle apparatus (10) can be improved.
  • the first compressor (21) in the first compressor (21) can always be smaller than the compression ratio (Pr2) in the second compressor (22).
  • the size and cost of the first compressor (21) can be reduced, and the size and cost of the refrigeration cycle device (10) can be reduced.
  • the first compressor (21) is a rotary type or a swing piston type compressor.
  • the first compressor (21) is composed of a rotary type or a swing piston type compressor, so that the first compressor (21) is composed of a scroll type compressor. 1 It is possible to reduce the size and speed of the compressor (21). As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low. In addition, the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
  • FIG. 7 illustrates the configuration of the refrigeration cycle apparatus (10) of the second embodiment.
  • the refrigerating cycle apparatus (10) of the second embodiment has a different injection circuit (30) configuration from the refrigerating cycle apparatus (10) of the first embodiment.
  • Other configurations of the refrigeration cycle apparatus (10) of the second embodiment are the same as the configurations of the refrigeration cycle apparatus (10) of the first embodiment.
  • the injection circuit (30) can be switched between the first state, the second state, and the third state.
  • the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26).
  • a part of the refrigerant is supplied to the suction side of the second compressor (22).
  • the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26).
  • a part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22).
  • the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to both the suction side of the second compressor (22) and the compression chamber during compression.
  • the injection circuit (30) has a pressure reducing valve (34) instead of the on-off valve (32) shown in FIG.
  • Other configurations of the injection circuit (30) of the second embodiment are the same as those of the injection circuit (30) of the first embodiment.
  • the pressure reducing valve (34) is provided in the second injection pipe (PJ2).
  • the opening degree of the pressure reducing valve (34) can be adjusted.
  • the pressure reducing valve (34) is composed of an electric valve.
  • the pressure reducing valve (34) is fully opened so that the injection circuit (30) is in the first state (a state in which a part of the refrigerant is supplied to the suction side of the second compressor (22)). become.
  • the injection circuit (30) is in the second state (a state in which a part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22)). ..
  • the injection circuit (30) By setting the pressure reducing valve (34) between the fully closed state and the fully open state, the injection circuit (30) is in the third state (a part of the refrigerant is compressed on the suction side and the second compressor (22)). It will be in a state of supplying to both compression chambers on the way).
  • the refrigeration cycle device (10) of the second embodiment Similar to the refrigeration cycle device (10) of the first embodiment, the refrigeration cycle device (10) of the second embodiment also has a single-stage compression operation (specifically, a single-stage compression heating operation and a single-stage compression cooling operation) and a two-stage compression operation. Compression operation (specifically, two-stage compression heating operation and two-stage compression cooling operation) is performed.
  • a single-stage compression operation specifically, a single-stage compression heating operation and a single-stage compression cooling operation
  • Compression operation specifically, two-stage compression heating operation and two-stage compression cooling operation
  • a part of the refrigerant flowing through the first injection pipe (PJ1) uses the pressure reducing valve (34). It passes through and is supplied to the middle part of the first refrigerant pipe (P1), and the rest thereof passes through the injection check valve (33) and is supplied to the intermediate port of the second compressor (22).
  • the refrigerant supplied to the first refrigerant pipe (P1) merges with the refrigerant discharged from the first compressor (21), is sucked into the second compressor (22), and is compressed. As a result, the refrigerant sucked into the second compressor (22) is cooled.
  • the refrigerant that has passed through the injection check valve (33) is supplied to the compression chamber during compression of the second compressor (22) and mixed with the refrigerant in the compression chamber. As a result, the refrigerant in the compression chamber of the second compressor (22) is cooled.
  • the injection circuit (30) is in the third state, the state of the refrigerant in the refrigeration cycle is as shown by the solid line in FIG.
  • the third state of the injection circuit (30) improves the efficiency of the second state of the injection circuit (30) while suppressing an increase in the discharge temperature of the second compressor (22). It can be said that it is in a state where it can be done.
  • the state of the injection circuit (30) depends on the physical quantity (X) (the amount correlating with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)). Can be switched.
  • the state of the injection circuit (30) is the ratio (Prr) of the physical quantity (X) and the compression ratio (Pr1, Pr2) (the first compressor to the compression ratio (Pr2) in the second compressor (22)). It is switched according to the ratio (Prr) of the compression ratio (Pr1) in (21).
  • the control unit (100) switches the state of the injection circuit (30) according to the physical quantity (X) and the ratio of the compression ratio (Prr).
  • the region with the downward-sloping hatching indicates the region in which the injection circuit (30) is switched to the first state
  • the region with the downward-sloping coarse hatching is the injection circuit (30).
  • the injection circuit (30) when the physical quantity (X) is less than the physical quantity threshold value (Xth), the injection circuit (30) is in the first state.
  • the physical quantity (X) is equal to or greater than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is equal to or greater than the ratio threshold value (Pth1), the injection circuit (30) is in the first state.
  • the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth), and the compression ratio ratio (Prr) is in the range from the ratio threshold value (Pth1) to the lower ratio threshold value (Pth2) lower than the ratio threshold value (Pth1). If it is inside, the injection circuit (30) is in the second state.
  • the injection circuit (30) is in the third state. ..
  • the ratio threshold value (Pth1) and the low side ratio threshold value (Pth2) gradually increase as the physical quantity (X) increases. Specifically, as the physical quantity (X) increases, the ratio threshold (Pth1) gradually increases from the first ratio (Prr1), and the lower ratio threshold (Pth2) is lower than the first ratio (Prr1). It gradually increases from the second ratio (Prr2). Further, as the physical quantity (X) increases, the compression ratio ratio (Prr) gradually decreases. Specifically, when the physical quantity (X) becomes equal to or higher than the physical quantity threshold value (Xth), the compression ratio ratio (Prr) gradually decreases from 1 as the physical quantity (X) increases.
  • the second compressor (22) has a compression chamber for compressing the refrigerant so that the refrigerant can be supplied to the compression chamber in the middle of compression.
  • the injection circuit (30) is a part of the refrigerant that goes from the heat exchanger that is the radiator of the heat source side heat exchanger (24) and the user side heat exchanger (27) to the expansion mechanism (26).
  • a first state in which the refrigerant is supplied to the suction side of the second compressor (22) a second state in which a part of the refrigerant is supplied to the compression chamber during compression of the second compressor (22), and one of the refrigerants.
  • the unit can be switched to a third state in which the unit is supplied to both the suction side of the second compressor (22) and the compression chamber during compression.
  • the state of the injection circuit (30) can be switched between the first state, the second state, and the third state. Therefore, the injection is used to increase the discharge temperature of the second compressor (22). It can be suppressed appropriately. Thereby, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened. Moreover, the efficiency can be improved as compared with the first embodiment.
  • the first compressor (21) may be a turbo type compressor.
  • the first compressor (21) by configuring the first compressor (21) with a turbo type compressor, compared to the case where the first compressor (21) is composed of a scroll type, rotary type, or swing piston type compressor.
  • the first compressor (21) can be miniaturized and speeded up. As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low.
  • the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
  • R410A, R32, R407C and the like are listed as specific examples of the refrigerant, but the refrigerant may be another type of refrigerant.
  • the refrigerant may be carbon dioxide.
  • the present disclosure is useful as a refrigeration cycle device.
  • Refrigerant cycle device 20 Refrigerant circuit 21 First compressor 22 Second compressor 23 Four-way switching valve 24 Heat source side heat exchanger 25 Check valve bridge 26 Expansion mechanism 27 User side heat exchanger 28 Accumulator 29 Bypass check valve 30 Injection circuit 31 Injection expansion valve 32 On-off valve 33 Injection check valve 34 Pressure reducing valve 40 Intermediate heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigerant circuit (20) has a first compressor (21), a second compressor (22), a heat-source-side heat exchanger (24), an expansion mechanism (26), and a use-side heat exchanger (27). An injection circuit (30) supplies, to the suction side of the second compressor (22), some of the refrigerant flowing toward the expansion mechanism (26) from the heat exchanger serving as a radiator among the heat-source-side heat exchanger (24) and the use-side heat exchanger (27). In steady heating operation in which the use-side heat exchanger (27) serves as a radiator and the heat-source-side heat exchanger (24) serves as an evaporator, the compression ratio (Pr1) in the first compressor (21) is always lower than the compression ratio (Pr2) in the second compressor (22).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 特許文献1には、空気調和機が開示されている。この空気調和機では、低段側圧縮機と高段側圧縮機と凝縮器と第1減圧装置と蒸発器とが順次接続されて冷凍サイクルが構成されている。また、この空気調和機では、暖房運転時において低段側圧縮機の圧縮比が高段側圧縮機の圧縮比より大きくなる。 Patent Document 1 discloses an air conditioner. In this air conditioner, a low-stage compressor, a high-stage compressor, a condenser, a first decompression device, and an evaporator are sequentially connected to form a refrigeration cycle. Further, in this air conditioner, the compression ratio of the low-stage compressor is larger than the compression ratio of the high-stage compressor during the heating operation.
特開2004-183913号公報Japanese Unexamined Patent Publication No. 2004-183913
 特許文献1の空気調和機では、低段側圧縮機の圧縮比が高段側圧縮機の圧縮比より大きくなっているので、低段側圧縮機から吐出される冷媒の温度が高くなり過ぎるおそれがある。そのため、低段側圧縮機を高温による破壊から保護することが困難である。 In the air conditioner of Patent Document 1, since the compression ratio of the low-stage compressor is larger than the compression ratio of the high-stage compressor, the temperature of the refrigerant discharged from the low-stage compressor may become too high. There is. Therefore, it is difficult to protect the low-stage compressor from destruction due to high temperature.
 本開示の第1の態様は、冷凍サイクル装置に関し、この冷凍サイクル装置は、冷媒を圧縮して吐出する第1圧縮機(21)と、前記第1圧縮機(21)から吐出された冷媒を圧縮して吐出する第2圧縮機(22)と、熱源側熱交換器(24)と、膨張機構(26)と、利用側熱交換器(27)とを有する冷媒回路(20)と、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に供給するインジェクション回路(30)とを備える。前記利用側熱交換器(27)が放熱器となり、前記熱源側熱交換器(24)が蒸発器となる暖房の定常運転において、常に、前記第1圧縮機(21)における圧縮比(Pr1)は、前記第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。 The first aspect of the present disclosure relates to a refrigerating cycle apparatus, in which the refrigerating cycle apparatus compresses and discharges a first compressor (21) and a refrigerant discharged from the first compressor (21). A refrigerant circuit (20) having a second compressor (22) that compresses and discharges, a heat source side heat exchanger (24), an expansion mechanism (26), and a user side heat exchanger (27), and the above. Of the heat source side heat exchanger (24) and the utilization side heat exchanger (27), a part of the refrigerant flowing from the heat exchanger serving as the radiator to the expansion mechanism (26) is part of the second compressor (22). It is equipped with an injection circuit (30) that supplies the suction side. The compression ratio (Pr1) in the first compressor (21) is always in the steady operation of heating in which the heat exchanger (27) on the utilization side serves as a radiator and the heat exchanger (24) on the heat source side serves as an evaporator. Is smaller than the compression ratio (Pr2) in the second compressor (22).
 第1の態様では、暖房の定常運転において、第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも小さくすることにより、第1圧縮機(21)から吐出される冷媒の温度(以下では「吐出温度」と記載)の上昇を抑制することができる。これにより、第1圧縮機(21)を高温による破壊から保護することができる。 In the first aspect, in the steady operation of heating, the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), whereby the first compressor It is possible to suppress an increase in the temperature of the refrigerant discharged from (21) (hereinafter referred to as “discharge temperature”). As a result, the first compressor (21) can be protected from destruction due to high temperature.
 本開示の第2の態様は、第1の態様において、中間熱交換器(40)をさらに備え、前記インジェクション回路(30)は、該インジェクション回路(30)を流れる冷媒を減圧するインジェクション膨張弁(31)を有し、前記中間熱交換器(40)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から流出した冷媒と、前記インジェクション膨張弁(31)により減圧された冷媒とを熱交換させることを特徴とする冷凍サイクル装置である。 A second aspect of the present disclosure, in the first aspect, further comprises an intermediate heat exchanger (40), wherein the injection circuit (30) is an injection expansion valve (30) that depressurizes the refrigerant flowing through the injection circuit (30). 31), the intermediate heat exchanger (40) is a refrigerant flowing out from the heat exchanger serving as a radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27). It is a refrigeration cycle apparatus characterized by heat exchange with a refrigerant decompressed by the injection expansion valve (31).
 第2の態様では、中間熱交換器(40)において放熱器となる熱交換器(熱源側熱交換器(24)または利用側熱交換器(27))から流出した冷媒とインジェクション膨張弁(31)により減圧された冷媒とを熱交換させることにより、放熱器となる熱交換器から流出した冷媒を過冷却することができる。これにより、冷凍サイクル装置(10)の運転効率(例えばCOP)を向上させることができる。 In the second aspect, the refrigerant flowing out from the heat exchanger (heat source side heat exchanger (24) or user side heat exchanger (27)) serving as a radiator in the intermediate heat exchanger (40) and the injection expansion valve (31). By exchanging heat with the refrigerant decompressed by), the refrigerant flowing out from the heat exchanger serving as the radiator can be overcooled. Thereby, the operating efficiency (for example, COP) of the refrigerating cycle apparatus (10) can be improved.
 本開示の第3の態様は、第1または第2の態様において、前記第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、前記インジェクション回路(30)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に冷媒を供給する第1状態と、該冷媒の一部を前記第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態とに切り換え可能となっていることを特徴とする冷凍サイクル装置である。 In the third aspect of the present disclosure, in the first or second aspect, the second compressor (22) has a compression chamber for compressing the refrigerant, and the refrigerant can be supplied to the compression chamber in the middle of compression. The injection circuit (30) is configured from the heat exchanger serving as the radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27) to the expansion mechanism (26). A first state in which a part of the refrigerant heading toward is supplied to the suction side of the second compressor (22), and a part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22). It is a refrigeration cycle apparatus characterized in that it can be switched to the second state.
 第3の態様では、インジェクション回路(30)の状態を第1状態と第2状態とに切り換えることができるので、インジェクションを利用して第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。これにより、冷凍サイクル装置(10)の動作可能な範囲(冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の範囲)を広くすることができる。 In the third aspect, since the state of the injection circuit (30) can be switched between the first state and the second state, the increase in the discharge temperature of the second compressor (22) is appropriately suppressed by using the injection. can do. As a result, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
 本開示の第4の態様は、第1または第2の態様において、前記第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、前記インジェクション回路(30)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に供給する第1状態と、該冷媒の一部を前記第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態と、該冷媒の一部を前記第2圧縮機(22)の吸入側および圧縮途中の圧縮室の両方に供給する第3状態とに切り換え可能となっていることを特徴とする冷凍サイクル装置である。 In the fourth aspect of the present disclosure, in the first or second aspect, the second compressor (22) has a compression chamber for compressing the refrigerant, and the refrigerant can be supplied to the compression chamber in the middle of compression. The injection circuit (30) is configured from the heat exchanger serving as the radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27) to the expansion mechanism (26). The first state of supplying a part of the refrigerant toward the suction side of the second compressor (22) and the first state of supplying a part of the refrigerant to the compression chamber in the middle of compression of the second compressor (22). A refrigeration cycle characterized in that it is possible to switch between two states and a third state in which a part of the refrigerant is supplied to both the suction side of the second compressor (22) and the compression chamber during compression. It is a device.
 第4の態様では、インジェクション回路(30)の状態を第1状態と第2状態と第3状態とに切り換えることができるので、インジェクションを利用して第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。これにより、冷凍サイクル装置(10)の動作可能な範囲(冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の範囲)を広くすることができる。 In the fourth aspect, since the state of the injection circuit (30) can be switched between the first state, the second state, and the third state, the injection temperature of the second compressor (22) rises by using the injection. Can be appropriately suppressed. As a result, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
 本開示の第5の態様は、第3または第4の態様において、前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)に応じて前記インジェクション回路(30)の状態が切り換えられることを特徴とする冷凍サイクル装置である。 A fifth aspect of the present disclosure is the injection according to a physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in the third or fourth aspect. It is a refrigeration cycle apparatus characterized in that the state of the circuit (30) can be switched.
 第5の態様では、物理量(X)に応じてインジェクション回路(30)の状態を切り換えることにより、インジェクション回路(30)の切り換えを適切に行うことができる。 In the fifth aspect, the injection circuit (30) can be appropriately switched by switching the state of the injection circuit (30) according to the physical quantity (X).
 本開示の第6の態様は、第3の態様において、前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)と前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)とに応じて前記インジェクション回路(30)の状態が切り換えられることを特徴とする冷凍サイクル装置である。 A sixth aspect of the present disclosure is the physical quantity (X) and the second compressor (22) that correlate with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in the third aspect. ), The state of the injection circuit (30) is switched according to the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2). Is.
