JP4581795B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4581795B2
JP4581795B2 JP2005104304A JP2005104304A JP4581795B2 JP 4581795 B2 JP4581795 B2 JP 4581795B2 JP 2005104304 A JP2005104304 A JP 2005104304A JP 2005104304 A JP2005104304 A JP 2005104304A JP 4581795 B2 JP4581795 B2 JP 4581795B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion
expander
compression
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104304A
Other languages
Japanese (ja)
Other versions
JP2006284085A (en
Inventor
昌和 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005104304A priority Critical patent/JP4581795B2/en
Publication of JP2006284085A publication Critical patent/JP2006284085A/en
Application granted granted Critical
Publication of JP4581795B2 publication Critical patent/JP4581795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

本発明は、膨張機構を有する冷凍装置に関し、特に、膨張機構で動力を回収するようにした冷凍装置に係るものである。     The present invention relates to a refrigeration apparatus having an expansion mechanism, and particularly relates to a refrigeration apparatus in which power is recovered by an expansion mechanism.

従来より、特許文献1に開示されているように、冷凍サイクルを行う冷媒回路に膨張機を設け、該膨張機において、冷媒から動力を回収するようにしているものがある。この膨張機で高圧冷媒から回収された動力は、軸などを介して圧縮機へ伝えられ、圧縮機を駆動するために利用される。     Conventionally, as disclosed in Patent Document 1, an expander is provided in a refrigerant circuit that performs a refrigeration cycle, and in the expander, power is recovered from the refrigerant. The power recovered from the high-pressure refrigerant by the expander is transmitted to the compressor via a shaft or the like and used to drive the compressor.

冷媒回路は閉回路であるため、単位時間当たりに圧縮機を通過する冷媒の質量と膨張機を通過する冷媒の質量は、常に一致していなければならない。そこで、特許文献1では、膨張機をバイパスする通路を設けたり、膨張機と直列に膨張弁を設け、バイパス量や膨張弁の開度を調節することで、冷媒回路の圧縮機側と膨張機側での冷媒流量をバランスさせている。
特開2000−329416号公報
Since the refrigerant circuit is a closed circuit, the mass of the refrigerant that passes through the compressor per unit time and the mass of the refrigerant that passes through the expander must always match. Therefore, in Patent Document 1, by providing a passage that bypasses the expander, or by providing an expansion valve in series with the expander and adjusting the bypass amount and the opening of the expansion valve, the compressor side of the refrigerant circuit and the expander The refrigerant flow rate on the side is balanced.
JP 2000-329416 A

しかしながら、従来の冷凍装置においては、冷媒が膨張機をバイパスすると膨張機を通過する冷媒量が減少する。また、従来の冷凍装置のように、膨張機と直列に膨張弁を設けると膨張機の出入口における圧力差が減少する。この場合、何れの場合も膨張機での回収動力の減少を招くことになる。     However, in the conventional refrigeration apparatus, when the refrigerant bypasses the expander, the amount of refrigerant passing through the expander decreases. Further, when an expansion valve is provided in series with the expander as in a conventional refrigeration apparatus, the pressure difference at the inlet / outlet of the expander decreases. In this case, in any case, the recovery power in the expander is reduced.

本発明は、斯かる点に鑑みてなされたものであり、膨張機構で回収できる動力量が減少することなく、運転状態の如何に拘わらず圧縮機構の通過冷媒量と膨張機構の通過冷媒量とをバランスさせることを目的とする。     The present invention has been made in view of such points, and without reducing the amount of power that can be recovered by the expansion mechanism, the amount of refrigerant passing through the compression mechanism and the amount of refrigerant passing through the expansion mechanism regardless of the operating state. The purpose is to balance.

第1の発明は、圧縮機構(40)と熱源側熱交換器(21)と膨張機構(60)と利用側熱交換器(22)とが接続されて蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備え、上記膨張機構(60)と圧縮機構(40)とが連結されている冷凍装置を対象としている。そして、上記膨張機構(60)は、第1膨張機(61)と、該第1膨張機(61)の吐出口に冷媒配管(23)によって吸入口が接続された第2膨張機(62)とを備えて冷媒を2段膨張させるように構成されている。さらに、上記第2膨張機(62)は、吸入容積が上記第1膨張機(61)の吐出容積より大きく構成されている。加えて、上記冷媒回路(20)が、第1膨張機(61)に流入する高圧冷媒の一部を第1膨張機(61)と第2膨張機(62)とを接続する上記冷媒配管(23)に導入する膨張側バイパス路(70)を備えている。 A first aspect of the invention is a refrigerant circuit that performs a vapor compression refrigeration cycle by connecting a compression mechanism (40), a heat source side heat exchanger (21), an expansion mechanism (60), and a use side heat exchanger (22). 20), and the refrigeration apparatus to which the expansion mechanism (60) and the compression mechanism (40) are connected is intended. The expansion mechanism (60) includes a first expander (61) and a second expander (62) in which a suction port is connected to a discharge port of the first expander (61) by a refrigerant pipe (23 ). The refrigerant is expanded in two stages. Furthermore, the second expander (62) has a suction volume larger than the discharge volume of the first expander (61). In addition, the refrigerant circuit (20) connects the first expander (61) and the second expander (62) with a part of the high-pressure refrigerant flowing into the first expander (61). The expansion side bypass passage (70) to be introduced into 23) is provided.

上記第1の発明では、運転条件が変化して低圧冷媒圧力が上昇すると、第1膨張機(61)に流入する高圧冷媒の一部を膨張側バイパス路(70)から第2膨張機(62)に導入する。 In the first aspect of the invention, when the operating condition changes and the low-pressure refrigerant pressure rises, a part of the high-pressure refrigerant flowing into the first expander (61) is removed from the expansion side bypass (70) to the second expander (62 ).

つまり、所定の運転条件において必要な圧縮機構の吸入容積と膨張機構の吸入容積との比を膨圧容積比(圧縮機構の吸入容積/膨張機構の吸入容積)とし、運転条件が変化して低圧冷媒圧力が上昇すると、実際の膨圧容積比が設計膨圧容積比よりも小さくなることがある。低圧冷媒圧力が上昇すると、この圧力上昇に伴って圧縮機構(40)に吸入される冷媒の密度が大きくなり、圧縮機構(40)の吐出冷媒の質量流量が増加する。一方、高圧冷媒圧力が変動しても、膨張機構(60)に流入する冷媒の密度の変化が小さいことから、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、膨張機構(60)を通過できる冷媒の質量流量が、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に少なくなる。     In other words, the ratio between the suction volume of the compression mechanism and the suction volume of the expansion mechanism required under a predetermined operating condition is the expansion pressure ratio (the suction volume of the compression mechanism / the suction volume of the expansion mechanism), and the operating conditions change to reduce the low pressure. When the refrigerant pressure rises, the actual inflation pressure volume ratio may become smaller than the design inflation pressure volume ratio. When the low-pressure refrigerant pressure rises, the density of the refrigerant sucked into the compression mechanism (40) increases with this pressure rise, and the mass flow rate of the refrigerant discharged from the compression mechanism (40) increases. On the other hand, even if the high-pressure refrigerant pressure fluctuates, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small because the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. Therefore, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively less than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

そこで、設計膨圧容積比の設定によって、運転条件が変化して低圧冷媒圧力が上昇すると、高圧冷媒圧力が目標値になるように、上記第1膨張機(61)に流入する超臨界状態の高圧冷媒の一部を膨張側バイパス路(70)を介して第2膨張機(62)に導入する。この結果、実際の膨圧容積比が設計膨圧容積比よりも小さくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させる。     Therefore, when the operating conditions change and the low-pressure refrigerant pressure rises depending on the setting of the design expansion pressure volume ratio, the supercritical state of flowing into the first expander (61) so that the high-pressure refrigerant pressure becomes the target value. Part of the high-pressure refrigerant is introduced into the second expander (62) via the expansion side bypass (70). As a result, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under operating conditions where the actual expansion pressure volume ratio is smaller than the designed expansion pressure volume ratio. Match the mass flow rate of the refrigerant.

第2の発明は、上記第1の発明において、上記膨張側バイパス路(70)が流量調整自在な膨張側調整機構(71)を備えている。 In a second aspect based on the first aspect, the expansion side bypass passage (70) includes an expansion side adjustment mechanism (71) whose flow rate is adjustable.

上記第2の発明では、膨張側調整機構(71)によって第2膨張機(62)に導入する高圧冷媒量が調整される。 In the second aspect, the amount of the high-pressure refrigerant introduced into the second expander (62) is adjusted by the expansion side adjustment mechanism (71).

第3の発明は、上記第1の発明において、上記圧縮機構(40)が、冷媒を2段圧縮させるように第1圧縮機(41)と第2圧縮機(42)とを備えている。更に、上記冷媒回路(20)には、一端が第1膨張機(61)と第2膨張機(62)との間に接続され、他端が第1圧縮機(41)と第2圧縮機(42)との間に接続された圧縮側バイパス路(72)が設けられている。     In a third aspect based on the first aspect, the compression mechanism (40) includes a first compressor (41) and a second compressor (42) so as to compress the refrigerant in two stages. Furthermore, one end of the refrigerant circuit (20) is connected between the first expander (61) and the second expander (62), and the other end is connected to the first compressor (41) and the second compressor. (42) The compression side bypass path (72) connected between is provided.

上記第3の発明では、第1膨張機(61)で膨張した中間圧力冷媒が第2圧縮機(42)に供給される。この結果、圧縮機構(40)の吐出冷媒温度の上昇が抑制される。     In the said 3rd invention, the intermediate pressure refrigerant | coolant expanded by the 1st expander (61) is supplied to a 2nd compressor (42). As a result, an increase in the refrigerant temperature discharged from the compression mechanism (40) is suppressed.

第4の発明は、上記第3の発明において、上記圧縮側バイパス路(72)が流量調整自在な圧縮側調整機構(76)を備えている。 In a fourth aspect based on the third aspect, the compression side bypass path (72) includes a compression side adjustment mechanism (76) whose flow rate is adjustable.