 第6の態様では、物理量(X)と、第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)(以下では「圧縮比の割合(Prr)」と記載)とに応じてインジェクション回路(30)の状態を切り換えることにより、物理量(X)のみに基づいてインジェクション回路(30)の状態を切り換える場合よりも、インジェクション回路(30)の切り換えを適切に行うことができる。 In the sixth aspect, the ratio (Prr) of the physical quantity (X) to the compression ratio (Pr2) in the second compressor (22) to the compression ratio (Pr1) in the first compressor (21) (hereinafter, "compression ratio"). By switching the state of the injection circuit (30) according to the ratio (Prr) of ) Can be switched appropriately.
 本開示の第7の態様は、第6の態様において、前記インジェクション回路(30)は、前記物理量(X)が予め定められた物理量閾値(Xth)未満である場合と、前記物理量(X)が前記物理量閾値(Xth)以上であり且つ前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が予め定められた割合閾値(Pth1)以上である場合に、前記第1状態となり、前記物理量(X)が前記物理量閾値(Xth)以上であり且つ前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が前記割合閾値(Pth1)未満である場合に、前記第2状態となることを特徴とする冷凍サイクル装置である。 In the seventh aspect of the present disclosure, in the sixth aspect, the injection circuit (30) has a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth) and a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth). A predetermined ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) that is equal to or higher than the physical quantity threshold value (Xth). When it is equal to or higher than the threshold value (Pth1), the first state is set, and the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth) and the first state with respect to the compression ratio (Pr2) in the second compressor (22). The refrigeration cycle apparatus is characterized in that the second state is obtained when the ratio (Prr) of the compression ratio (Pr1) in the compressor (21) is less than the ratio threshold value (Pth1).
 第7の態様では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に低い場合(第2圧縮機(22)の吐出温度が比較的に上昇しにくい場合)に、インジェクション回路(30)を第1状態にすることができる。なお、インジェクション回路(30)の第1状態は、インジェクション回路(30)の第2状態よりも、第1圧縮機(21)の吐出温度の上昇を抑制することができる。したがって、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に低い場合に、インジェクション回路(30)を第1状態にすることにより、第1圧縮機(21)の吐出温度の上昇を抑制する効果を向上させることができる。 In the seventh aspect, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively small (when the discharge temperature of the second compressor (22) is relatively difficult to rise). In addition, the injection circuit (30) can be put into the first state. The first state of the injection circuit (30) can suppress an increase in the discharge temperature of the first compressor (21) as compared with the second state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively low, the injection circuit (30) is set to the first state to obtain the first compressor (21). The effect of suppressing an increase in the discharge temperature can be improved.
 また、第7の態様では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に高い場合(第2圧縮機(22)の吐出温度が比較的に上昇しやすい場合)に、圧縮比の割合(Prr)に応じてインジェクション回路(30)を第2状態にすることができる。なお、インジェクション回路(30)の第2状態は、インジェクション回路(30)の第1状態よりも、第2圧縮機(22)の吐出温度の上昇を抑制することができる。したがって、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に高い場合に、圧縮比の割合(Prr)に応じてインジェクション回路(30)を第2状態にすることにより、第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。 Further, in the seventh aspect, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high (the discharge temperature of the second compressor (22) tends to rise relatively easily. In some cases), the injection circuit (30) can be put into the second state according to the compression ratio ratio (Prr). The second state of the injection circuit (30) can suppress an increase in the discharge temperature of the second compressor (22) as compared with the first state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high, the injection circuit (30) is put into the second state according to the ratio of the compression ratio (Prr). Therefore, the rise in the discharge temperature of the second compressor (22) can be appropriately suppressed.
 本開示の第8の態様は、第7の態様において、前記物理量(X)が大きくなるに連れて前記割合閾値(Pth1)が次第に高くなることを特徴とする冷凍サイクル装置である。 The eighth aspect of the present disclosure is the refrigeration cycle apparatus according to the seventh aspect, wherein the ratio threshold value (Pth1) gradually increases as the physical quantity (X) increases.
 第8の態様では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が大きくなるに連れて、第2圧縮機(22)における圧縮比(Pr2)が大きくなり、第2圧縮機(22)の吐出温度が上昇しやすくなる。したがって、物理量(X)が大きくなるに連れて割合閾値(Pth1)を次第に高くすることにより、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の増加により第2圧縮機(22)の吐出温度が上昇しやすくなった場合に、第2圧縮機(22)における圧縮比(Pr2)が比較的に低い段階で、インジェクション回路(30)を第2状態にすることができる。これにより、第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。 In the eighth aspect, as the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, the compression ratio (Pr2) in the second compressor (22) increases, and the second The discharge temperature of the compressor (22) tends to rise. Therefore, by gradually increasing the ratio threshold value (Pth1) as the physical quantity (X) increases, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, resulting in the second compressor (Pe). When the discharge temperature of 22) tends to rise, the injection circuit (30) can be put into the second state at a stage where the compression ratio (Pr2) in the second compressor (22) is relatively low. As a result, an increase in the discharge temperature of the second compressor (22) can be appropriately suppressed.
 本開示の第9の態様は、第1~第8の態様のいずれか1つにおいて、前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)が大きくなるに連れて、前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が次第に低くなることを特徴とする冷凍サイクル装置である。 A ninth aspect of the present disclosure is a physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) in any one of the first to eighth aspects. As the value increases, the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) gradually decreases. It is a refrigeration cycle device.
 第9の態様では、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)を次第に低くすることにより、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の増加により冷凍サイクル装置(10)に要求される圧縮比(第1圧縮機(21)における圧縮比(Pr1)と第2圧縮機(22)における圧縮比(Pr2)との積に相当する圧縮比)が増加したとしても、第1圧縮機(21)における圧縮比(Pr1)の増加を抑制することができる。これにより、第1圧縮機(21)の負担が増加することを抑制することができる。 In the ninth aspect, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is increased by gradually lowering the compression ratio ratio (Prr) as the physical quantity (X) increases. The compression ratio corresponding to the product of the compression ratio (compression ratio (Pr1) in the first compressor (21) and the compression ratio (Pr2) in the second compressor (22)) required for the refrigeration cycle apparatus (10) due to the increase. ) Increases, the increase in the compression ratio (Pr1) in the first compressor (21) can be suppressed. As a result, it is possible to suppress an increase in the load on the first compressor (21).
 本開示の第10の態様は、第1~第9の態様のいずれか1つにおいて、前記熱源側熱交換器(24)が放熱器となり、前記利用側熱交換器(27)が蒸発器となる冷房の定常運転においても、常に、前記第1圧縮機(21)における圧縮比(Pr1)は、前記第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっていることを特徴とする冷凍サイクル装置である。 In the tenth aspect of the present disclosure, in any one of the first to ninth aspects, the heat source side heat exchanger (24) serves as a radiator, and the user side heat exchanger (27) serves as an evaporator. Even in the steady operation of the cooling system, the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). It is a refrigeration cycle device.
 第10の態様では、冷房の定常運転において、第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも小さくすることにより、暖房の定常運転時と同様、第1圧縮機(21)の吐出温度の上昇を抑制することができ、第1圧縮機(21)を高温による破壊から保護することができる。 In the tenth aspect, in the steady operation of cooling, the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that the steady operation of heating is performed. As in the case, the rise in the discharge temperature of the first compressor (21) can be suppressed, and the first compressor (21) can be protected from destruction due to high temperature.
 本開示の第11の態様は、第1~第10の態様のいずれか1つにおいて、前記第1圧縮機(21)は、ロータリ式または揺動ピストン式の圧縮機であることを特徴とする冷凍サイクル装置である。 The eleventh aspect of the present disclosure is characterized in that, in any one of the first to tenth aspects, the first compressor (21) is a rotary type or a swing piston type compressor. It is a refrigeration cycle device.
 第11の態様では、第1圧縮機(21)をロータリ式または揺動ピストン式の圧縮機で構成することにより、第1圧縮機(21)をスクロール式の圧縮機で構成する場合よりも、第1圧縮機(21)の小型化および高速化を実現することができる。これにより、冷媒密度が低い運転状況下においても冷媒流量の確保を容易にすることができる。また、冷凍サイクル装置(10)の小型化および低コスト化を実現することができる。 In the eleventh aspect, the first compressor (21) is composed of a rotary type or a swing piston type compressor, so that the first compressor (21) is composed of a scroll type compressor. It is possible to reduce the size and speed of the first compressor (21). As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low. In addition, the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
 本開示の第12の態様は、第1~第10の態様のいずれか1つにおいて、前記第1圧縮機(21)は、ターボ式の圧縮機であることを特徴とする冷凍サイクル装置である。 A twelfth aspect of the present disclosure is a refrigerating cycle apparatus according to any one of the first to tenth aspects, wherein the first compressor (21) is a turbo type compressor. ..
 第12の態様では、第1圧縮機(21)をターボ式の圧縮機で構成することにより、第1圧縮機(21)をスクロール式,ロータリ式,または揺動ピストン式の圧縮機で構成する場合よりも、第1圧縮機(21)の小型化および高速化を実現することができる。これにより、冷媒密度が低い運転状況下においても冷媒流量の確保を容易にすることができる。また、冷凍サイクル装置(10)の小型化および低コスト化を実現することができる。 In the twelfth aspect, the first compressor (21) is composed of a turbo type compressor, and the first compressor (21) is composed of a scroll type, rotary type, or swing piston type compressor. It is possible to realize a smaller size and a higher speed of the first compressor (21) than in the case. As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low. In addition, the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
図1は、実施形態1の冷凍サイクル装置の構成を例示する配管図である。FIG. 1 is a piping diagram illustrating the configuration of the refrigeration cycle apparatus of the first embodiment. 図2は、インジェクション回路が第1状態である場合の暖房運転における冷媒の状態を例示するモリエル線図である。FIG. 2 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the first state. 図3は、インジェクション回路が第2状態である場合の暖房運転における冷媒の状態を例示するモリエル線図である。FIG. 3 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the second state. 図4は、圧縮比制御について説明するためのフローチャートである。FIG. 4 is a flowchart for explaining the compression ratio control. 図5は、圧縮比と差圧との関係について説明するためのグラフである。FIG. 5 is a graph for explaining the relationship between the compression ratio and the differential pressure. 図6は、実施形態1におけるインジェクション回路の状態の切り換えについて説明するためのグラフである。FIG. 6 is a graph for explaining switching of the state of the injection circuit in the first embodiment. 図7は、実施形態2の冷凍サイクル装置の構成を例示する配管図である。FIG. 7 is a piping diagram illustrating the configuration of the refrigeration cycle apparatus of the second embodiment. 図8は、インジェクション回路が第3状態である場合の暖房運転における冷媒の状態を例示するモリエル線図である。FIG. 8 is a Moriel diagram illustrating the state of the refrigerant in the heating operation when the injection circuit is in the third state. 図9は、実施形態2におけるインジェクション回路の状態の切り換えについて説明するためのグラフである。FIG. 9 is a graph for explaining switching of the state of the injection circuit in the second embodiment.
 以下、実施の形態を図面を参照して詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。 Hereinafter, the embodiment will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、実施形態1による冷凍サイクル装置(10)の構成を例示する。この例では、冷凍サイクル装置(10)は、空調対象空間(図示を省略)に供給される水(利用側流体の一例)を加熱することで空調対象空間を暖房する暖房運転と、空調対象空間に供給される水を冷却することで空調対象空間を冷房する冷房運転とを行う空気調和機を構成する。冷凍サイクル装置(10)は、冷媒回路(20)と、インジェクション回路(30)と、中間熱交換器(40)と、制御部(100)とを備える。
(Embodiment 1)
FIG. 1 illustrates the configuration of the refrigeration cycle apparatus (10) according to the first embodiment. In this example, the refrigeration cycle device (10) has a heating operation for heating the air-conditioned space by heating water (an example of a fluid on the user side) supplied to the air-conditioned space (not shown), and an air-conditioned space. It constitutes an air conditioner that performs a cooling operation that cools the air-conditioned space by cooling the water supplied to the air conditioner. The refrigeration cycle device (10) includes a refrigerant circuit (20), an injection circuit (30), an intermediate heat exchanger (40), and a control unit (100).
 なお、暖房運転には、定常運転が含まれる。暖房運転における定常運転(以下では「暖房の定常運転」と記載)は、暖房能力が安定している運転のことである。例えば、暖房の定常運転は、暖房能力の単位時間当たりの変動量が予め定められた許容量に収まっている運転のことであり、起動時などを含む過渡状態の運転を含まない。以下では、暖房の定常運転を単に「暖房運転」と記載する。 Note that the heating operation includes steady operation. Steady operation in heating operation (hereinafter referred to as "steady operation of heating") is operation in which the heating capacity is stable. For example, the steady operation of heating is an operation in which the fluctuation amount of the heating capacity per unit time is within a predetermined allowable amount, and does not include the operation in a transient state including the start-up time. In the following, the steady operation of heating is simply referred to as "heating operation".
 また、冷房運転には、定常運転が含まれる。冷房運転における定常運転(以下では「冷房の定常運転」と記載)は、冷房能力が安定している運転のことである。例えば、冷房の定常運転は、冷房能力の単位時間当たりの変動量が予め定められた許容量に収まっている運転のことであり、起動時などを含む過渡状態の運転を含まない。以下では、冷房の定常運転を単に「冷房運転」と記載する。 In addition, the cooling operation includes a steady operation. Steady operation in cooling operation (hereinafter referred to as "steady operation of cooling") is an operation in which the cooling capacity is stable. For example, the steady operation of cooling is an operation in which the fluctuation amount of the cooling capacity per unit time is within a predetermined allowable amount, and does not include the operation in a transient state including the start-up. In the following, the steady operation of cooling is simply referred to as "cooling operation".
  〔冷媒回路〕
 冷媒回路(20)は、第1圧縮機(21)と、第2圧縮機(22)と、四路切換弁(23)と、熱源側熱交換器(24)と、逆止弁ブリッジ(25)と、膨張機構(26)と、利用側熱交換器(27)と、アキュムレータ(28)と、バイパス逆止弁(29)とを有する。冷媒回路(20)には、冷媒が充填されており、冷媒回路(20)において冷媒が循環することで冷凍サイクルが行われる。冷媒は、例えば、R410A,R32,R407Cなどである。
[Refrigerant circuit]
The refrigerant circuit (20) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), a heat source side heat exchanger (24), and a check valve bridge (25). ), An expansion mechanism (26), a heat exchanger (27) on the user side, an accumulator (28), and a bypass check valve (29). The refrigerant circuit (20) is filled with a refrigerant, and the refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (20). The refrigerant is, for example, R410A, R32, R407C and the like.
   〈第1圧縮機〉
 第1圧縮機(21)は、吸入した冷媒を圧縮し、圧縮した冷媒を吐出する。この例では、第1圧縮機(21)は、ロータリ式の圧縮機である。なお、第1圧縮機(21)は、揺動ピストン式の圧縮機であってもよい。なお、ロータリ式の圧縮機は、ピストンとブレード(ベーン)とが別体である圧縮機のことである。揺動ピストン式の圧縮機は、ピストンとブレードとが一体化された圧縮機のことである。
<First compressor>
The first compressor (21) compresses the sucked refrigerant and discharges the compressed refrigerant. In this example, the first compressor (21) is a rotary compressor. The first compressor (21) may be a swing piston type compressor. The rotary type compressor is a compressor in which the piston and the blade (vane) are separate bodies. A swing piston type compressor is a compressor in which a piston and a blade are integrated.
 また、第1圧縮機(21)の回転数は、可変である。例えば、第1圧縮機(21)は、第1圧縮機(21)に電気的に接続されたインバータ(図示を省略)の出力周波数を変化させることで、第1圧縮機(21)の内部に設けられたモータの回転数が変化し、その結果、第1圧縮機(21)の回転数(運転周波数)が変化するようになっている。 Also, the rotation speed of the first compressor (21) is variable. For example, the first compressor (21) is inside the first compressor (21) by changing the output frequency of an inverter (not shown) electrically connected to the first compressor (21). The rotation speed of the provided motor changes, and as a result, the rotation speed (operating frequency) of the first compressor (21) changes.