上記第4の発明では、運転条件が変化して低圧冷媒圧力が低下すると、上記圧縮側バイパス路(72)の圧縮側調整機構(76)を開き、第1膨張機(61)を流れた中間圧の冷媒の一部を圧縮側バイパス路(72)から第2圧縮機(42)に導入する。 In the fourth aspect of the invention, when the operating condition changes and the low-pressure refrigerant pressure decreases, the compression-side adjustment mechanism (76) of the compression-side bypass passage (72) is opened, and the intermediate flow that has flowed through the first expander (61). Part of the pressure refrigerant is introduced from the compression side bypass (72) into the second compressor (42).

つまり、運転条件が変化して低圧冷媒圧力が低下すると、実際の膨圧容積比が設計膨圧容積比よりも大きくなることがある。この圧力低下に伴って圧縮機構(40)に吸入される冷媒の密度が小さくなり、圧縮機構(40)の吐出冷媒の質量流量が低下する。一方、高圧冷媒圧力が変動しても、膨張機構(60)に流入する冷媒の密度の変化が小さいことから、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、膨張機構(60)を通過できる冷媒の質量流量が、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に大きくなる。     That is, when the operating conditions change and the low-pressure refrigerant pressure decreases, the actual expansion pressure volume ratio may become larger than the design expansion pressure volume ratio. As the pressure decreases, the density of the refrigerant sucked into the compression mechanism (40) decreases, and the mass flow rate of the refrigerant discharged from the compression mechanism (40) decreases. On the other hand, even if the high-pressure refrigerant pressure fluctuates, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small because the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. Therefore, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively larger than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

そこで、設計膨圧容積比の設定によって、運転条件が変化して低圧冷媒圧力が低下すると、高圧冷媒圧力が目標値になるように、上記圧縮側バイパス路(72)の圧縮側調整機構(76)を開き、第1膨張機(61)を流れた中間圧の冷媒の一部を圧縮側バイパス路(72)から第2圧縮機(42)に導入する。この結果、実際の膨圧容積比が設計膨圧容積比よりも大きくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させる。 Therefore, when the operating conditions change and the low-pressure refrigerant pressure decreases due to the setting of the design inflation pressure volume ratio, the compression-side adjustment mechanism (76 ) And a part of the intermediate pressure refrigerant flowing through the first expander (61) is introduced from the compression side bypass (72) to the second compressor (42). As a result, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under operating conditions where the actual expansion pressure volume ratio is larger than the designed expansion pressure volume ratio. Match the mass flow rate of the refrigerant.

第5の発明は、上記第4の発明において、上記膨張側バイパス路(70)が、流量調整自在な膨張側調整機構(71)を備え、該膨張側調整機構(71)は、圧縮機構(40)の吐出側冷媒圧力が所定の目標値になるように開度が調整され、上記圧縮側調整機構(76)は、上記膨張側調整機構(71)が開いている状態では、圧縮機構(40)の吐出側冷媒温度が所定の目標値になるように開度が調整される一方、上記膨張側調整機構(71)が閉じている状態では、圧縮機構(40)の吐出側冷媒圧力が所定の目標値になるように開度が調整される冷凍装置である。In a fifth aspect based on the fourth aspect, the expansion-side bypass passage (70) includes an expansion-side adjustment mechanism (71) whose flow rate is adjustable, and the expansion-side adjustment mechanism (71) is a compression mechanism ( 40) is adjusted so that the discharge-side refrigerant pressure becomes a predetermined target value, and the compression-side adjustment mechanism (76) is in a state where the expansion-side adjustment mechanism (71) is open. While the opening degree is adjusted so that the discharge-side refrigerant temperature of 40) becomes a predetermined target value, the discharge-side refrigerant pressure of the compression mechanism (40) is reduced when the expansion-side adjustment mechanism (71) is closed. This is a refrigeration system whose opening is adjusted to a predetermined target value.

第6の発明は、上記第3の発明において、上記第1膨張機(61)と第2膨張機(62)とを接続する冷媒配管(23)の途中に気液分離器(75)が設けられ、上記圧縮側バイパス路(72)の一端が上記気液分離器(75)の冷媒ガス雰囲気中に接続されている。 In a sixth aspect based on the third aspect, a gas-liquid separator (75) is provided in the middle of the refrigerant pipe (23) connecting the first expander (61) and the second expander (62). One end of the compression side bypass (72) is connected to the refrigerant gas atmosphere of the gas-liquid separator (75).

上記第6の発明では、気液分離器(75)で分離されたガス冷媒が第2圧縮機(42)に供給され、エコノマイザサイクルが構成される。 In the sixth aspect of the invention, the gas refrigerant separated by the gas-liquid separator (75) is supplied to the second compressor (42) to constitute an economizer cycle.

第7の発明は、上記第1の発明において、上記冷媒回路(20)が超臨界冷凍サイクルを行うように構成されている。 In a seventh aspect based on the first aspect, the refrigerant circuit (20) is configured to perform a supercritical refrigeration cycle.

したがって、本発明によれば、上記第1膨張機(61)と並列に膨張側バイパス路(70)を設けるようにしたために、膨圧容積比が膨張機構(60)の設計値よりも小さくなると、第1膨張機(61)をバイパスして高圧冷媒の一部を第2膨張機(62)に導入することができる。この結果、圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。したがって、従来、膨張機構(60)をバイパスさせていた高圧冷媒を膨張機構(60)に導くことができるので、冷媒回路(20)を循環して膨張機構(60)へ送られてくる全ての高圧冷媒から動力を回収することができる。     Therefore, according to the present invention, since the expansion side bypass passage (70) is provided in parallel with the first expander (61), the expansion volume ratio becomes smaller than the design value of the expansion mechanism (60). A part of the high-pressure refrigerant can be introduced into the second expander (62) by bypassing the first expander (61). As a result, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced. Therefore, since the high-pressure refrigerant that has conventionally bypassed the expansion mechanism (60) can be guided to the expansion mechanism (60), all of the refrigerant that is circulated through the refrigerant circuit (20) and sent to the expansion mechanism (60) Power can be recovered from the high-pressure refrigerant.

また、上記冷媒の圧力エネルギを確実に動力として回収することができるので、運転効率の向上を図ることができる。     In addition, since the pressure energy of the refrigerant can be reliably recovered as power, the operation efficiency can be improved.

また、第2の発明によれば、上記膨張側バイパス路(70)に膨張側調整機構(71)を設けているので、第1膨張機(61)をバイパスする冷媒量を調整することができることから、運転条件に合わせて圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。 According to the second invention, since the expansion side adjustment mechanism (71) is provided in the expansion side bypass passage (70), the amount of refrigerant bypassing the first expander (61) can be adjusted. Therefore, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced in accordance with the operating conditions.

また、第3の発明によれば、第1膨張機(61)から吐出した冷媒の一部を第2圧縮機(42)に供給する圧縮側バイパス路(72)を設けるようにしたために、圧縮機構(40)の吐出冷媒温度の上昇を抑制することができる。     According to the third aspect of the present invention, the compression bypass path (72) for supplying a part of the refrigerant discharged from the first expander (61) to the second compressor (42) is provided. An increase in the refrigerant discharge temperature of the mechanism (40) can be suppressed.

また、第4の発明によれば、調整機構(76)を有する圧縮側バイパス路(72)を設けるようにしたために、膨圧容積比が膨張機構(60)の設計値よりも大きくなると、第2圧縮機(42)に導入する中間圧の冷媒流量を調節することができる。この結果、圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。したがって、従来、膨張機構(60)に直列に設けていた膨張弁を省略することができるので、膨張機構(60)の出入口における圧力差の低減を防止することができることから、高圧冷媒からの動力を効率よく回収することができる。 According to the fourth aspect of the invention, since the compression side bypass passage (72) having the adjustment mechanism (76) is provided, when the expansion pressure volume ratio becomes larger than the design value of the expansion mechanism (60) , The refrigerant flow rate of the intermediate pressure introduced into the two compressors (42) can be adjusted. As a result, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced. Accordingly, since the expansion valve that has been conventionally provided in series with the expansion mechanism (60) can be omitted, it is possible to prevent the pressure difference at the inlet and outlet of the expansion mechanism (60) from being reduced. Can be efficiently recovered.

また、上記圧縮側バイパス路(72)に圧縮側調整機構(76)を設けているので、第2圧縮機(42)に導入する冷媒流量を調整することができることから、運転条件に合わせて圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。 In addition, since the compression-side adjusting mechanism (76) is provided in the compression-side bypass path (72), the refrigerant flow rate introduced into the second compressor (42) can be adjusted. The amount of refrigerant discharged from the mechanism (40) and the amount of refrigerant discharged from the expansion mechanism (60) can be balanced.

また、第6の発明によれば、気液分離器(75)を設けるようにしたために、冷却されたガス冷媒が第2圧縮機(42)に供給されるので、冷凍サイクルのCOPを向上させることができる。 According to the sixth invention, since the gas-liquid separator (75) is provided, the cooled gas refrigerant is supplied to the second compressor (42), so that the COP of the refrigeration cycle is improved. be able to.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〈発明の実施形態1〉
図1に示すように、本実施形態の冷凍装置は、暖房運転と冷房運転とを切り換えて行う空調機(10)に構成され、該空調機(10)は冷媒回路(20)を備えている。
<Embodiment 1>
As shown in FIG. 1, the refrigeration apparatus of the present embodiment is configured in an air conditioner (10) that switches between heating operation and cooling operation, and the air conditioner (10) includes a refrigerant circuit (20). .