   〈第2圧縮機〉
 第2圧縮機(22)は、吸入した冷媒を圧縮し、圧縮した冷媒を吐出する。この例では、第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されている。具体的には、第2圧縮機(22)には、吸入ポートと中間ポートと吐出ポートとが設けられている。吸入ポートは、第2圧縮機(22)の吸入行程において圧縮室(低圧の圧縮室)と連通する。中間ポートは、第2圧縮機(22)の圧縮行程の途中において圧縮室(中間圧の圧縮室)と連通する。吐出ポートは、第2圧縮機(22)の吐出行程において圧縮室(高圧の圧縮室)と連通する。例えば、第2圧縮機(22)は、スクロール式の圧縮機であってもよいし、ロータリ式の圧縮機であってもよいし、揺動ピストン式の圧縮機であってもよいし、ターボ式の圧縮機であってもよいし、その他の圧縮機であってもよい。
<Second compressor>
The second compressor (22) compresses the sucked refrigerant and discharges the compressed refrigerant. In this example, the second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression. Specifically, the second compressor (22) is provided with a suction port, an intermediate port, and a discharge port. The suction port communicates with the compression chamber (low-pressure compression chamber) in the suction stroke of the second compressor (22). The intermediate port communicates with the compression chamber (intermediate pressure compression chamber) in the middle of the compression stroke of the second compressor (22). The discharge port communicates with the compression chamber (high-pressure compression chamber) in the discharge stroke of the second compressor (22). For example, the second compressor (22) may be a scroll type compressor, a rotary type compressor, a swing piston type compressor, or a turbo. It may be a type compressor, or it may be another compressor.
 また、第1圧縮機(21)と同様、第2圧縮機(22)の回転数は、可変である。例えば、第2圧縮機(22)は、第2圧縮機(22)に電気的に接続されたインバータ(図示を省略)の出力周波数を変化させることで、第2圧縮機(22)の内部に設けられたモータの回転数が変化し、その結果、第2圧縮機(22)の回転数(運転周波数)が変化するようになっている。 Also, like the first compressor (21), the rotation speed of the second compressor (22) is variable. For example, the second compressor (22) is inside the second compressor (22) by changing the output frequency of an inverter (not shown) electrically connected to the second compressor (22). The rotation speed of the provided motor changes, and as a result, the rotation speed (operating frequency) of the second compressor (22) changes.
 この例では、第2圧縮機(22)は、第1圧縮機(21)から吐出された冷媒を圧縮するように構成される。具体的には、第2圧縮機(22)の吸入側(吸入ポート)は、第1冷媒配管(P1)を経由して、第1圧縮機(21)の吐出側に接続される。 In this example, the second compressor (22) is configured to compress the refrigerant discharged from the first compressor (21). Specifically, the suction side (suction port) of the second compressor (22) is connected to the discharge side of the first compressor (21) via the first refrigerant pipe (P1).
   〈四路切換弁〉
 四路切換弁(23)の第1ポートは、第2冷媒配管(P2)を経由して、第2圧縮機(22)の吐出側に接続される。四路切換弁(23)の第2ポートは、第3冷媒配管(P3)を経由して、第1圧縮機(21)の吸入側に接続される。四路切換弁(23)の第3ポートは、第4冷媒配管(P4)を経由して、熱源側熱交換器(24)のガス側に接続される。四路切換弁(23)の第4ポートは、第5冷媒配管(P5)を経由して、利用側熱交換器(27)のガス側に接続される。
<Four-way switching valve>
The first port of the four-way switching valve (23) is connected to the discharge side of the second compressor (22) via the second refrigerant pipe (P2). The second port of the four-way switching valve (23) is connected to the suction side of the first compressor (21) via the third refrigerant pipe (P3). The third port of the four-way switching valve (23) is connected to the gas side of the heat source side heat exchanger (24) via the fourth refrigerant pipe (P4). The fourth port of the four-way switching valve (23) is connected to the gas side of the user side heat exchanger (27) via the fifth refrigerant pipe (P5).
 四路切換弁(23)は、第1ポートと第4ポートとが連通し且つ第2ポートと第3ポートとが連通する第1流路状態(図1の実線で示す状態)と、第1ポートと第3ポートとが連通し且つ第2ポートと第4ポートとが連通する第2流路状態(図1の破線で示す状態)とに切り換えられる。 The four-way switching valve (23) has a first flow path state (state shown by a solid line in FIG. 1) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other, and a first. It is switched to the second flow path state (the state shown by the broken line in FIG. 1) in which the port and the third port communicate with each other and the second port and the fourth port communicate with each other.
   〈熱源側熱交換器〉
 熱源側熱交換器(24)は、冷媒と熱源側流体とを熱交換させる。この例では、熱源側熱交換器(24)は、冷媒と空気(熱源側流体の一例)とを熱交換させる。
<Heat source side heat exchanger>
The heat source side heat exchanger (24) exchanges heat between the refrigerant and the heat source side fluid. In this example, the heat source side heat exchanger (24) exchanges heat between the refrigerant and air (an example of a heat source side fluid).
   〈逆止弁ブリッジ〉
 逆止弁ブリッジ(25)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から流出された冷媒を膨張機構(26)に供給し、膨張機構(26)から流出された冷媒を熱源側熱交換器(24)および利用側熱交換器(27)のうち蒸発器となる熱交換器に供給する。
<Check valve bridge>
The check valve bridge (25) expands the refrigerant flowing out of the heat exchanger (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27) (26). And the refrigerant flowing out from the expansion mechanism (26) is supplied to the heat exchanger that becomes the evaporator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27).
 具体的には、逆止弁ブリッジ(25)は、第1逆止弁(C1)と第2逆止弁(C2)と第3逆止弁(C3)と第4逆止弁(C4)とを有する。第1~第4逆止弁(C1~C4)の各々は、図1の矢印で示した方向への冷媒の流れを許容し、その逆方向の冷媒の流れを阻害する。第1逆止弁(C1)と第2逆止弁(C2)とが直列に接続され、第3逆止弁(C3)と第4逆止弁(C4)とが直列に接続される。また、第1逆止弁(C1)と第3逆止弁(C3)とが互いに接続され、第2逆止弁(C2)と第4逆止弁(C4)とが互いに接続される。 Specifically, the check valve bridge (25) includes a first check valve (C1), a second check valve (C2), a third check valve (C3), and a fourth check valve (C4). Has. Each of the first to fourth check valves (C1 to C4) allows the flow of the refrigerant in the direction indicated by the arrow in FIG. 1 and obstructs the flow of the refrigerant in the opposite direction. The first check valve (C1) and the second check valve (C2) are connected in series, and the third check valve (C3) and the fourth check valve (C4) are connected in series. Further, the first check valve (C1) and the third check valve (C3) are connected to each other, and the second check valve (C2) and the fourth check valve (C4) are connected to each other.
 第1逆止弁(C1)と第2逆止弁(C2)との接続点である第1接続点(Q1)は、第6冷媒配管(P6)を経由して熱源側熱交換器(24)の液側に接続される。第3逆止弁(C3)と第4逆止弁(C4)との接続点である第2接続点(Q2)は、第7冷媒配管(P7)を経由して、利用側熱交換器(27)の液側に接続される。第1逆止弁(C1)と第3逆止弁(C3)との接続点である第3接続点(Q3)は、第8冷媒配管(P8)を経由して、膨張機構(26)に接続される。第2逆止弁(C2)と第4逆止弁(C4)との接続点である第4接続点(Q4)は、第9冷媒配管(P9)を経由して、膨張機構(26)に接続される。 The first connection point (Q1), which is the connection point between the first check valve (C1) and the second check valve (C2), is the heat source side heat exchanger (24) via the sixth refrigerant pipe (P6). ) Is connected to the liquid side. The second connection point (Q2), which is the connection point between the third check valve (C3) and the fourth check valve (C4), is a heat exchanger on the user side (P7) via the seventh refrigerant pipe (P7). It is connected to the liquid side of 27). The third connection point (Q3), which is the connection point between the first check valve (C1) and the third check valve (C3), is connected to the expansion mechanism (26) via the eighth refrigerant pipe (P8). Be connected. The fourth connection point (Q4), which is the connection point between the second check valve (C2) and the fourth check valve (C4), is connected to the expansion mechanism (26) via the ninth refrigerant pipe (P9). Be connected.
   〈膨張機構〉
 膨張機構(26)は、冷媒を膨張させて冷媒の圧力を低下させる。この例では、膨張機構(26)は、開度を調節可能な膨張弁(例えば電子膨張弁)により構成される。
<Expansion mechanism>
The expansion mechanism (26) expands the refrigerant to reduce the pressure of the refrigerant. In this example, the expansion mechanism (26) is composed of an expansion valve (for example, an electronic expansion valve) whose opening degree can be adjusted.
   〈利用側熱交換器〉
 利用側熱交換器(27)は、冷媒と利用側流体とを熱交換させる。この例では、利用側熱交換器(27)は、冷媒と水(利用側流体の一例)とを熱交換させる。
<Heat exchanger on the user side>
The user-side heat exchanger (27) exchanges heat between the refrigerant and the user-side fluid. In this example, the utilization side heat exchanger (27) exchanges heat between the refrigerant and water (an example of the utilization side fluid).
   〈アキュムレータ〉
 アキュムレータ(28)は、第3冷媒配管(P3)に設けられる。具体的には、第3冷媒配管(P3)は、四路切換弁(23)の第2ポートとアキュムレータ(28)の入口側とを接続する第1配管部(P31)と、アキュムレータ(28)の出口側と第1圧縮機(21)の吸入側とを接続する第2配管部(P32)とを有する。
<accumulator>
The accumulator (28) is provided in the third refrigerant pipe (P3). Specifically, the third refrigerant pipe (P3) includes a first pipe portion (P31) that connects the second port of the four-way switching valve (23) and the inlet side of the accumulator (28), and the accumulator (28). It has a second piping section (P32) that connects the outlet side of the first compressor (21) and the suction side of the first compressor (21).
   〈バイパス逆止弁〉
 バイパス逆止弁(29)は、第1圧縮機(21)が停止している場合に第1圧縮機(21)を迂回して第2圧縮機(22)の吸入側に冷媒を供給するために設けられる。具体的には、第3冷媒配管(P3)の第2配管部(P32)の中途部は、バイアス配管(PB)を経由して、第1冷媒配管(P1)の中途部に接続される。バイパス逆止弁(29)は、バイアス配管(PB)に設けられる。バイパス逆止弁(29)は、第3冷媒配管(P3)から第1冷媒配管(P1)へ向かう方向の冷媒の流れを許容し、その逆方向の冷媒の流れを阻害する。
<Bypass check valve>
The bypass check valve (29) bypasses the first compressor (21) and supplies the refrigerant to the suction side of the second compressor (22) when the first compressor (21) is stopped. It is provided in. Specifically, the middle part of the second pipe portion (P32) of the third refrigerant pipe (P3) is connected to the middle part of the first refrigerant pipe (P1) via the bias pipe (PB). The bypass check valve (29) is provided in the bias piping (PB). The bypass check valve (29) allows the flow of the refrigerant in the direction from the third refrigerant pipe (P3) to the first refrigerant pipe (P1), and obstructs the flow of the refrigerant in the opposite direction.
  〔インジェクション回路〕
 インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に供給する。この例では、インジェクション回路(30)は、第1状態と第2状態とに切り換え可能となっている。
[Injection circuit]
The injection circuit (30) uses a part of the refrigerant that goes from the heat exchanger, which is the condenser (radiator), to the expansion mechanism (26) of the heat source side heat exchanger (24) and the user side heat exchanger (27). It is supplied to the suction side of the second compressor (22). In this example, the injection circuit (30) can be switched between the first state and the second state.
 第1状態では、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に冷媒を供給する。 In the first state, the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the suction side of the second compressor (22).
 第2状態では、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する。 In the second state, the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22).
 具体的には、インジェクション回路(30)は、インジェクション膨張弁(31)と、開閉弁(32)と、インジェクション逆止弁(33)とを有する。また、インジェクション回路(30)には、第1インジェクション配管(PJ1)と、第2インジェクション配管(PJ2)と、第3インジェクション配管(PJ3)とが設けられる。第1インジェクション配管(PJ1)の一端は、第8冷媒配管(P8)の中途部に接続される。第2インジェクション配管(PJ2)は、第1インジェクション配管(PJ1)の他端と第1冷媒配管(P1)の中途部とを接続する。第3インジェクション配管(PJ3)は、第1インジェクション配管(PJ1)の他端と第2圧縮機(22)の中間ポートとを接続する。第1インジェクション配管(PJ1)には、インジェクション膨張弁(31)が設けられる。第2インジェクション配管(PJ2)には、開閉弁(32)が設けられる。第3インジェクション配管(PJ3)には、インジェクション逆止弁(33)が設けられる。 Specifically, the injection circuit (30) has an injection expansion valve (31), an on-off valve (32), and an injection check valve (33). Further, the injection circuit (30) is provided with a first injection pipe (PJ1), a second injection pipe (PJ2), and a third injection pipe (PJ3). One end of the first injection pipe (PJ1) is connected to the middle part of the eighth refrigerant pipe (P8). The second injection pipe (PJ2) connects the other end of the first injection pipe (PJ1) to the middle part of the first refrigerant pipe (P1). The third injection pipe (PJ3) connects the other end of the first injection pipe (PJ1) to the intermediate port of the second compressor (22). An injection expansion valve (31) is provided in the first injection pipe (PJ1). An on-off valve (32) is provided in the second injection pipe (PJ2). An injection check valve (33) is provided in the third injection pipe (PJ3).
 インジェクション膨張弁(31)は、インジェクション回路(30)を流れる冷媒(この例では第1インジェクション配管(PJ1)を流れる冷媒)を減圧する。開閉弁(32)は、開状態と閉状態とに切り換え可能である。インジェクション逆止弁(33)は、第1インジェクション配管(PJ1)から第2圧縮機(22)の中間ポートへ向かう冷媒の流れを許容し、その逆方向の冷媒の流れを阻害する。なお、インジェクション逆止弁(33)は、第2圧縮機(22)内に設けられてもよい。 The injection expansion valve (31) depressurizes the refrigerant flowing through the injection circuit (30) (in this example, the refrigerant flowing through the first injection pipe (PJ1)). The on-off valve (32) can be switched between an open state and a closed state. The injection check valve (33) allows the flow of refrigerant from the first injection pipe (PJ1) to the intermediate port of the second compressor (22) and obstructs the flow of refrigerant in the opposite direction. The injection check valve (33) may be provided in the second compressor (22).
 この例では、開閉弁(32)を開状態にすることにより、インジェクション回路(30)が第1状態(上記冷媒の一部を第2圧縮機(22)の吸入側に冷媒を供給する状態)になる。開閉弁(32)を閉状態にすることにより、インジェクション回路(30)が第2状態(上記冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する状態)になる。 In this example, by opening the on-off valve (32), the injection circuit (30) is in the first state (a state in which a part of the refrigerant is supplied to the suction side of the second compressor (22)). become. By closing the on-off valve (32), the injection circuit (30) is in the second state (a state in which a part of the refrigerant is supplied to the compression chamber during compression of the second compressor (22)).
  〔中間熱交換器〕
 中間熱交換器(40)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から流出した冷媒と、インジェクション膨張弁(31)により減圧された冷媒とを熱交換させる。この例では、中間熱交換器(40)は、第8冷媒配管(P8)のうち第8冷媒配管(P8)の一端(第3接続点Q3)と第8冷媒配管(P8)と第1インジェクション配管(PJ1)との接続点との間にある配管部に接続される。また、中間熱交換器(40)は、第1インジェクション配管(PJ1)のうちインジェクション膨張弁(31)と第1インジェクション配管(PJ1)の他端(第1インジェクション配管(PJ1)と第2および第3インジェクション配管(PJ2,PJ3)との接続点)との間にある配管部とに接続される。そして、中間熱交換器(40)は、これらの配管部を流れる冷媒を熱交換させる。
[Intermediate heat exchanger]
The intermediate heat exchanger (40) includes the refrigerant flowing out from the heat exchanger that is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), and the injection expansion valve (31). ) Exchanges heat with the decompressed refrigerant. In this example, the intermediate heat exchanger (40) is one end (third connection point Q3) of the eighth refrigerant pipe (P8) of the eighth refrigerant pipe (P8), the eighth refrigerant pipe (P8), and the first injection. It is connected to the piping section between the connection point with the piping (PJ1). Further, the intermediate heat exchanger (40) includes the injection expansion valve (31) of the first injection pipe (PJ1) and the other ends of the first injection pipe (PJ1) (first injection pipe (PJ1) and second and second injection pipes (PJ1). 3 It is connected to the piping section between the injection piping (connection point with PJ2, PJ3)). Then, the intermediate heat exchanger (40) exchanges heat with the refrigerant flowing through these piping portions.
  〔各種センサ〕
 冷凍サイクル装置(10)には、冷媒などの温度を検出する温度センサや、冷媒などの圧力を検出する圧力センサなどの各種センサ(図示を省略)が設けられる。これらの各種センサの検出結果(信号)は、制御部(100)に送信される。
[Various sensors]
The refrigeration cycle device (10) is provided with various sensors (not shown) such as a temperature sensor for detecting the temperature of the refrigerant and the like and a pressure sensor for detecting the pressure of the refrigerant and the like. The detection results (signals) of these various sensors are transmitted to the control unit (100).