上記冷媒回路(20)は、圧縮膨張ユニット(30)と熱源側熱交換器(21)と利用側熱交換器(22)と2つの四路切換弁(2a,2b)とを備えている。上記冷媒回路(20)は、圧縮膨張ユニット(30)と熱源側熱交換器(21)と利用側熱交換器(22)と四路切換弁(2a,2b)とが冷媒配管(23)によって接続されて閉回路に構成され、冷媒として二酸化炭素(CO2)が充填され、超臨界冷凍サイクル(臨界温度以上の蒸気圧領域を含む冷凍サイクル)を行うように構成されている。     The refrigerant circuit (20) includes a compression / expansion unit (30), a heat source side heat exchanger (21), a use side heat exchanger (22), and two four-way switching valves (2a, 2b). The refrigerant circuit (20) includes a compression / expansion unit (30), a heat source side heat exchanger (21), a use side heat exchanger (22), and a four-way switching valve (2a, 2b) through a refrigerant pipe (23). It is connected and configured in a closed circuit, is filled with carbon dioxide (CO2) as a refrigerant, and is configured to perform a supercritical refrigeration cycle (a refrigeration cycle including a vapor pressure region above the critical temperature).

上記第1四路切換弁(2a)及び第2四路切換弁(2b)は、それぞれ4つのポートを備えている。     The first four-way switching valve (2a) and the second four-way switching valve (2b) each have four ports.

上記第1四路切換弁(2a)の4つのポートは、後述する圧縮膨張ユニット(30)の圧縮機構(40)の吐出側及び吸込側と、利用側熱交換器(22)及び熱源側熱交換器(21)とが冷媒配管(23)によって接続されている。そして、上記第1四路切換弁(2a)は、圧縮機構(40)の吐出側と利用側熱交換器(22)とが連通し且つ熱源側熱交換器(21)と圧縮機構(40)の吸込側とが連通する暖房運転状態(図1に実線参照)と、圧縮機構(40)の吐出側と熱源側熱交換器(21)とが連通し且つ利用側熱交換器(22)と圧縮機構(40)の吸込側とが連通する冷房運転状態(図1に破線参照)とに切り換わる。     The four ports of the first four-way selector valve (2a) include a discharge side and a suction side of a compression mechanism (40) of a compression / expansion unit (30), a use side heat exchanger (22), and a heat source side heat. The exchanger (21) is connected to the refrigerant pipe (23). The first four-way selector valve (2a) communicates between the discharge side of the compression mechanism (40) and the use side heat exchanger (22), and is connected to the heat source side heat exchanger (21) and the compression mechanism (40). The heating operation state (see solid line in FIG. 1) in communication with the suction side of the compressor, the discharge side of the compression mechanism (40) and the heat source side heat exchanger (21) communicate with each other, and the use side heat exchanger (22) It switches to the cooling operation state (refer to a broken line in FIG. 1) in which the suction side of the compression mechanism (40) communicates.

上記第2四路切換弁(2b)の4つのポートは、後述する圧縮膨張ユニット(30)の膨張機構(60)の吐出側及び吸込側と、熱源側熱交換器(21)及び利用側熱交換器(22)とが冷媒配管(23)によって接続されている。そして、上記第2四路切換弁(2b)は、膨張機構(60)の吐出側と熱源側熱交換器(21)とが連通し且つ利用側熱交換器(22)と膨張機構(60)の吸込側とが連通する暖房運転状態(図1に実線参照)と、膨張機構(60)の吐出側と利用側熱交換器(22)とが連通し且つ熱源側熱交換器(21)と膨張機構(60)の吸込側とが連通する冷房運転状態(図1に破線参照)とに切り換わる。     The four ports of the second four-way selector valve (2b) include a discharge side and a suction side of an expansion mechanism (60) of a compression / expansion unit (30), a heat source side heat exchanger (21), and a use side heat. The exchanger (22) is connected to the refrigerant pipe (23). The second four-way switching valve (2b) communicates between the discharge side of the expansion mechanism (60) and the heat source side heat exchanger (21) and uses the heat exchanger (22) and the expansion mechanism (60). The heating operation state (refer to the solid line in FIG. 1) in communication with the suction side of the refrigerant, the discharge side of the expansion mechanism (60) and the use side heat exchanger (22) communicate with each other, and the heat source side heat exchanger (21) It switches to the cooling operation state (refer to the broken line in FIG. 1) in which the suction side of the expansion mechanism (60) communicates.

−圧縮膨張ユニットの構成−
上記圧縮膨張ユニット(30)のケーシング(31)は、縦長円筒形の密閉容器に構成されている。このケーシング(31)の内部には、下から上に向かって圧縮機構(40)と電動機(50)と膨張機構(60)とが順に配置されている。
−Configuration of compression / expansion unit−
The casing (31) of the compression / expansion unit (30) is configured as a vertically long cylindrical sealed container. Inside the casing (31), a compression mechanism (40), an electric motor (50), and an expansion mechanism (60) are arranged in this order from bottom to top.

上記電動機(50)は、ケーシング(31)の長手方向の中央部に配置されている。この電動機(50)のステータ(51)は、ケーシング(31)に固定され、ロータ(52)には、回転軸を構成するシャフト(32)が貫通している。     The said electric motor (50) is arrange | positioned in the center part of the longitudinal direction of a casing (31). The stator (51) of the electric motor (50) is fixed to the casing (31), and the shaft (32) constituting the rotating shaft passes through the rotor (52).

上記圧縮機構(40)は、第1圧縮機(41)と第2圧縮機(42)とを備えて冷媒を2段圧縮させるように構成され、上記冷媒回路(20)が2段圧縮冷凍サイクルを行うように構成されている。上記第1圧縮機(41)の吸込口は、冷媒配管(23)によって第1四路切換弁(2a)が接続され、上記第1圧縮機(41)の吐出口は、冷媒配管(23)によって第2圧縮機(42)の吸込口が接続されている。また、上記第2圧縮機(42)の吸込口は、冷媒配管(23)によって第1圧縮機(41)の吐出口が接続され、上記第2圧縮機(42)の吐出口は、冷媒配管(23)によって第1四路切換弁(2a)が接続されている。     The compression mechanism (40) includes a first compressor (41) and a second compressor (42) and is configured to compress the refrigerant in two stages, and the refrigerant circuit (20) is configured in a two-stage compression refrigeration cycle. Is configured to do. The suction port of the first compressor (41) is connected to the first four-way switching valve (2a) by a refrigerant pipe (23), and the discharge port of the first compressor (41) is connected to the refrigerant pipe (23). Is connected to the suction port of the second compressor (42). The suction port of the second compressor (42) is connected to the discharge port of the first compressor (41) by the refrigerant pipe (23), and the discharge port of the second compressor (42) is connected to the refrigerant pipe. The first four-way selector valve (2a) is connected by (23).

上記圧縮機構(40)は、例えば揺動ピストン型の流体機械であって、上記電動機(50)のシャフト(32)の下端が延長されて該シャフト(32)に連結されている。つまり、第1圧縮機(41)と第2圧縮機(42)と電動機(50)とがシャフト(32)によって一体に回転するように構成されている。     The compression mechanism (40) is, for example, a swinging piston type fluid machine, and the lower end of the shaft (32) of the electric motor (50) is extended and connected to the shaft (32). That is, the first compressor (41), the second compressor (42), and the electric motor (50) are configured to rotate integrally with the shaft (32).

上記膨張機構(60)は、第1膨張機(61)と第2膨張機(62)とを備えて冷媒を2段膨張させるように構成され、上記冷媒回路(20)が2段圧縮2段膨張冷凍サイクルを行うように構成されている。上記第1膨張機(61)の吸込口は、冷媒配管(23)によって第2四路切換弁(2b)が接続され、上記第1膨張機(61)の吐出口は、冷媒配管(23)によって第2膨張機(62)の吸込口が接続されている。また、上記第2膨張機(62)の吸込口は、冷媒配管(23)によって第1膨張機(61)の吐出口が接続され、上記第2膨張機(62)の吐出口は、冷媒配管(23)によって第2四路切換弁(2b)が接続されている。     The expansion mechanism (60) includes a first expander (61) and a second expander (62) and is configured to expand the refrigerant in two stages, and the refrigerant circuit (20) has two-stage compression and two stages. It is configured to perform an expansion refrigeration cycle. The suction port of the first expander (61) is connected to the second four-way switching valve (2b) by the refrigerant pipe (23), and the discharge port of the first expander (61) is connected to the refrigerant pipe (23). Is connected to the suction port of the second expander (62). The suction port of the second expander (62) is connected to the discharge port of the first expander (61) by the refrigerant pipe (23), and the discharge port of the second expander (62) is connected to the refrigerant pipe. The second four-way selector valve (2b) is connected by (23).

また、上記第1膨張機(61)及び第2膨張機(62)は、いわゆる揺動ピストン型の流体機械であって、上記電動機(50)のシャフト(32)の上端が延長されて該シャフト(32)に連結されている。つまり、上記第1膨張機(61)と第2膨張機(62)と電動機(50)と圧縮機構(40)とがシャフト(32)によって一体に回転するように構成されている。     The first expander (61) and the second expander (62) are so-called oscillating piston type fluid machines, and the shaft (32) of the electric motor (50) is extended to extend the shaft. (32). That is, the first expander (61), the second expander (62), the electric motor (50), and the compression mechanism (40) are configured to rotate integrally with the shaft (32).

上記熱源側熱交換器(21)は、室外熱交換器であって、冷媒が室外空気と熱交換して蒸発する蒸発器に構成されている。また、上記利用側熱交換器(22)は、室内熱交換器であって、冷媒が室内空気と熱交換して放熱する放熱器に構成されている。     The heat source side heat exchanger (21) is an outdoor heat exchanger, and is configured as an evaporator in which a refrigerant exchanges heat with outdoor air to evaporate. Further, the use side heat exchanger (22) is an indoor heat exchanger, and is configured as a radiator in which the refrigerant exchanges heat with indoor air to dissipate heat.

一方、上記冷媒回路(20)には、膨張側バイパス路(70)が設けられている。該膨張側バイパス路(70)の一端は、第2四路切換弁(2b)と第1膨張機(61)との間の冷媒配管(23)に接続され、他端が第1膨張機(61)と第2膨張機(62)との間の冷媒配管(23)に接続されている。上記膨張側バイパス路(70)は、第1膨張機(61)と並列に接続され、膨張側調整弁(71)が設けられている。該膨張側調整弁(71)は、流量調整自在な調整機構を構成し、図示しないが、コントローラによって圧縮機構(40)の吐出側冷媒圧力である高圧冷媒圧力が目標値になるように開度が調整される。     On the other hand, the refrigerant circuit (20) is provided with an expansion side bypass (70). One end of the expansion side bypass passage (70) is connected to a refrigerant pipe (23) between the second four-way switching valve (2b) and the first expander (61), and the other end is connected to the first expander ( 61) and a refrigerant pipe (23) between the second expander (62). The expansion side bypass passage (70) is connected in parallel with the first expander (61), and is provided with an expansion side adjustment valve (71). The expansion side adjustment valve (71) constitutes an adjustment mechanism capable of adjusting the flow rate, and although not shown, the controller opens the high pressure refrigerant pressure, which is the discharge side refrigerant pressure of the compression mechanism (40), to a target value. Is adjusted.

また、上記冷媒回路(20)には、圧縮側バイパス路(72)が設けらると共に、気液分離器(75)が設けられている。該気液分離器(75)は、第1膨張機(61)と第2膨張機(62)との間の冷媒配管(23)であって、膨張側バイパス路(70)の接続端より下流側に設けられている。     The refrigerant circuit (20) is provided with a compression side bypass (72) and a gas-liquid separator (75). The gas-liquid separator (75) is a refrigerant pipe (23) between the first expander (61) and the second expander (62), and is downstream of the connection end of the expansion side bypass path (70). On the side.

上記圧縮側バイパス路(72)の一端は、第1膨張機(61)と第2膨張機(62)との間の冷媒配管(23)の途中であって、上記気液分離器(75)におけるガス雰囲気中に位置するように該気液分離器(75)に接続されている。上記圧縮側バイパス路(72)の他端は、第1圧縮機(41)と第2圧縮機(42)との間の冷媒配管(23)に接続されている。上記圧縮側バイパス路(72)は、圧縮側調整弁(76)が設けられ、第1膨張機(61)で膨張した冷媒が第2圧縮機(42)に導入されるように構成されている。     One end of the compression side bypass (72) is in the middle of the refrigerant pipe (23) between the first expander (61) and the second expander (62), and the gas-liquid separator (75) The gas-liquid separator (75) is connected so as to be located in the gas atmosphere. The other end of the compression side bypass (72) is connected to a refrigerant pipe (23) between the first compressor (41) and the second compressor (42). The compression side bypass path (72) is provided with a compression side adjustment valve (76), and is configured such that the refrigerant expanded by the first expander (61) is introduced into the second compressor (42). .

上記圧縮側調整弁(76)は、流量調整自在な調整機構を構成し、図示しないが、コントローラによって開度が調整される。具体的に、上記圧縮側調整弁(76)は、膨張側調整弁(71)が開いている状態では、圧縮機構(40)の吐出側冷媒温度である高圧冷媒温度が目標値になるように開度が調整される。また、上記圧縮側調整弁(76)は、膨張側調整弁(71)が閉じている状態では、圧縮機構(40)の吐出側冷媒圧力である高圧冷媒圧力が目標値になるように開度が調整される。     The compression side adjustment valve (76) constitutes an adjustment mechanism capable of adjusting the flow rate, and the opening degree is adjusted by a controller (not shown). Specifically, the compression side adjustment valve (76) is configured so that the high pressure refrigerant temperature, which is the discharge side refrigerant temperature of the compression mechanism (40), becomes a target value when the expansion side adjustment valve (71) is open. The opening is adjusted. In addition, the compression side adjustment valve (76) is opened so that the high pressure refrigerant pressure, which is the discharge side refrigerant pressure of the compression mechanism (40), becomes a target value when the expansion side adjustment valve (71) is closed. Is adjusted.

尚、上記膨張側調整弁(71)及び圧縮側調整弁(76)の制御目標値である高圧冷媒圧力及び高圧冷媒温度の目標値は、圧縮機構(40)の吸込側冷媒圧力である低圧冷媒圧力によって定められる。また、上記高圧冷媒圧力、高圧冷媒温度及び低圧冷媒圧力は、図示しないが、例えば、圧縮機構(40)の吐出側に設けられた圧力センサ(圧力検出手段)及び温度センサ(温度検出手段)と、圧縮機構(40)の吸入側に設けられた圧力センサ(圧力検出手段)によって検出される。     Note that the high pressure refrigerant pressure and high pressure refrigerant temperature target values, which are control target values of the expansion side adjustment valve (71) and the compression side adjustment valve (76), are low pressure refrigerants that are the suction side refrigerant pressure of the compression mechanism (40). Determined by pressure. The high-pressure refrigerant pressure, the high-pressure refrigerant temperature, and the low-pressure refrigerant pressure are not shown, but are, for example, a pressure sensor (pressure detection means) and a temperature sensor (temperature detection means) provided on the discharge side of the compression mechanism (40). The pressure is detected by a pressure sensor (pressure detection means) provided on the suction side of the compression mechanism (40).

そこで、上記膨張側バイパス路(70)及び圧縮側バイパス路(72)を設けた基本的原理について説明する。     Therefore, the basic principle of providing the expansion side bypass path (70) and the compression side bypass path (72) will be described.

例えば、運転条件が変化して低圧冷媒圧力が上昇すると、実際の膨圧容積比が設計膨圧容積比よりも小さくなることがある。低圧冷媒圧力が上昇すると、それに伴って圧縮機構(40)に吸入される冷媒の密度が大きくなる。このため、上記シャフト(32)の回転速度が一定のままでも、圧縮機構(40)の吐出冷媒の質量流量が増加する。一方、高圧冷媒圧力が変動しても、高圧冷媒が超臨界状態であることから、膨張機構(60)に流入する冷媒の密度の変化が小さい。このため、シャフト(32)の回転速度が一定であれば、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、この場合には、膨張機構(60)を通過できる冷媒の質量流量は、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に少なくなる。     For example, when the operating conditions change and the low-pressure refrigerant pressure increases, the actual expansion pressure volume ratio may become smaller than the design expansion pressure volume ratio. When the low-pressure refrigerant pressure increases, the density of the refrigerant sucked into the compression mechanism (40) increases accordingly. For this reason, even if the rotational speed of the shaft (32) remains constant, the mass flow rate of the refrigerant discharged from the compression mechanism (40) increases. On the other hand, even if the high-pressure refrigerant pressure fluctuates, since the high-pressure refrigerant is in a supercritical state, the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. For this reason, if the rotational speed of the shaft (32) is constant, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small. Therefore, in this case, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively smaller than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

このような運転状態では、上記膨張側バイパス路(70)の膨張側調整弁(71)を開き、第1膨張機(61)に流入する超臨界状態の高圧冷媒の一部を膨張側バイパス路(70)から第2膨張機(62)に導入する。こうすることによって、実際の膨圧容積比が設計膨圧容積比よりも小さくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させることができる。     In such an operating state, the expansion side adjustment valve (71) of the expansion side bypass passage (70) is opened, and a part of the supercritical high-pressure refrigerant flowing into the first expander (61) is passed through the expansion side bypass passage. (70) to the second expander (62). In this way, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under the operating conditions where the actual expansion volume ratio is smaller than the designed expansion volume ratio. The mass flow rate of the refrigerant can be matched.

つまり、上記膨張機構(60)においては、図3に示すように、第1膨張機(61)に流入した冷媒は、C点まで膨張して減圧される。その後、第2膨張機(62)において、第1膨張機(61)から流出した冷媒と膨張側バイパス路(70)を流れた冷媒とが流入し、D点まで膨張して減圧される。この図3から明らかなように、上記第1膨張機(61)の容積より、第2膨張機(62)の容積が大きく設定されている。     That is, in the expansion mechanism (60), as shown in FIG. 3, the refrigerant flowing into the first expander (61) is expanded to a point C and depressurized. Thereafter, in the second expander (62), the refrigerant that has flowed out of the first expander (61) and the refrigerant that has flowed through the expansion-side bypass passage (70) flow in, expand to point D, and are depressurized. As apparent from FIG. 3, the volume of the second expander (62) is set larger than the volume of the first expander (61).

一方、逆に、運転条件が変化して低圧冷媒圧力が低下すると、実際の膨圧容積比が設計膨圧容積比よりも大きくなることがある。低圧冷媒圧力が低下すると、それに伴って圧縮機構(40)に吸入される冷媒の密度が小さくなる。このため、上記シャフト(32)の回転速度が一定のままでも、圧縮機構(40)の吐出冷媒の質量流量が低下する。一方、高圧冷媒圧力が変動しても、高圧冷媒が超臨界状態であることから、膨張機構(60)に流入する冷媒の密度の変化が小さい。このため、シャフト(32)の回転速度が一定であれば、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、この場合には、膨張機構(60)を通過できる冷媒の質量流量は、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に大きくなる。     On the other hand, when the operating conditions change and the low-pressure refrigerant pressure decreases, the actual expansion volume ratio may become larger than the design expansion volume ratio. When the low-pressure refrigerant pressure decreases, the density of the refrigerant sucked into the compression mechanism (40) decreases accordingly. For this reason, even if the rotational speed of the shaft (32) remains constant, the mass flow rate of the refrigerant discharged from the compression mechanism (40) decreases. On the other hand, even if the high-pressure refrigerant pressure fluctuates, since the high-pressure refrigerant is in a supercritical state, the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. For this reason, if the rotational speed of the shaft (32) is constant, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small. Therefore, in this case, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively larger than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

このような運転状態では、上記圧縮側バイパス路(72)の圧縮側調整弁(76)を開き、第1膨張機(61)を流れた中間圧の冷媒の一部を圧縮側バイパス路(72)から第2圧縮機(42)に導入する。こうすることによって、実際の膨圧容積比が設計膨圧容積比よりも大きくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させることができる。     In such an operation state, the compression side adjustment valve (76) of the compression side bypass passage (72) is opened, and a part of the intermediate pressure refrigerant flowing through the first expander (61) is passed through the compression side bypass passage (72). ) To the second compressor (42). By doing this, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under the operating conditions where the actual expansion volume ratio is larger than the designed expansion volume ratio. The mass flow rate of the refrigerant can be matched.