  〔制御部〕
 制御部(100)は、冷凍サイクル装置(10)に設けられた各種センサの信号や外部からの制御信号に基づいて、冷凍サイクル装置(10)の各部を制御して冷凍サイクル装置(10)の動作を制御する。具体的には、制御部(100)は、第1圧縮機(21)と、第2圧縮機(22)と、四路切換弁(23)と、膨張機構(26)と、インジェクション膨張弁(31)と、開閉弁(32)とを制御する。例えば、制御部(100)は、プロセッサと、プロセッサと電気的に接続されてプロセッサを動作させるためのプログラムや情報を記憶するメモリとにより構成される。
[Control unit]
The control unit (100) controls each part of the refrigeration cycle device (10) based on the signals of various sensors provided in the refrigeration cycle device (10) and the control signal from the outside to control the refrigeration cycle device (10). Control the operation. Specifically, the control unit (100) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), an expansion mechanism (26), and an injection expansion valve ( 31) and the on-off valve (32) are controlled. For example, the control unit (100) is composed of a processor and a memory that is electrically connected to the processor and stores programs and information for operating the processor.
  〔冷凍サイクル装置の運転動作〕
 実施形態1の冷凍サイクル装置(10)では、単段圧縮運転と、二段圧縮運転とが行われる。単段圧縮運転では、第1圧縮機(21)および第2圧縮機(22)の一方が停止し、第1圧縮機(21)および第2圧縮機(22)の他方が駆動する。この例では、第1圧縮機(21)が停止し、第2圧縮機(22)が駆動する。二段圧縮運転では、第1圧縮機(21)および第2圧縮機(22)の両方が駆動する。この例では、単段圧縮運転として、単段圧縮暖房運転と、単段圧縮冷房運転とが行われ、二段圧縮運転として、二段圧縮暖房運転と、二段圧縮冷房運転とが行われる。
[Operating operation of refrigeration cycle equipment]
In the refrigeration cycle apparatus (10) of the first embodiment, a single-stage compression operation and a two-stage compression operation are performed. In the single-stage compression operation, one of the first compressor (21) and the second compressor (22) is stopped, and the other of the first compressor (21) and the second compressor (22) is driven. In this example, the first compressor (21) is stopped and the second compressor (22) is driven. In the two-stage compression operation, both the first compressor (21) and the second compressor (22) are driven. In this example, as the single-stage compression operation, a single-stage compression / heating operation and a single-stage compression / cooling operation are performed, and as a two-stage compression operation, a two-stage compression / heating operation and a two-stage compression / cooling operation are performed.
  〈単段圧縮暖房運転〉
 単段圧縮暖房運転では、利用側熱交換器(27)が凝縮器(放熱器)となり熱源側熱交換器(24)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第1流路状態(図1の実線で示す状態)に設定される。膨張機構(26)における減圧量(具体的には膨張機構(26)を構成する膨張弁の開度)が適宜調節される。インジェクション膨張弁(31)が全閉状態に設定される。そして、第1圧縮機(21)が停止し、第2圧縮機(22)が駆動する。
<Single-stage compression heating operation>
In the single-stage compression heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the user side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first flow path state (the state shown by the solid line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) is appropriately adjusted. The injection expansion valve (31) is set to the fully closed state. Then, the first compressor (21) is stopped and the second compressor (22) is driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、利用側熱交換器(27)において利用側流体に放熱して凝縮する。利用側熱交換器(27)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、膨張機構(26)において減圧される。膨張機構(26)において減圧された冷媒は、逆止弁ブリッジ(25)を通過し、熱源側熱交換器(24)において熱源側流体から吸熱して蒸発する。熱源側熱交換器(24)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とバイパス逆止弁(29)とを順に通過し、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the user-side fluid in the user-side heat exchanger (27), and condenses. The refrigerant flowing out of the user-side heat exchanger (27) passes through the check valve bridge (25) and is depressurized in the expansion mechanism (26). The refrigerant decompressed in the expansion mechanism (26) passes through the check valve bridge (25), absorbs heat from the heat source side fluid in the heat source side heat exchanger (24), and evaporates. The refrigerant flowing out from the heat source side heat exchanger (24) passes through the four-way switching valve (23), the accumulator (28), and the bypass check valve (29) in order, and is sucked into the second compressor (22). Is compressed.
  〈単段圧縮冷房運転〉
 単段圧縮冷房運転では、熱源側熱交換器(24)が凝縮器(放熱器)となり利用側熱交換器(27)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第2流路状態(図1の破線で示す状態)に設定される。膨張機構(26)における減圧量(具体的には膨張機構(26)を構成する膨張弁の開度)が適宜調節される。インジェクション膨張弁(31)が全閉状態に設定される。そして、第1圧縮機(21)が停止し、第2圧縮機(22)が駆動する。
<Single-stage compression cooling operation>
In the single-stage compression cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second flow path state (the state shown by the broken line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) is appropriately adjusted. The injection expansion valve (31) is set to the fully closed state. Then, the first compressor (21) is stopped and the second compressor (22) is driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、熱源側熱交換器(24)において熱源側流体に放熱して凝縮する。熱源側熱交換器(24)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、膨張機構(26)において減圧される。膨張機構(26)において減圧された冷媒は、逆止弁ブリッジ(25)を通過し、利用側熱交換器(27)において利用側流体から吸熱して蒸発する。利用側熱交換器(27)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とバイパス逆止弁(29)とを順に通過し、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the heat source side fluid in the heat source side heat exchanger (24), and condenses. The refrigerant flowing out of the heat source side heat exchanger (24) passes through the check valve bridge (25) and is depressurized in the expansion mechanism (26). The refrigerant decompressed in the expansion mechanism (26) passes through the check valve bridge (25), absorbs heat from the user-side fluid in the user-side heat exchanger (27), and evaporates. The refrigerant flowing out from the heat exchanger (27) on the user side passes through the four-way switching valve (23), the accumulator (28), and the bypass check valve (29) in order, and is sucked into the second compressor (22). Is compressed.
 なお、COP改善などの目的を達成するために、単段圧縮運転(具体的には単段圧縮暖房運転と単段圧縮冷房運転)において、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部が第2圧縮機(22)の圧縮途中の圧縮室に供給されてもよい。 In addition, in order to achieve the purpose such as COP improvement, in the single-stage compression operation (specifically, the single-stage compression heating operation and the single-stage compression cooling operation), the heat source side heat exchanger (24) and the user side heat exchanger Of (27), a part of the refrigerant heading from the heat exchanger serving as the condenser (radiator) to the expansion mechanism (26) may be supplied to the compression chamber in the middle of compression of the second compressor (22).
  〈二段圧縮暖房運転〉
 二段圧縮暖房運転では、利用側熱交換器(27)が凝縮器(放熱器)となり熱源側熱交換器(24)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第1流路状態(図1の実線で示す状態)に設定される。膨張機構(26)における減圧量(具体的には膨張機構(26)を構成する膨張弁の開度)と、インジェクション膨張弁(31)の開度とが適宜調節される。そして、第1圧縮機(21)および第2圧縮機(22)の両方が駆動する。
<Two-stage compression heating operation>
In the two-stage compression heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the user side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first flow path state (the state shown by the solid line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Then, both the first compressor (21) and the second compressor (22) are driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、利用側熱交換器(27)において利用側流体に放熱して凝縮する。利用側熱交換器(27)から流出した冷媒は、逆止弁ブリッジ(25)を通過して第8冷媒配管(P8)を流れ、中間熱交換器(40)においてインジェクション回路(30)の第1インジェクション配管(PJ1)を流れる冷媒に放熱して過冷却される。中間熱交換器(40)から流出して第8冷媒配管(P8)を流れる冷媒は、その一部がインジェクション回路(30)に供給され、その残部が膨張機構(26)に供給される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the user-side fluid in the user-side heat exchanger (27), and condenses. The refrigerant flowing out from the user side heat exchanger (27) passes through the check valve bridge (25) and flows through the eighth refrigerant pipe (P8), and in the intermediate heat exchanger (40), the first of the injection circuit (30). 1 Heat is radiated to the refrigerant flowing through the injection pipe (PJ1) and overcooled. A part of the refrigerant flowing out of the intermediate heat exchanger (40) and flowing through the eighth refrigerant pipe (P8) is supplied to the injection circuit (30), and the rest is supplied to the expansion mechanism (26).
 膨張機構(26)に供給された冷媒は、膨張機構(26)において減圧され、逆止弁ブリッジ(25)を通過し、熱源側熱交換器(24)において熱源側流体から吸熱して蒸発する。熱源側熱交換器(24)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とを順に通過し、第1圧縮機(21)に吸入されて圧縮される。第1圧縮機(21)から吐出された冷媒は、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant supplied to the expansion mechanism (26) is decompressed by the expansion mechanism (26), passes through the check valve bridge (25), and is endothermic from the heat source side fluid in the heat source side heat exchanger (24) and evaporates. .. The refrigerant flowing out of the heat source side heat exchanger (24) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed. The refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
 一方、インジェクション回路(30)に供給された冷媒は、第1インジェクション配管(PJ1)を流れ、インジェクション膨張弁(31)において減圧され、中間熱交換器(40)において第8冷媒配管(P8)を流れる冷媒から吸熱する。中間熱交換器(40)から流出して第1インジェクション配管(PJ1)を流れる冷媒は、インジェクション回路(30)の状態(具体的には開閉弁(32)の開閉状態)に応じて、第2圧縮機(22)の吸入側および第2圧縮機(22)の圧縮途中の圧縮室の一方に供給される。 On the other hand, the refrigerant supplied to the injection circuit (30) flows through the first injection pipe (PJ1), is depressurized at the injection expansion valve (31), and goes through the eighth refrigerant pipe (P8) at the intermediate heat exchanger (40). It absorbs heat from the flowing refrigerant. The refrigerant that flows out of the intermediate heat exchanger (40) and flows through the first injection pipe (PJ1) depends on the state of the injection circuit (30) (specifically, the open / closed state of the on-off valve (32)). It is supplied to one of the suction side of the compressor (22) and the compression chamber during compression of the second compressor (22).
 インジェクション回路(30)が第1状態である場合(具体的には開閉弁(32)が開状態である場合)、第1インジェクション配管(PJ1)を流れる冷媒は、開状態の開閉弁(32)を通過して第1冷媒配管(P1)の中途部に供給される。第1冷媒配管(P1)に供給された冷媒は、第1圧縮機(21)から吐出された冷媒と合流し、第2圧縮機(22)に吸入されて圧縮される。これにより、第2圧縮機(22)に吸入される冷媒が冷却される。なお、インジェクション回路(30)が第1状態である場合、冷凍サイクルにおける冷媒の状態は、図2の実線のようになる。 When the injection circuit (30) is in the first state (specifically, when the on-off valve (32) is in the open state), the refrigerant flowing through the first injection pipe (PJ1) is the on-off valve (32) in the open state. It is supplied to the middle part of the first refrigerant pipe (P1) through the above. The refrigerant supplied to the first refrigerant pipe (P1) merges with the refrigerant discharged from the first compressor (21), is sucked into the second compressor (22), and is compressed. As a result, the refrigerant sucked into the second compressor (22) is cooled. When the injection circuit (30) is in the first state, the state of the refrigerant in the refrigeration cycle is as shown by the solid line in FIG.
 インジェクション回路(30)が第2状態である場合(具体的には開閉弁(32)が閉状態である場合)、第1インジェクション配管(PJ1)を流れる冷媒は、インジェクション逆止弁(33)を通過して第2圧縮機(22)の中間ポートに供給される。第2圧縮機(22)の中間ポートに供給された冷媒は、第2圧縮機(22)の圧縮途中の圧縮室に供給され、圧縮室内の冷媒と混合される。これにより、第2圧縮機(22)の圧縮室内の冷媒が冷却される。なお、インジェクション回路(30)が第2状態である場合、冷凍サイクルにおける冷媒の状態は、図3の実線のようになる。 When the injection circuit (30) is in the second state (specifically, when the on-off valve (32) is in the closed state), the refrigerant flowing through the first injection pipe (PJ1) uses the injection check valve (33). It passes through and is supplied to the intermediate port of the second compressor (22). The refrigerant supplied to the intermediate port of the second compressor (22) is supplied to the compression chamber during compression of the second compressor (22) and mixed with the refrigerant in the compression chamber. As a result, the refrigerant in the compression chamber of the second compressor (22) is cooled. When the injection circuit (30) is in the second state, the state of the refrigerant in the refrigeration cycle is as shown by the solid line in FIG.
  〈二段圧縮冷房運転〉
 二段圧縮冷房運転では、熱源側熱交換器(24)が凝縮器(放熱器)となり利用側熱交換器(27)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第2流路状態(図1の破線で示す状態)に設定される。膨張機構(26)における減圧量(具体的には膨張機構(26)を構成する膨張弁の開度)と、インジェクション膨張弁(31)の開度とが適宜調節される。そして、第1圧縮機(21)および第2圧縮機(22)の両方が駆動する。
<Two-stage compression cooling operation>
In the two-stage compression cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second flow path state (the state shown by the broken line in FIG. 1). The amount of decompression in the expansion mechanism (26) (specifically, the opening degree of the expansion valve constituting the expansion mechanism (26)) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Then, both the first compressor (21) and the second compressor (22) are driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、熱源側熱交換器(24)において熱源側流体に放熱して凝縮する。熱源側熱交換器(24)から流出した冷媒は、逆止弁ブリッジ(25)を通過して第8冷媒配管(P8)を流れ、中間熱交換器(40)においてインジェクション回路(30)の第1インジェクション配管(PJ1)を流れる冷媒に放熱して過冷却される。中間熱交換器(40)から流出して第8冷媒配管(P8)を流れる冷媒は、その一部がインジェクション回路(30)に供給され、その残部が膨張機構(26)に供給される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to the heat source side fluid in the heat source side heat exchanger (24), and condenses. The refrigerant flowing out from the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the eighth refrigerant pipe (P8), and in the intermediate heat exchanger (40), the first of the injection circuit (30). 1 Heat is radiated to the refrigerant flowing through the injection pipe (PJ1) and overcooled. A part of the refrigerant flowing out of the intermediate heat exchanger (40) and flowing through the eighth refrigerant pipe (P8) is supplied to the injection circuit (30), and the rest is supplied to the expansion mechanism (26).
 膨張機構(26)に供給された冷媒は、膨張機構(26)において減圧され、逆止弁ブリッジ(25)を通過し、利用側熱交換器(27)において利用側流体から吸熱して蒸発する。利用側熱交換器(27)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とを順に通過し、第1圧縮機(21)に吸入されて圧縮される。第1圧縮機(21)から吐出された冷媒は、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant supplied to the expansion mechanism (26) is decompressed by the expansion mechanism (26), passes through the check valve bridge (25), and is endothermic from the utilization side fluid in the utilization side heat exchanger (27) and evaporates. .. The refrigerant flowing out from the user-side heat exchanger (27) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed. The refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
 一方、インジェクション回路(30)に供給された冷媒は、第1インジェクション配管(PJ1)を流れ、インジェクション膨張弁(31)において減圧され、中間熱交換器(40)において第8冷媒配管(P8)を流れる冷媒から吸熱する。中間熱交換器(40)から流出して第1インジェクション配管(PJ1)を流れる冷媒は、インジェクション回路(30)の状態(具体的には開閉弁(32)の開閉状態)に応じて、第2圧縮機(22)の吸入側および第2圧縮機(22)の圧縮途中の圧縮室の一方に供給される。 On the other hand, the refrigerant supplied to the injection circuit (30) flows through the first injection pipe (PJ1), is depressurized at the injection expansion valve (31), and goes through the eighth refrigerant pipe (P8) at the intermediate heat exchanger (40). It absorbs heat from the flowing refrigerant. The refrigerant that flows out of the intermediate heat exchanger (40) and flows through the first injection pipe (PJ1) depends on the state of the injection circuit (30) (specifically, the open / closed state of the on-off valve (32)). It is supplied to one of the suction side of the compressor (22) and the compression chamber during compression of the second compressor (22).
  〔インジェクション回路の第1状態と第2状態との対比〕
 次に、図3を参照して、インジェクション回路(30)の第1状態と第2状態とを対比する。図3の破線は、インジェクション回路(30)が第1状態である場合の冷凍サイクルにおける冷媒の状態を示し、図3の実線は、インジェクション回路(30)が第2状態である場合の冷凍サイクルにおける冷媒の状態を示している。
[Comparison between the first state and the second state of the injection circuit]
Next, with reference to FIG. 3, the first state and the second state of the injection circuit (30) are compared. The dashed line in FIG. 3 shows the state of the refrigerant in the refrigeration cycle when the injection circuit (30) is in the first state, and the solid line in FIG. 3 shows the state of the refrigerant in the refrigeration cycle when the injection circuit (30) is in the second state. It shows the state of the refrigerant.