−運転動作−
上記空調機(10)の動作について説明する。尚、膨張側調整弁(71)及び圧縮側調整弁(76)が全閉状態の場合から説明する。
-Driving action-
The operation of the air conditioner (10) will be described. In addition, it demonstrates from the case where the expansion side adjustment valve (71) and the compression side adjustment valve (76) are a fully closed state.

A.暖房運転
先ず、暖房運転時においては、第1四路切換弁(2a)及び第2四路切換弁(2b)が図1に実線で示す状態に切り換えられる。
A. Heating Operation First, during the heating operation, the first four-way switching valve (2a) and the second four-way switching valve (2b) are switched to the state shown by the solid line in FIG.

この状態において、上記第1圧縮機(41)で第1段の冷媒圧縮が行われた後、第2圧縮機(42)で第2段の冷媒圧縮が行われる。圧縮機構(40)で圧縮された高圧冷媒は、第1四路切換弁(2a)を通って利用側熱交換器(22)に流れる。この利用側熱交換器(22)では、高圧冷媒が室内空気へ放熱し、室内空気が加熱される。     In this state, after the first compressor (41) performs the first stage refrigerant compression, the second compressor (42) performs the second stage refrigerant compression. The high-pressure refrigerant compressed by the compression mechanism (40) flows to the use side heat exchanger (22) through the first four-way switching valve (2a). In the use side heat exchanger (22), the high-pressure refrigerant radiates heat to the room air, and the room air is heated.

上記利用側熱交換器(22)を流れた高圧冷媒は、第2四路切換弁(2b)を通り、膨張機構(60)の第1膨張機(61)に流入する。該第1膨張機(61)では、第1段の膨張が行われ、高圧冷媒が膨張する。上記第1膨張機(61)で膨張した中間圧冷媒は、気液分離器(75)を流れ、第2膨張機(62)に流入する。続いて、該第2膨張機(62)では、第2段の膨張が行われ、中間圧冷媒が膨張する。     The high-pressure refrigerant that has flowed through the use side heat exchanger (22) passes through the second four-way switching valve (2b) and flows into the first expander (61) of the expansion mechanism (60). In the first expander (61), the first stage expansion is performed, and the high-pressure refrigerant expands. The intermediate pressure refrigerant expanded by the first expander (61) flows through the gas-liquid separator (75) and flows into the second expander (62). Subsequently, in the second expander (62), second-stage expansion is performed, and the intermediate pressure refrigerant expands.

上記膨張後の低圧冷媒は、第2膨張機(62)から流出し、第2四路切換弁(2b)を通り、熱源側熱交換器(21)に流れ、該熱源側熱交換器(21)では、冷媒が室外空気から吸熱して蒸発する。上記熱源側熱交換器(21)から出た低圧ガス冷媒は、第1四路切換弁(2a)を通って圧縮膨張ユニット(30)の圧縮機構(40)に戻り、該圧縮機構(40)は、吸入した冷媒を圧縮して吐出する。この動作が繰り返されて、室内が暖房される。     The low-pressure refrigerant after expansion flows out of the second expander (62), passes through the second four-way switching valve (2b), flows to the heat source side heat exchanger (21), and is connected to the heat source side heat exchanger (21 ), The refrigerant absorbs heat from the outdoor air and evaporates. The low-pressure gas refrigerant discharged from the heat source side heat exchanger (21) returns to the compression mechanism (40) of the compression / expansion unit (30) through the first four-way switching valve (2a), and the compression mechanism (40) Compresses and discharges the sucked refrigerant. This operation is repeated to heat the room.

また、上記第1膨張機(61)及び第2膨張機(62)において、冷媒が膨張し、その内部エネルギがシャフト(32)の回転動力に変換される。そして、上記第1膨張機(61)と第2膨張機(62)で回収された回転動力は、圧縮機構(40)の回転動力に利用される。     In the first expander (61) and the second expander (62), the refrigerant expands, and the internal energy is converted into the rotational power of the shaft (32). And the rotational power collect | recovered by the said 1st expander (61) and the 2nd expander (62) is utilized for the rotational power of a compression mechanism (40).

つまり、図4に示すように、暖房運転時においては、冷媒を膨張機構(60)で膨張させる場合(図4実線A参照)、冷媒を膨張弁で膨張させる場合(図4破線B参照)に比して膨張機構(60)での膨張動力を回収することができる。     That is, as shown in FIG. 4, during the heating operation, when the refrigerant is expanded by the expansion mechanism (60) (see the solid line A in FIG. 4) and when the refrigerant is expanded by the expansion valve (see the broken line B in FIG. 4). In comparison, the expansion power in the expansion mechanism (60) can be recovered.

B.冷房運転
一方、冷房運転時においては、第1四路切換弁(2a)及び第2四路切換弁(2b)が図1に破線で示す状態に切り換えられる。
B. On the other hand, during the cooling operation, the first four-way switching valve (2a) and the second four-way switching valve (2b) are switched to a state indicated by a broken line in FIG.

この状態において、暖房運転時と同様に、冷媒が第1圧縮機(41)及び第2圧縮機(42)で2段圧縮される。圧縮機構(40)で圧縮された高圧冷媒は、第1四路切換弁(2a)を通って熱源側熱交換器(21)流れる。この熱源側熱交換器(21)では、高圧冷媒が室外空気へ放熱する。     In this state, similarly to the heating operation, the refrigerant is compressed in two stages by the first compressor (41) and the second compressor (42). The high-pressure refrigerant compressed by the compression mechanism (40) flows through the first four-way switching valve (2a) and flows through the heat source side heat exchanger (21). In the heat source side heat exchanger (21), the high-pressure refrigerant radiates heat to the outdoor air.

上記熱源側熱交換器(21)を流れた高圧冷媒は、第2四路切換弁(2b)を通り、膨張機構(60)に流入する。この高圧冷媒は、暖房運転時と同様に、第1膨張機(61)及び第2膨張機(62)で2段膨張する。     The high-pressure refrigerant that has flowed through the heat source side heat exchanger (21) passes through the second four-way switching valve (2b) and flows into the expansion mechanism (60). This high-pressure refrigerant expands in two stages in the first expander (61) and the second expander (62) as in the heating operation.

上記膨張後の低圧冷媒は、第2膨張機(62)から流出し、第2四路切換弁(2b)を通り、利用側熱交換器(22)に流れ、該利用側熱交換器(22)では、低圧冷媒が室内空気から吸熱して蒸発し、室内空気が冷却される。上記利用側熱交換器(22)から出た低圧ガス冷媒は、第1四路切換弁(2a)を通って圧縮膨張ユニット(30)の圧縮機構(40)に戻り、該圧縮機構(40)は、吸入した冷媒を圧縮して吐出する。この動作が繰り返されて、室内が冷房される。     The low-pressure refrigerant after expansion flows out of the second expander (62), passes through the second four-way switching valve (2b), flows to the usage-side heat exchanger (22), and the usage-side heat exchanger (22 ), The low-pressure refrigerant absorbs heat from the room air and evaporates, and the room air is cooled. The low-pressure gas refrigerant discharged from the use side heat exchanger (22) returns to the compression mechanism (40) of the compression / expansion unit (30) through the first four-way switching valve (2a), and the compression mechanism (40). Compresses and discharges the sucked refrigerant. This operation is repeated to cool the room.

また、暖房運転時と同様に、上記第1膨張機(61)及び第2膨張機(62)において、冷媒が膨張し、その内部エネルギがシャフト(32)の回転動力に変換される。そして、上記第1膨張機(61)と第2膨張機(62)で回収された回転動力は、圧縮機構(40)の回転動力に利用される。     Similarly to the heating operation, the refrigerant expands in the first expander (61) and the second expander (62), and the internal energy is converted into the rotational power of the shaft (32). And the rotational power collect | recovered by the said 1st expander (61) and the 2nd expander (62) is utilized for the rotational power of a compression mechanism (40).

つまり、図5に示すように、冷房運転時においては、冷媒を膨張機構(60)で膨張させる場合(図5実線A参照)、冷媒を膨張弁で膨張させる場合(図5破線B参照)に比して膨張機構(60)での膨張動力を回収することができると共に、冷房能力が増加する。     That is, as shown in FIG. 5, during cooling operation, when the refrigerant is expanded by the expansion mechanism (60) (see the solid line A in FIG. 5) and when the refrigerant is expanded by the expansion valve (see the broken line B in FIG. 5). In comparison, the expansion power in the expansion mechanism (60) can be recovered, and the cooling capacity is increased.

C.調整弁の制御
次に、上記膨張側調整弁(71)及び圧縮側調整弁(76)の動作について説明する。
C. Control of Adjustment Valve Next, operations of the expansion side adjustment valve (71) and the compression side adjustment valve (76) will be described.

図2に示すように、先ず、ステップST1において、膨張側バイパス路(70)の膨張側調整弁(71)は、圧縮機構(40)の吐出側冷媒圧力である高圧冷媒圧力が所定の目標値になるように開度が調整される。その後、上記膨張側調整弁(71)が開度制御されて開いている状態では、ステップST2に移る。そして、このステップST2において、圧縮側バイパス路(72)の圧縮側調整弁(76)は、圧縮機構(40)の吐出側冷媒温度である高圧冷媒温度が所定の目標値になるように開度が調整される。この動作を繰り返すことになる。一方、上記膨張側調整弁(71)が開度制御されずに閉じている状態では、ステップST1からステップST3に移る。そして、このステップST3において、圧縮側バイパス路(72)の圧縮側調整弁(76)は、圧縮機構(40)の吐出側冷媒圧力である高圧冷媒圧力が所定の目標値になるように開度が調整される。この動作を繰り返すことになる。     As shown in FIG. 2, first, in step ST1, the expansion side adjustment valve (71) of the expansion side bypass passage (70) has a high pressure refrigerant pressure that is a discharge side refrigerant pressure of the compression mechanism (40) at a predetermined target value. The opening is adjusted so that Thereafter, in a state where the expansion side adjustment valve (71) is opened with its opening controlled, the process proceeds to step ST2. In step ST2, the compression side adjustment valve (76) of the compression side bypass passage (72) has an opening degree so that the high pressure refrigerant temperature, which is the discharge side refrigerant temperature of the compression mechanism (40), becomes a predetermined target value. Is adjusted. This operation is repeated. On the other hand, when the expansion side adjustment valve (71) is closed without opening control, the process proceeds from step ST1 to step ST3. In step ST3, the compression side adjustment valve (76) of the compression side bypass passage (72) opens so that the high pressure refrigerant pressure, which is the discharge side refrigerant pressure of the compression mechanism (40), becomes a predetermined target value. Is adjusted. This operation is repeated.

具体的に、運転条件が変化して低圧冷媒圧力が上昇すると、この圧力上昇に伴って圧縮機構(40)に吸入される冷媒の密度が大きくなり、圧縮機構(40)の吐出冷媒の質量流量が増加する。一方、高圧冷媒圧力が変動しても、膨張機構(60)に流入する冷媒の密度の変化が小さいことから、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、膨張機構(60)を通過できる冷媒の質量流量が、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に少なくなる。     Specifically, when the operating condition changes and the low-pressure refrigerant pressure rises, the density of refrigerant sucked into the compression mechanism (40) increases with this pressure rise, and the mass flow rate of refrigerant discharged from the compression mechanism (40) Will increase. On the other hand, even if the high-pressure refrigerant pressure fluctuates, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small because the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. Therefore, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively less than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

そこで、運転条件が変化して低圧冷媒圧力が上昇すると、この低圧冷媒圧力に対応した高圧冷媒圧力の目標値が算出される。そして、高圧冷媒圧力が目標値になるように、上記膨張側バイパス路(70)の膨張側調整弁(71)を開き、第1膨張機(61)に流入する超臨界状態の高圧冷媒の一部を膨張側バイパス路(70)から第2膨張機(62)に導入する。この結果、実際の膨圧容積比が設計膨圧容積比よりも小さくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させる。     Therefore, when the operating conditions change and the low-pressure refrigerant pressure increases, a target value for the high-pressure refrigerant pressure corresponding to the low-pressure refrigerant pressure is calculated. Then, the expansion side adjustment valve (71) of the expansion side bypass passage (70) is opened so that the high pressure refrigerant pressure becomes a target value, and one of the supercritical high pressure refrigerants flowing into the first expander (61) is obtained. Part is introduced into the second expander (62) from the expansion side bypass (70). As a result, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under operating conditions where the actual expansion pressure volume ratio is smaller than the designed expansion pressure volume ratio. Match the mass flow rate of the refrigerant.

逆に、運転条件が変化して低圧冷媒圧力が低下すると、この圧力低下に伴って圧縮機構(40)に吸入される冷媒の密度が小さくなり、圧縮機構(40)の吐出冷媒の質量流量が低下する。一方、高圧冷媒圧力が変動しても、膨張機構(60)に流入する冷媒の密度の変化が小さいことから、膨張機構(60)に流入できる冷媒の質量流量の変化は小さい。したがって、膨張機構(60)を通過できる冷媒の質量流量が、圧縮機構(40)を通過できる冷媒の質量流量に対して相対的に大きくなる。     Conversely, when the operating conditions change and the low-pressure refrigerant pressure decreases, the density of refrigerant sucked into the compression mechanism (40) decreases with this pressure decrease, and the mass flow rate of the refrigerant discharged from the compression mechanism (40) decreases. descend. On the other hand, even if the high-pressure refrigerant pressure fluctuates, the change in the mass flow rate of the refrigerant that can flow into the expansion mechanism (60) is small because the change in the density of the refrigerant flowing into the expansion mechanism (60) is small. Therefore, the mass flow rate of the refrigerant that can pass through the expansion mechanism (60) is relatively larger than the mass flow rate of the refrigerant that can pass through the compression mechanism (40).

そこで、運転条件が変化して低圧冷媒圧力が低下すると、この低圧冷媒圧力に対応した高圧冷媒圧力の目標値が算出される。そして、上記高圧冷媒圧力が目標値になるように、上記圧縮側バイパス路(72)の圧縮側調整弁(76)を開き、第1膨張機(61)を流れた中間圧の冷媒の一部を圧縮側バイパス路(72)から第2圧縮機(42)に導入する。この結果、実際の膨圧容積比が設計膨圧容積比よりも大きくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させる。     Therefore, when the operating conditions change and the low-pressure refrigerant pressure decreases, a target value for the high-pressure refrigerant pressure corresponding to the low-pressure refrigerant pressure is calculated. Then, the compression side adjustment valve (76) of the compression side bypass passage (72) is opened so that the high pressure refrigerant pressure becomes a target value, and a part of the intermediate pressure refrigerant that has flowed through the first expander (61). Is introduced into the second compressor (42) from the compression side bypass (72). As a result, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under operating conditions where the actual expansion pressure volume ratio is larger than the designed expansion pressure volume ratio. Match the mass flow rate of the refrigerant.

−実施形態1の効果−
以上のように、本実施形態によれば、上記第1膨張機(61)と並列に膨張側バイパス路(70)を設けるようにしたために、膨圧容積比が膨張機構(60)の設計値よりも小さくなると、第1膨張機(61)をバイパスして高圧冷媒の一部を第2膨張機(62)に導入することができる。この結果、圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。したがって、従来、膨張機構(60)をバイパスさせていた高圧冷媒を膨張機構(60)に導くことができるので、冷媒回路(20)を循環して膨張機構(60)へ送られてくる全ての高圧冷媒から動力を回収することができる。
-Effect of Embodiment 1-
As described above, according to the present embodiment, since the expansion side bypass passage (70) is provided in parallel with the first expander (61), the expansion pressure volume ratio is the design value of the expansion mechanism (60). If it becomes smaller than that, a part of high-pressure refrigerant can be introduced into the 2nd expander (62) by bypassing the 1st expander (61). As a result, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced. Therefore, since the high-pressure refrigerant that has conventionally bypassed the expansion mechanism (60) can be guided to the expansion mechanism (60), all of the refrigerant that is circulated through the refrigerant circuit (20) and sent to the expansion mechanism (60) Power can be recovered from the high-pressure refrigerant.

また、上記圧縮側調整弁(76)を有する圧縮側バイパス路(72)を設けるようにしたために、膨圧容積比が膨張機構(60)の設計値よりも大きくなると、圧縮側調整弁(76)の開度を調整し、第2圧縮機(42)に導入する中間圧の冷媒流量を調節することができる。この結果、圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。したがって、従来、膨張機構(60)に直列に設けていた膨張弁を省略することができるので、膨張機構(60)の出入口における圧力差の低減を防止することができることから、高圧冷媒からの動力を効率よく回収することができる。     In addition, since the compression side bypass passage (72) having the compression side adjustment valve (76) is provided, if the expansion volume ratio becomes larger than the design value of the expansion mechanism (60), the compression side adjustment valve (76 ) And the refrigerant flow rate of the intermediate pressure introduced into the second compressor (42) can be adjusted. As a result, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced. Therefore, the expansion valve that has been conventionally provided in series with the expansion mechanism (60) can be omitted, and the reduction in the pressure difference at the inlet and outlet of the expansion mechanism (60) can be prevented. Can be efficiently recovered.

また、上記冷媒の圧力エネルギを確実に動力として回収することができるので、運転効率の向上を図ることができる。     In addition, since the pressure energy of the refrigerant can be reliably recovered as power, the operation efficiency can be improved.

また、上記膨張側バイパス路(70)に膨張側調整弁(71)を設け、圧縮側バイパス路(72)に圧縮側調整弁(76)を設けているので、第1膨張機(61)をバイパスする冷媒量及び第2圧縮機(42)に導入する冷媒流量を調整することができることから、運転条件に合わせて圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。     Further, since the expansion side adjustment valve (71) is provided in the expansion side bypass passage (70) and the compression side adjustment valve (76) is provided in the compression side bypass passage (72), the first expander (61) is provided. Since the amount of refrigerant bypassed and the flow rate of refrigerant introduced into the second compressor (42) can be adjusted, the amount of refrigerant discharged from the compression mechanism (40) and the refrigerant flowing out from the expansion mechanism (60) according to the operating conditions The amount can be balanced.

また、冷媒にCO2を用いているので、環境に適した冷媒回路(20)を構成することができる。     Further, since CO2 is used as the refrigerant, a refrigerant circuit (20) suitable for the environment can be configured.

〈発明の実施形態2〉
本実施形態は、図6に示すように、実施形態1が膨張側バイパス路(70)と圧縮側バイパス路(72)とを設けたのに代わり、膨張側バイパス路(70)のみを設けるようにしたものである。尚、本実施形態は、説明の簡略化のため、暖房運転のみを行う暖房専用機の空調機(10)としている。したがって、本実施形態の冷媒回路(20)は、2つの四路切換弁(2a,2b)、圧縮側バイパス路(72)及び気液分離器(75)は備えていない。
<Embodiment 2 of the invention>
As shown in FIG. 6, this embodiment provides only the expansion side bypass path (70) instead of the expansion side bypass path (70) and the compression side bypass path (72) in the first embodiment. It is a thing. In the present embodiment, for the sake of simplification of description, the air conditioner (10) is a dedicated heating unit that performs only the heating operation. Therefore, the refrigerant circuit (20) of this embodiment does not include the two four-way switching valves (2a, 2b), the compression side bypass path (72), and the gas-liquid separator (75).

また、本実施形態の圧縮機構(40)は、冷媒を1段圧縮するように構成され、1つの圧縮機で構成されている。     Moreover, the compression mechanism (40) of this embodiment is comprised so that a refrigerant | coolant may be compressed 1 step | paragraph, and is comprised by one compressor.