 図3に示すように、インジェクション回路(30)の第2状態は、インジェクション回路(30)の第1状態よりも、第2圧縮機(22)から吐出される冷媒の温度(以下では「吐出温度」と記載)の上昇を抑制することができる状態であるといえる。また、インジェクション回路(30)の第1状態は、インジェクション回路(30)の第2状態よりも、第1圧縮機(21)の吐出温度の上昇を抑制することができる状態であるといえる。 As shown in FIG. 3, the second state of the injection circuit (30) is the temperature of the refrigerant discharged from the second compressor (22) rather than the first state of the injection circuit (30) (hereinafter, “discharge temperature”. It can be said that it is in a state where the increase of) can be suppressed. Further, it can be said that the first state of the injection circuit (30) is a state in which an increase in the discharge temperature of the first compressor (21) can be suppressed as compared with the second state of the injection circuit (30).
  〔二段圧縮運転における圧縮比制御〕
 なお、二段圧縮暖房運転において、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。また、この例では、二段圧縮冷房運転においても、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。詳しくは、二段圧縮運転が行われる暖房の定常運転において、常に、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。二段圧縮運転が行われる冷房の定常運転においても、常に、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。
[Compression ratio control in two-stage compression operation]
In the two-stage compression heating operation, the compression ratio (Pr1) in the first compressor (21) is smaller than the compression ratio (Pr2) in the second compressor (22). Further, in this example, even in the two-stage compression cooling operation, the compression ratio (Pr1) in the first compressor (21) is smaller than the compression ratio (Pr2) in the second compressor (22). Specifically, in the steady operation of heating in which the two-stage compression operation is performed, the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). ing. Even in the steady operation of cooling in which the two-stage compression operation is performed, the compression ratio (Pr1) in the first compressor (21) is always smaller than the compression ratio (Pr2) in the second compressor (22). ..
 次に、図4を参照して、二段圧縮運転における圧縮比制御について説明する。制御部(100)は、二段圧縮運転の開始時に以下の処理(ステップ(S11~S14))を行う。なお、以下の説明では、冷凍サイクル装置(10)における圧縮比(Pr)を「全体圧縮比(Pr)」と記載し、第1圧縮機(21)における圧縮比(Pr1)を「第1圧縮比(Pr1)」と記載し、第2圧縮機(22)における圧縮比(Pr2)を「第2圧縮比(Pr2)」と記載する。 Next, the compression ratio control in the two-stage compression operation will be described with reference to FIG. The control unit (100) performs the following processing (steps (S11 to S14)) at the start of the two-stage compression operation. In the following description, the compression ratio (Pr) in the refrigeration cycle apparatus (10) is described as "overall compression ratio (Pr)", and the compression ratio (Pr1) in the first compressor (21) is referred to as "first compression". The ratio (Pr1) is described, and the compression ratio (Pr2) in the second compressor (22) is described as the “second compression ratio (Pr2)”.
   〈ステップ(S11)〉
 まず、制御部(100)は、冷媒回路(20)の高圧(Pc)の目標値である目標高圧と、冷媒回路(20)の低圧(Pe)の目標値である目標低圧とを算出する。具体的には、制御部(100)は、熱負荷から目標高圧と目標低圧を算出する。熱負荷は、例えば、空調対象空間の空気の温度と空調対象空間において定められた目標温度との差に基づいて導出される。
<Step (S11)>
First, the control unit (100) calculates the target high pressure, which is the target value of the high pressure (Pc) of the refrigerant circuit (20), and the target low pressure, which is the target value of the low pressure (Pe) of the refrigerant circuit (20). Specifically, the control unit (100) calculates the target high voltage and the target low voltage from the heat load. The heat load is derived, for example, based on the difference between the temperature of the air in the air-conditioned space and the target temperature determined in the air-conditioned space.
   〈ステップ(S12)〉
 次に、制御部(100)は、ステップ(S11)において算出された目標高圧と目標低圧に基づいて全体圧縮比(Pr)を算出する。例えば、制御部(100)は、目標高圧を目標低圧で除算して得られる値を全体圧縮比(Pr)として算出する。
<Step (S12)>
Next, the control unit (100) calculates the overall compression ratio (Pr) based on the target high pressure and the target low pressure calculated in step (S11). For example, the control unit (100) calculates the value obtained by dividing the target high voltage by the target low voltage as the total compression ratio (Pr).
   〈ステップ(S13)〉
 次に、制御部(100)は、ステップ(S12)において算出された全体圧縮比(Pr)と、予め定められた全体圧縮比(Pr)と第1圧縮比(Pr1)と第2圧縮比(Pr2)との関係とに基づいて、第1圧縮比(Pr1)の目標値と第2圧縮比(Pr2)の目標値を算出する。例えば、制御部(100)は、全体圧縮比(Pr)と第1圧縮比(Pr1)と第2圧縮比(Pr2)との関係を示す関係式を記憶しており、その関係式にステップ(S12)において算出された全体圧縮比(Pr)を代入することで、第1圧縮比(Pr1)の目標値と第2圧縮比(Pr2)の目標値を算出する。具体的には、以下の式(1)と式(2)に基づいて第1圧縮比(Pr1)の目標値と第2圧縮比(Pr2)の目標値が導出される。
<Step (S13)>
Next, the control unit (100) uses the total compression ratio (Pr) calculated in step (S12), the predetermined total compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr1). Based on the relationship with Pr2), the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are calculated. For example, the control unit (100) stores a relational expression showing the relationship between the total compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr2), and steps (steps) (Pr2) in the relational expression. By substituting the overall compression ratio (Pr) calculated in S12), the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are calculated. Specifically, the target value of the first compression ratio (Pr1) and the target value of the second compression ratio (Pr2) are derived based on the following equations (1) and (2).
    Pr1=A×In(Pr2)+B …(1)
    Pr=Pr1×Pr2      …(2)
 なお、上の式において、“In”は、自然対数であり、“A”と”B”は、予め定められた係数である。
Pr1 = A × In (Pr2) + B ... (1)
Pr = Pr1 × Pr2 ... (2)
In the above equation, "In" is a natural logarithm, and "A" and "B" are predetermined coefficients.
 また、全体圧縮比(Pr)と第1圧縮比(Pr1)と第2圧縮比(Pr2)との関係をグラフで示すと、図5のようになる。なお、図5の縦軸は、圧縮比を示し、図5の横軸は、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差(差圧)を示す。 Further, the relationship between the overall compression ratio (Pr), the first compression ratio (Pr1), and the second compression ratio (Pr2) is shown in a graph as shown in FIG. The vertical axis of FIG. 5 indicates the compression ratio, and the horizontal axis of FIG. 5 indicates the difference (differential pressure) between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20).
   〈ステップ(S14)〉
 次に、制御部(100)は、冷凍サイクル装置(10)における第1圧縮比(Pr1)がステップ(S14)において算出された第1圧縮比(Pr1)の目標値となり、且つ、冷凍サイクル装置(10)における第2圧縮比(Pr2)がステップ(S14)において算出された第2圧縮比(Pr2)の目標値となるように、二段圧縮運転において第1圧縮機(21)の回転数および第2圧縮機(22)の回転数を制御する。
<Step (S14)>
Next, in the control unit (100), the first compression ratio (Pr1) in the refrigeration cycle apparatus (10) becomes the target value of the first compression ratio (Pr1) calculated in the step (S14), and the refrigeration cycle apparatus The number of revolutions of the first compressor (21) in the two-stage compression operation so that the second compression ratio (Pr2) in (10) becomes the target value of the second compression ratio (Pr2) calculated in step (S14). And control the rotation speed of the second compressor (22).
  〔インジェクション回路の状態の切り換え〕
 実施形態1の二段圧縮運転において、インジェクション回路(30)の状態は、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)に応じて切り換えられる。この例では、インジェクション回路(30)の状態は、物理量(X)と、第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)(以下では「圧縮比の割合(Prr)」と記載)とに応じて切り換えられる。具体的には、制御部(100)は、物理量(X)と圧縮比の割合(Prr)とに応じて、インジェクション回路(30)の状態を切り換える。なお、物理量(X)については後で詳しく説明する。
[Switching the state of the injection circuit]
In the two-stage compression operation of the first embodiment, the state of the injection circuit (30) is switched according to the physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20). .. In this example, the state of the injection circuit (30) is the ratio of the physical quantity (X) to the compression ratio (Pr2) in the second compressor (22) to the compression ratio (Pr1) in the first compressor (21) (Prr1). ) (Hereinafter referred to as "compression ratio ratio (Prr)"). Specifically, the control unit (100) switches the state of the injection circuit (30) according to the physical quantity (X) and the ratio of the compression ratio (Prr). The physical quantity (X) will be described in detail later.
 次に、図6を参照して、実施形態1の二段圧縮運転におけるインジェクション回路(30)の状態の切り換えについて具体的に説明する。なお、図6において、左下がりのハッチングが付された領域は、インジェクション回路(30)が第1状態に切り換えられる領域を示し、右下がりのハッチングが付された領域は、インジェクション回路(30)が第2状態に切り換えられる領域を示している。 Next, with reference to FIG. 6, the switching of the state of the injection circuit (30) in the two-stage compression operation of the first embodiment will be specifically described. In FIG. 6, the region with the hatching downward to the left indicates the region where the injection circuit (30) is switched to the first state, and the region with the hatching downward to the right indicates the region where the injection circuit (30) is switched. The area that can be switched to the second state is shown.
 図6に示すように、物理量(X)が予め定められた物理量閾値(Xth)未満である場合、インジェクション回路(30)は、第1状態となる。また、物理量(X)が物理量閾値(Xth)以上であり、且つ、圧縮比の割合(Prr)が予め定められた割合閾値(Pth1)以上である場合、インジェクション回路(30)は、第1状態となる。 As shown in FIG. 6, when the physical quantity (X) is less than the predetermined physical quantity threshold value (Xth), the injection circuit (30) is in the first state. When the physical quantity (X) is equal to or greater than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is equal to or greater than a predetermined ratio threshold value (Pth1), the injection circuit (30) is in the first state. It becomes.
 また、物理量(X)が物理量閾値(Xth)以上であり、且つ、圧縮比の割合(Prr)が割合閾値(Pth1)未満である場合、インジェクション回路(30)は、第2状態となる。 Further, when the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is less than the ratio threshold value (Pth1), the injection circuit (30) is in the second state.
 なお、図6の例では、物理量(X)が大きくなるに連れて、割合閾値(Pth1)が次第に高くなる。具体的には、物理量(X)が大きくなるに連れて、割合閾値(Pth1)が第1割合(Prr1)から次第に高くなる。また、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)が次第に低くなる。具体的には、物理量(X)が物理量閾値(Xth)以上となると、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)が1から次第に低くなる。 In the example of FIG. 6, as the physical quantity (X) increases, the ratio threshold value (Pth1) gradually increases. Specifically, as the physical quantity (X) increases, the ratio threshold value (Pth1) gradually increases from the first ratio (Prr1). Further, as the physical quantity (X) increases, the compression ratio ratio (Prr) gradually decreases. Specifically, when the physical quantity (X) becomes equal to or higher than the physical quantity threshold value (Xth), the compression ratio ratio (Prr) gradually decreases from 1 as the physical quantity (X) increases.
  〔物理量の具体例〕
 次に、物理量(X)について説明する。上述のとおり、物理量(X)は、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある量である。
[Specific examples of physical quantities]
Next, the physical quantity (X) will be described. As described above, the physical quantity (X) is an amount that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20).
 冷媒回路(20)における高圧(Pc)と相関のある量としては、例えば、以下の9つのパラメータを列挙することができる。 As the amount correlated with the high pressure (Pc) in the refrigerant circuit (20), for example, the following nine parameters can be listed.
 (1)吐出圧力:第1圧縮機(21)および第2圧縮機(22)により構成される圧縮機構から吐出される冷媒の圧力
 (2)吐出温度:圧縮機構から吐出される冷媒の温度
 (3)凝縮圧力:熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器となる熱交換器における冷媒の凝縮圧力
 (4)凝縮温度:凝縮器となる熱交換器における冷媒の凝縮温度
 (5)高圧:冷媒圧力センサ(図示を省略)により検出される高圧(Pc)
 (6)出湯温度:利用側熱交換器(27)が冷媒と水とを熱交換させる場合に暖房運転において利用側熱交換器(27)から流出する水の温度
 (7)暖房吹出温度:利用側熱交換器(27)が冷媒と空気(利用側流体の一例)とを熱交換させる場合に暖房運転において利用側熱交換器(27)から流出する空気の温度
 (8)暖房吸込温度:利用側熱交換器(27)が冷媒と空気(利用側流体の一例)とを熱交換させる場合に暖房運転において利用側熱交換器(27)に流入する空気の温度
 (9)冷房外気温度:熱源側熱交換器(24)が冷媒と空気とを熱交換させる場合に冷房運転において熱源側熱交換器(24)に流入する空気の温度
 以上の冷媒回路(20)における高圧(Pc)と相関のあるパラメータは、冷凍サイクル装置(10)に設けられた各種センサにより得ることが可能である。
(1) Discharge pressure: Pressure of the refrigerant discharged from the compression mechanism composed of the first compressor (21) and the second compressor (22) (2) Discharge temperature: Temperature of the refrigerant discharged from the compression mechanism ( 3) Condensation pressure: Condensing pressure of the refrigerant in the heat exchanger that becomes the compressor among the heat source side heat exchanger (24) and the utilization side heat exchanger (27) (4) Condensation temperature: In the heat exchanger that becomes the condenser Refrigerant condensation temperature (5) High pressure: High pressure (Pc) detected by the refrigerant pressure sensor (not shown)
(6) Hot water temperature: Temperature of water flowing out from the user side heat exchanger (27) in heating operation when the user side heat exchanger (27) exchanges heat between the refrigerant and water (7) Heating outlet temperature: Utilization When the side heat exchanger (27) exchanges heat between the refrigerant and air (an example of the utilization side fluid), the temperature of the air flowing out from the utilization side heat exchanger (27) in the heating operation (8) Heating suction temperature: utilization When the side heat exchanger (27) exchanges heat between the refrigerant and air (an example of the utilization side fluid), the temperature of the air flowing into the utilization side heat exchanger (27) in the heating operation (9) Cooling outside air temperature: heat source When the side heat exchanger (24) exchanges heat between the refrigerant and air, it correlates with the high pressure (Pc) in the refrigerant circuit (20) above the temperature of the air flowing into the heat source side heat exchanger (24) in the cooling operation. Certain parameters can be obtained by various sensors provided in the refrigeration cycle apparatus (10).
 また、冷媒回路(20)における低圧(Pe)と相関のある量としては、例えば、以下の9つのパラメータを列挙することができる。 Further, as the amount correlated with the low pressure (Pe) in the refrigerant circuit (20), for example, the following nine parameters can be listed.
 (1)吸入圧力:第1圧縮機(21)および第2圧縮機(22)により構成される圧縮機構に吸入される冷媒の圧力
 (2)吸入温度:圧縮機構に吸入される冷媒の温度
 (3)蒸発圧力:熱源側熱交換器(24)および利用側熱交換器(27)のうち蒸発器となる熱交換器における冷媒の蒸発圧力
 (4)蒸発温度:蒸発器となる熱交換器における冷媒の蒸発温度
 (5)低圧:冷媒圧力センサ(図示を省略)により検出される低圧(Pe)
 (6)冷却水温度:利用側熱交換器(27)が冷媒と水とを熱交換させる場合に冷房運転において利用側熱交換器(27)から流出する水の温度
 (7)冷房吹出温度:利用側熱交換器(27)が冷媒と空気とを熱交換させる場合に冷房運転において利用側熱交換器(27)から流出する空気の温度
 (8)冷房吸込温度:利用側熱交換器(27)が冷媒と空気とを熱交換させる場合に冷房運転において利用側熱交換器(27)に流入する空気の温度
 (9)暖房外気温度:熱源側熱交換器(24)が冷媒と空気とを熱交換させる場合に暖房運転において熱源側熱交換器(24)に流入する空気の温度
 以上の冷媒回路(20)における低圧(Pe)と相関のあるパラメータは、冷凍サイクル装置(10)に設けられた各種センサにより得ることが可能である。
(1) Suction pressure: Pressure of the refrigerant sucked into the compression mechanism composed of the first compressor (21) and the second compressor (22) (2) Suction temperature: Temperature of the refrigerant sucked into the compression mechanism ( 3) Evaporation pressure: Evaporation pressure of the refrigerant in the heat exchanger that is the evaporator of the heat source side heat exchanger (24) and the utilization side heat exchanger (27) (4) Evaporation temperature: In the heat exchanger that is the evaporator Refrigerant evaporation temperature (5) Low pressure: Low pressure (Pe) detected by the refrigerant pressure sensor (not shown)
(6) Cooling water temperature: The temperature of the water flowing out from the user side heat exchanger (27) in the cooling operation when the user side heat exchanger (27) exchanges heat between the refrigerant and water. (7) Cooling outlet temperature: The temperature of the air flowing out from the user side heat exchanger (27) in the cooling operation when the user side heat exchanger (27) exchanges heat between the refrigerant and air (8) Cooling suction temperature: The user side heat exchanger (27) ) Is the temperature of the air flowing into the utilization side heat exchanger (27) in the cooling operation when heat is exchanged between the refrigerant and air. (9) Heating outside air temperature: The heat source side heat exchanger (24) exchanges the refrigerant and air. Parameters that correlate with the low pressure (Pe) in the refrigerant circuit (20) above the temperature of the air flowing into the heat source side heat exchanger (24) in the heating operation when heat is exchanged are provided in the refrigeration cycle device (10). It can be obtained by various sensors.