したがって、本実施形態では、例えば、暖房運転の低温状態において、最適な冷凍サイクルになるように設計膨圧容積比を設定し、運転条件が変化して低圧冷媒圧力が上昇すると、この低圧冷媒圧力に対応した高圧冷媒圧力の目標値を算出する。そして、高圧冷媒圧力が目標値になるように、上記膨張側バイパス路(70)の膨張側調整弁(71)を開き、第1膨張機(61)に流入する超臨界状態の高圧冷媒の一部を膨張側バイパス路(70)から第2膨張機(62)に導入する。この結果、実際の膨圧容積比が設計膨圧容積比よりも小さくなる運転条件であっても、膨張機構(60)から吐出される冷媒の質量流量を、圧縮機構(40)から吐出される冷媒の質量流量に一致させる。その他の膨張側バイパス路(70)などの構成、作用及び効果は実施形態1と同じである。     Therefore, in the present embodiment, for example, when the design expansion pressure volume ratio is set so that the optimum refrigeration cycle is achieved in the low temperature state of the heating operation, and the operation condition changes and the low pressure refrigerant pressure increases, the low pressure refrigerant pressure The target value of the high-pressure refrigerant pressure corresponding to is calculated. Then, the expansion side adjustment valve (71) of the expansion side bypass passage (70) is opened so that the high pressure refrigerant pressure becomes a target value, and one of the supercritical high pressure refrigerants flowing into the first expander (61) is obtained. Part is introduced into the second expander (62) from the expansion side bypass (70). As a result, the mass flow rate of the refrigerant discharged from the expansion mechanism (60) is discharged from the compression mechanism (40) even under operating conditions where the actual expansion pressure volume ratio is smaller than the designed expansion pressure volume ratio. Match the mass flow rate of the refrigerant. Other configurations, operations, and effects of the expansion side bypass passage (70) and the like are the same as those in the first embodiment.

〈発明の実施形態3〉
本実施形態は、図7に示すように、実施形態1が気液分離器(75)を設けるようにしたのに代えて、この気液分離器(75)を省略するようにしたものである。尚、本実施形態は、説明の簡略化のため、暖房運転のみを行う暖房専用機の空調機(10)としている。したがって、本実施形態の冷媒回路(20)は、2つの四路切換弁(2a,2b)及び気液分離器(75)は備えていない。
Embodiment 3 of the Invention
In this embodiment, as shown in FIG. 7, the gas-liquid separator (75) is omitted in place of the gas-liquid separator (75) in the first embodiment. . In the present embodiment, for the sake of simplification of description, the air conditioner (10) is a dedicated heating unit that performs only the heating operation. Therefore, the refrigerant circuit (20) of this embodiment does not include the two four-way switching valves (2a, 2b) and the gas-liquid separator (75).

また、上記圧縮側バイパス路(72)は、膨張側調整弁(71)に代えてキャピラリチューブ(73)が設けられている。     Further, the compression side bypass passage (72) is provided with a capillary tube (73) instead of the expansion side adjustment valve (71).

したがって、本実施形態では、暖房運転時において、実施形態1の圧縮側バイパス路(72)の機能とは異なり、上記第1膨張機(61)で膨張した中間圧冷媒が第2圧縮機(42)に供給される。この結果、上記圧縮機構(40)の吐出側冷媒温度である高圧冷媒温度の上昇が抑制される。更に、上記利用側熱交換器(22)の冷媒循環量が増大し、暖房能力が増大する。その他の膨張側バイパス路(70)などの構成、作用及び効果は実施形態1と同じである。     Therefore, in the present embodiment, during the heating operation, unlike the function of the compression side bypass path (72) of the first embodiment, the intermediate pressure refrigerant expanded by the first expander (61) is converted into the second compressor (42). ). As a result, an increase in the high-pressure refrigerant temperature that is the discharge-side refrigerant temperature of the compression mechanism (40) is suppressed. Furthermore, the refrigerant circulation amount of the use side heat exchanger (22) increases, and the heating capacity increases. Other configurations, operations, and effects of the expansion side bypass passage (70) and the like are the same as those in the first embodiment.

〈発明の実施形態4〉
本実施形態は、図8に示すように、実施形態1が気液分離器(75)を設けるようにしたのに代えて、この気液分離器(75)を省略するようにしたものである。尚、本実施形態は、説明の簡略化のため、暖房運転のみを行う暖房専用機の空調機(10)としている。したがって、本実施形態の冷媒回路(20)は、2つの四路切換弁(2a,2b)及び気液分離器(75)は備えていない。
<Embodiment 4 of the Invention>
In this embodiment, as shown in FIG. 8, the gas-liquid separator (75) is omitted in place of the gas-liquid separator (75) in the first embodiment. . In the present embodiment, for the sake of simplification of description, the air conditioner (10) is a dedicated heating unit that performs only the heating operation. Therefore, the refrigerant circuit (20) of this embodiment does not include the two four-way switching valves (2a, 2b) and the gas-liquid separator (75).

また、上記圧縮側バイパス路(72)は、膨張側調整弁(71)に代えて開閉弁(74)が設けられている。     Further, the compression side bypass passage (72) is provided with an on-off valve (74) instead of the expansion side adjustment valve (71).

したがって、本実施形態では、上記開閉弁(74)が、図示しないが、コントローラによって圧縮機構(40)の吐出側冷媒圧力ある高圧冷媒圧力が所定の目標値より低くなると開くことになる。     Therefore, in the present embodiment, the on-off valve (74) is opened when the high-pressure refrigerant pressure, which is the discharge-side refrigerant pressure of the compression mechanism (40), becomes lower than the predetermined target value by the controller, although not shown.

つまり、上記開閉弁(74)を有する圧縮側バイパス路(72)を設けるようにしたために、膨圧容積比が膨張機構(60)の設計値よりも大きくなると、開閉弁(74)を開け、第2圧縮機(42)に中間圧の冷媒を導入する。この結果、圧縮機構(40)からの吐出冷媒量と膨張機構(60)からの流出冷媒量とを均衡させることができる。したがって、従来、膨張機構(60)に直列に設けていた膨張弁を省略することができるので、膨張機構(60)の出入口における圧力差の低減を防止することができることから、高圧冷媒からの動力を効率よく回収することができる。その他の膨張側バイパス路(70)などの構成、作用及び効果は実施形態2と同じである。     That is, since the compression side bypass passage (72) having the on-off valve (74) is provided, when the expansion volume ratio becomes larger than the design value of the expansion mechanism (60), the on-off valve (74) is opened. Intermediate pressure refrigerant is introduced into the second compressor (42). As a result, the amount of refrigerant discharged from the compression mechanism (40) and the amount of refrigerant flowing out from the expansion mechanism (60) can be balanced. Therefore, the expansion valve that has been conventionally provided in series with the expansion mechanism (60) can be omitted, and the reduction in the pressure difference at the inlet and outlet of the expansion mechanism (60) can be prevented. Can be efficiently recovered. Other configurations, operations, and effects of the expansion side bypass passage (70) and the like are the same as those of the second embodiment.

〈発明の実施形態5〉
本実施形態は、図9に示すように、実施形態1が気液分離器(75)を設けるようにしたのに代えて、この気液分離器(75)を省略するようにしたものである。尚、本実施形態は、説明の簡略化のため、暖房運転のみを行う暖房専用機の空調機(10)としている。したがって、本実施形態の冷媒回路(20)は、2つの四路切換弁(2a,2b)及び気液分離器(75)は備えていない。更に、上記圧縮側バイパス路(72)は、膨張側調整弁(71)が省略され、冷媒回路(20)がエコノマイザサイクルに構成されている。
<Embodiment 5 of the Invention>
In this embodiment, as shown in FIG. 9, the gas-liquid separator (75) is omitted in place of the gas-liquid separator (75) in the first embodiment. . In the present embodiment, for the sake of simplification of description, the air conditioner (10) is a dedicated heating unit that performs only the heating operation. Therefore, the refrigerant circuit (20) of this embodiment does not include the two four-way switching valves (2a, 2b) and the gas-liquid separator (75). Further, in the compression side bypass path (72), the expansion side adjustment valve (71) is omitted, and the refrigerant circuit (20) is configured as an economizer cycle.

したがって、本実施形態では、暖房運転時において、実施形態1の圧縮側バイパス路(72)の機能とは異なり、上記第1膨張機(61)を流れた中間圧冷媒が、気液分離器(75)でガス冷媒と液冷媒とに分離される。そして、この気液分離器(75)における液冷媒は第2膨張機(62)に流れ、ガス冷媒は第2圧縮機(42)に供給されることになる。この結果、上記気液分離器(75)で冷却されたガス冷媒が第2圧縮機(42)に供給されるので、高圧冷媒温度の上昇を抑制することができると共に、冷凍サイクルのCOPを向上させることができる。その他の膨張側バイパス路(70)などの構成、作用及び効果は実施形態1と同じである。     Therefore, in the present embodiment, during the heating operation, unlike the function of the compression side bypass passage (72) of the first embodiment, the intermediate pressure refrigerant that has flowed through the first expander (61) is converted into a gas-liquid separator ( 75) and separated into gas refrigerant and liquid refrigerant. The liquid refrigerant in the gas-liquid separator (75) flows to the second expander (62), and the gas refrigerant is supplied to the second compressor (42). As a result, since the gas refrigerant cooled by the gas-liquid separator (75) is supplied to the second compressor (42), an increase in the high-pressure refrigerant temperature can be suppressed and the COP of the refrigeration cycle can be improved. Can be made. Other configurations, operations, and effects of the expansion side bypass passage (70) and the like are the same as those in the first embodiment.

〈その他の実施形態〉
本発明は、上記実施形態1〜5について、以下のような構成としてもよい。
<Other embodiments>
This invention is good also as following structures about the said Embodiments 1-5.

先ず、本発明は、冷房運転のみを行う冷房専用の空調機に適用してもよい。     First, the present invention may be applied to a cooling-only air conditioner that performs only a cooling operation.

また、本発明の冷凍装置は、空調機に限られず、各種の冷却装置などに適用してもよい。     Further, the refrigeration apparatus of the present invention is not limited to an air conditioner, and may be applied to various cooling apparatuses.