 以上より、物理量(X)として、例えば、(1)吐出圧力と吸入圧力との差、(2)吐出温度と吸入温度との差、(3)凝縮圧力と蒸発圧力との差、(4)凝縮温度と蒸発温度との差、(5)高圧(Pc)と低圧(Pe)との差、(6)出湯温度と暖房外気温度との差、(7)冷房外気温度と冷却水温度との差、(8)暖房吹出温度と暖房外気温度との差、(9)暖房吸込温度と暖房外気温度との差、(10)冷房外気温度と冷房吹出温度との差、(11)冷房外気温度と冷房吸込温度との差、などを利用することが可能である。 From the above, as the physical quantity (X), for example, (1) the difference between the discharge pressure and the suction pressure, (2) the difference between the discharge temperature and the suction temperature, (3) the difference between the condensation pressure and the evaporation pressure, (4). Difference between condensation temperature and evaporation temperature, (5) Difference between high pressure (Pc) and low pressure (Pe), (6) Difference between hot water temperature and heating outside air temperature, (7) Cooling outside air temperature and cooling water temperature Difference, (8) Difference between heating outlet temperature and heating outside air temperature, (9) Difference between heating suction temperature and heating outside air temperature, (10) Difference between cooling outside air temperature and cooling outlet temperature, (11) Cooling outside air temperature It is possible to utilize the difference between the temperature and the cooling suction temperature.
  〔本実施形態と比較例との対比〕
 次に、図2を参照して、本実施形態と比較例とを対比する。ここでは、第1圧縮機(21)における圧縮比(Pr1)が第2圧縮機(22)における圧縮比(Pr2)よりも大きくなっている場合を比較例とする。図2の破線は、この比較例における冷媒の状態を示している。以下では、説明の便宜上、比較例についても本実施形態と同様の符号を付して説明する。
[Comparison between the present embodiment and the comparative example]
Next, with reference to FIG. 2, the present embodiment and the comparative example are compared. Here, a case where the compression ratio (Pr1) in the first compressor (21) is larger than the compression ratio (Pr2) in the second compressor (22) is taken as a comparative example. The broken line in FIG. 2 shows the state of the refrigerant in this comparative example. Hereinafter, for convenience of explanation, comparative examples will be described with reference numerals similar to those of the present embodiment.
 図2の破線で示すように、第1圧縮機(21)における圧縮比(Pr1)が第2圧縮機(22)における圧縮比(Pr2)よりも大きくなっている場合(比較例)、第1圧縮機(21)の吐出温度が高くなりやすい。この傾向は、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が大きくなるほど顕著となる。その理由は、圧縮開始の圧力が低くなるほど、等エントロピー線の傾きが緩やかになるからである。このように、比較例の場合、第1圧縮機(21)の吐出温度が高くなり過ぎるおそれがある。例えば、インジェクション回路(30)により凝縮器(放熱器)から流出した冷媒の一部を第2圧縮機(22)の吸入側に供給することで第2圧縮機(22)の吐出温度を規定値以下に抑えることができたとしても、第1圧縮機(21)の吐出温度を規定値以下に抑えることができないおそれがある。そのため、低段側圧縮機を高温による破壊から保護することが困難である。 As shown by the broken line in FIG. 2, when the compression ratio (Pr1) in the first compressor (21) is larger than the compression ratio (Pr2) in the second compressor (22) (comparative example), the first The discharge temperature of the compressor (21) tends to be high. This tendency becomes more remarkable as the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases. The reason is that the lower the pressure at the start of compression, the gentler the slope of the isentropic line. As described above, in the case of the comparative example, the discharge temperature of the first compressor (21) may become too high. For example, by supplying a part of the refrigerant flowing out from the condenser (radiator) by the injection circuit (30) to the suction side of the second compressor (22), the discharge temperature of the second compressor (22) is set to a specified value. Even if it can be suppressed to the following, the discharge temperature of the first compressor (21) may not be suppressed to the specified value or less. Therefore, it is difficult to protect the low-stage compressor from destruction due to high temperature.
 一方、図2の実線で示すように、本実施形態の冷凍サイクル装置(10)では、第1圧縮機(21)における圧縮比(Pr1)が第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっているので、第1圧縮機(21)の吐出温度の上昇を抑制することができる。 On the other hand, as shown by the solid line in FIG. 2, in the refrigeration cycle apparatus (10) of the present embodiment, the compression ratio (Pr1) in the first compressor (21) is the compression ratio (Pr2) in the second compressor (22). Therefore, it is possible to suppress an increase in the discharge temperature of the first compressor (21).
  〔実施形態1の特徴(1)〕
 以上のように、本実施形態の冷凍サイクル装置(10)は、冷媒を圧縮して吐出する第1圧縮機(21)と、第1圧縮機(21)から吐出された冷媒を圧縮して吐出する第2圧縮機(22)と、熱源側熱交換器(24)と、膨張機構(26)と、利用側熱交換器(27)とを有する冷媒回路(20)と、熱源側熱交換器(24)および利用側熱交換器(27)のうち放熱器となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に供給するインジェクション回路(30)とを備える。利用側熱交換器(27)が放熱器となり、熱源側熱交換器(24)が蒸発器となる暖房の定常運転において、常に、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。
[Characteristics of Embodiment 1 (1)]
As described above, the refrigerating cycle apparatus (10) of the present embodiment compresses and discharges the first compressor (21) that compresses and discharges the refrigerant, and compresses and discharges the refrigerant discharged from the first compressor (21). A refrigerant circuit (20) having a second compressor (22), a heat source side heat exchanger (24), an expansion mechanism (26), and a user side heat exchanger (27), and a heat source side heat exchanger. An injection circuit (24) and a heat exchanger (27) on the user side that supplies a part of the refrigerant from the heat exchanger, which is a radiator, to the expansion mechanism (26) to the suction side of the second compressor (22). 30) and. In the steady operation of heating in which the heat exchanger (27) on the user side serves as a radiator and the heat exchanger (24) on the heat source side serves as an evaporator, the compression ratio (Pr1) in the first compressor (21) is always the same. 2 It is smaller than the compression ratio (Pr2) in the compressor (22).
 本実施形態では、暖房の定常運転において、第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも小さくすることにより、第1圧縮機(21)から吐出される冷媒の温度(以下では「吐出温度」と記載)の上昇を抑制することができる。これにより、第1圧縮機(21)を高温による破壊から保護することができる。 In the present embodiment, in the steady operation of heating, the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that the first compressor (Pr2) It is possible to suppress an increase in the temperature of the compressor discharged from 21) (hereinafter referred to as "discharge temperature"). As a result, the first compressor (21) can be protected from destruction due to high temperature.
  〔実施形態1の特徴(2)〕
 また、本実施形態の冷凍サイクル装置(10)は、中間熱交換器(40)をさらに備え、インジェクション回路(30)は、インジェクション回路(30)を流れる冷媒を減圧するインジェクション膨張弁(31)を有し、中間熱交換器(40)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち放熱器となる熱交換器から流出した冷媒と、インジェクション膨張弁(31)により減圧された冷媒とを熱交換させる。
[Characteristics of Embodiment 1 (2)]
Further, the refrigeration cycle apparatus (10) of the present embodiment further includes an intermediate heat exchanger (40), and the injection circuit (30) includes an injection expansion valve (31) for reducing the pressure of the refrigerant flowing through the injection circuit (30). The intermediate heat exchanger (40) includes the refrigerant flowing out from the heat exchanger that serves as the radiator among the heat source side heat exchanger (24) and the user side heat exchanger (27), and the injection expansion valve (31). Heat exchanges with the refrigerant decompressed by.
 本実施形態では、中間熱交換器(40)において放熱器となる熱交換器(熱源側熱交換器(24)または利用側熱交換器(27))から流出した冷媒とインジェクション膨張弁(31)により減圧された冷媒とを熱交換させることにより、放熱器となる熱交換器から流出した冷媒を過冷却することができる。これにより、冷凍サイクル装置(10)の運転効率(例えばCOP)を向上させることができる。 In the present embodiment, the refrigerant flowing out from the heat exchanger (heat source side heat exchanger (24) or user side heat exchanger (27)) serving as a radiator in the intermediate heat exchanger (40) and the injection expansion valve (31). By exchanging heat with the refrigerant decompressed by the above, the refrigerant flowing out from the heat exchanger serving as the radiator can be overcooled. Thereby, the operating efficiency (for example, COP) of the refrigerating cycle apparatus (10) can be improved.
  〔実施形態1の特徴(3)〕
 本実施形態の冷凍サイクル装置(10)では、第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち放熱器となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に冷媒を供給する第1状態と、上記冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態とに切り換え可能となっている。
[Characteristics of Embodiment 1 (3)]
In the refrigeration cycle apparatus (10) of the present embodiment, the second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression. The injection circuit (30) is a second compressor that uses a part of the refrigerant that goes from the heat exchanger, which is the radiator, to the expansion mechanism (26) of the heat source side heat exchanger (24) and the user side heat exchanger (27). It is possible to switch between the first state of supplying the refrigerant to the suction side of (22) and the second state of supplying a part of the refrigerant to the compression chamber during compression of the second compressor (22).
 本実施形態では、インジェクション回路(30)の状態を第1状態と第2状態とに切り換えることができるので、インジェクションを利用して第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。これにより、冷凍サイクル装置(10)の動作可能な範囲(冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の範囲)を広くすることができる。 In the present embodiment, the state of the injection circuit (30) can be switched between the first state and the second state, so that the injection is used to appropriately suppress the rise in the discharge temperature of the second compressor (22). be able to. As a result, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened.
  〔実施形態1の特徴(4)〕
 本実施形態の冷凍サイクル装置(10)では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)に応じてインジェクション回路(30)の状態が切り換えられる。
[Characteristics of Embodiment 1 (4)]
In the refrigeration cycle apparatus (10) of the present embodiment, the state of the injection circuit (30) is switched according to the physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20). Be done.
 本実施形態では、物理量(X)に応じてインジェクション回路(30)の状態を切り換えることにより、インジェクション回路(30)の切り換えを適切に行うことができる。 In the present embodiment, the injection circuit (30) can be appropriately switched by switching the state of the injection circuit (30) according to the physical quantity (X).
  〔実施形態1の特徴(5)〕
 本実施形態の冷凍サイクル装置(10)では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)と第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)とに応じてインジェクション回路(30)の状態が切り換えられる。
[Characteristics of Embodiment 1 (5)]
In the refrigeration cycle apparatus (10) of the present embodiment, the physical quantity (X) correlating with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) and the compression ratio in the second compressor (22) ( The state of the injection circuit (30) is switched according to the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to Pr2).
 本実施形態では、物理量(X)と、圧縮比の割合(Prr)(第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr))とに応じてインジェクション回路(30)の状態を切り換えることにより、物理量(X)のみに基づいてインジェクション回路(30)の状態を切り換える場合よりも、インジェクション回路(30)の切り換えを適切に行うことができる。 In the present embodiment, the ratio of the physical quantity (X) and the compression ratio (Prr) (the ratio of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) (Prr) By switching the state of the injection circuit (30) according to ()), the injection circuit (30) is switched more appropriately than when the state of the injection circuit (30) is switched based only on the physical quantity (X). be able to.
  〔実施形態1の特徴(6)〕
 本実施形態の冷凍サイクル装置(10)では、インジェクション回路(30)は、物理量(X)が予め定められた物理量閾値(Xth)未満である場合と、物理量(X)が物理量閾値(Xth)以上であり且つ第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が予め定められた割合閾値(Pth1)以上である場合に、第1状態となり、物理量(X)が物理量閾値(Xth)以上であり且つ第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が割合閾値(Pth1)未満である場合に、第2状態となる。
[Characteristics of Embodiment 1 (6)]
In the refrigeration cycle apparatus (10) of the present embodiment, the injection circuit (30) has a case where the physical quantity (X) is less than a predetermined physical quantity threshold value (Xth) and a case where the physical quantity (X) is equal to or larger than the physical quantity threshold value (Xth). When the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) is equal to or more than a predetermined ratio threshold value (Pth1). , The ratio of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) when the physical quantity (X) is equal to or higher than the physical quantity threshold (Xth) in the first state ( When Prr) is less than the ratio threshold (Pth1), the second state is reached.
 本実施形態では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に低い場合(第2圧縮機(22)の吐出温度が比較的に上昇しにくい場合)に、インジェクション回路(30)を第1状態にすることができる。なお、インジェクション回路(30)の第1状態は、インジェクション回路(30)の第2状態よりも、第1圧縮機(21)の吐出温度の上昇を抑制することができる。したがって、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に低い場合に、インジェクション回路(30)を第1状態にすることにより、第1圧縮機(21)の吐出温度の上昇を抑制する効果を向上させることができる。 In the present embodiment, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively small (when the discharge temperature of the second compressor (22) is relatively difficult to rise). , The injection circuit (30) can be put into the first state. The first state of the injection circuit (30) can suppress an increase in the discharge temperature of the first compressor (21) as compared with the second state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively low, the injection circuit (30) is set to the first state to obtain the first compressor (21). The effect of suppressing an increase in the discharge temperature can be improved.
 また、本実施形態では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に高い場合(第2圧縮機(22)の吐出温度が比較的に上昇しやすい場合)に、圧縮比の割合(Prr)に応じてインジェクション回路(30)を第2状態にすることができる。なお、インジェクション回路(30)の第2状態は、インジェクション回路(30)の第1状態よりも、第2圧縮機(22)の吐出温度の上昇を抑制することができる。したがって、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が比較的に高い場合に、圧縮比の割合(Prr)に応じてインジェクション回路(30)を第2状態にすることにより、第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。 Further, in the present embodiment, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high (when the discharge temperature of the second compressor (22) is relatively likely to rise). ), The injection circuit (30) can be put into the second state according to the ratio of the compression ratio (Prr). The second state of the injection circuit (30) can suppress an increase in the discharge temperature of the second compressor (22) as compared with the first state of the injection circuit (30). Therefore, when the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is relatively high, the injection circuit (30) is put into the second state according to the ratio of the compression ratio (Prr). Therefore, the rise in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  〔実施形態1の特徴(7)〕
 本実施形態の冷凍サイクル装置(10)では、物理量(X)が大きくなるに連れて割合閾値(Pth1)が次第に高くなる。
[Characteristics of Embodiment 1 (7)]
In the refrigeration cycle apparatus (10) of the present embodiment, the ratio threshold value (Pth1) gradually increases as the physical quantity (X) increases.
 本実施形態では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差が大きくなるに連れて、第2圧縮機(22)における圧縮比(Pr2)が大きくなり、第2圧縮機(22)の吐出温度が上昇しやすくなる。したがって、物理量(X)が大きくなるに連れて割合閾値(Pth1)を次第に高くすることにより、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の増加により第2圧縮機(22)の吐出温度が上昇しやすくなった場合に、第2圧縮機(22)における圧縮比(Pr2)が比較的に低い段階で、インジェクション回路(30)を第2状態にすることができる。これにより、第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。 In the present embodiment, as the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, the compression ratio (Pr2) in the second compressor (22) increases, and the second compression The discharge temperature of the machine (22) tends to rise. Therefore, by gradually increasing the ratio threshold value (Pth1) as the physical quantity (X) increases, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, resulting in the second compressor (Pe). When the discharge temperature of 22) tends to rise, the injection circuit (30) can be put into the second state at a stage where the compression ratio (Pr2) in the second compressor (22) is relatively low. As a result, an increase in the discharge temperature of the second compressor (22) can be appropriately suppressed.
  〔実施形態1の特徴(8)〕
 本実施形態の冷凍サイクル装置(10)では、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)が大きくなるに連れて、第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が次第に低くなる。
[Characteristics of Embodiment 1 (8)]
In the refrigeration cycle apparatus (10) of the present embodiment, as the physical quantity (X) correlating with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, the second compressor ( The ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in 22) gradually decreases.
 本実施形態では、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)を次第に低くすることにより、冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の増加により冷凍サイクル装置(10)に要求される圧縮比(第1圧縮機(21)における圧縮比(Pr1)と第2圧縮機(22)における圧縮比(Pr2)との積に相当する圧縮比)が増加したとしても、第1圧縮機(21)における圧縮比(Pr1)の増加を抑制することができる。これにより、第1圧縮機(21)の負担が増加することを抑制することができる。 In the present embodiment, the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) is increased by gradually lowering the compression ratio ratio (Prr) as the physical quantity (X) increases. (Compression ratio corresponding to the product of the compression ratio (Pr1) in the first compressor (21) and the compression ratio (Pr2) in the second compressor (22)) required for the refrigeration cycle apparatus (10). However, the increase in the compression ratio (Pr1) in the first compressor (21) can be suppressed. As a result, it is possible to suppress an increase in the load on the first compressor (21).
  〔実施形態1の特徴(9)〕
 本実施形態の冷凍サイクル装置(10)では、熱源側熱交換器(24)が放熱器となり、利用側熱交換器(27)が蒸発器となる冷房の定常運転においても、常に、第1圧縮機(21)における圧縮比(Pr1)は、第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている。
[Characteristics of Embodiment 1 (9)]
In the refrigeration cycle apparatus (10) of the present embodiment, the first compression is always performed even in the steady operation of cooling in which the heat source side heat exchanger (24) serves as a radiator and the user side heat exchanger (27) serves as an evaporator. The compression ratio (Pr1) in the machine (21) is smaller than the compression ratio (Pr2) in the second compressor (22).
 本実施形態では、冷房の定常運転において、第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも小さくすることにより、暖房の定常運転時と同様に、第1圧縮機(21)の吐出温度の上昇を抑制することができ、第1圧縮機(21)を高温による破壊から保護することができる。 In the present embodiment, in the steady operation of cooling, the compression ratio (Pr1) in the first compressor (21) is made smaller than the compression ratio (Pr2) in the second compressor (22), so that during the steady operation of heating. Similarly, the rise in the discharge temperature of the first compressor (21) can be suppressed, and the first compressor (21) can be protected from destruction due to high temperature.
 また、第2圧縮機(22)における圧縮比(Pr2)を比較的に大きくすることができるので、冷媒回路(20)の冷凍サイクルにおける過冷却度を大きくすることできる。これにより、蒸発器となる利用側熱交換器(27)におけるエンタルピー差を大きくすることができるので、冷凍サイクル装置(10)の運転効率を向上させることができる。 Further, since the compression ratio (Pr2) in the second compressor (22) can be made relatively large, the degree of supercooling in the refrigeration cycle of the refrigerant circuit (20) can be increased. As a result, the enthalpy difference in the heat exchanger (27) on the utilization side, which serves as an evaporator, can be increased, so that the operating efficiency of the refrigeration cycle apparatus (10) can be improved.
 さらに、暖房運転および冷房運転の両方において第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも小さくすることにより、第1圧縮機(21)における圧縮比(Pr1)を第2圧縮機(22)における圧縮比(Pr2)よりも常に小さくすることができる。これにより、第1圧縮機(21)の小型化および低コスト化を実現することができ、冷凍サイクル装置(10)の小型化および低コスト化を実現することができる。 Further, by making the compression ratio (Pr1) in the first compressor (21) smaller than the compression ratio (Pr2) in the second compressor (22) in both the heating operation and the cooling operation, the first compressor (21) ) Can always be smaller than the compression ratio (Pr2) in the second compressor (22). As a result, the size and cost of the first compressor (21) can be reduced, and the size and cost of the refrigeration cycle device (10) can be reduced.
  〔実施形態1の特徴(10)〕
 本実施形態の冷凍サイクル装置(10)では、第1圧縮機(21)は、ロータリ式または揺動ピストン式の圧縮機である。
[Characteristics of Embodiment 1 (10)]
In the refrigeration cycle apparatus (10) of the present embodiment, the first compressor (21) is a rotary type or a swing piston type compressor.
 本実施形態では、第1圧縮機(21)をロータリ式または揺動ピストン式の圧縮機で構成することにより、第1圧縮機(21)をスクロール式の圧縮機で構成する場合よりも、第1圧縮機(21)の小型化および高速化を実現することができる。これにより、冷媒密度が低い運転状況下においても冷媒流量の確保を容易にすることができる。また、冷凍サイクル装置(10)の小型化および低コスト化を実現することができる。 In the present embodiment, the first compressor (21) is composed of a rotary type or a swing piston type compressor, so that the first compressor (21) is composed of a scroll type compressor. 1 It is possible to reduce the size and speed of the compressor (21). As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low. In addition, the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
 (実施形態2)
 図7は、実施形態2の冷凍サイクル装置(10)の構成を例示する。実施形態2の冷凍サイクル装置(10)は、インジェクション回路(30)の構成が実施形態1の冷凍サイクル装置(10)と異なっている。実施形態2の冷凍サイクル装置(10)のその他の構成は、実施形態1の冷凍サイクル装置(10)の構成と同様である。
(Embodiment 2)
FIG. 7 illustrates the configuration of the refrigeration cycle apparatus (10) of the second embodiment. The refrigerating cycle apparatus (10) of the second embodiment has a different injection circuit (30) configuration from the refrigerating cycle apparatus (10) of the first embodiment. Other configurations of the refrigeration cycle apparatus (10) of the second embodiment are the same as the configurations of the refrigeration cycle apparatus (10) of the first embodiment.
 インジェクション回路(30)は、第1状態と第2状態と第3状態とに切り換え可能となっている。第1状態では、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に冷媒を供給する。第2状態では、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する。第3状態では、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち凝縮器(放熱器)となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側および圧縮途中の圧縮室の両方に供給する。 The injection circuit (30) can be switched between the first state, the second state, and the third state. In the first state, the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the suction side of the second compressor (22). In the second state, the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22). In the third state, the injection circuit (30) goes from the heat exchanger, which is the condenser (radiator) of the heat source side heat exchanger (24) and the user side heat exchanger (27), to the expansion mechanism (26). A part of the refrigerant is supplied to both the suction side of the second compressor (22) and the compression chamber during compression.
 具体的には、インジェクション回路(30)は、図1に示した開閉弁(32)に代えて、減圧弁(34)を有する。実施形態2のインジェクション回路(30)のその他の構成は、実施形態1のインジェクション回路(30)の構成と同様である。 Specifically, the injection circuit (30) has a pressure reducing valve (34) instead of the on-off valve (32) shown in FIG. Other configurations of the injection circuit (30) of the second embodiment are the same as those of the injection circuit (30) of the first embodiment.
 減圧弁(34)は、第2インジェクション配管(PJ2)に設けられる。減圧弁(34)は、開度を調節可能である。例えば、減圧弁(34)は、電動弁により構成される。この例では、減圧弁(34)を全開状態にすることにより、インジェクション回路(30)が第1状態(上記冷媒の一部を第2圧縮機(22)の吸入側に冷媒を供給する状態)になる。減圧弁(34)を全閉状態にすることにより、インジェクション回路(30)が第2状態(上記冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する状態)になる。減圧弁(34)を全閉状態と全開状態との間の状態にすることにより、インジェクション回路(30)が第3状態(上記冷媒の一部を第2圧縮機(22)の吸入側および圧縮途中の圧縮室の両方に供給する状態)になる。 The pressure reducing valve (34) is provided in the second injection pipe (PJ2). The opening degree of the pressure reducing valve (34) can be adjusted. For example, the pressure reducing valve (34) is composed of an electric valve. In this example, the pressure reducing valve (34) is fully opened so that the injection circuit (30) is in the first state (a state in which a part of the refrigerant is supplied to the suction side of the second compressor (22)). become. By fully closing the pressure reducing valve (34), the injection circuit (30) is in the second state (a state in which a part of the refrigerant is supplied to the compression chamber in the middle of compression of the second compressor (22)). .. By setting the pressure reducing valve (34) between the fully closed state and the fully open state, the injection circuit (30) is in the third state (a part of the refrigerant is compressed on the suction side and the second compressor (22)). It will be in a state of supplying to both compression chambers on the way).
  〔冷凍サイクル装置の運転動作〕
 実施形態1の冷凍サイクル装置(10)と同様に、実施形態2の冷凍サイクル装置(10)においても、単段圧縮運転(詳しくは単段圧縮暖房運転と単段圧縮冷房運転)と、二段圧縮運転(詳しくは二段圧縮暖房運転と二段圧縮冷房運転)とが行われる。
[Operating operation of refrigeration cycle equipment]
Similar to the refrigeration cycle device (10) of the first embodiment, the refrigeration cycle device (10) of the second embodiment also has a single-stage compression operation (specifically, a single-stage compression heating operation and a single-stage compression cooling operation) and a two-stage compression operation. Compression operation (specifically, two-stage compression heating operation and two-stage compression cooling operation) is performed.
 二段圧縮暖房運転(または二段圧縮冷房運転)において、インジェクション回路(30)が第3状態である場合、第1インジェクション配管(PJ1)を流れる冷媒は、その一部が減圧弁(34)を通過して第1冷媒配管(P1)の中途部に供給され、その残部がインジェクション逆止弁(33)を通過して第2圧縮機(22)の中間ポートに供給される。第1冷媒配管(P1)に供給された冷媒は、第1圧縮機(21)から吐出された冷媒と合流し、第2圧縮機(22)に吸入されて圧縮される。これにより、第2圧縮機(22)に吸入される冷媒が冷却される。また、インジェクション逆止弁(33)を通過した冷媒は、第2圧縮機(22)の圧縮途中の圧縮室に供給され、圧縮室内の冷媒と混合される。これにより、第2圧縮機(22)の圧縮室内の冷媒が冷却される。なお、インジェクション回路(30)が第3状態である場合、冷凍サイクルにおける冷媒の状態は、図8の実線のようになる。 In the two-stage compression heating operation (or two-stage compression cooling operation), when the injection circuit (30) is in the third state, a part of the refrigerant flowing through the first injection pipe (PJ1) uses the pressure reducing valve (34). It passes through and is supplied to the middle part of the first refrigerant pipe (P1), and the rest thereof passes through the injection check valve (33) and is supplied to the intermediate port of the second compressor (22). The refrigerant supplied to the first refrigerant pipe (P1) merges with the refrigerant discharged from the first compressor (21), is sucked into the second compressor (22), and is compressed. As a result, the refrigerant sucked into the second compressor (22) is cooled. Further, the refrigerant that has passed through the injection check valve (33) is supplied to the compression chamber during compression of the second compressor (22) and mixed with the refrigerant in the compression chamber. As a result, the refrigerant in the compression chamber of the second compressor (22) is cooled. When the injection circuit (30) is in the third state, the state of the refrigerant in the refrigeration cycle is as shown by the solid line in FIG.
  〔インジェクション回路の第2状態と第3状態との対比〕
 次に、図8を参照して、インジェクション回路(30)の第2状態と第3状態とを対比する。図8の破線は、インジェクション回路(30)が第2状態である場合の冷凍サイクルにおける冷媒の状態を示し、図8の実線は、インジェクション回路(30)が第3状態である場合の冷凍サイクルにおける冷媒の状態を示している。
[Comparison between the second state and the third state of the injection circuit]
Next, with reference to FIG. 8, the second state and the third state of the injection circuit (30) are compared. The dashed line in FIG. 8 shows the state of the refrigerant in the refrigeration cycle when the injection circuit (30) is in the second state, and the solid line in FIG. 8 shows the state of the refrigerant in the refrigeration cycle when the injection circuit (30) is in the third state. It shows the state of the refrigerant.
 図8に示すように、インジェクション回路(30)の第3状態は、インジェクション回路(30)の第2状態に対し、第2圧縮機(22)の吐出温度の上昇を抑制しながら効率を向上させることができる状態であるといえる。 As shown in FIG. 8, the third state of the injection circuit (30) improves the efficiency of the second state of the injection circuit (30) while suppressing an increase in the discharge temperature of the second compressor (22). It can be said that it is in a state where it can be done.
  〔インジェクション回路の状態の切り換え〕
 実施形態2の二段圧縮運転において、インジェクション回路(30)の状態は、物理量(X)(冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある量)に応じて切り換えられる。この例では、インジェクション回路(30)の状態は、物理量(X)と、圧縮比(Pr1,Pr2)の割合(Prr)(第2圧縮機(22)における圧縮比(Pr2)に対する第1圧縮機(21)における圧縮比(Pr1)の割合(Prr))とに応じて切り換えられる。具体的には、制御部(100)は、物理量(X)と圧縮比の割合(Prr)とに応じて、インジェクション回路(30)の状態を切り換える。
[Switching the state of the injection circuit]
In the two-stage compression operation of the second embodiment, the state of the injection circuit (30) depends on the physical quantity (X) (the amount correlating with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)). Can be switched. In this example, the state of the injection circuit (30) is the ratio (Prr) of the physical quantity (X) and the compression ratio (Pr1, Pr2) (the first compressor to the compression ratio (Pr2) in the second compressor (22)). It is switched according to the ratio (Prr) of the compression ratio (Pr1) in (21). Specifically, the control unit (100) switches the state of the injection circuit (30) according to the physical quantity (X) and the ratio of the compression ratio (Prr).
 次に、図9を参照して、実施形態2の二段圧縮運転におけるインジェクション回路(30)の状態の切り換えについて具体的に説明する。なお、図9において、左下がりのハッチングが付された領域は、インジェクション回路(30)が第1状態に切り換えられる領域を示し、右下がりの粗いハッチングが付された領域は、インジェクション回路(30)が第2状態に切り換えられる領域を示し、右下がりの細かいハッチングが付された領域は、インジェクション回路(30)が第3状態に切り換えられる領域を示している。 Next, with reference to FIG. 9, the switching of the state of the injection circuit (30) in the two-stage compression operation of the second embodiment will be specifically described. In FIG. 9, the region with the downward-sloping hatching indicates the region in which the injection circuit (30) is switched to the first state, and the region with the downward-sloping coarse hatching is the injection circuit (30). Indicates a region in which the injection circuit (30) is switched to the third state, and a region with fine hatching that descends to the right indicates a region in which the injection circuit (30) is switched to the third state.
 図9に示すように、物理量(X)が物理量閾値(Xth)未満である場合、インジェクション回路(30)は、第1状態となる。また、物理量(X)が物理量閾値(Xth)以上であり、且つ、圧縮比の割合(Prr)が割合閾値(Pth1)以上である場合、インジェクション回路(30)は、第1状態となる。 As shown in FIG. 9, when the physical quantity (X) is less than the physical quantity threshold value (Xth), the injection circuit (30) is in the first state. When the physical quantity (X) is equal to or greater than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is equal to or greater than the ratio threshold value (Pth1), the injection circuit (30) is in the first state.
 また、物理量(X)が物理量閾値(Xth)以上であり、且つ、圧縮比の割合(Prr)が割合閾値(Pth1)から割合閾値(Pth1)よりも低い低側割合閾値(Pth2)までの範囲内である場合、インジェクション回路(30)は、第2状態となる。 Further, the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth), and the compression ratio ratio (Prr) is in the range from the ratio threshold value (Pth1) to the lower ratio threshold value (Pth2) lower than the ratio threshold value (Pth1). If it is inside, the injection circuit (30) is in the second state.
 また、物理量(X)が物理量閾値(Xth)以上であり、且つ、圧縮比の割合(Prr)が低側割合閾値(Pth2)よりも低い場合、インジェクション回路(30)は、第3状態となる。 When the physical quantity (X) is equal to or higher than the physical quantity threshold value (Xth) and the compression ratio ratio (Prr) is lower than the low side ratio threshold value (Pth2), the injection circuit (30) is in the third state. ..
 なお、図9の例では、物理量(X)が大きくなるに連れて割合閾値(Pth1)および低側割合閾値(Pth2)が次第に高くなる。具体的には、物理量(X)が大きくなるに連れて、割合閾値(Pth1)が第1割合(Prr1)から次第に高くなり、低側割合閾値(Pth2)が第1割合(Prr1)よりも低い第2割合(Prr2)から次第に高くなる。また、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)が次第に低くなる。具体的には、物理量(X)が物理量閾値(Xth)以上となると、物理量(X)が大きくなるに連れて、圧縮比の割合(Prr)が1から次第に低くなる。 In the example of FIG. 9, the ratio threshold value (Pth1) and the low side ratio threshold value (Pth2) gradually increase as the physical quantity (X) increases. Specifically, as the physical quantity (X) increases, the ratio threshold (Pth1) gradually increases from the first ratio (Prr1), and the lower ratio threshold (Pth2) is lower than the first ratio (Prr1). It gradually increases from the second ratio (Prr2). Further, as the physical quantity (X) increases, the compression ratio ratio (Prr) gradually decreases. Specifically, when the physical quantity (X) becomes equal to or higher than the physical quantity threshold value (Xth), the compression ratio ratio (Prr) gradually decreases from 1 as the physical quantity (X) increases.
  〔実施形態2の特徴〕
 以上のように、本実施形態の冷凍サイクル装置(10)では、第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、インジェクション回路(30)は、熱源側熱交換器(24)および利用側熱交換器(27)のうち放熱器となる熱交換器から膨張機構(26)へ向かう冷媒の一部を第2圧縮機(22)の吸入側に供給する第1状態と、上記冷媒の一部を第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態と、上記冷媒の一部を第2圧縮機(22)の吸入側および圧縮途中の圧縮室の両方に供給する第3状態とに切り換え可能となっている。
[Characteristics of Embodiment 2]
As described above, in the refrigeration cycle apparatus (10) of the present embodiment, the second compressor (22) has a compression chamber for compressing the refrigerant so that the refrigerant can be supplied to the compression chamber in the middle of compression. The injection circuit (30) is a part of the refrigerant that goes from the heat exchanger that is the radiator of the heat source side heat exchanger (24) and the user side heat exchanger (27) to the expansion mechanism (26). A first state in which the refrigerant is supplied to the suction side of the second compressor (22), a second state in which a part of the refrigerant is supplied to the compression chamber during compression of the second compressor (22), and one of the refrigerants. The unit can be switched to a third state in which the unit is supplied to both the suction side of the second compressor (22) and the compression chamber during compression.
 本実施形態では、インジェクション回路(30)の状態を第1状態と第2状態と第3状態とに切り換えることができるので、インジェクションを利用して第2圧縮機(22)の吐出温度の上昇を適切に抑制することができる。これにより、冷凍サイクル装置(10)の動作可能な範囲(冷媒回路(20)における高圧(Pc)と低圧(Pe)との差の範囲)を広くすることができる。また、実施形態1よりも効率を向上させることができる。 In the present embodiment, the state of the injection circuit (30) can be switched between the first state, the second state, and the third state. Therefore, the injection is used to increase the discharge temperature of the second compressor (22). It can be suppressed appropriately. Thereby, the operable range of the refrigerating cycle apparatus (10) (the range of the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20)) can be widened. Moreover, the efficiency can be improved as compared with the first embodiment.
 (その他の実施形態)
 以上の説明において、第1圧縮機(21)は、ターボ式の圧縮機であってもよい。このように、第1圧縮機(21)をターボ式の圧縮機で構成することにより、第1圧縮機(21)をスクロール式,ロータリ式,または揺動ピストン式の圧縮機で構成する場合よりも、第1圧縮機(21)の小型化および高速化を実現することができる。これにより、冷媒密度が低い運転状況下においても冷媒流量の確保を容易にすることができる。また、冷凍サイクル装置(10)の小型化および低コスト化を実現することができる。
(Other embodiments)
In the above description, the first compressor (21) may be a turbo type compressor. In this way, by configuring the first compressor (21) with a turbo type compressor, compared to the case where the first compressor (21) is composed of a scroll type, rotary type, or swing piston type compressor. Also, the first compressor (21) can be miniaturized and speeded up. As a result, it is possible to easily secure the refrigerant flow rate even under an operating condition where the refrigerant density is low. In addition, the refrigeration cycle apparatus (10) can be downsized and reduced in cost.
 また、以上の説明では、冷媒の具体例としてR410A,R32,R407Cなどを列挙したが、冷媒は、その他の種類の冷媒であってもよい。例えば、冷媒は、二酸化炭素であってもよい。 Further, in the above description, R410A, R32, R407C and the like are listed as specific examples of the refrigerant, but the refrigerant may be another type of refrigerant. For example, the refrigerant may be carbon dioxide.
 また、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり置換したりしてもよい。 In addition, although the embodiments and modifications have been described, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the claims. In addition, the above embodiments and modifications may be appropriately combined or replaced as long as they do not impair the functions of the present disclosure.
 以上説明したように、本開示は、冷凍サイクル装置として有用である。 As described above, the present disclosure is useful as a refrigeration cycle device.
10     冷凍サイクル装置
20     冷媒回路
21     第1圧縮機
22     第2圧縮機
23     四路切換弁
24     熱源側熱交換器
25     逆止弁ブリッジ
26     膨張機構
27     利用側熱交換器
28     アキュムレータ
29     バイパス逆止弁
30     インジェクション回路
31     インジェクション膨張弁
32     開閉弁
33     インジェクション逆止弁
34     減圧弁
40     中間熱交換器
10 Refrigerant cycle device 20 Refrigerant circuit 21 First compressor 22 Second compressor 23 Four-way switching valve 24 Heat source side heat exchanger 25 Check valve bridge 26 Expansion mechanism 27 User side heat exchanger 28 Accumulator 29 Bypass check valve 30 Injection circuit 31 Injection expansion valve 32 On-off valve 33 Injection check valve 34 Pressure reducing valve 40 Intermediate heat exchanger

Claims (12)

  1.  冷媒を圧縮して吐出する第1圧縮機(21)と、前記第1圧縮機(21)から吐出された冷媒を圧縮して吐出する第2圧縮機(22)と、熱源側熱交換器(24)と、膨張機構(26)と、利用側熱交換器(27)とを有する冷媒回路(20)と、
     前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に供給するインジェクション回路(30)とを備え、
     前記利用側熱交換器(27)が放熱器となり、前記熱源側熱交換器(24)が蒸発器となる暖房の定常運転において、常に、前記第1圧縮機(21)における圧縮比(Pr1)は、前記第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている
    ことを特徴とする冷凍サイクル装置。
    A first compressor (21) that compresses and discharges the refrigerant, a second compressor (22) that compresses and discharges the refrigerant discharged from the first compressor (21), and a heat source side heat exchanger ( 24), a refrigerant circuit (20) having an expansion mechanism (26), and a heat exchanger (27) on the user side,
    Of the heat source side heat exchanger (24) and the user side heat exchanger (27), a part of the refrigerant directed from the heat exchanger serving as the radiator to the expansion mechanism (26) is partly distributed by the second compressor (22). Equipped with an injection circuit (30) that supplies to the suction side of
    The compression ratio (Pr1) in the first compressor (21) is always in the steady operation of heating in which the heat exchanger (27) on the utilization side serves as a radiator and the heat exchanger (24) on the heat source side serves as an evaporator. Is a refrigeration cycle apparatus characterized in that it is smaller than the compression ratio (Pr2) in the second compressor (22).
  2.  請求項1において、
     中間熱交換器(40)をさらに備え、
     前記インジェクション回路(30)は、該インジェクション回路(30)を流れる冷媒を減圧するインジェクション膨張弁(31)を有し、
     前記中間熱交換器(40)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から流出した冷媒と、前記インジェクション膨張弁(31)により減圧された冷媒とを熱交換させる
    ことを特徴とする冷凍サイクル装置。
    In claim 1,
    Further equipped with an intermediate heat exchanger (40)
    The injection circuit (30) has an injection expansion valve (31) for reducing the pressure of the refrigerant flowing through the injection circuit (30).
    The intermediate heat exchanger (40) includes the refrigerant flowing out from the heat exchanger serving as the radiator among the heat source side heat exchanger (24) and the utilization side heat exchanger (27), and the injection expansion valve (31). ) Is a refrigeration cycle apparatus characterized by heat exchange with the refrigerant decompressed by.
  3.  請求項1または2において、
     前記第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、
     前記インジェクション回路(30)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に冷媒を供給する第1状態と、該冷媒の一部を前記第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態とに切り換え可能となっている
    ことを特徴とする冷凍サイクル装置。
    In claim 1 or 2,
    The second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression.
    The injection circuit (30) uses a part of the refrigerant from the heat exchanger on the heat source side and the heat exchanger on the user side (27), which serves as a radiator, to the expansion mechanism (26). Switching between a first state in which the refrigerant is supplied to the suction side of the second compressor (22) and a second state in which a part of the refrigerant is supplied to the compression chamber during compression of the second compressor (22). A refrigeration cycle device characterized in that it is possible.
  4.  請求項1または2において、
     前記第2圧縮機(22)は、冷媒を圧縮するための圧縮室を有し、圧縮途中の圧縮室に冷媒を供給できるように構成されており、
     前記インジェクション回路(30)は、前記熱源側熱交換器(24)および前記利用側熱交換器(27)のうち放熱器となる熱交換器から前記膨張機構(26)へ向かう冷媒の一部を前記第2圧縮機(22)の吸入側に供給する第1状態と、該冷媒の一部を前記第2圧縮機(22)の圧縮途中の圧縮室に供給する第2状態と、該冷媒の一部を前記第2圧縮機(22)の吸入側および圧縮途中の圧縮室の両方に供給する第3状態とに切り換え可能となっている
    ことを特徴とする冷凍サイクル装置。
    In claim 1 or 2,
    The second compressor (22) has a compression chamber for compressing the refrigerant, and is configured to be able to supply the refrigerant to the compression chamber during compression.
    The injection circuit (30) uses a part of the refrigerant from the heat exchanger on the heat source side and the heat exchanger on the user side (27), which serves as a radiator, to the expansion mechanism (26). The first state of supplying the suction side of the second compressor (22), the second state of supplying a part of the refrigerant to the compression chamber during compression of the second compressor (22), and the refrigerant. A refrigeration cycle apparatus characterized in that a part thereof can be switched to a third state of supplying both the suction side of the second compressor (22) and the compression chamber during compression.
  5.  請求項3または4において、
     前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)に応じて前記インジェクション回路(30)の状態が切り換えられる
    ことを特徴とする冷凍サイクル装置。
    In claim 3 or 4,
    A refrigeration cycle apparatus characterized in that the state of the injection circuit (30) is switched according to a physical quantity (X) that correlates with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20).
  6.  請求項3において、
     前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)と前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)とに応じて前記インジェクション回路(30)の状態が切り換えられる
    ことを特徴とする冷凍サイクル装置。
    In claim 3,
    The first compressor (21) with respect to the physical quantity (X) correlated with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) and the compression ratio (Pr2) in the second compressor (22). ), The state of the injection circuit (30) is switched according to the ratio (Prr) of the compression ratio (Pr1).
  7.  請求項6において、
     前記インジェクション回路(30)は、
      前記物理量(X)が予め定められた物理量閾値(Xth)未満である場合と、前記物理量(X)が前記物理量閾値(Xth)以上であり且つ前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が予め定められた割合閾値(Pth1)以上である場合に、前記第1状態となり、
      前記物理量(X)が前記物理量閾値(Xth)以上であり且つ前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が前記割合閾値(Pth1)未満である場合に、前記第2状態となる
    ことを特徴とする冷凍サイクル装置。
    In claim 6,
    The injection circuit (30)
    When the physical quantity (X) is less than a predetermined physical quantity threshold (Xth), and when the physical quantity (X) is equal to or more than the physical quantity threshold (Xth) and the compression ratio (Pr2) in the second compressor (22) ) To the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to or more than a predetermined ratio threshold (Pth1), the first state is set.
    The ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) to the compression ratio (Pr2) in the second compressor (22) when the physical quantity (X) is equal to or higher than the physical quantity threshold (Xth). The refrigeration cycle apparatus is characterized in that the second state is obtained when is less than the ratio threshold value (Pth1).
  8.  請求項7において、
     前記物理量(X)が大きくなるに連れて前記割合閾値(Pth1)が次第に高くなる
    ことを特徴とする冷凍サイクル装置。
    In claim 7,
    A refrigeration cycle apparatus characterized in that the ratio threshold value (Pth1) gradually increases as the physical quantity (X) increases.
  9.  請求項1~8のいずれか1つにおいて、
     前記冷媒回路(20)における高圧(Pc)と低圧(Pe)との差と相関のある物理量(X)が大きくなるに連れて、前記第2圧縮機(22)における圧縮比(Pr2)に対する前記第1圧縮機(21)における圧縮比(Pr1)の割合(Prr)が次第に低くなる
    ことを特徴とする冷凍サイクル装置。
    In any one of claims 1 to 8,
    As the physical quantity (X) correlated with the difference between the high pressure (Pc) and the low pressure (Pe) in the refrigerant circuit (20) increases, the compression ratio (Pr2) in the second compressor (22) becomes larger. A refrigeration cycle apparatus characterized in that the ratio (Prr) of the compression ratio (Pr1) in the first compressor (21) gradually decreases.
  10.  請求項1~9のいずれか1つにおいて、
     前記熱源側熱交換器(24)が放熱器となり、前記利用側熱交換器(27)が蒸発器となる冷房の定常運転においても、常に、前記第1圧縮機(21)における圧縮比(Pr1)は、前記第2圧縮機(22)における圧縮比(Pr2)よりも小さくなっている
    ことを特徴とする冷凍サイクル装置。
    In any one of claims 1 to 9,
    Even in the steady operation of cooling in which the heat source side heat exchanger (24) serves as a radiator and the user side heat exchanger (27) serves as an evaporator, the compression ratio (Pr1) in the first compressor (21) is always present. ) Is a refrigeration cycle apparatus characterized in that it is smaller than the compression ratio (Pr2) in the second compressor (22).
  11.  請求項1~10のいずれか1つにおいて、
     前記第1圧縮機(21)は、ロータリ式または揺動ピストン式の圧縮機である
    ことを特徴とする冷凍サイクル装置。
    In any one of claims 1 to 10,
    The first compressor (21) is a refrigeration cycle apparatus characterized by being a rotary type or a swing piston type compressor.
  12.  請求項1~10のいずれか1つにおいて、
     前記第1圧縮機(21)は、ターボ式の圧縮機である
    ことを特徴とする冷凍サイクル装置。
    In any one of claims 1 to 10,
    The first compressor (21) is a refrigeration cycle apparatus characterized by being a turbo type compressor.
PCT/JP2020/013872 2019-03-29 2020-03-26 Refrigeration cycle device WO2020203707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067715 2019-03-29
JP2019-067715 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203707A1 true WO2020203707A1 (en) 2020-10-08

Family

ID=72669096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013872 WO2020203707A1 (en) 2019-03-29 2020-03-26 Refrigeration cycle device

Country Status (2)

Country Link
JP (2) JP6825736B2 (en)
WO (1) WO2020203707A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4425070A1 (en) 2021-10-28 2024-09-04 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153467U (en) * 1988-04-18 1989-10-23
JP2005127167A (en) * 2003-10-22 2005-05-19 Hitachi Home & Life Solutions Inc Compressor
JP2007155143A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2014016078A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump
JP2019506584A (en) * 2016-02-26 2019-03-07 ダイキン アプライド アメリカズ インコーポレィティッド Economizer used in chiller system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153467U (en) * 1988-04-18 1989-10-23
JP2005127167A (en) * 2003-10-22 2005-05-19 Hitachi Home & Life Solutions Inc Compressor
JP2007155143A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2014016078A (en) * 2012-07-06 2014-01-30 Daikin Ind Ltd Heat pump
JP2019506584A (en) * 2016-02-26 2019-03-07 ダイキン アプライド アメリカズ インコーポレィティッド Economizer used in chiller system

Also Published As

Publication number Publication date
JP2020165646A (en) 2020-10-08
JP6825736B2 (en) 2021-02-03
JP2020186909A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP2009270748A (en) Refrigerating device
WO2006028218A1 (en) Refrigerating apparatus
JP2008241069A (en) Air conditioning device
WO2020203708A1 (en) Refrigeration cycle device
JP2015148406A (en) Refrigeration device
US11598559B2 (en) Heat source-side unit and refrigeration apparatus
JP2013181736A (en) Refrigerating apparatus for container
US12031752B2 (en) Refrigeration apparatus
JP6948796B2 (en) Refrigerant circuit system and control method
JP2006138525A (en) Freezing device, and air conditioner
WO2009147882A1 (en) Refrigeration cycle apparatus
WO2020071293A1 (en) Refrigeration cycle device
WO2020203707A1 (en) Refrigeration cycle device
JP2018132224A (en) Binary refrigeration system
JP2020186909A5 (en)
JP2010060181A (en) Refrigeration system
US11512876B2 (en) Refrigeration apparatus
JP6765086B2 (en) Refrigeration equipment
JP4581795B2 (en) Refrigeration equipment
JP2007147228A (en) Refrigerating device
JPWO2020008916A1 (en) Refrigeration cycle device and its control method
JP2006284086A (en) Refrigerating device
JP7353514B1 (en) Refrigeration cycle equipment
WO2024204176A1 (en) Refrigeration device
JP2024145992A (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781871

Country of ref document: EP

Kind code of ref document: A1