また、本発明の冷媒は、二酸化炭素に限られるものではない。     The refrigerant of the present invention is not limited to carbon dioxide.

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、膨張動力を回収する冷凍装置について有用である。     As described above, the present invention is useful for a refrigeration apparatus that recovers expansion power.

実施形態1における空調機の概略構成図である。It is a schematic block diagram of the air conditioner in Embodiment 1. 実施形態1における空調機の調整弁制御を示すフロー図である。It is a flowchart which shows the control valve control of the air conditioner in Embodiment 1. 実施形態1における暖房運転時の膨張機構のp−V線図である。It is a pV diagram of an expansion mechanism at the time of heating operation in Embodiment 1. 実施形態1における空調機の暖房運転時のp−h線図である。It is a ph diagram at the time of heating operation of the air conditioner in Embodiment 1. 実施形態1における空調機の冷房運転時のp−h線図である。It is a ph diagram at the time of air_conditionaing | cooling operation of the air conditioner in Embodiment 1. FIG. 実施形態2における空調機の概略構成図である。It is a schematic block diagram of the air conditioner in Embodiment 2. 実施形態3における空調機の概略構成図である。It is a schematic block diagram of the air conditioner in Embodiment 3. 実施形態4における空調機の概略構成図である。It is a schematic block diagram of the air conditioner in Embodiment 4. 実施形態5における空調機の概略構成図である。It is a schematic block diagram of the air conditioner in Embodiment 5.

10 空調機
20 冷媒回路
21 熱源側熱交換器
22 利用側熱交換器
30 圧縮膨張ユニット
40 圧縮機構
41 第1圧縮機
42 第2圧縮機
50 電動機
60 膨張機構
61 第1膨張機
62 第2膨張機
70 膨張側バイパス路
71 膨張側調整弁(調整機構)
72 圧縮側バイパス路
75 気液分離器
76 圧縮側調整弁(調整機構)
10 Air conditioner
20 Refrigerant circuit
21 Heat source side heat exchanger
22 Use side heat exchanger
30 Compression / expansion unit
40 Compression mechanism
41 First compressor
42 Second compressor
50 electric motor
60 Expansion mechanism
61 First expander
62 Second expander
70 Expansion side bypass
71 Expansion side adjustment valve (Adjustment mechanism)
72 Compression side bypass
75 Gas-liquid separator
76 Compression side adjustment valve (Adjustment mechanism)

Claims (7)

圧縮機構(40)と熱源側熱交換器(21)と膨張機構(60)と利用側熱交換器(22)とが接続されて蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備え、上記膨張機構(60)と圧縮機構(40)とが連結されている冷凍装置であって、
上記膨張機構(60)は、第1膨張機(61)と、該第1膨張機(61)の吐出口に冷媒配管(23)によって吸入口が接続された第2膨張機(62)とを備えて冷媒を2段膨張させるように構成され、
上記第2膨張機(62)は、吸入容積が上記第1膨張機(61)の吐出容積より大きく構成される一方、
上記冷媒回路(20)は、第1膨張機(61)に流入する高圧冷媒の一部を第1膨張機(61)と第2膨張機(62)とを接続する上記冷媒配管(23)に導入する膨張側バイパス路(70)を備えている
ことを特徴とする冷凍装置。
The compressor mechanism (40), the heat source side heat exchanger (21), the expansion mechanism (60), and the use side heat exchanger (22) are connected to each other, and includes a refrigerant circuit (20) that performs a vapor compression refrigeration cycle, A refrigeration apparatus in which an expansion mechanism (60) and a compression mechanism (40) are connected,
The expansion mechanism (60) includes a first expander (61) and a second expander (62) having a suction pipe connected to a discharge port of the first expander (61) by a refrigerant pipe (23). And is configured to expand the refrigerant in two stages,
The second expander (62), while the suction volume Ru is configured larger than the discharge volume of said first expander (61),
The refrigerant circuit (20) includes a part of the high-pressure refrigerant flowing into the first expander (61) to the refrigerant pipe (23) connecting the first expander (61) and the second expander (62). A refrigerating apparatus comprising an expansion side bypass passage (70) to be introduced.
請求項1において、
上記膨張側バイパス路(70)は、流量調整自在な膨張側調整機構(71)を備えている
ことを特徴とする冷凍装置。
In claim 1,
The expansion side bypass passage (70) includes an expansion side adjustment mechanism (71) capable of adjusting the flow rate.
請求項1において、
上記圧縮機構(40)は、冷媒を2段圧縮させるように第1圧縮機(41)と第2圧縮機(42)とを備える一方、
上記冷媒回路(20)には、一端が第1膨張機(61)と第2膨張機(62)との間に接続され、他端が第1圧縮機(41)と第2圧縮機(42)との間に接続された圧縮側バイパス路(72)が設けられている
ことを特徴とする冷凍装置。
In claim 1,
The compression mechanism (40) includes a first compressor (41) and a second compressor (42) so as to compress the refrigerant in two stages,
One end of the refrigerant circuit (20) is connected between the first expander (61) and the second expander (62), and the other end is connected to the first compressor (41) and the second compressor (42). ) Is provided with a compression-side bypass path (72) connected therebetween.
請求項3において、
上記圧縮側バイパス路(72)は、流量調整自在な圧縮側調整機構(76)を備えている
ことを特徴とする冷凍装置。
In claim 3,
The refrigeration apparatus, wherein the compression side bypass passage (72) includes a compression side adjustment mechanism (76) with adjustable flow rate.
請求項4において、In claim 4,
上記膨張側バイパス路(70)は、流量調整自在な膨張側調整機構(71)を備え、The expansion side bypass passage (70) includes an expansion side adjustment mechanism (71) with adjustable flow rate,
該膨張側調整機構(71)は、圧縮機構(40)の吐出側冷媒圧力が所定の目標値になるように開度が調整され、The expansion side adjusting mechanism (71) is adjusted in opening degree so that the discharge side refrigerant pressure of the compression mechanism (40) becomes a predetermined target value,
上記圧縮側調整機構(76)は、上記膨張側調整機構(71)が開いている状態では、圧縮機構(40)の吐出側冷媒温度が所定の目標値になるように開度が調整される一方、上記膨張側調整機構(71)が閉じている状態では、圧縮機構(40)の吐出側冷媒圧力が所定の目標値になるように開度が調整されるThe compression-side adjustment mechanism (76) is adjusted in opening degree so that the discharge-side refrigerant temperature of the compression mechanism (40) becomes a predetermined target value when the expansion-side adjustment mechanism (71) is open. On the other hand, when the expansion side adjustment mechanism (71) is closed, the opening degree is adjusted so that the discharge side refrigerant pressure of the compression mechanism (40) becomes a predetermined target value.
ことを特徴とする冷凍装置。A refrigeration apparatus characterized by that.
請求項3において、
上記第1膨張機(61)と第2膨張機(62)とを接続する冷媒配管(23)の途中には、気液分離器(75)が設けられ、
上記圧縮側バイパス路(72)の一端は、上記気液分離器(75)の冷媒ガス雰囲気中に接続されている
ことを特徴とする冷凍装置。
In claim 3,
In the middle of the refrigerant pipe (23) connecting the first expander (61) and the second expander (62), a gas-liquid separator (75) is provided,
One end of the compression side bypass (72) is connected to the refrigerant gas atmosphere of the gas-liquid separator (75).
請求項1において、
上記冷媒回路(20)は、超臨界冷凍サイクルを行うように構成されている
ことを特徴とする冷凍装置。
In claim 1,
The refrigerant circuit (20) is configured to perform a supercritical refrigeration cycle.
JP2005104304A 2005-03-31 2005-03-31 Refrigeration equipment Expired - Fee Related JP4581795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104304A JP4581795B2 (en) 2005-03-31 2005-03-31 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104304A JP4581795B2 (en) 2005-03-31 2005-03-31 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2006284085A JP2006284085A (en) 2006-10-19
JP4581795B2 true JP4581795B2 (en) 2010-11-17

Family

ID=37406199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104304A Expired - Fee Related JP4581795B2 (en) 2005-03-31 2005-03-31 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4581795B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007353615B9 (en) 2007-05-22 2012-04-19 Angelantoni Industrie Spa Refrigerating device and method for circulating a refrigerating fluid associated with it
JP5628892B2 (en) 2009-04-01 2014-11-19 リナム システムズ、リミテッド Waste heat air conditioning system
JP2013142355A (en) * 2012-01-12 2013-07-22 Toyota Industries Corp Expander

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065615A (en) * 2001-08-23 2003-03-05 Daikin Ind Ltd Refrigerating machine
JP2004138332A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004150748A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969661A (en) * 1982-10-12 1984-04-19 株式会社デンソー Refrigeration cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065615A (en) * 2001-08-23 2003-03-05 Daikin Ind Ltd Refrigerating machine
JP2004138332A (en) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP2004150748A (en) * 2002-10-31 2004-05-27 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Also Published As

Publication number Publication date
JP2006284085A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4457928B2 (en) Refrigeration equipment
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP4813599B2 (en) Refrigeration cycle equipment
JP5120056B2 (en) Refrigeration equipment
JP3863480B2 (en) Refrigeration cycle equipment
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
JP4242131B2 (en) Refrigeration cycle equipment
JP2007232263A (en) Refrigeration unit
JP2004212006A (en) Freezing device
JP7473833B2 (en) Refrigeration Cycle Equipment
JP2006071137A (en) Refrigeration unit
KR20070082501A (en) Air-conditioning system and controlling method for the same
JP2003121018A (en) Refrigerating apparatus
WO2009147882A1 (en) Refrigeration cycle apparatus
JP2006138525A (en) Freezing device, and air conditioner
JP4622193B2 (en) Refrigeration equipment
JP4192904B2 (en) Refrigeration cycle equipment
WO2020203708A1 (en) Refrigeration cycle device
JP4581795B2 (en) Refrigeration equipment
JP4887929B2 (en) Refrigeration equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2006145144A (en) Refrigerating cycle device
JP2008096072A (en) Refrigerating cycle device
JP2007155143A (en) Refrigerating device
JP3863555B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees