JP3708536B1 - Refrigeration cycle apparatus and control method thereof - Google Patents

Refrigeration cycle apparatus and control method thereof Download PDF

Info

Publication number
JP3708536B1
JP3708536B1 JP2004107079A JP2004107079A JP3708536B1 JP 3708536 B1 JP3708536 B1 JP 3708536B1 JP 2004107079 A JP2004107079 A JP 2004107079A JP 2004107079 A JP2004107079 A JP 2004107079A JP 3708536 B1 JP3708536 B1 JP 3708536B1
Authority
JP
Japan
Prior art keywords
refrigeration cycle
cycle apparatus
refrigerant
compression mechanism
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004107079A
Other languages
Japanese (ja)
Other versions
JP2005291622A (en
Inventor
典穂 岡座
雅人 目片
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004107079A priority Critical patent/JP3708536B1/en
Priority to CNB2005100628492A priority patent/CN100513930C/en
Application granted granted Critical
Publication of JP3708536B1 publication Critical patent/JP3708536B1/en
Publication of JP2005291622A publication Critical patent/JP2005291622A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

【課題】膨張機を用いた冷凍サイクル装置において、密度比一定の制約があっても最適な高圧側圧力を維持し、さまざまな運転範囲の中で運転効率や能力を低下させることなく冷凍サイクル運転を可能とする。
【解決手段】冷凍サイクル装置は、圧縮機構1と、膨張機構3と、膨張機構3に一本の軸9で連結した圧縮機構1を駆動する駆動源8と、圧縮機構1から吐出された冷媒を冷却する放熱器2と、膨張機構3から流出した冷媒を加熱する蒸発器5と、膨張機構3をバイパスするバイパス流路10と、バイパス流路10上に設けられたバイパス弁11と、膨張機構3に流入する冷媒を減圧する予減圧弁12と、バイパス弁11及び予減圧弁12を制御する操作器21とを備え、冷凍サイクルの吐出温度または過熱度に基づいてバイパス弁11と予減圧弁12の開度を操作して、望ましい高圧側圧力に調整することにより、幅広い範囲にわたり効率の良い運転を可能とする。
【選択図】 図1
In a refrigeration cycle apparatus using an expander, an optimum high pressure side pressure is maintained even if there is a constant density ratio constraint, and the refrigeration cycle operation is performed without reducing the operation efficiency and capacity in various operation ranges. Is possible.
A refrigeration cycle apparatus includes a compression mechanism, an expansion mechanism, a drive source for driving the compression mechanism connected to the expansion mechanism by a single shaft, and a refrigerant discharged from the compression mechanism. A radiator 2 that cools the refrigerant, an evaporator 5 that heats the refrigerant flowing out of the expansion mechanism 3, a bypass passage 10 that bypasses the expansion mechanism 3, a bypass valve 11 provided on the bypass passage 10, and expansion A pre-reducing valve 12 for depressurizing the refrigerant flowing into the mechanism 3 and an operating device 21 for controlling the bypass valve 11 and the pre-reducing valve 12 are provided. By operating the opening degree of the valve 12 and adjusting it to a desired high pressure side pressure, efficient operation over a wide range is possible.
[Selection] Figure 1

Description

本発明は、膨張機を備えた冷凍サイクル装置およびその制御方法に関する。   The present invention relates to a refrigeration cycle apparatus including an expander and a control method thereof.

オゾン破壊係数がゼロであり、かつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素(以下、CO2という)を冷媒として用いる冷凍サイクル装置が近年着目されているが、CO2冷媒は、臨界温度が31.06℃と低く、この温度よりも高い温度を利用する場合には、冷凍サイクル装置の高圧側(圧縮機出口〜放熱器〜減圧器入口)ではCO2冷媒の凝縮が生じない超臨界状態となり、従来の冷媒に比べて、冷凍サイクル装置の運転効率(COP)が低下する。したがって、CO2冷媒を用いた冷凍サイクル装置にあっては、COPを向上させる手段が重要である。
このような手段として、減圧器の代わりに膨張機を設け、膨張時の圧力エネルギーを動力として回収する冷凍サイクルが提案されている。ここで、容積式の圧縮機と膨張機を一軸に連結した構成の冷凍サイクル装置では、圧縮機のシリンダ容積をVC、膨張機のシリンダ容積をVEとすると、VC/VE(設計容積比)により圧縮機、膨張機のそれぞれを流れる体積循環量の比が決定される。蒸発器出口の冷媒(圧縮機に流入する冷媒)の密度をDC、放熱器出口の冷媒(膨張機に流入する冷媒)の密度をDEとすると、圧縮機、膨張機のそれぞれを流れる質量循環量は等しいことから、「VC×DC=VE×DE」、すなわち、「VC/VE=DE/DC」の関係が成立する。VC/VE(設計容積比)は機器の設計時に定まる定数であるので、DE/DC(密度比)が常に一定となるように冷凍サイクルはバランスしようとする。(以下、このことを、「密度比一定の制約」と呼ぶ。)
しかし、冷凍サイクル装置の使用条件は必ずしも一定ではないので、設計時に想定した設計容積比と実際の運転状態での密度比が異なる場合には、「密度比一定の制約」のために、最良な高圧側圧力に調整することが困難となる。
そこで、膨張機をバイパスするバイパス流路を設け、膨張機に流入する冷媒量を制御することで、最良な高圧側圧力に調整する構成や制御方法が提案されている(例えば特許文献1及び特許文献2参照)。
特開2000−234814号公報 特開2001−116371号公報
Ozone depletion and is zero, and global warming potential is also much smaller compared to CFCs, carbon dioxide (hereinafter, CO of 2) Although the refrigeration cycle apparatus using the refrigerant is focused in recent years, CO 2 refrigerant The critical temperature is as low as 31.06 ° C., and when a temperature higher than this temperature is used, the CO 2 refrigerant is condensed on the high pressure side (compressor outlet to radiator to decompressor inlet) of the refrigeration cycle apparatus. It becomes a supercritical state that does not occur, and the operating efficiency (COP) of the refrigeration cycle apparatus is reduced as compared with the conventional refrigerant. Therefore, in a refrigeration cycle apparatus using a CO 2 refrigerant, means for improving COP is important.
As such means, there has been proposed a refrigeration cycle in which an expander is provided instead of a decompressor, and pressure energy during expansion is recovered as power. Here, in a refrigeration cycle apparatus having a structure in which a positive displacement compressor and an expander are connected to one shaft, VC / VE (design volume ratio) is given by assuming that the cylinder volume of the compressor is VC and the cylinder volume of the expander is VE. The ratio of the volume circulation amount flowing through each of the compressor and the expander is determined. If the density of the refrigerant at the outlet of the evaporator (refrigerant flowing into the compressor) is DC and the density of the refrigerant at the outlet of the radiator (refrigerant flowing into the expander) is DE, the mass circulation amount flowing through each of the compressor and the expander Therefore, the relationship of “VC × DC = VE × DE”, that is, “VC / VE = DE / DC” is established. Since VC / VE (design volume ratio) is a constant determined at the time of device design, the refrigeration cycle tries to balance so that DE / DC (density ratio) is always constant. (Hereafter, this is referred to as “constant density ratio constant”.)
However, the usage conditions of the refrigeration cycle device are not necessarily constant. Therefore, if the design volume ratio assumed at the time of design and the density ratio in the actual operating state are different, the best condition is due to the “constant density ratio constraint”. It becomes difficult to adjust to the high pressure side pressure.
Therefore, a configuration and a control method have been proposed in which a bypass flow path for bypassing the expander is provided and the amount of refrigerant flowing into the expander is controlled to adjust to the best high pressure side pressure (for example, Patent Document 1 and Patent). Reference 2).
JP 2000-234814 A JP 2001-116371 A

ところが、上記特許文献には、実際の運転状態での密度比が設計容積比より小さい場合には、膨張機をバイパスするバイパス流路に冷媒を流すことで、最良な高圧側圧力に調整できる構成や制御方法が記載されているが、実際の運転状態での密度比が設計容積比より大きい場合については、最良な高圧側圧力に調整できる構成や制御方法について、何ら記載されていない。また、設計容積比の値をどのように設定すればよいかも記載されていない。
さらに、実際の運転状態での密度比が設計容積比より小さい場合についても、バイパス流路に冷媒を流す冷媒量を一定以上に増やせない場合、すなわち、バイパス流路上に設けられたバイパス弁の開度が最大となってしまった場合などについても、どのようにすればよいか記載されていない。そのために、実際の運転状態での密度比が設計容積比より大きい場合や、バイパス弁の開度が最大となってしまった場合などについては、最良な高圧側圧力に調整できずに冷凍サイクル装置の運転効率が低下するといった課題が生じていた。
However, in the above-mentioned patent document, when the density ratio in the actual operation state is smaller than the design volume ratio, the configuration can be adjusted to the best high pressure side pressure by flowing the refrigerant through the bypass flow path that bypasses the expander. In the case where the density ratio in the actual operation state is larger than the design volume ratio, there is no description about the configuration and the control method that can be adjusted to the best high pressure side pressure. It also does not describe how to set the design volume ratio value.
Further, even when the density ratio in the actual operation state is smaller than the design volume ratio, the amount of refrigerant flowing through the bypass channel cannot be increased beyond a certain level, that is, the bypass valve provided on the bypass channel is opened. There is no description of what to do if the degree is at its maximum. Therefore, when the density ratio in the actual operation state is larger than the design volume ratio or when the opening of the bypass valve becomes maximum, the refrigeration cycle apparatus cannot be adjusted to the best high-pressure side pressure. There has been a problem that the driving efficiency of the vehicle is reduced.

したがって本発明は、実際の運転状態での密度比が設計容積比より大きい場合でも、小さい場合でも、最良な高圧側圧力に調整できる冷凍サイクル装置の構成およびその制御方法を提供し、冷凍サイクル装置の運転効率(COP)を向上させることを目的としている。
また、様々な運転状態で効率の良い運転が可能な設計容積比を有する冷凍サイクル装置を提供することを目的としている。
Therefore, the present invention provides a configuration of a refrigeration cycle apparatus that can be adjusted to the best high-pressure side pressure and a control method thereof, regardless of whether the density ratio in an actual operating state is larger or smaller than the design volume ratio, and the refrigeration cycle apparatus It aims at improving the operation efficiency (COP) of the.
It is another object of the present invention to provide a refrigeration cycle apparatus having a design volume ratio that enables efficient operation in various operating conditions.

請求項1記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記膨張機構に流入する冷媒を減圧する予減圧弁と、前記バイパス弁と前記予減圧弁との動作を制御する操作器とを備え、前記操作器が、前記バイパス弁と前記予減圧弁との開度を、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項2記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記バイパス弁の動作と前記駆動源の回転数とを制御する操作器とを備え、前記操作器が、前記バイパス弁の開度と前記駆動源の回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項3記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記蒸発器に送風するファンと、前記バイパス弁と前記ファンの回転数とを制御する操作器とを備え、前記操作器が、前記バイパス弁の開度と前記ファンの回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項4記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、冷凍サイクル装置の運転状態で前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたことを特徴とする。
請求項5記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする。
請求項6記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記蒸発器の周囲温度が最も低く、かつ、前記放熱器に流入する水温が最も低く、かつ、前記放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする。
請求項7記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備え、冷媒として二酸化炭素が用いられ、給湯機として使用される冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を10以上としたことを特徴とする。
請求項8記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記蒸発器に送風される空気の温度が最も低く、かつ、前記放熱器に送風される空気の温度が最も低く、かつ、前記放熱器から吹き出される空気温度が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする。
請求項9記載の本発明の冷凍サイクル装置は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備え、冷媒として二酸化炭素が用いられ、空気調和機として使用される冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を8以上としたことを特徴とする。
請求項10記載の本発明の冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記膨張機構に流入する冷媒を減圧する予減圧弁とを備えた冷凍サイクル装置において、前記バイパス弁と前記予減圧弁との開度、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項11記載の本発明の冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁とを備えた冷凍サイクル装置において、前記バイパス弁の開度と前記駆動源の回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項12記載の本発明の冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記蒸発器に送風するファンとを備えた冷凍サイクル装置において、前記バイパス弁の開度と前記ファンの回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする。
請求項13記載の本発明の冷凍サイクル装置は、補助圧縮機構と膨張機構とを一本の軸に連結するとともに、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒をさらに圧縮する補助圧縮機構と、前記補助圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記バイパス弁の動作を制御する操作器とを備え、前記操作器が、前記バイパス弁の開度を変更することで、高圧側圧力を調整することを特徴とする。
請求項14記載の本発明は、請求項13に記載の本発明の冷凍サイクル装置において、前記膨張機構に流入する冷媒を減圧する予減圧弁を備えたことを特徴とする。
請求項15記載の本発明の冷凍サイクル装置は、請求項14に記載の本発明の冷凍サイクル装置において、前記操作器が、前記バイパス弁と前記予減圧弁との開度当該冷凍サイクル装置の吐出温度または過熱度に基づいて変更ることを特徴とする。
請求項16記載の本発明は、請求項13に記載の本発明の冷凍サイクル装置において、前記補助圧縮機構と前記膨張機構の設計容積比を、冷凍サイクル装置の運転状態で前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたことを特徴とする。
請求項17記載の本発明は、請求項13に記載の本発明の冷凍サイクル装置において、前記補助圧縮機構と前記膨張機構の設計容積比を、前記放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする。
請求項18記載の本発明は、請求項13に記載の本発明の冷凍サイクル装置において、前記補助圧縮機構と前記膨張機構の設計容積比を、前記蒸発器の周囲温度が最も低く、かつ、前記放熱器に流入する水温が最も低く、かつ、前記放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする。
請求項19記載の本発明は、請求項13に記載の本発明の冷凍サイクル装置において、冷媒として二酸化炭素が用いられ、給湯機として使用される冷凍サイクル装置であって、前記補助圧縮機構と前記膨張機構の設計容積比を4以上としたことを特徴とする。
A refrigeration cycle apparatus according to a first aspect of the present invention includes a radiator that cools a refrigerant discharged from the compression mechanism, and a expansion mechanism that connects a compression mechanism, an expansion mechanism, and a drive source to a single shaft. In the refrigeration cycle apparatus including an evaporator for heating the refrigerant flowing out from the bypass passage, the bypass passage bypassing the expansion mechanism, the bypass valve provided on the bypass passage, and the refrigerant flowing into the expansion mechanism is decompressed a pre reducing valve which comprises a control Gosuru manipulator operation between said bypass valve said pre reducing valve, the operating device is, the opening degree of said bypass valve said pre reducing valve, the refrigeration cycle apparatus The high pressure side pressure is adjusted by changing the discharge temperature or the degree of superheat .
According to a second aspect of the present invention, there is provided a refrigeration cycle apparatus according to the present invention, in which a compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism. In the refrigeration cycle apparatus including an evaporator for heating the refrigerant flowing out from the bypass passage, the bypass passage bypassing the expansion mechanism, the bypass valve provided on the bypass passage, the operation of the bypass valve , and the drive source comprising a number of revolutions and the braking Gosuru manipulator, the manipulator is, a rotational speed of the driving source and the opening degree of the bypass valve is changed based on the discharge temperature or superheat of the refrigeration cycle apparatus Thus, the high pressure side pressure is adjusted .
According to a third aspect of the present invention, there is provided a refrigeration cycle apparatus according to the present invention, wherein a compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism. In a refrigeration cycle apparatus comprising an evaporator that heats the refrigerant that has flowed out of, a bypass passage that bypasses the expansion mechanism, a bypass valve provided on the bypass passage, a fan that blows air to the evaporator, and a rotational speed and braking Gosuru manipulator of the fan and the bypass valve, wherein the operating device has a rotation speed of the the opening of the bypass valve fan, the discharge temperature or superheat of the refrigeration cycle apparatus The high pressure side pressure is adjusted by changing based on the above.
According to a fourth aspect of the present invention, there is provided a refrigeration cycle apparatus according to the present invention, wherein a compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism. In the refrigeration cycle apparatus comprising an evaporator for heating the refrigerant flowing out of the refrigerant, the design volume ratio of the compression mechanism and the expansion mechanism is set so that the outlet refrigerant of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus. It is characterized by substantially matching with the largest value of the density ratio.
According to a fifth aspect of the present invention, there is provided a refrigeration cycle apparatus of the present invention, in which a compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism In the refrigeration cycle apparatus provided with an evaporator for heating the refrigerant flowing out from the refrigerant, the design volume ratio of the compression mechanism and the expansion mechanism is the operating state of the refrigeration cycle apparatus where the refrigerant density at the outlet of the radiator is the largest. The ratio of the outlet refrigerant density of each of the radiator and the evaporator is substantially the same.
A refrigeration cycle apparatus according to a sixth aspect of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, cools the refrigerant discharged from the compression mechanism, and the expansion mechanism. In the refrigeration cycle apparatus including an evaporator that heats the refrigerant that has flowed out of the refrigerant, the design volume ratio of the compression mechanism and the expansion mechanism is set so that the ambient temperature of the evaporator is the lowest and the water temperature flowing into the radiator Characterized by being substantially the same as the ratio of the outlet refrigerant density of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus in which the temperature of the hot water flowing out from the radiator is highest and the temperature of the hot water flowing out from the radiator is highest. To do.
A refrigeration cycle apparatus according to a seventh aspect of the present invention is a refrigeration cycle apparatus according to the present invention, wherein a compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism In the refrigeration cycle apparatus used as a hot water heater, the design volume ratio of the compression mechanism and the expansion mechanism is set to 10 or more. Features.
The refrigeration cycle apparatus of the present invention according to claim 8 connects the compression mechanism, the expansion mechanism, and the drive source to a single shaft, cools the refrigerant discharged from the compression mechanism, and the expansion mechanism. In the refrigeration cycle apparatus including the evaporator for heating the refrigerant flowing out from the refrigerant, the design volume ratio of the compression mechanism and the expansion mechanism is the lowest in the temperature of the air blown to the evaporator, and the radiator The ratio of the outlet refrigerant density of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus in which the temperature of the air blown to the bottom is the lowest and the temperature of the air blown from the radiator is the highest. The feature is that they are substantially matched.
A refrigeration cycle apparatus according to a ninth aspect of the present invention is a refrigeration cycle apparatus according to the present invention, wherein a compression mechanism, an expansion mechanism, and a drive source are coupled to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and the expansion mechanism In the refrigeration cycle apparatus used as an air conditioner, the design volume ratio of the compression mechanism and the expansion mechanism is set to 8 or more. It is characterized by.
A control method for a refrigeration cycle apparatus according to a tenth aspect of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, and that cools the refrigerant discharged from the compression mechanism; An evaporator that heats the refrigerant that has flowed out of the expansion mechanism, a bypass channel that bypasses the expansion mechanism, a bypass valve that is provided on the bypass channel, and a pre-pressure reducing valve that depressurizes the refrigerant that flows into the expansion mechanism a refrigeration cycle apparatus comprising bets, the opening degree of said bypass valve said pre pressure reducing valve, by changing the basis of the discharge temperature or superheat of the refrigeration cycle device, characterized by adjusting the high side pressure And
A control method for a refrigeration cycle apparatus according to an eleventh aspect of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, and that cools the refrigerant discharged from the compression mechanism; In the refrigeration cycle apparatus including an evaporator that heats the refrigerant that has flowed out of the expansion mechanism, a bypass passage that bypasses the expansion mechanism, and a bypass valve that is provided on the bypass passage, the opening degree of the bypass valve And the rotation speed of the drive source are adjusted based on the discharge temperature or the degree of superheat of the refrigeration cycle apparatus, thereby adjusting the high-pressure side pressure .
A control method for a refrigeration cycle apparatus according to a twelfth aspect of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, and that cools the refrigerant discharged from the compression mechanism; A refrigeration cycle comprising an evaporator that heats the refrigerant flowing out of the expansion mechanism, a bypass passage that bypasses the expansion mechanism, a bypass valve provided on the bypass passage, and a fan that blows air to the evaporator In the apparatus, the high-pressure side pressure is adjusted by changing the opening degree of the bypass valve and the rotational speed of the fan based on a discharge temperature or a superheat degree of the refrigeration cycle apparatus .
According to a thirteenth aspect of the present invention, the refrigeration cycle apparatus of the present invention connects the auxiliary compression mechanism and the expansion mechanism to a single shaft, and further compresses the refrigerant discharged from the compression mechanism and the compression mechanism that compresses the refrigerant. In a refrigeration cycle apparatus comprising an auxiliary compression mechanism, a radiator that cools the refrigerant discharged from the auxiliary compression mechanism, and an evaporator that heats the refrigerant flowing out of the expansion mechanism, a bypass flow that bypasses the expansion mechanism A bypass valve provided on the bypass flow path, and an operating device that controls the operation of the bypass valve, and the operating device changes the opening of the bypass valve, thereby increasing the high-pressure side pressure. It is characterized by adjusting .
A fourteenth aspect of the present invention is the refrigeration cycle apparatus according to the thirteenth aspect of the present invention, further comprising a pre-reducing valve for depressurizing the refrigerant flowing into the expansion mechanism.
Is 15. refrigeration cycle apparatus of the present invention described, in the refrigeration cycle apparatus of the present invention according to claim 14, wherein the operating device is, the opening degree of said bypass valve said pre reducing valve, the refrigeration cycle apparatus and wherein the benzalkonium be changed based on the discharge temperature or superheat.
According to a sixteenth aspect of the present invention, in the refrigeration cycle apparatus according to the thirteenth aspect of the present invention, a design volume ratio of the auxiliary compression mechanism and the expansion mechanism is set so that the radiator and the compression are in an operating state of the refrigeration cycle apparatus. It is characterized in that it substantially matches the largest value among the ratios of the outlet refrigerant densities of the mechanisms.
According to a seventeenth aspect of the present invention, in the refrigeration cycle apparatus according to the thirteenth aspect of the present invention, the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is the refrigeration in which the refrigerant density at the outlet of the radiator is the largest. It is characterized in that it substantially matches the ratio of the outlet refrigerant density of each of the radiator and the compression mechanism in the operating state of the cycle device.
The present invention according to claim 18 is the refrigeration cycle apparatus according to claim 13, wherein the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is the lowest in ambient temperature of the evaporator, and the The temperature of the water flowing into the radiator is the lowest, and the temperature of the hot water flowing out of the radiator is the highest, and the ratio of the outlet refrigerant density of each of the radiator and the compression mechanism in the operating state of the refrigeration cycle apparatus is substantially the same. It is characterized by that.
According to a nineteenth aspect of the present invention, in the refrigeration cycle apparatus according to the thirteenth aspect of the present invention, carbon dioxide is used as a refrigerant, and the refrigeration cycle apparatus is used as a water heater. The design volume ratio of the expansion mechanism is 4 or more.

本発明の冷凍サイクル装置およびその制御方法は、密度比一定の制約により最良な高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、幅広い運転範囲の中で高い動力回収効果を得て、効率のよい運転が可能な冷凍サイクル装置およびその制御方法である。   The refrigeration cycle apparatus of the present invention and the control method thereof can be used within a wide operating range even in a refrigeration cycle apparatus using an expander that is difficult to adjust to the best high-pressure side pressure due to a constant density ratio. A refrigeration cycle apparatus capable of obtaining a high power recovery effect and efficient operation and a control method thereof.

本発明の第1の実施の形態による冷凍サイクル装置は、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、膨張機構に流入する冷媒を減圧する予減圧弁と、バイパス弁と予減圧弁との動作を制御する操作器とを備え、操作器が、バイパス弁と予減圧弁との開度を、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、密度比が設計容積比より小さい場合でも大きい場合でも、バイパス弁と予減圧弁の開度操作により、望ましい高圧側圧力に調整することができ、幅広い範囲にわたり運転効率や能力を低下させることなく運転できる冷凍サイクル装置が提供される。
本発明の第2の実施の形態による冷凍サイクル装置は、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、バイパス弁の動作と駆動源の回転数とを制御する操作器とを備え、操作器が、バイパス弁の開度と駆動源の回転数とを、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、バイパス弁の開度と駆動源の駆動回転数を操作することで、実際の運転状態で望ましい高圧側圧力に調整でき、さらにバイパス弁の開度が全開となった場合でも、駆動源の駆動回転数を操作することで、望ましい高圧側圧力に調整できるために、幅広い範囲にわたり冷凍サイクル装置の運転効率や能力を低下させることがない。
本発明の第3の実施の形態による冷凍サイクル装置は、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、蒸発器に送風するファンと、バイパス弁とファンの回転数とを制御する操作器とを備え、操作器が、バイパス弁の開度とファンの回転数とを、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、バイパス弁の開度とファンの回転数を操作することで、実際の運転状態で望ましい高圧側圧力に調整でき、さらにバイパス弁の開度が全開となった場合でも、ファンの回転数を操作することで、望ましい高圧側圧力に調整できるために、幅広い範囲にわたり冷凍サイクル装置の運転効率や能力を低下させることがない。
本発明の第4の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を、冷凍サイクル装置の運転状態で放熱器と蒸発器のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第5の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を、放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での放熱器と蒸発器のそれぞれの出口冷媒密度の比と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第6の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を、蒸発器の周囲温度が最も低く、かつ、放熱器に流入する水温が最も低く、かつ、放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での放熱器と蒸発器のそれぞれの出口冷媒密度の比と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第7の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を10以上としたものである。冷凍サイクル装置が給湯機の場合であれば、本実施の形態によって、運転条件が異なっても可能な限り予膨張させないような設計容積比となり、COP向上率の季節差が小さくなるので、常に高い運転効率を維持する給湯機が提供される。
本発明の第8の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を、蒸発器に送風される空気の温度が最も低く、かつ、放熱器に送風される空気の温度が最も低く、かつ、放熱器から吹き出される空気温度が最も高くなる冷凍サイクル装置の運転状態での放熱器と蒸発器のそれぞれの出口冷媒密度の比と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第9の実施の形態による冷凍サイクル装置は、圧縮機構と膨張機構の設計容積比を8以上としたものである。冷凍サイクル装置が空気調和機の場合であれば、本実施の形態によって、運転条件が異なっても可能な限り予膨張させないような設計容積比となり、COP向上率の季節差が小さくなるので、常に高い運転効率を維持する空気調和機が提供される。
本発明の第10の実施の形態による冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、圧縮機構から吐出された冷媒を冷却する放熱器と、膨張機構から流出した冷媒を加熱する蒸発器と、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、膨張機構に流入する冷媒を減圧する予減圧弁とを備えた冷凍サイクル装置において、バイパス弁と予減圧弁との開度、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、密度比が設計容積比より小さい場合でも大きい場合でも、バイパス弁と予減圧弁の開度操作により、望ましい高圧側圧力に調整することができ、幅広い範囲にわたり冷凍サイクル装置をその運転効率や能力を低下させることなく運転できる。
本発明の第11の実施の形態による冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、圧縮機構から吐出された冷媒を冷却する放熱器と、膨張機構から流出した冷媒を加熱する蒸発器と、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁とを備えた冷凍サイクル装置において、バイパス弁の開度と駆動源の回転数とを、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、密度比が設計容積比より小さい場合でも大きい場合でも、バイパス弁の開度と駆動源の駆動回転数を操作することで、望ましい高圧側圧力に調整でき、さらにバイパス弁の開度が全開となった場合でも、駆動源の駆動回転数を操作することで、望ましい高圧側圧力に調整できるために、幅広い範囲にわたり冷凍サイクル装置をその運転効率や能力を低下させることなく運転できる。
本発明の第12の実施の形態による冷凍サイクル装置の制御方法は、圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、圧縮機構から吐出された冷媒を冷却する放熱器と、膨張機構から流出した冷媒を加熱する蒸発器と、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、蒸発器に送風するファンとを備えた冷凍サイクル装置において、バイパス弁の開度とファンの回転数とを、冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整するものである。本実施の形態によれば、密度比が設計容積比より小さい場合でも大きい場合でも、バイパス弁の開度とファンの回転数を操作することで、望ましい高圧側圧力に調整でき、さらにバイパス弁の開度が全開となった場合でも、ファンの回転数を操作することで、望ましい高圧側圧力に調整できるために、幅広い範囲にわたり冷凍サイクル装置をその運転効率や能力を低下させることなく運転できる。
本発明の第13の実施の形態による冷凍サイクル装置は、補助圧縮機構と膨張機構とを一本の軸に連結するとともに、冷媒を圧縮する圧縮機構と、圧縮機構から吐出された冷媒をさらに圧縮する補助圧縮機構と、補助圧縮機構から吐出された冷媒を冷却する放熱器と、膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、膨張機構をバイパスするバイパス流路と、バイパス流路上に設けられたバイパス弁と、バイパス弁の動作を制御する操作器とを備え、操作器が、バイパス弁の開度を変更することで、高圧側圧力を調整するものである。本実施の形態によれば、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比の変化が小さいことから、設計時に想定した設計容積比と異なっても、バイパス弁のみの開度操作により、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力を低下させることなく運転できる。
本発明の第14の実施の形態は、第13の実施の形態による冷凍サイクル装置において、膨張機構に流入する冷媒を減圧する予減圧弁を備えたものである。本実施の形態によれば、密度比が設計容積比より小さい場合でも大きい場合でも、バイパス弁と予減圧弁の開度操作により、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力を低下させることなく運転できる。
本発明の第15の実施の形態は、第14の実施の形態による冷凍サイクル装置において、操作器が、バイパス弁と予減圧弁との開度当該冷凍サイクル装置の吐出温度または過熱度に基づいて変更るものである。本実施の形態によれば、バイパス弁と予減圧弁の開度操作により、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力を低下させることなく運転できる。
本発明の第16の実施の形態は、第13の実施の形態による冷凍サイクル装置において、補助圧縮機構と膨張機構の設計容積比を、冷凍サイクル装置の運転状態で放熱器と圧縮機構のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第17の実施の形態は、第13の実施の形態による冷凍サイクル装置において、補助圧縮機構と膨張機構の設計容積比を、放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での放熱器と圧縮機構のそれぞれの出口冷媒密度の比と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第18の実施の形態は、第13の実施の形態による冷凍サイクル装置において、補助圧縮機構と膨張機構の設計容積比を、蒸発器の周囲温度が最も低く、かつ、放熱器に流入する水温が最も低く、かつ、放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での放熱器と圧縮機構のそれぞれの出口冷媒密度の比と略一致させたものである。本実施の形態によれば、運転条件が異なっても可能な限り予膨張させないような設計容積比とすることで、COP向上率の季節差を小さくし、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
本発明の第19の実施の形態は、第13の実施の形態による冷凍サイクル装置において、冷媒として二酸化炭素が用いられ、給湯機として使用される冷凍サイクル装置であって、補助圧縮機構と膨張機構の設計容積比を4以上としたものである。冷凍サイクル装置が補助圧縮機構を備える給湯機の場合であれば、本実施の形態によって、運転条件が異なっても可能な限り予膨張させないような設計容積比となり、COP向上率の季節差が小さくなるので、常に高い運転効率を維持する冷凍サイクル装置が提供される。
The refrigeration cycle apparatus according to the first embodiment of the present invention includes a bypass flow path that bypasses the expansion mechanism, a bypass valve provided on the bypass flow path, a pre-reduction valve that depressurizes the refrigerant flowing into the expansion mechanism, and a bypass valve and a pre-reducing valve control the operations of the Gosuru operating device, the operating device is, the opening degree of the bypass valve and the pre-reducing valve, to change based on the discharge temperature or superheat of the refrigeration cycle apparatus Thus, the high pressure side pressure is adjusted . According to the present embodiment, even when the density ratio is smaller or larger than the design volume ratio, the opening pressure of the bypass valve and the pre-reducing valve can be adjusted to a desired high-pressure side pressure, and the operation efficiency over a wide range. And a refrigeration cycle apparatus that can be operated without lowering the capacity.
Refrigeration cycle apparatus according to a second embodiment of the present invention, control a bypass flow path for bypassing the expansion mechanism, a bypass valve provided in the bypass flow path, and a rotational speed of operation and the driving source of the bypass valve control And adjusts the high-pressure side pressure by changing the opening of the bypass valve and the rotational speed of the drive source based on the discharge temperature or the degree of superheat of the refrigeration cycle device. is there. According to the present embodiment, by operating the opening degree of the bypass valve and the driving rotational speed of the drive source, it can be adjusted to a desired high pressure side pressure in the actual operation state, and the opening degree of the bypass valve is fully opened. Even in this case, by operating the drive rotation speed of the drive source, the pressure can be adjusted to a desired high pressure side pressure, so that the operation efficiency and capacity of the refrigeration cycle apparatus are not reduced over a wide range.
A refrigeration cycle apparatus according to a third embodiment of the present invention includes a bypass flow path that bypasses the expansion mechanism, a bypass valve provided on the bypass flow path, a fan that blows air to the evaporator, and rotation of the bypass valve and the fan. and a and a control Gosuru manipulator numbers, operation device has a rotation speed of the opening degree of the bypass valve and the fan, by changing the basis of the discharge temperature or superheat of the refrigeration cycle apparatus, a high-pressure side pressure To be adjusted . According to the present embodiment, by operating the opening degree of the bypass valve and the rotational speed of the fan, it can be adjusted to a desired high pressure side pressure in the actual operation state, and even when the opening degree of the bypass valve is fully opened Since the rotation speed of the fan can be adjusted to a desired high-pressure side pressure, the operating efficiency and capacity of the refrigeration cycle apparatus are not reduced over a wide range.
In the refrigeration cycle apparatus according to the fourth embodiment of the present invention, the design volume ratio of the compression mechanism and the expansion mechanism is the largest among the ratios of the outlet refrigerant densities of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus. Is approximately the same value as According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
The refrigeration cycle apparatus according to the fifth embodiment of the present invention has a design volume ratio between the compression mechanism and the expansion mechanism, and a radiator and an evaporator in the operating state of the refrigeration cycle apparatus in which the refrigerant density at the outlet of the radiator is the largest. These are approximately the same as the ratio of the outlet refrigerant density. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
In the refrigeration cycle apparatus according to the sixth embodiment of the present invention, the design volume ratio of the compression mechanism and the expansion mechanism has the lowest ambient temperature of the evaporator, the lowest water temperature flowing into the radiator, and the heat dissipation. The ratio of the refrigerant density at the outlet of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus in which the temperature of hot water flowing out from the vessel is the highest is substantially matched. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
In the refrigeration cycle apparatus according to the seventh embodiment of the present invention, the design volume ratio of the compression mechanism and the expansion mechanism is 10 or more. If the refrigeration cycle apparatus is a hot water heater, the present embodiment has a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different, and the seasonal difference in the COP improvement rate is small, so it is always high. A water heater that maintains operating efficiency is provided.
In the refrigeration cycle apparatus according to the eighth embodiment of the present invention, the design volume ratio of the compression mechanism and the expansion mechanism is set such that the temperature of air blown to the evaporator is the lowest and the temperature of air blown to the radiator. Is substantially the same as the ratio of the refrigerant density at the outlet of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus in which the temperature of the air blown from the radiator is the highest. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
In the refrigeration cycle apparatus according to the ninth embodiment of the present invention, the design volume ratio of the compression mechanism and the expansion mechanism is 8 or more. If the refrigeration cycle apparatus is an air conditioner, the present embodiment has a design volume ratio that prevents pre-expansion as much as possible even if the operating conditions are different, and the seasonal difference in the COP improvement rate is always small. An air conditioner that maintains high operating efficiency is provided.
A control method for a refrigeration cycle apparatus according to a tenth embodiment of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, and that cools refrigerant discharged from the compression mechanism. An evaporator that heats the refrigerant that has flowed out of the expansion mechanism, a bypass flow path that bypasses the expansion mechanism, a bypass valve that is provided on the bypass flow path, and a pre-pressure reducing valve that depressurizes the refrigerant flowing into the expansion mechanism in the refrigeration cycle apparatus, the opening degree of the bypass valve and the pre-reducing valve, by changing the basis of the discharge temperature or superheat of the refrigeration cycle apparatus, and adjusts the high side pressure. According to the present embodiment, whether the density ratio is smaller or larger than the design volume ratio, the opening pressure of the bypass valve and the pre-reducing valve can be adjusted to a desired high pressure side pressure, and the refrigeration cycle can be achieved over a wide range. The device can be operated without reducing its operating efficiency and capacity.
A control method for a refrigeration cycle apparatus according to an eleventh embodiment of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft and that cools refrigerant discharged from the compression mechanism. In the refrigeration cycle apparatus comprising an evaporator for heating the refrigerant flowing out of the expansion mechanism, a bypass flow path for bypassing the expansion mechanism, and a bypass valve provided on the bypass flow path, the opening degree of the bypass valve and the drive source Is adjusted based on the discharge temperature or superheat degree of the refrigeration cycle apparatus, thereby adjusting the high-pressure side pressure . According to the present embodiment, even when the density ratio is smaller or larger than the design volume ratio, it can be adjusted to a desired high-pressure side pressure by manipulating the opening degree of the bypass valve and the drive rotational speed of the drive source, and further the bypass Even if the opening of the valve is fully open, the operating efficiency and capacity of the refrigeration cycle system can be reduced over a wide range because the drive speed of the drive source can be adjusted to the desired high pressure side pressure. You can drive without.
A control method for a refrigeration cycle device according to a twelfth embodiment of the present invention includes a radiator that couples a compression mechanism, an expansion mechanism, and a drive source to a single shaft, and that cools refrigerant discharged from the compression mechanism. In a refrigeration cycle apparatus comprising an evaporator that heats the refrigerant that has flowed out of the expansion mechanism, a bypass passage that bypasses the expansion mechanism, a bypass valve provided on the bypass passage, and a fan that blows air to the evaporator, The high pressure side pressure is adjusted by changing the opening degree of the bypass valve and the rotational speed of the fan based on the discharge temperature or the superheat degree of the refrigeration cycle apparatus . According to the present embodiment, even when the density ratio is smaller or larger than the design volume ratio, it can be adjusted to a desired high-pressure side pressure by manipulating the opening degree of the bypass valve and the rotation speed of the fan, and the bypass valve Even when the opening degree is fully open, it can be adjusted to a desired high-pressure side pressure by manipulating the rotational speed of the fan, so that the refrigeration cycle apparatus can be operated over a wide range without reducing its operating efficiency and capacity.
A refrigeration cycle apparatus according to a thirteenth embodiment of the present invention connects an auxiliary compression mechanism and an expansion mechanism to a single shaft, and further compresses a refrigerant discharged from the compression mechanism and a compression mechanism that compresses the refrigerant. A bypass flow path that bypasses the expansion mechanism in a refrigeration cycle apparatus comprising: an auxiliary compression mechanism that performs cooling; a radiator that cools the refrigerant discharged from the auxiliary compression mechanism; and an evaporator that heats the refrigerant flowing out of the expansion mechanism. A bypass valve provided on the bypass flow path and an operating device that controls the operation of the bypass valve are provided, and the operating device adjusts the high-pressure side pressure by changing the opening of the bypass valve . According to the present embodiment, in the refrigeration cycle apparatus using an expander where it is difficult to maintain the optimum high-pressure side pressure due to a constant density ratio restriction, the density ratio change in the actual operating state Therefore, even if it differs from the design volume ratio assumed at the time of design, it can be operated without reducing the operating efficiency and capacity of the refrigeration cycle device by adjusting the pressure to the desired high-pressure side only by opening the bypass valve.
The fourteenth embodiment of the present invention is a refrigeration cycle apparatus according to the thirteenth embodiment, which includes a pre-decompression valve that depressurizes the refrigerant flowing into the expansion mechanism. According to the present embodiment, whether the density ratio is smaller or larger than the design volume ratio, the opening pressure of the bypass valve and the pre-reducing valve is adjusted to a desired high pressure side pressure, and the operating efficiency and capacity of the refrigeration cycle apparatus It can drive without lowering.
Fifteenth embodiment of the present invention is the refrigeration cycle apparatus according to the fourteenth embodiment, the operating device is, the opening degree of the bypass valve and the pre-reducing valve, the discharge temperature or superheat of the refrigeration cycle apparatus to change on the basis also of the is. According to the present embodiment, it is possible to operate without adjusting the operating efficiency and capacity of the refrigeration cycle apparatus by adjusting the pressure to a desired high pressure side by opening the bypass valve and the pre-reducing valve.
The sixteenth embodiment of the present invention is the refrigeration cycle apparatus according to the thirteenth embodiment, wherein the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is set to the respective values of the radiator and the compression mechanism in the operating state of the refrigeration cycle apparatus. This is approximately matched with the largest value of the ratio of the outlet refrigerant density. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
According to a seventeenth embodiment of the present invention, in the refrigeration cycle apparatus according to the thirteenth embodiment, the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is set so that the refrigerant density at the outlet of the radiator is the largest. This is approximately the same as the ratio of the outlet refrigerant density of the radiator and the compression mechanism in the operating state. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
According to an eighteenth embodiment of the present invention, in the refrigeration cycle apparatus according to the thirteenth embodiment, the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is the lowest in the ambient temperature of the evaporator and flows into the radiator. The ratio of the refrigerant density at the outlet of each of the radiator and the compression mechanism in the operating state of the refrigeration cycle apparatus in which the temperature of the water to be discharged is the lowest and the temperature of the hot water flowing out from the radiator is the highest is substantially matched. According to the present embodiment, a refrigeration cycle apparatus that reduces the seasonal difference in the COP improvement rate and maintains high operating efficiency at all times by adopting a design volume ratio that prevents pre-expansion as much as possible even when operating conditions are different. Is possible.
A nineteenth embodiment of the present invention is a refrigeration cycle apparatus in which carbon dioxide is used as a refrigerant and used as a water heater in the refrigeration cycle apparatus according to the thirteenth embodiment. The auxiliary compression mechanism and the expansion mechanism The design volume ratio is set to 4 or more. If the refrigeration cycle apparatus is a water heater provided with an auxiliary compression mechanism, the present embodiment provides a design volume ratio that prevents pre-expansion as much as possible even with different operating conditions, and the seasonal difference in the COP improvement rate is small. Therefore, a refrigeration cycle apparatus that always maintains high operating efficiency is provided.

以下、本発明の実施例について、図面を参照しながら説明する。
図1は、本発明の第1の実施例における冷凍サイクル装置を示す構成図である。なお、本実施例の冷凍サイクル装置に関しては、給湯機を例に取り説明する。即ち、本実施例の給湯機に本発明が限定されるものではなく、空気調和機などであってもよい。
本実施例の冷凍サイクル装置は、圧縮機構1、放熱器2、膨張機構3、およびファン4により送風される外気と熱交換させる蒸発器5などからなる冷媒サイクル回路Aと、給水ポンプ6、放熱器2、および給湯タンク7などからなる給湯サイクル回路Bとを備え、放熱器2において圧縮機構1から吐出された冷媒により給水ポンプ6からの水を加熱してお湯とし、そのお湯を給湯タンク7に貯めておくようにした冷凍サイクル装置(本実施例の場合には、給湯機)である。
圧縮機構1は、モータ等の駆動源8により駆動される。さらに、圧縮機構1は、圧力エネルギーを動力に変換する膨張機構3(膨張機)と一本の軸9により連結され、膨張機構3の回収動力により駆動源8の入力を低減する。また、冷媒サイクル回路Aは、膨張機構3をバイパスするバイパス流路10と、バイパス流路10に流れる流量を調節するバイパス弁11と、放熱器2と膨張機構3入口との間に設けられ、膨張機構3に流入する冷媒を予め減圧させる予減圧弁12とを備えている。冷媒としては二酸化炭素(CO2)が封入されている。また、圧縮機構1の出口温度(圧縮機構の吐出温度)を検知する吐出温度検知手段20と、吐出温度検知手段20が検知した値に基づきバイパス弁11および予減圧弁12の開度を演算、操作する第1操作器21とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention. In addition, regarding the refrigeration cycle apparatus of the present embodiment, a hot water heater will be described as an example. That is, the present invention is not limited to the water heater of this embodiment, and may be an air conditioner or the like.
The refrigeration cycle apparatus of the present embodiment includes a refrigerant cycle circuit A including a compression mechanism 1, a radiator 2, an expansion mechanism 3, an evaporator 5 that exchanges heat with outside air blown by a fan 4, a feed water pump 6, and heat dissipation. And a hot water supply cycle circuit B including a hot water supply tank 7 and the like, and heat from the water supply pump 6 is heated by the refrigerant discharged from the compression mechanism 1 in the radiator 2 to form hot water. The refrigeration cycle apparatus (in the case of the present embodiment, a hot water heater) that is stored in
The compression mechanism 1 is driven by a drive source 8 such as a motor. Further, the compression mechanism 1 is connected to an expansion mechanism 3 (expander) that converts pressure energy into power by a single shaft 9, and reduces the input of the drive source 8 by the recovery power of the expansion mechanism 3. The refrigerant cycle circuit A is provided between the bypass flow path 10 that bypasses the expansion mechanism 3, the bypass valve 11 that adjusts the flow rate flowing through the bypass flow path 10, the radiator 2 and the expansion mechanism 3 inlet, And a pre-reducing valve 12 that depressurizes the refrigerant flowing into the expansion mechanism 3 in advance. Carbon dioxide (CO 2 ) is enclosed as the refrigerant. Further, the discharge temperature detecting means 20 for detecting the outlet temperature of the compression mechanism 1 (the discharge temperature of the compression mechanism), and the opening degrees of the bypass valve 11 and the pre-reducing valve 12 are calculated based on the values detected by the discharge temperature detecting means 20, And a first operating device 21 to be operated.

次に、上述のように構成された冷凍サイクル装置の運転時の動作について、圧縮機構1のシリンダ容積をVC、膨張機構3のシリンダ容積をVE、蒸発器5の出口冷媒密度をDC(圧縮機構1の流入冷媒密度)、放熱器2の出口冷媒密度をDE(膨張機構3の流入冷媒密度)として説明する。まず、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と略同等である場合について説明する。
圧縮機構1は、臨界圧力を越える圧力(高圧側圧力)まで冷媒を圧縮する。その圧縮された冷媒は、高温高圧状態となり、放熱器2を流れる際に、水に放熱して冷却される。換言すれば、給湯タンク7の底部から給水ポンプ6により放熱器2の水流路へ送り込まれた水は、放熱器2の冷媒流路を流れる冷媒により加熱される。その後、冷媒は、膨張機構3で減圧されて気液二相状態となる。膨張機構3では冷媒の圧力エネルギーを動力に変換し、その動力は軸9に伝達される。この軸9に伝達された動力により駆動源8の入力は低減される。膨張機構3により減圧された冷媒は、蒸発器5に流入し、この蒸発器5で冷媒は空気によって冷却されて気液二相またはガス状態となる。その後、気液二相またはガス状態となった冷媒は、再び圧縮機構1に吸入される。
Next, regarding the operation during operation of the refrigeration cycle apparatus configured as described above, the cylinder volume of the compression mechanism 1 is VC, the cylinder volume of the expansion mechanism 3 is VE, and the outlet refrigerant density of the evaporator 5 is DC (compression mechanism). 1 and the outlet refrigerant density of the radiator 2 will be described as DE (inflow refrigerant density of the expansion mechanism 3). First, a case will be described in which the density ratio (DE / DC) in an actual operation state is substantially equal to the design volume ratio (VC / VE) assumed at the time of design.
The compression mechanism 1 compresses the refrigerant to a pressure exceeding the critical pressure (high pressure side pressure). The compressed refrigerant enters a high-temperature and high-pressure state, and is cooled by releasing heat to water when flowing through the radiator 2. In other words, the water sent from the bottom of the hot water supply tank 7 to the water flow path of the radiator 2 by the water supply pump 6 is heated by the refrigerant flowing through the refrigerant flow path of the radiator 2. Thereafter, the refrigerant is decompressed by the expansion mechanism 3 and enters a gas-liquid two-phase state. The expansion mechanism 3 converts the pressure energy of the refrigerant into power, and the power is transmitted to the shaft 9. The input of the drive source 8 is reduced by the power transmitted to the shaft 9. The refrigerant depressurized by the expansion mechanism 3 flows into the evaporator 5 where the refrigerant is cooled by air to be in a gas-liquid two-phase or gas state. Thereafter, the refrigerant in the gas-liquid two-phase or gas state is sucked into the compression mechanism 1 again.

次に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)と異なる場合について説明する。まず、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より大きい場合の動作について説明する。
この場合には、密度比一定の制約のために、放熱器2出口(膨張機構3入口)の冷媒密度(DE)が小さくなるように、冷凍サイクルは高圧側圧力を低下させた状態でバランスしようとする。ところが、高圧側圧力が望ましい圧力より低下した状態では、吐出温度が低下して冷凍サイクル装置の加熱能力が低下したり、冷凍サイクル装置の効率が低下したりする。このため、バイパス弁11が全閉状態でなければ、バイパス弁11を閉方向に操作し、バイパス流路10に流入していた冷媒を膨張機構3に流入させる。あるいは、バイパス弁11が全閉状態であれば、予減圧弁12を閉方向に操作して膨張機構3に流入する冷媒を減圧し、冷媒密度を低下させる。これらの動作により、高圧側圧力を上昇させ、望ましい圧力に調整できるので、効率の良い運転を行うことができる。
Next, a case where the density ratio (DE / DC) in the actual operation state is different from the design volume ratio (VC / VE) assumed at the time of design will be described. First, an operation when the density ratio (DE / DC) in the actual operation state is larger than the design volume ratio (VC / VE) assumed at the time of design will be described.
In this case, the refrigeration cycle should be balanced in a state where the high-pressure side pressure is reduced so that the refrigerant density (DE) at the outlet of the radiator 2 (inlet of the expansion mechanism 3) becomes small due to the restriction of the density ratio. And However, in a state where the high-pressure side pressure is lower than the desired pressure, the discharge temperature is lowered and the heating capacity of the refrigeration cycle apparatus is reduced, or the efficiency of the refrigeration cycle apparatus is reduced. Therefore, if the bypass valve 11 is not fully closed, the bypass valve 11 is operated in the closing direction, and the refrigerant that has flowed into the bypass flow path 10 is caused to flow into the expansion mechanism 3. Alternatively, if the bypass valve 11 is in a fully closed state, the pre-reducing valve 12 is operated in the closing direction to depressurize the refrigerant flowing into the expansion mechanism 3 and reduce the refrigerant density. By these operations, the high-pressure side pressure can be increased and adjusted to a desired pressure, so that an efficient operation can be performed.

逆に、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合の動作について説明する。
この場合には、密度比一定の制約のために、放熱器2出口(膨張機構3入口)の冷媒密度(DE)が大きくなるように、冷凍サイクルは高圧側圧力を上昇させた状態でバランスしようとする。ところが、高圧側圧力が望ましい圧力より上昇した状態では、冷凍サイクル装置の運転効率が低下してしまう。このため、予減圧弁12が全開状態でなければ、予減圧弁12を開方向に操作し、膨張機構3に流入する冷媒を減圧しないようにして冷媒密度を上昇させる。あるいは、予減圧弁12が全開状態であれば、バイパス弁11を開方向に操作して膨張機構3に流入する冷媒の一部をバイパス流路10に流入させる。これらの動作により、高圧側圧力を低下させ、望ましい圧力に調整できるので、効率の良い運転を行うことができる。
Conversely, the operation when the density ratio (DE / DC) in the actual operation state is smaller than the design volume ratio (VC / VE) assumed at the time of design will be described.
In this case, the refrigeration cycle should be balanced in a state where the high-pressure side pressure is increased so that the refrigerant density (DE) at the outlet of the radiator 2 (inlet of the expansion mechanism 3) is increased due to the restriction of the constant density ratio. And However, in a state where the high-pressure side pressure is higher than the desired pressure, the operating efficiency of the refrigeration cycle apparatus is reduced. For this reason, if the pre-reducing valve 12 is not fully opened, the pre-reducing valve 12 is operated in the opening direction to increase the refrigerant density without depressurizing the refrigerant flowing into the expansion mechanism 3. Alternatively, if the pre-reducing valve 12 is in a fully open state, the bypass valve 11 is operated in the opening direction to cause a part of the refrigerant flowing into the expansion mechanism 3 to flow into the bypass flow path 10. By these operations, the high-pressure side pressure can be reduced and adjusted to a desired pressure, so that efficient operation can be performed.

以上説明したように、第1の実施例の冷凍サイクル装置では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、バイパス弁11と予減圧弁12の開度操作により、望ましい高圧側圧力に調整し、運転効率や能力を低下させることなく運転できる冷凍サイクル装置が提供される。   As described above, in the refrigeration cycle apparatus according to the first embodiment, in the refrigeration cycle apparatus using an expander in which it is difficult to maintain an optimum high-pressure side pressure due to a restriction of a constant density ratio, Whether the density ratio (DE / DC) in the operating state is smaller or larger than the designed volume ratio (VC / VE) assumed at the time of design, it is desirable depending on the opening operation of the bypass valve 11 and the pre-reducing valve 12. Provided is a refrigeration cycle apparatus that is adjusted to a high-pressure side pressure and can be operated without lowering operation efficiency and capacity.

次に、バイパス弁11と予減圧弁12の具体的な操作方法として、第1操作器21が行う制御について、図2に示すフローチャートに基づいて説明する。
本実施例の制御では、高圧側圧力と吐出温度との相関関係を利用して、計測するには高コストなセンサーが必要な高圧側圧力によらず、比較的安価に計測の可能な吐出温度によりバイパス弁11及び予減圧弁12の制御を行う。
すなわち、冷凍サイクル装置の運転時には、吐出温度検知手段20からの検出値(吐出温度Td)(ステップ100)が取り込まれる。予めROM等に記憶されている目標吐出温度(目標Td)とステップ100で取り込んだ吐出温度とを比較する(ステップ110)。
吐出温度が目標吐出温度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、バイパス弁11が全閉となっているか否かを判定する(ステップ120)。バイパス弁11が全閉である場合には、予減圧弁12を閉方向に操作し(ステップ130)、膨張機構3に流入する冷媒を減圧し、冷媒密度を低下させ、高圧側圧力および吐出温度を上昇させる。また、バイパス弁11が全閉でない場合には、バイパス弁11を閉方向に操作し(ステップ140)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を減少させ、高圧側圧力及び吐出温度を上昇させる。
逆に、吐出温度が目標吐出温度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、予減圧弁12が全開となっているか否かを判定する(ステップ150)。予減圧弁12が全開である場合には、バイパス弁11を開方向に操作し(ステップ160)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を増加させ、高圧側圧力および吐出温度を低下させる。また、予減圧弁12が全開でない場合には、予減圧弁12を開方向に操作し(ステップ170)、膨張機構3に流入する冷媒を減圧しないようにして、冷媒密度を低下させないようにすることで、高圧側圧力及び吐出温度を低下させる。
以上のステップの後、ステップ100に戻り、以後ステップ100からステップ170まで繰り返すことにより、図3に示すように、バイパス弁11と予減圧弁12とを連携させた制御を行う。
Next, as a specific operation method of the bypass valve 11 and the pre-reducing valve 12, the control performed by the first controller 21 will be described based on the flowchart shown in FIG.
In the control of the present embodiment, the discharge temperature that can be measured relatively inexpensively regardless of the high pressure side pressure that requires a high-cost sensor to measure by utilizing the correlation between the high pressure side pressure and the discharge temperature. Thus, the bypass valve 11 and the pre-reducing valve 12 are controlled.
That is, when the refrigeration cycle apparatus is in operation, the detected value (discharge temperature Td) (step 100) from the discharge temperature detecting means 20 is captured. The target discharge temperature (target Td) stored in advance in the ROM or the like is compared with the discharge temperature taken in step 100 (step 110).
When the discharge temperature is lower than the target discharge temperature, the high-pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully closed (step 120). When the bypass valve 11 is fully closed, the pre-reducing valve 12 is operated in the closing direction (step 130), the refrigerant flowing into the expansion mechanism 3 is depressurized, the refrigerant density is lowered, the high pressure side pressure and the discharge temperature. To raise. If the bypass valve 11 is not fully closed, the bypass valve 11 is operated in the closing direction (step 140), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is reduced, and the high pressure side pressure and Increase the discharge temperature.
On the other hand, when the discharge temperature is higher than the target discharge temperature, the high-pressure side pressure tends to be higher than the optimum pressure. Therefore, first, it is determined whether or not the pre-reducing valve 12 is fully opened (step 150). . When the pre-reducing valve 12 is fully open, the bypass valve 11 is operated in the opening direction (step 160), the amount of refrigerant flowing into the bypass passage 10 bypassing the expansion mechanism 3 is increased, and the high pressure side pressure and discharge are increased. Reduce temperature. Further, when the pre-reducing valve 12 is not fully opened, the pre-reducing valve 12 is operated in the opening direction (step 170) so that the refrigerant flowing into the expansion mechanism 3 is not depressurized so that the refrigerant density is not lowered. As a result, the high-pressure side pressure and the discharge temperature are reduced.
After the above steps, the process returns to step 100, and thereafter repeats from step 100 to step 170, thereby performing control in which the bypass valve 11 and the pre-reducing valve 12 are linked as shown in FIG.

以上説明したように、第1の実施例の冷凍サイクル装置の制御方法では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、吐出温度に基づいてバイパス弁11と予減圧弁12の開度を操作することで、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力の低下させることなく運転できる。
なお、バイパス弁11、予減圧弁12が全開、または、全閉であるとの判定は、物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度、または、最小開度となったことで判定してもよい。
また、本実施例の冷媒は二酸化炭素(CO2)であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。
As described above, in the control method for the refrigeration cycle apparatus according to the first embodiment, the refrigeration cycle apparatus using the expander that is difficult to maintain the optimum high-pressure side pressure due to the restriction of the constant density ratio. In this case, whether the density ratio (DE / DC) in the actual operation state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design, the bypass valve 11 and the pre-reducing valve are based on the discharge temperature. By operating the opening of 12, the pressure can be adjusted to a desired high pressure side pressure, and the operation can be performed without lowering the operation efficiency and capacity of the refrigeration cycle apparatus.
Note that the determination that the bypass valve 11 and the pre-reducing valve 12 are fully open or fully closed may not be physically open or fully closed, considering the reliability of the valve, etc. Then, it may be determined that the maximum opening degree or the minimum opening degree close to the full opening or the full opening determined in advance is reached.
The refrigerant of the present embodiment is described as a carbon dioxide (CO 2), and other refrigerants, for example, the same effect can R410A, etc. is obtained.

本発明の第2の実施例における冷凍サイクル装置について説明する。本実施例の冷凍サイクル装置は、第1の実施例の冷凍サイクル装置とほぼ同様な構成であり、同一機能部品については同一の符号を付して説明を省略する。図4は、本発明の第2の実施例における冷凍サイクル装置を示す構成図である。また、図5は、本発明の第2の実施例における冷凍サイクル装置の制御方法を示すフローチャートである。
本実施例の冷凍サイクル装置において、第1の実施例の冷凍サイクル装置と異なる点は、第1の実施例の吐出温度検知手段20及び第1操作器21の代わりに、蒸発器5の入口から出口の間の温度(蒸発器の蒸発温度)を検知する蒸発温度検知手段30と、圧縮機構1の入口温度(圧縮機構の吸入温度)を検知する吸入温度検知手段31と、蒸発温度検知手段30と吸入温度検知手段31とが検知した値から過熱度(吸入温度と蒸発温度との差)を演算し、バイパス弁11および予減圧弁12の開度を演算、操作する第2操作器32とを備えている構成にある。
A refrigeration cycle apparatus according to the second embodiment of the present invention will be described. The refrigeration cycle apparatus of the present embodiment has substantially the same configuration as the refrigeration cycle apparatus of the first embodiment, and the same functional parts are denoted by the same reference numerals and description thereof is omitted. FIG. 4 is a block diagram showing a refrigeration cycle apparatus in the second embodiment of the present invention. FIG. 5 is a flowchart showing a control method of the refrigeration cycle apparatus in the second embodiment of the present invention.
In the refrigeration cycle apparatus of the present embodiment, the difference from the refrigeration cycle apparatus of the first embodiment is that instead of the discharge temperature detecting means 20 and the first operating device 21 of the first embodiment, the inlet of the evaporator 5 is used. Evaporation temperature detection means 30 for detecting the temperature between the outlets (evaporation temperature of the evaporator), suction temperature detection means 31 for detecting the inlet temperature of the compression mechanism 1 (suction temperature of the compression mechanism), and evaporation temperature detection means 30 And a second operating device 32 that calculates the degree of superheat (difference between the intake temperature and the evaporation temperature) from the values detected by the intake temperature detecting means 31 and calculates and operates the opening degrees of the bypass valve 11 and the pre-reducing valve 12; It is in the composition provided with.

次に、第2操作器32が行う制御について、図5に示すフローチャートに基づいて説明する。本実施例の制御では、高圧側圧力と過熱度との相関関係を利用して、計測するには高コストなセンサーが必要な高圧側圧力によらず、比較的安価に計測の可能な蒸発温度と吸入温度とから演算される過熱度によりバイパス弁11及び予減圧弁12の制御を行う。
すなわち、冷凍サイクル装置の運転時には、蒸発温度検知手段30からの検出値(蒸発温度Te)(ステップ200)が取り込まれ、また、吸入温度検知手段31からの検出値(吸入温度Ts)(ステップ210)が取り込まれる。それら取り込んだ検出値から吸入温度と蒸発温度の差である過熱度(SH)を演算(ステップ220)し、予めROM等に記憶されている目標過熱度(目標SH)とステップ200で演算した過熱度とを比較する(ステップ230)。
過熱度が目標過熱度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、バイパス弁11が全閉となっているか否かを判定する(ステップ240)。バイパス弁11が全閉である場合には、予減圧弁12を閉方向に操作し(ステップ250)、膨張機構3に流入する冷媒を減圧し、冷媒密度を低下させ、高圧側圧力および吐出温度を上昇させる。また、バイパス弁11が全閉でない場合には、バイパス弁11を閉方向に操作し(ステップ260)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を減少させ、高圧側圧力および過熱度を上昇させる。
逆に、過熱度が目標過熱度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、予減圧弁12が全開となっているか否かを判定する(ステップ270)。予減圧弁12が全開である場合には、バイパス弁11を開方向に操作し(ステップ280)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を増加させ、高圧側圧力および過熱度を低下させる。
また、予減圧弁12が全開でない場合には、予減圧弁12を開方向に操作し(ステップ290)、膨張機構3に流入する冷媒を減圧しないようにして、冷媒密度を低下させないようにすることで、高圧側圧力および吐出温度を低下させる。
以上のステップの後、ステップ200に戻り、以後ステップ200からステップ290まで繰り返すことにより、バイパス弁11と予減圧弁12とを連携させた制御を行う。
Next, the control performed by the second controller 32 will be described based on the flowchart shown in FIG. In the control of this embodiment, the evaporating temperature that can be measured relatively inexpensively regardless of the high-pressure side pressure that requires a high-cost sensor to measure using the correlation between the high-pressure side pressure and the degree of superheat. The bypass valve 11 and the pre-reducing valve 12 are controlled based on the degree of superheat calculated from the suction temperature.
That is, during operation of the refrigeration cycle apparatus, the detection value (evaporation temperature Te) (step 200) from the evaporation temperature detection means 30 is taken in, and the detection value (intake temperature Ts) from the suction temperature detection means 31 (step 210). ) Is captured. The superheat degree (SH), which is the difference between the suction temperature and the evaporation temperature, is calculated from the acquired detection values (step 220), and the target superheat degree (target SH) stored in advance in the ROM or the like and the superheat calculated in step 200 are calculated. The degree is compared (step 230).
If the degree of superheat is lower than the target degree of superheat, the high pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully closed (step 240). When the bypass valve 11 is fully closed, the pre-reducing valve 12 is operated in the closing direction (step 250), the refrigerant flowing into the expansion mechanism 3 is decompressed, the refrigerant density is lowered, and the high-pressure side pressure and discharge temperature are reduced. To raise. If the bypass valve 11 is not fully closed, the bypass valve 11 is operated in the closing direction (step 260), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is reduced, the high pressure side pressure and Increase superheat.
On the other hand, when the degree of superheat is higher than the target degree of superheat, the high pressure side pressure tends to be higher than the optimum pressure, so it is first determined whether or not the pre-reducing valve 12 is fully open (step 270). . When the pre-reducing valve 12 is fully open, the bypass valve 11 is operated in the opening direction (step 280), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is increased, and the high pressure side pressure and overheating are increased. Reduce the degree.
When the pre-reducing valve 12 is not fully opened, the pre-reducing valve 12 is operated in the opening direction (step 290) so that the refrigerant flowing into the expansion mechanism 3 is not depressurized so that the refrigerant density is not lowered. As a result, the high-pressure side pressure and the discharge temperature are reduced.
After the above steps, the process returns to step 200, and thereafter, by repeating from step 200 to step 290, the control in which the bypass valve 11 and the pre-pressure reducing valve 12 are linked is performed.

以上説明したように、第2の実施例の冷凍サイクル装置及びその制御方法では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、過熱度に基づいてバイパス弁11と予減圧弁12の開度を操作することで、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力の低下させることなく運転できる。
なお、バイパス弁11、予減圧弁12が全開、または、全閉であるとの判定は、物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度、または、最小開度となったことで判定してもよい。
また、本実施例の冷媒は二酸化炭素(CO2)であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。
As described above, in the refrigeration cycle apparatus of the second embodiment and the control method thereof, the refrigeration cycle using the expander that is difficult to maintain the optimum high-pressure side pressure due to the restriction of the constant density ratio. In the apparatus, whether the density ratio (DE / DC) in the actual operation state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design, the bypass valve 11 and the pre-depressurization are based on the degree of superheat. By operating the opening degree of the valve 12, the pressure can be adjusted to a desired high pressure side pressure, and the operation can be performed without reducing the operation efficiency and capacity of the refrigeration cycle apparatus.
Note that the determination that the bypass valve 11 and the pre-reducing valve 12 are fully open or fully closed may not be physically open or fully closed, considering the reliability of the valve, etc. Then, it may be determined that the maximum opening degree or the minimum opening degree close to the full opening or the full opening determined in advance is reached.
The refrigerant of the present embodiment is described as a carbon dioxide (CO 2), and other refrigerants, for example, the same effect can R410A, etc. is obtained.

本発明の第3の実施例における冷凍サイクル装置について説明する。本実施例の冷凍サイクル装置は、第1の実施例の冷凍サイクル装置とほぼ同様な構成であり、同一機能部品については同一の符号を付して説明を省略する。図6は、本発明の第3の実施例における冷凍サイクル装置を示す構成図である。また、図7は、本発明の第3の実施例における冷凍サイクル装置の制御方法を示すフローチャートである。
本実施例の冷凍サイクル装置において、第1の実施例の冷凍サイクル装置と異なる点は、第1の実施例の予減圧弁12を備えず、吐出温度検知手段20が検知した値に基づきバイパス弁11および圧縮機構1を駆動する駆動源8の回転数を操作する第3操作器40を備えている構成にある。
A refrigeration cycle apparatus according to a third embodiment of the present invention will be described. The refrigeration cycle apparatus of the present embodiment has substantially the same configuration as the refrigeration cycle apparatus of the first embodiment, and the same functional parts are denoted by the same reference numerals and description thereof is omitted. FIG. 6 is a block diagram showing a refrigeration cycle apparatus in the third embodiment of the present invention. FIG. 7 is a flowchart showing a control method of the refrigeration cycle apparatus in the third embodiment of the present invention.
In the refrigeration cycle apparatus of the present embodiment, the difference from the refrigeration cycle apparatus of the first embodiment is that the pre-reducing valve 12 of the first embodiment is not provided, and a bypass valve is based on the value detected by the discharge temperature detecting means 20. 11 and a third operating device 40 for operating the rotational speed of the drive source 8 that drives the compression mechanism 1.

次に、第3操作器40が行う制御について、図7に示すフローチャートに基づいて説明する。本実施例の制御では、第1の実施例と同様に、吐出温度に基づき制御を行う。
すなわち、冷凍サイクル装置の運転時には、吐出温度検知手段20からの検出値(吐出温度)(ステップ300)が取り込まれる。予めROM等に記憶されている目標吐出温度とステップ300で取り込んだ吐出温度とを比較する(ステップ310)。
吐出温度が目標吐出温度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、バイパス弁11が全閉となっているか否かを判定する(ステップ320)。バイパス弁11が全閉である場合には、駆動源8の駆動回転数を大きくする(ステップ330)。駆動回転数が大きくなると圧縮機構1から吐出される冷媒の循環量が増加し、放熱器2、蒸発器5での熱交換効率が低下するため、放熱器2の出口温度が上昇し、膨張機構3に流入する冷媒の密度が低下するとともに、蒸発器5の出口温度が低下し、圧縮機構1に吸入される冷媒密度が増加するので、密度比(DE/DC)が低下する。このため、予減圧弁12を閉方向に操作するのと同等の効果が得られ、高圧側圧力および吐出温度を上昇させることができる。
また、バイパス弁11が全閉でない場合には、駆動回転数が予め定められた基準値より小さいかどうかを判定する(ステップ340)。駆動回転数が基準値より小さい場合には、後に述べるステップ380で、駆動回転数を小さくしたと考えられるので、基準値までの範囲内で駆動回転数を大きくし(ステップ350)、密度比(DE/DC)を低下させることで、高圧側圧力および吐出温度を上昇させる。また、駆動回転数が基準値である場合には、バイパス弁11を閉方向に操作し(ステップ360)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を減少させ、高圧側圧力および吐出温度を上昇させる。
Next, the control performed by the third controller 40 will be described based on the flowchart shown in FIG. In the control of the present embodiment, the control is performed based on the discharge temperature, as in the first embodiment.
That is, when the refrigeration cycle apparatus is in operation, the detected value (discharge temperature) (step 300) from the discharge temperature detecting means 20 is taken in. The target discharge temperature stored in advance in the ROM or the like is compared with the discharge temperature taken in step 300 (step 310).
When the discharge temperature is lower than the target discharge temperature, the high-pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully closed (step 320). If the bypass valve 11 is fully closed, the drive rotational speed of the drive source 8 is increased (step 330). When the driving rotational speed increases, the circulation amount of the refrigerant discharged from the compression mechanism 1 increases and the heat exchange efficiency in the radiator 2 and the evaporator 5 decreases, so that the outlet temperature of the radiator 2 rises, and the expansion mechanism 3, the density of the refrigerant flowing into 3 decreases, the outlet temperature of the evaporator 5 decreases, and the density of refrigerant sucked into the compression mechanism 1 increases, so the density ratio (DE / DC) decreases. For this reason, the same effect as operating the pre-reducing valve 12 in the closing direction can be obtained, and the high-pressure side pressure and the discharge temperature can be increased.
If the bypass valve 11 is not fully closed, it is determined whether or not the drive rotational speed is smaller than a predetermined reference value (step 340). If the drive rotational speed is smaller than the reference value, it is considered that the drive rotational speed is reduced in step 380 described later. Therefore, the drive rotational speed is increased within the range up to the reference value (step 350), and the density ratio ( By reducing (DE / DC), the high-pressure side pressure and the discharge temperature are increased. When the drive rotational speed is the reference value, the bypass valve 11 is operated in the closing direction (step 360), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is reduced, and the high pressure side pressure is reduced. And increase the discharge temperature.

逆に、吐出温度が目標吐出温度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、バイパス弁11が全開となっているか否かを判定する(ステップ370)。バイパス弁11が全開である場合には、駆動源8の駆動回転数を小さくする(ステップ380)。駆動回転数が小さくなると圧縮機構1から吐出される冷媒の循環量が低下し、放熱器2、蒸発器5での熱交換効率が向上するため、放熱器2の出口温度が低下し、膨張機構3に流入する冷媒の密度が上昇するとともに、蒸発器5の出口温度が上昇し、圧縮機構1に吸入される冷媒密度が低下するので、密度比(DE/DC)が増加する。このため、バイパス弁11を開方向に操作するのと同等の効果が得られ、高圧側圧力および吐出温度を低下させることができる。
また、バイパス弁11が全開でない場合には、駆動回転数が予め定められた基準値より大きいかどうかを判定する(ステップ390)。駆動回転数が基準値より大きい場合には、ステップ330で、駆動回転数を大きくしたと考えられるので、基準値までの範囲内で駆動回転数を小さくし(ステップ400)、密度比(DE/DC)を増加させることで、高圧側圧力および吐出温度を低下させる。また、駆動回転数が基準値である場合には、バイパス弁11を開方向に操作し(ステップ410)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を増加させ、高圧側圧力および吐出温度を低下させる。
以上のステップの後、ステップ300に戻り、以後ステップ300からステップ410まで繰り返すことにより、図8に示すように、バイパス弁11の開度と駆動源8の駆動回転数とを連携させた制御を行う。
On the other hand, when the discharge temperature is higher than the target discharge temperature, the high-pressure side pressure tends to be higher than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully open (step 370). If the bypass valve 11 is fully open, the drive rotational speed of the drive source 8 is reduced (step 380). When the driving rotational speed is reduced, the circulation amount of the refrigerant discharged from the compression mechanism 1 is reduced, and the heat exchange efficiency in the radiator 2 and the evaporator 5 is improved. Therefore, the outlet temperature of the radiator 2 is lowered, and the expansion mechanism 3, the density of the refrigerant flowing into 3 increases, the outlet temperature of the evaporator 5 increases, and the density of refrigerant sucked into the compression mechanism 1 decreases, so that the density ratio (DE / DC) increases. For this reason, the same effect as operating the bypass valve 11 in the opening direction can be obtained, and the high-pressure side pressure and the discharge temperature can be reduced.
If the bypass valve 11 is not fully open, it is determined whether or not the drive rotational speed is greater than a predetermined reference value (step 390). If the drive rotational speed is greater than the reference value, it is considered that the drive rotational speed has been increased in step 330. Therefore, the drive rotational speed is decreased within the range up to the reference value (step 400), and the density ratio (DE / By increasing DC), the high-pressure side pressure and the discharge temperature are reduced. When the drive rotational speed is the reference value, the bypass valve 11 is operated in the opening direction (step 410), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is increased, and the high pressure side pressure is increased. And lowering the discharge temperature.
After the above steps, the process returns to step 300 and thereafter repeats from step 300 to step 410, thereby performing control in which the opening degree of the bypass valve 11 and the drive rotational speed of the drive source 8 are linked as shown in FIG. Do.

以上説明したように、第3の実施例の冷凍サイクル装置及びその制御方法では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも、大きい場合でも、吐出温度に基づいてバイパス弁11の開度と駆動源8の駆動回転数を操作することで、望ましい高圧側圧力に調整できる。
さらに、図8に示したようにバイパス弁11の開度が全開となった場合でも、駆動源8の駆動回転数を操作することで、望ましい高圧側圧力に調整できるために、冷凍サイクル装置の運転効率や能力の低下させることなく運転できる。
なお、本実施例では、第1の実施例と同様に吐出温度に基づき制御を行うとして説明したが、第2の実施例のように過熱度に基づき制御してもよい。さらに、第1、2の実施例の予減圧弁12の開度操作と、本実施例の駆動源8の駆動回転数操作を組み合わせて実施してもよい。また、バイパス弁11が全開、または、全閉であるとの判定は、物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度、または、最小開度となったことで判定してもよい。また、本実施例の冷媒は二酸化炭素(CO2)であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。
As described above, in the refrigeration cycle apparatus and control method thereof according to the third embodiment, a refrigeration cycle using an expander that is difficult to maintain an optimum high-pressure side pressure due to a restriction of a constant density ratio. In the apparatus, whether the density ratio (DE / DC) in the actual operation state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design, the opening degree of the bypass valve 11 based on the discharge temperature. By manipulating the driving rotational speed of the driving source 8, it can be adjusted to a desired high pressure side pressure.
Furthermore, even when the opening degree of the bypass valve 11 is fully opened as shown in FIG. 8, it can be adjusted to a desired high-pressure side pressure by operating the drive rotational speed of the drive source 8. It can be operated without lowering operating efficiency and capacity.
In this embodiment, the control is performed based on the discharge temperature as in the first embodiment. However, the control may be performed based on the degree of superheat as in the second embodiment. Further, the opening operation of the pre-reducing valve 12 of the first and second embodiments may be combined with the driving rotational speed operation of the driving source 8 of the present embodiment. Further, the determination that the bypass valve 11 is fully open or fully closed may not be physically open or fully closed, and is determined in advance in consideration of the reliability of the valve. You may determine by having become the full opening or the maximum opening degree close | similar to full closing, or the minimum opening degree. The refrigerant of the present embodiment is described as a carbon dioxide (CO 2), and other refrigerants, for example, the same effect can R410A, etc. is obtained.

本発明の第4の実施例における冷凍サイクル装置について説明する。本実施例の冷凍サイクル装置は、第1の実施例の冷凍サイクル装置とほぼ同様な構成であり、同一機能部品については同一の符号を付して説明を省略する。図9は、本発明の第4の実施例における冷凍サイクル装置を示す構成図である。また、図10は、本発明の第4の実施例における冷凍サイクル装置の制御方法を示すフローチャートである。
本実施例の冷凍サイクル装置において、第1の実施例の冷凍サイクル装置と異なる点は、第1の実施例の予減圧弁12を備えず、吐出温度検知手段20が検知した値に基づきバイパス弁11およびファン4を駆動する駆動源(図示せず)の回転数を操作する第4操作器50を備えている構成にある。
A refrigeration cycle apparatus according to a fourth embodiment of the present invention will be described. The refrigeration cycle apparatus of the present embodiment has substantially the same configuration as the refrigeration cycle apparatus of the first embodiment, and the same functional parts are denoted by the same reference numerals and description thereof is omitted. FIG. 9 is a block diagram showing a refrigeration cycle apparatus in the fourth embodiment of the present invention. FIG. 10 is a flowchart showing a control method of the refrigeration cycle apparatus in the fourth embodiment of the present invention.
In the refrigeration cycle apparatus of the present embodiment, the difference from the refrigeration cycle apparatus of the first embodiment is that the pre-pressure reducing valve 12 of the first embodiment is not provided, and a bypass valve is based on the value detected by the discharge temperature detecting means 20. 11 and a fourth operating device 50 for operating the rotational speed of a drive source (not shown) for driving the fan 4.

次に、第4操作器50が行う制御について、図10に示すフローチャートに基づいて説明する。本実施例の制御では、第1の実施例と同様に、吐出温度に基づき制御を行う。
すなわち、冷凍サイクル装置の運転時には、吐出温度検知手段20からの検出値(吐出温度)(ステップ400)が取り込まれる。予めROM等に記憶されている目標吐出温度とステップ400で取り込んだ吐出温度とを比較する(ステップ410)。
吐出温度が目標吐出温度より低い場合には、高圧側圧力が最適な圧力より低い傾向にあるため、まず、バイパス弁11が全閉となっているか否かを判定する(ステップ420)。バイパス弁11が全閉である場合には、ファン4の回転数を大きくする(ステップ430)。ファン回転数が大きくなると蒸発圧力(蒸発器5入口〜圧縮機構1入口の圧力)が上昇するため、蒸発器5の出口の冷媒密度が上昇するので、密度比(DE/DC)が低下する。このため、予減圧弁12を閉方向に操作するのと同等の効果が得られ、高圧側圧力および吐出温度を上昇させることができる。
また、バイパス弁11が全閉でない場合には、ファン回転数が予め定められた基準値より小さいかどうかを判定する(ステップ440)。ファン回転数が基準値より小さい場合には、後に述べるステップ480で、ファン回転数を小さくしたと考えられるので、基準値までの範囲内でファン回転数を大きくし(ステップ450)、密度比(DE/DC)を低下させることで、高圧側圧力および吐出温度を上昇させる。また、ファン回転数が基準値である場合には、バイパス弁11を閉方向に操作し(460)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を減少させ、高圧側圧力および吐出温度を上昇させる。
Next, the control performed by the fourth controller 50 will be described based on the flowchart shown in FIG. In the control of the present embodiment, the control is performed based on the discharge temperature, as in the first embodiment.
That is, when the refrigeration cycle apparatus is in operation, the detected value (discharge temperature) (step 400) from the discharge temperature detecting means 20 is captured. The target discharge temperature stored in advance in the ROM or the like is compared with the discharge temperature taken in step 400 (step 410).
When the discharge temperature is lower than the target discharge temperature, the high-pressure side pressure tends to be lower than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully closed (step 420). If the bypass valve 11 is fully closed, the rotational speed of the fan 4 is increased (step 430). When the fan rotation speed increases, the evaporation pressure (pressure from the evaporator 5 inlet to the compression mechanism 1 inlet) increases, so that the refrigerant density at the outlet of the evaporator 5 increases, and the density ratio (DE / DC) decreases. For this reason, the same effect as operating the pre-reducing valve 12 in the closing direction can be obtained, and the high-pressure side pressure and the discharge temperature can be increased.
If the bypass valve 11 is not fully closed, it is determined whether or not the fan speed is smaller than a predetermined reference value (step 440). If the fan rotation speed is smaller than the reference value, it is considered that the fan rotation speed has been decreased in step 480 described later. Therefore, the fan rotation speed is increased within the range up to the reference value (step 450), and the density ratio ( By reducing (DE / DC), the high-pressure side pressure and the discharge temperature are increased. When the fan rotational speed is the reference value, the bypass valve 11 is operated in the closing direction (460), the amount of refrigerant flowing into the bypass passage 10 bypassing the expansion mechanism 3 is reduced, and the high pressure side pressure and Increase the discharge temperature.

逆に、吐出温度が目標吐出温度より高い場合には、高圧側圧力が最適な圧力より高い傾向にあるため、まず、バイパス弁11が全開となっているか否かを判定する(ステップ470)。バイパス弁11が全開である場合には、ファン4の駆動回転数を小さくする(ステップ480)。ファン駆動回転数が小さくなると蒸発圧力が低下するため、蒸発器5の出口の冷媒密度が低下するので、密度比(DE/DC)が増加する。このため、バイパス弁11を開方向に操作するのと同等の効果が得られ、高圧側圧力および吐出温度を低下させることができる。
また、バイパス弁11が全開でない場合には、ファン回転数が予め定められた基準値より大きいかどうかを判定する(ステップ490)。ファン回転数が基準値より大きい場合には、ステップ430で、ファン回転数を大きくしたと考えられるので、基準値までの範囲内でファン回転数を小さくし(ステップ500)、密度比(DE/DC)を増加させることで、高圧側圧力および吐出温度を低下させる。また、ファン回転数が基準値である場合には、バイパス弁11を開方向に操作し(ステップ510)、膨張機構3をバイパスするバイパス流路10に流入する冷媒量を増加させ、高圧側圧力および吐出温度を低下させる。
以上のステップの後、ステップ400に戻り、以後ステップ400からステップ510まで繰り返すことにより、図11に示すように、バイパス弁11の開度とファン4の回転数とを連携させた制御を行う。
On the other hand, when the discharge temperature is higher than the target discharge temperature, the high-pressure side pressure tends to be higher than the optimum pressure, so it is first determined whether or not the bypass valve 11 is fully open (step 470). If the bypass valve 11 is fully open, the drive rotational speed of the fan 4 is reduced (step 480). When the fan drive rotation speed decreases, the evaporation pressure decreases, and the refrigerant density at the outlet of the evaporator 5 decreases, so the density ratio (DE / DC) increases. For this reason, the same effect as operating the bypass valve 11 in the opening direction can be obtained, and the high-pressure side pressure and the discharge temperature can be reduced.
If the bypass valve 11 is not fully open, it is determined whether or not the fan rotation speed is greater than a predetermined reference value (step 490). If the fan rotational speed is larger than the reference value, it is considered that the fan rotational speed is increased in step 430. Therefore, the fan rotational speed is decreased within the range up to the reference value (step 500), and the density ratio (DE / By increasing the DC), the high-pressure side pressure and the discharge temperature are reduced. When the fan rotation speed is the reference value, the bypass valve 11 is operated in the opening direction (step 510), the amount of refrigerant flowing into the bypass flow path 10 that bypasses the expansion mechanism 3 is increased, and the high pressure side pressure is increased. And lowering the discharge temperature.
After the above steps, the process returns to step 400, and thereafter repeats from step 400 to step 510 to perform control in which the opening degree of the bypass valve 11 and the rotational speed of the fan 4 are linked as shown in FIG.

以上説明したように、第4の実施例の冷凍サイクル装置及びその制御方法では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DC)が、設計時に想定した設計容積比(VC/VE)より小さい場合でも大きい場合でも、過熱度に基づいてバイパス弁11の開度とファン4の回転数を操作することで、望ましい高圧側圧力に調整できる。
さらに、図11に示したようにバイパス弁11の開度が全開となった場合でも、ファン4の回転数を操作することで、望ましい高圧側圧力に調整できるために、冷凍サイクル装置の運転効率や能力の低下させることなく運転できる。
なお、本実施例では、第1の実施例と同様に吐出温度に基づき制御を行うとして説明したが、第2の実施例のように過熱度に基づき制御してもよい。さらに、第1、2の実施例の予減圧弁12の開度操作や、第3の実施例の圧縮機構11の駆動回転数操作と、本実施例のファン4の回転数操作を組み合わせて実施してもよい。また、バイパス弁11が全開、または、全閉であるとの判定は、物理的に弁が全開、または、全閉となっていなくてもよく、弁の信頼性等を考慮して予め定めた全開、または、全閉に近い最大開度、または、最小開度となったことで判定してもよい。また、本実施例の冷媒は二酸化炭素(CO2)であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。
As described above, in the refrigeration cycle apparatus of the fourth embodiment and the control method thereof, the refrigeration cycle using the expander that is difficult to maintain the optimum high-pressure side pressure due to the restriction of the constant density ratio. In the apparatus, whether the density ratio (DE / DC) in the actual operation state is smaller or larger than the design volume ratio (VC / VE) assumed at the time of design, the opening degree of the bypass valve 11 is determined based on the degree of superheat. By manipulating the rotational speed of the fan 4, it can be adjusted to a desired high pressure side pressure.
Furthermore, even when the opening degree of the bypass valve 11 is fully opened as shown in FIG. 11, the operating efficiency of the refrigeration cycle apparatus can be adjusted by adjusting the rotational speed of the fan 4 to a desirable high pressure side pressure. And you can drive without reducing your ability.
In this embodiment, the control is performed based on the discharge temperature as in the first embodiment. However, the control may be performed based on the degree of superheat as in the second embodiment. Further, the opening operation of the pre-reducing valve 12 of the first and second embodiments, the driving rotation speed operation of the compression mechanism 11 of the third embodiment, and the rotation speed operation of the fan 4 of the present embodiment are implemented in combination. May be. Further, the determination that the bypass valve 11 is fully open or fully closed may not be physically open or fully closed, and is determined in advance in consideration of the reliability of the valve. You may determine by having become the full opening or the maximum opening degree close | similar to full closing, or the minimum opening degree. The refrigerant of the present embodiment is described as a carbon dioxide (CO 2), and other refrigerants, for example, the same effect can R410A, etc. is obtained.

本発明の第5の実施例における冷凍サイクル装置について説明する。なお、本実施例の冷凍サイクル装置の構成及びその制御方法は、第1の実施例と同様であるので、同様な構成及び動作等についての説明を省略する。
本実施例の冷凍サイクル装置の特徴とする構成は、圧縮機構1のシリンダ容積をVC、膨張機構3のシリンダ容積をVE、蒸発器5の出口冷媒密度をDC、放熱器2の出口冷媒密度をDEとした場合に、設計容積比(VC/VE)が、実際の運転状態での密度比(DE/DC)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計されている。さらに、具体的には、放熱器2の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計されている点にある。
また、給湯機として使用される冷凍サイクル装置においては、設計容積比(VC/VE)が、給湯機の使用範囲内で、蒸発器5の周囲温度(外気温度)が最も低く、かつ、放熱器2に流入する水温(入水温度)が最も低く、かつ、放熱器2から流出させる湯温(出湯温度)が最も高い条件で運転された場合の密度比(DE/DC)とほぼ一致するように設計されている構成を特徴とする。
さらに、具体的には、給湯機として使用される冷凍サイクル装置において、設計容積比(VC/VE)は、10以上の値となるように設計されている構成を特徴とする。
A refrigeration cycle apparatus according to a fifth embodiment of the present invention will be described. Note that the configuration of the refrigeration cycle apparatus of the present embodiment and the control method thereof are the same as those of the first embodiment, and thus description of the same configuration, operation, and the like is omitted.
The characteristic configuration of the refrigeration cycle apparatus of the present embodiment is that the cylinder volume of the compression mechanism 1 is VC, the cylinder volume of the expansion mechanism 3 is VE, the outlet refrigerant density of the evaporator 5 is DC, and the outlet refrigerant density of the radiator 2 is In the case of DE, the design volume ratio (VC / VE) is almost equal to the value of the density ratio (DE / DC) under the condition that the density ratio (DE / DC) in the actual operation state is the largest. Designed to. Furthermore, specifically, it is the point which is designed so that it may substantially correspond to the value of the density ratio (DE / DC) under the condition that the outlet refrigerant density (DE) of the radiator 2 is maximized.
In the refrigeration cycle apparatus used as a water heater, the design volume ratio (VC / VE) has the lowest ambient temperature (outside air temperature) of the evaporator 5 within the range of use of the water heater, and a radiator. 2 so that the water temperature (incoming water temperature) flowing into 2 is the lowest, and the density ratio (DE / DC) when operating under the condition where the hot water temperature (outlet temperature) flowing out of the radiator 2 is the highest is almost the same. Characterized by the designed configuration.
Furthermore, specifically, the refrigeration cycle apparatus used as a hot water heater is characterized in that the design volume ratio (VC / VE) is designed to be a value of 10 or more.

ところで、本実施例の冷凍サイクル装置では、第1の実施例で説明したように、実際の運転状態での密度比(DE/DC)が、設計時に決定した設計容積比(VC/VE)より小さい場合には、バイパス弁11を開方向に操作することにより、あるいは、密度比(DE/DC)が設計容積比(VC/VE)より大きい場合には、予減圧弁12を開方向に操作することにより密度比(DE/DC)を設計容積比(VC/VE)に一致させて、望ましい高圧側圧力に調整できる。しかし、バイパス流路10を流れる冷媒量が多くなったり、予減圧弁12で予め膨張させる圧力差が大きくなったりすると、回収できるはずの動力が減少してしまうため、運転効率(COP)の向上率も低下してしまう。したがって、設計容積比をいかに最適な値として設計するかが重要である。   By the way, in the refrigeration cycle apparatus of the present embodiment, as described in the first embodiment, the density ratio (DE / DC) in the actual operation state is greater than the design volume ratio (VC / VE) determined at the time of design. If it is smaller, the pre-reducing valve 12 is operated in the opening direction by operating the bypass valve 11 in the opening direction or when the density ratio (DE / DC) is larger than the design volume ratio (VC / VE). By doing so, the density ratio (DE / DC) can be matched with the design volume ratio (VC / VE) and adjusted to a desired high pressure side pressure. However, if the amount of refrigerant flowing through the bypass passage 10 increases or the pressure difference that is pre-expanded by the pre-reducing valve 12 increases, the power that can be recovered decreases, so that the operating efficiency (COP) is improved. The rate will also decline. Therefore, it is important how to design the design volume ratio as an optimal value.

そこで、本実施例の冷凍サイクル装置を給湯機として使用する場合の、その最適な設計容積比について、図12と図13を用いて詳しく説明する。
図12は、本発明の第5の実施例における密度比とCOP比の相関図であり、図13は、本発明の第5の実施例における密度比と冷媒密度との相関図である。
図12において、外気温度は温度が高い順に、夏期、中間期、冬期、低温期を想定している。入水温度はそれぞれの外気温度条件に応じた最も低い温度を想定し、出湯温度はそれぞれの外気温度条件に応じた標準的な温度を想定している。また、COP比はそれぞれの外気温度条件において、膨張機を用いていない冷凍サイクル装置のCOPを100とした。以下、夏期条件を例に取り説明する。
夏期条件において、実際の運転状態での密度比(DE/DC)は、約7である。この値より大きい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、夏期条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、この値より小さい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、夏期条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、夏期条件で最適に設計された場合、すなわち、設計容積比(VC/VE)を約7として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。
Then, the optimal design volume ratio when using the refrigerating cycle apparatus of a present Example as a hot water heater is demonstrated in detail using FIG. 12 and FIG.
FIG. 12 is a correlation diagram between the density ratio and the COP ratio in the fifth embodiment of the present invention, and FIG. 13 is a correlation diagram between the density ratio and the refrigerant density in the fifth embodiment of the present invention.
In FIG. 12, the outdoor air temperature is assumed to be summer, intermediate, winter, and low temperature in descending order. The incoming water temperature is assumed to be the lowest temperature corresponding to each outdoor air temperature condition, and the tapping temperature is assumed to be a standard temperature corresponding to each outdoor air temperature condition. The COP ratio was set to 100 for the refrigeration cycle apparatus that does not use the expander in each outside air temperature condition. In the following, description will be made taking summer conditions as an example.
Under summer conditions, the density ratio (DE / DC) in actual operating conditions is about 7. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) greater than this value, it is necessary to bypass the refrigerant to the bypass passage 10 in summer conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) smaller than this value, it is necessary to expand the pre-reducing valve 12 in advance in summer conditions. However, in both cases of bypass and pre-expansion, the COP ratio is reduced compared to when designed optimally under summer conditions, that is, when the design volume ratio (VC / VE) is designed to be about 7. It can be seen that when pre-expanded, the COP ratio drastically decreases.

一方、冬期条件、および、低温期条件では、実際の運転状態での密度比(DE/DC)は、それぞれ、約10、および、約12である。これらの値より大きい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、冬期条件や低温期条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、これらの値より小さい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、冬期条件や低温期条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、冬期条件、低温期条件のそれぞれの条件で最適に設計された場合、すなわち、設計容積比(VC/VE)を約10や約12として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。   On the other hand, under winter conditions and low temperature conditions, the density ratio (DE / DC) in the actual operation state is about 10 and about 12, respectively. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) larger than these values, it is necessary to bypass the refrigerant to the bypass passage 10 under winter conditions and low temperature conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) smaller than these values, it is necessary to expand the pre-reducing valve 12 in advance in winter conditions and low temperature conditions. However, in both cases of bypass and pre-expansion, when designed optimally under winter conditions and low temperature conditions, that is, when designed volume ratio (VC / VE) is designed to be about 10 or about 12. It can be seen that the COP ratio is lower than that, particularly when the pre-expansion is performed.

つまり、季節等によって異なる運転条件により、最適な設計容積比は異なるが、圧縮機構1と膨張機構3とが一本の軸9により直結された冷凍サイクル装置では、設計容積比(VC/VE)は設計時に1つの値に決めざるを得ない。このため、例えば、夏期条件で最適となるように設計容積比(VC/VE)を約7として設計した場合には、夏期条件ではCOP比は約112となるが、他の季節条件ではCOP比が約101〜103となる。
これに対し、低温期条件で最適となるように設計容積比(VC/VE)を約12として設計した場合には、低温期条件でのCOP比は約110であり、他の季節条件でも107〜108となる。あるいは、冬期条件で最適となるように設計容積比(VC/VE)を約10として設計した場合には、比較的期間の短い低温期でのCOP比は約103であるが、冬期条件では、110となり、他の季節条件でも約108となる。
このように、設計容積比(VC/VE)を冬期条件や低温期条件で最適となるように設計すれば、COP向上率の季節差を小さくすることができ、季節等の運転条件が異なっても、常に高い運転効率を維持することが可能である。
That is, the optimum design volume ratio varies depending on the operating conditions that vary depending on the season, etc., but in the refrigeration cycle apparatus in which the compression mechanism 1 and the expansion mechanism 3 are directly connected by one shaft 9, the design volume ratio (VC / VE) Must be set to one value at the time of design. Therefore, for example, when the design volume ratio (VC / VE) is designed to be about 7 so as to be optimal under the summer conditions, the COP ratio is about 112 under the summer conditions, but the COP ratio under other seasonal conditions. Becomes approximately 101 to 103.
On the other hand, when the design volume ratio (VC / VE) is designed to be about 12 so as to be optimal under the low temperature condition, the COP ratio under the low temperature condition is about 110, and 107 under other seasonal conditions. ~ 108. Alternatively, when the design volume ratio (VC / VE) is designed to be optimal in winter conditions, the COP ratio in the low temperature period with a relatively short period is about 103, but in winter conditions, 110, and about 108 under other seasonal conditions.
In this way, if the design volume ratio (VC / VE) is designed to be optimal under winter conditions and low temperature conditions, the seasonal difference in the COP improvement rate can be reduced, and the operating conditions such as seasons are different. However, it is possible to always maintain high operating efficiency.

すなわち、第5の実施例の冷凍サイクル装置では、図12から明らかなように、予膨張させる場合はバイパスさせる場合と比べてCOPの向上率が小さいことに着目し、運転条件が異なっても可能な限り予膨張させないように、設計容積比(VC/VE)を、実際の運転状態での密度比(DE/DC)が最も大きくなる条件(図12の場合には低温期条件)での密度比(DE/DC)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル運転が可能である。   That is, in the refrigeration cycle apparatus of the fifth embodiment, as is apparent from FIG. 12, it is possible even if the operating conditions are different, focusing on the fact that the improvement rate of COP is smaller when pre-expanding than when bypassing. In order to prevent pre-expansion as much as possible, the density at the design volume ratio (VC / VE) is the condition under which the density ratio (DE / DC) in the actual operation state is maximized (low-temperature condition in the case of FIG. 12). The refrigeration cycle operation that always maintains a high operation efficiency is possible by designing so as to substantially match the value of the ratio (DE / DC).

更には、図13に示す蒸発器5の出口冷媒密度(DC)、あるいは放熱器2の出口冷媒密度(DE)と、密度比との相関から、密度比(DE/DC)は、蒸発器5の出口冷媒密度(DC)の変化より、放熱器2の出口冷媒密度(DE)の変化からより影響を受け、さらに、放熱器2の出口冷媒密度(DE)とほぼ比例関係にあることがわかる。
従って、本実施例の冷凍サイクル装置の設計容積比(VC/VE)を、実際の運転状態での密度比(DE/DC)が最も大きくなる条件、すなわち、放熱器2の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
Furthermore, from the correlation between the outlet refrigerant density (DC) of the evaporator 5 shown in FIG. 13 or the outlet refrigerant density (DE) of the radiator 2 and the density ratio, the density ratio (DE / DC) is determined by the evaporator 5. From the change of the outlet refrigerant density (DC) of the radiator 2, it is more influenced by the change of the outlet refrigerant density (DE) of the radiator 2, and is further in a proportional relationship with the outlet refrigerant density (DE) of the radiator 2. .
Accordingly, the design volume ratio (VC / VE) of the refrigeration cycle apparatus of the present embodiment is set to the condition that the density ratio (DE / DC) in the actual operation state is the largest, that is, the outlet refrigerant density (DE) of the radiator 2. ) Is designed to substantially match the value of the density ratio (DE / DC) under the largest conditions, it is possible to operate the refrigeration cycle apparatus that always maintains high operating efficiency.

また、図12ですでに説明したように、給湯機として使用される冷凍サイクル装置において、その使用範囲内で、蒸発器5の周囲温度(外気温度)が最も低く、かつ、放熱器2に流入する水温(入水温度)が最も低く、かつ、放熱器2から流出させる湯温(出湯温度)が最も高い条件で運転された場合が、冷凍サイクル装置の実際の運転状態での密度比(DE/DC)が最も大きくなる条件で運転された場合(図12の場合の低温期条件)に相当するので、この運転状態での密度比(DE/DC)と、設計容積比(VC/VE)とをほぼ一致するように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
なお、冷凍サイクル装置の実際の運転状態での密度比(DE/DC)が最も大きくなる条件は、冷凍サイクル装置が給湯機であれば、蒸発器5の周囲温度が最も低く、かつ、放熱器2に流入する水温が最も低く、かつ、放熱器2から流出させる湯温が最も高い条件に相当するが、後述の空気調和機などを含む一般の冷凍サイクル装置に当てはめれば、蒸発器5で冷媒を加熱する流体の温度が最も低く、かつ、放熱器2で冷媒を冷却するために放熱器2に流入する流入流体の温度が最も低く、かつ、この冷媒冷却により加熱されて放熱器2から流出する流出流体の温度が最も高い条件であると置き換えられる。
さらに、給湯機として使用される冷凍サイクル装置において、設計容積比(VC/VE)を、10以上の値(図12の場合の冬期条件や低温期条件に対応する値)となるように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
Further, as already described with reference to FIG. 12, in the refrigeration cycle apparatus used as a hot water heater, the ambient temperature (outside air temperature) of the evaporator 5 is the lowest within the use range and flows into the radiator 2. The ratio of the density of the refrigeration cycle device in the actual operating state (DE /) is determined when the water temperature (incoming water temperature) to be operated is the lowest and the hot water temperature to be discharged from the radiator 2 is the highest. DC) corresponds to a case where operation is performed under the maximum conditions (low-temperature condition in the case of FIG. 12), so that the density ratio (DE / DC) and the design volume ratio (VC / VE) in this operation state are Are designed so that they substantially coincide with each other, it is possible to perform a refrigeration cycle operation that always maintains high operation efficiency.
The condition that the density ratio (DE / DC) in the actual operating state of the refrigeration cycle apparatus is the largest is that if the refrigeration cycle apparatus is a water heater, the ambient temperature of the evaporator 5 is the lowest, and the radiator This corresponds to a condition in which the temperature of water flowing into 2 is the lowest and the temperature of hot water flowing out of the radiator 2 is the highest, but if applied to a general refrigeration cycle apparatus including an air conditioner described later, The temperature of the fluid that heats the refrigerant is the lowest, and the temperature of the inflowing fluid that flows into the radiator 2 in order to cool the refrigerant in the radiator 2 is the lowest. It is replaced that the temperature of the outflowing fluid is the highest.
Furthermore, in the refrigeration cycle apparatus used as a hot water heater, the design volume ratio (VC / VE) is designed to be a value of 10 or more (value corresponding to the winter condition and low temperature condition in the case of FIG. 12). Thus, a refrigeration cycle operation that always maintains high operating efficiency is possible.

本発明の第6の実施例における冷凍サイクル装置について、第1の実施例の給湯機の例ではなく、空気調和機を例に取り説明する。図14は、本発明の第6の実施例における冷凍サイクル装置を示す構成図である。なお、本実施例の冷凍サイクル装置は、第1の実施例の冷凍サイクル装置とほぼ同様な構成であり、同一機能部品については同一の符号を適用する。そして、同様な構成及びその動作ついての説明を省略する。また、冷凍サイクル装置の制御方法も、第1の実施例と同様であるので、その説明を省略する。
本実施例の冷凍サイクル装置は、室外機Cと室内機Dとから構成される。そして、室外機Cは、圧縮機構1、第1四方弁60、室外ファン61により送風される空気と熱交換させる室外熱交換器62、第2四方弁63、膨張機構3などから成り、また、室内機Dは、室内ファン64により送風される空気と熱交換させる室内熱交換器65などから成っている。
そして、本実施例の冷凍サイクル装置において、第1四方弁60、第2四方弁63を図中の実線方向に切替えると、室外熱交換器62を放熱器として作用させ、室内熱交換器65を蒸発器として作用させることで、室内機Cが設置された室内を冷房する。また、第1四方弁60、第2四方弁63を図中の破線方向に切替えると、室内熱交換器65を放熱器として作用させ、室外熱交換器62を蒸発器として作用させることで、室内機Cが設置された室内を暖房する空気調和の動作が行われる。
The refrigeration cycle apparatus according to the sixth embodiment of the present invention will be described by taking an air conditioner as an example, not an example of the hot water heater of the first embodiment. FIG. 14 is a block diagram showing a refrigeration cycle apparatus in the sixth embodiment of the present invention. The refrigeration cycle apparatus of the present embodiment has substantially the same configuration as the refrigeration cycle apparatus of the first embodiment, and the same reference numerals are applied to the same functional parts. A description of the same configuration and its operation is omitted. Further, the control method of the refrigeration cycle apparatus is also the same as that in the first embodiment, and thus the description thereof is omitted.
The refrigeration cycle apparatus of the present embodiment includes an outdoor unit C and an indoor unit D. The outdoor unit C includes the compression mechanism 1, the first four-way valve 60, the outdoor heat exchanger 62 that exchanges heat with the air blown by the outdoor fan 61, the second four-way valve 63, the expansion mechanism 3, and the like. The indoor unit D includes an indoor heat exchanger 65 that exchanges heat with air blown by the indoor fan 64.
In the refrigeration cycle apparatus of the present embodiment, when the first four-way valve 60 and the second four-way valve 63 are switched to the solid line direction in the figure, the outdoor heat exchanger 62 acts as a radiator, and the indoor heat exchanger 65 is By acting as an evaporator, the room in which the indoor unit C is installed is cooled. When the first four-way valve 60 and the second four-way valve 63 are switched in the direction of the broken line in the figure, the indoor heat exchanger 65 acts as a radiator and the outdoor heat exchanger 62 acts as an evaporator. An air-conditioning operation for heating the room in which the machine C is installed is performed.

さらに、本実施例の冷凍サイクル装置の特徴とする構成は、圧縮機構1のシリンダ容積をVC、膨張機構3のシリンダ容積をVE、室外熱交換器62または室内熱交換器65のいずれかが蒸発器として作用するときの熱交換器の出口冷媒密度をDC(圧縮機構1の流入冷媒密度)、室外熱交換器62または室内熱交換器65のいずれかが放熱器として作用するときの熱交換器の出口冷媒密度をDE(膨張機構3の流入冷媒密度)とした場合に、設計容積比(VC/VE)が、実際の運転状態での密度比(DE/DC)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計されている。さらに、具体的には、室外熱交換器62または室内熱交換器65のいずれかが放熱器として作用するときの熱交換器の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計されている点にある。
また、空気調和機として使用される冷凍サイクル装置においては、設計容積比(VC/VE)が、空気調和機の使用範囲内で、蒸発器として作用する室外熱交換器62または室内熱交換器65のいずれかの熱交換器に送風される空気の温度が最も低く、かつ、放熱器として作用する室外熱交換器62または室内熱交換器65のいずれかの熱交換器に送風される空気の温度が最も低く、かつ、放熱器として作用する熱交換器から吹き出される空気温度が最も高い条件で運転された場合の密度比(DE/DC)とほぼ一致するように設計されている構成を特徴とする。
さらに、具体的には、空気調和機として使用される冷凍サイクル装置において、設計容積比(VC/VE)は、8以上の値となるように設計されている構成を特徴とする。
Furthermore, the characteristic configuration of the refrigeration cycle apparatus of the present embodiment is that the compression mechanism 1 has a cylinder volume VC, the expansion mechanism 3 has a cylinder volume VE, and either the outdoor heat exchanger 62 or the indoor heat exchanger 65 evaporates. The outlet refrigerant density of the heat exchanger when acting as a heat exchanger is DC (inflow refrigerant density of the compression mechanism 1), and the heat exchanger when either the outdoor heat exchanger 62 or the indoor heat exchanger 65 acts as a radiator When the outlet refrigerant density is DE (inflow refrigerant density of the expansion mechanism 3), the design volume ratio (VC / VE) is the condition under which the density ratio (DE / DC) in the actual operation state is the largest. The density ratio (DE / DC) is designed to be approximately the same. Furthermore, specifically, the density ratio (DE) under the condition that the outlet refrigerant density (DE) of the heat exchanger when either the outdoor heat exchanger 62 or the indoor heat exchanger 65 acts as a radiator is maximized. / DC) in that it is designed to substantially match the value.
Moreover, in the refrigeration cycle apparatus used as an air conditioner, the design volume ratio (VC / VE) has an outdoor heat exchanger 62 or an indoor heat exchanger 65 that acts as an evaporator within the use range of the air conditioner. The temperature of the air blown to any one of the heat exchangers is the lowest, and the temperature of the air blown to any one of the outdoor heat exchanger 62 or the indoor heat exchanger 65 acting as a radiator The structure is designed to be almost the same as the density ratio (DE / DC) when it is operated at the lowest temperature and the air temperature blown out from the heat exchanger acting as a radiator is the highest. And
Furthermore, specifically, in the refrigeration cycle apparatus used as an air conditioner, the design volume ratio (VC / VE) is characterized by a configuration designed to be a value of 8 or more.

次に、空気調和機として使用される本実施例の冷凍サイクル装置の最適設計容積比について、図15と図16を用いて詳しく説明する。
図15は、本発明の第6の実施例における密度比とCOP比の相関図であり、図16は、本発明の第6の実施例における密度比と冷媒密度との相関図である。
図15において、外気温度は温度が高い順に、夏期冷房、中間期冷房、中間期暖房、冬期暖房を想定している。室内温度(室内熱交換器65に送風される空気温度)、室内吹き出し温度(室内熱交換器65から吹き出される空気温度)はそれぞれの外気温度条件に応じた標準的な温度を想定している。また、COP比はそれぞれの外気温度条件において、膨張機を用いていない冷凍サイクル装置のCOPを100とした。以下、夏期冷房条件を例に取り説明する。
夏期冷房条件において、実際の運転状態での密度比(DE/DC)は、約4である。この値より大きい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、夏期冷房条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、この値より小さい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、夏期冷房条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、夏期冷房条件で最適に設計された場合、すなわち、設計容積比(VC/VE)を約4として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。
一方、中間期暖房条件、および、冬期暖房条件では、実際の運転状態での密度比(DE/DC)は、それぞれ、約8〜9である。これらの値より大きい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、中間期暖房条件や冬期暖房条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、これらの値より小さい設計容積比(VC/VE)で設計された冷凍サイクル装置の場合には、中間期暖房条件や冬期暖房条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、中間期暖房条件や冬期暖房条件のそれぞれの条件で最適に設計された場合、すなわち、設計容積比(VC/VE)を約8〜9として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。
Next, the optimal design volume ratio of the refrigeration cycle apparatus of the present embodiment used as an air conditioner will be described in detail with reference to FIGS. 15 and 16.
FIG. 15 is a correlation diagram between the density ratio and the COP ratio in the sixth embodiment of the present invention, and FIG. 16 is a correlation diagram between the density ratio and the refrigerant density in the sixth embodiment of the present invention.
In FIG. 15, the outdoor air temperature is assumed to be summer cooling, intermediate cooling, intermediate heating, and winter heating in descending order. The indoor temperature (the temperature of the air blown to the indoor heat exchanger 65) and the indoor blowing temperature (the temperature of the air blown from the indoor heat exchanger 65) are assumed to be standard temperatures corresponding to the respective outdoor air temperature conditions. . The COP ratio was set to 100 for the refrigeration cycle apparatus that does not use the expander in each outside air temperature condition. Hereinafter, description will be made taking summer cooling conditions as an example.
Under summer cooling conditions, the density ratio (DE / DC) in actual operating conditions is about 4. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) larger than this value, it is necessary to bypass the refrigerant to the bypass passage 10 under summer cooling conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) smaller than this value, it is necessary to expand the pre-reducing valve 12 in advance under summer cooling conditions. However, in both cases of bypass and pre-expansion, the COP ratio is lower than when designed optimally under summer cooling conditions, that is, compared with the case where the design volume ratio (VC / VE) is designed to be about 4, In particular, it can be seen that the COP ratio drastically decreases when pre-expanded.
On the other hand, in the intermediate heating condition and the winter heating condition, the density ratio (DE / DC) in the actual operation state is about 8 to 9, respectively. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) larger than these values, it is necessary to bypass the refrigerant to the bypass passage 10 under intermediate heating conditions and winter heating conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VC / VE) smaller than these values, it is necessary to expand in advance with the pre-reducing valve 12 under intermediate heating conditions and winter heating conditions. However, in both cases of bypass and pre-expansion, when designed optimally under the respective intermediate heating conditions and winter heating conditions, that is, the design volume ratio (VC / VE) is designed to be about 8-9. It can be seen that the COP ratio decreases compared to the case, and particularly when the pre-expansion is performed, the COP ratio rapidly decreases greatly.

つまり、季節等によって異なる運転条件により、最適な設計容積比は異なるが、圧縮機構1と膨張機構3とが一本の軸9により直結された冷凍サイクル装置では、設計容積比(VC/VE)は設計時に1つの値に決めざるを得ない。このため、例えば、夏期冷房条件で最適となるように設計容積比(VC/VE)を約4として設計した場合には、夏期冷房条件ではCOP比は約130となるが、中間期暖房条件や冬期暖房条件ではCOP比が約102〜104となる。
これに対し、中間期暖房条件や冬期暖房条件で最適となるように設計容積比(VC/VE)を約8〜9として設計した場合には、中間期暖房条件や冬期暖房条件でのCOP比は約111であり、夏期冷房条件や中間期冷房条件でも113〜114となる。
このように、設計容積比(VC/VE)を中間期暖房条件や冬期暖房条件で最適となるように設計すれば、COP向上率の季節差を小さくすることができ、季節等の運転条件が異なっても、常に高い運転効率を維持することが可能である。
That is, the optimum design volume ratio varies depending on the operating conditions that vary depending on the season, etc., but in the refrigeration cycle apparatus in which the compression mechanism 1 and the expansion mechanism 3 are directly connected by one shaft 9, the design volume ratio (VC / VE) Must be set to one value at the time of design. For this reason, for example, when the design volume ratio (VC / VE) is designed to be about 4 so as to be optimal under the summer cooling conditions, the COP ratio is about 130 under the summer cooling conditions. Under winter heating conditions, the COP ratio is about 102-104.
On the other hand, when the design volume ratio (VC / VE) is designed to be about 8-9 so as to be optimal in the intermediate heating condition and the winter heating condition, the COP ratio in the intermediate heating condition and the winter heating condition. Is about 111, which is 113 to 114 even under summer cooling conditions and intermediate cooling conditions.
In this way, if the design volume ratio (VC / VE) is designed to be optimal under intermediate heating conditions and winter heating conditions, the seasonal difference in the COP improvement rate can be reduced, and the operating conditions such as seasons can be reduced. Even if they are different, it is possible to always maintain high operating efficiency.

すなわち、第6の実施例の冷凍サイクル装置では、図15から明らかなように、予膨張させる場合はバイパスさせる場合と比べてCOPの向上率が小さいことに着目し、運転条件が異なっても可能な限り予膨張させないように、設計容積比(VC/VE)を、実際の運転状態での密度比(DE/DC)が最も大きくなる条件(図15の場合には冬期暖房条件)での密度比(DE/DC)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル運転が可能である。   That is, in the refrigeration cycle apparatus of the sixth embodiment, as is apparent from FIG. 15, it is possible even if the operating conditions are different, focusing on the fact that the improvement rate of COP is smaller when pre-expanding than when bypassing. In order to prevent pre-expansion as much as possible, the design volume ratio (VC / VE) is the density under the condition (the winter heating condition in the case of FIG. 15) where the density ratio (DE / DC) in the actual operation state is the largest. The refrigeration cycle operation that always maintains a high operation efficiency is possible by designing so as to substantially match the value of the ratio (DE / DC).

また、図16に示す室外熱交換器62または室内熱交換器65のいずれかが蒸発器として作用するときの出口冷媒密度(DC)、あるいは室外熱交換器62または室内熱交換器65のいずれかが放熱器として作用するときの出口冷媒密度(DE)と、密度比(DE/DC)との相関から、密度比(DE/DC)は、蒸発器の出口冷媒密度(DC)の変化より、放熱器2の出口冷媒密度(DE)の変化からより影響を受け、さらに、放熱器2の出口冷媒密度(DE)とほぼ比例関係にあることがわかる。
従って、本実施例の冷凍サイクル装置では、その設計容積比(VC/VE)を、実際の運転状態での密度比(DE/DC)が最も大きくなる条件、すなわち、放熱器の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DC)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル運転が可能である。
Moreover, either the outdoor refrigerant | coolant density (DC) when either the outdoor heat exchanger 62 shown in FIG. 16 or the indoor heat exchanger 65 acts as an evaporator, or either the outdoor heat exchanger 62 or the indoor heat exchanger 65 is shown. From the correlation between the outlet refrigerant density (DE) when the refrigerant acts as a radiator and the density ratio (DE / DC), the density ratio (DE / DC) is determined from the change in the outlet refrigerant density (DC) of the evaporator. It can be seen that it is more influenced by the change in the outlet refrigerant density (DE) of the radiator 2 and that it is substantially proportional to the outlet refrigerant density (DE) of the radiator 2.
Therefore, in the refrigeration cycle apparatus of the present embodiment, the design volume ratio (VC / VE) is set to the condition that the density ratio (DE / DC) in the actual operating state is the largest, that is, the outlet refrigerant density ( The refrigeration cycle operation that always maintains high operation efficiency is possible by designing it so as to substantially match the value of the density ratio (DE / DC) under the condition where DE) is the largest.

また、図15ですでに説明したように、空気調和機として使用される冷凍サイクル装置において、その使用範囲内で、蒸発器として作用する室外熱交換器62または室内熱交換器65のいずれかの熱交換器に送風される空気の温度が最も低く、かつ、放熱器として作用する室外熱交換器62または室内熱交換器65のいずれかの熱交換器に送風される空気の温度が最も低く、かつ、放熱器として作用する熱交換器から吹き出される空気温度が最も高い条件で運転された場合が、実際の運転状態での密度比(DE/DC)が最も大きくなる条件で運転された場合(図15の場合の冬期暖房条件)に相当するので、この運転状態での密度比(DE/DC)と、設計容積比(VC/VE)とをほぼ一致するように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
さらに、空気調和機として使用される冷凍サイクル装置において、設計容積比(VC/VE)を、8以上の値(図15の場合の冬期暖房条件や中間期暖房条件に対応する値)となるように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
Moreover, as already demonstrated in FIG. 15, in the refrigerating cycle apparatus used as an air conditioner, either the outdoor heat exchanger 62 or the indoor heat exchanger 65 which acts as an evaporator is within the use range. The temperature of the air blown to the heat exchanger is the lowest, and the temperature of the air blown to either the outdoor heat exchanger 62 or the indoor heat exchanger 65 acting as a radiator is the lowest, And when operated under conditions where the temperature of the air blown from the heat exchanger acting as a radiator is the highest, it is operated under conditions where the density ratio (DE / DC) in the actual operating state is maximized (Winter heating conditions in the case of FIG. 15), the density ratio (DE / DC) in this operation state and the design volume ratio (VC / VE) are always designed to be almost the same. High driving Refrigeration cycle operation of maintaining the rate is possible.
Further, in the refrigeration cycle apparatus used as an air conditioner, the design volume ratio (VC / VE) is set to a value of 8 or more (value corresponding to the winter heating condition and the intermediate heating condition in the case of FIG. 15). By designing the refrigeration cycle, it is possible to operate the refrigeration cycle while always maintaining high operating efficiency.

本発明の第7の実施例における冷凍サイクル装置について説明する。図17は、本発明の第7の実施例における冷凍サイクル装置を示す構成図である。なお、本実施例の冷凍サイクル装置は、第1の実施例の冷凍サイクル装置とほぼ同様な構成であり、同一機能部品については同一の符号を付して説明を省略する。また、冷凍サイクル装置の制御方法も、第1の実施例と同様であるので、その説明を省略する。また、本実施例の冷凍サイクル装置に関しては、給湯機を例に取り説明する。
本実施例の冷凍サイクル装置は、冷媒サイクル回路Aと給湯サイクル回路Bとから構成される。そして、冷媒サイクル回路Aは、モータ等の駆動源71、駆動源71により駆動される圧縮機構72、圧縮機構72から吐出された冷媒をさらに圧縮する補助圧縮機構73、放熱器2、膨張機構74、およびファン4により送風される外気と熱交換させる蒸発器5などを備えている。また、給湯サイクル回路Bは、第1の実施例の構成と同様に、給水ポンプ6、放熱器2、および給湯タンク7などを備えている。さらに、補助圧縮機構73は、圧力エネルギーを動力に変換する膨張機構74と軸75により連結され、膨張機構74の回収動力により駆動される構成である。
A refrigeration cycle apparatus according to a seventh embodiment of the present invention will be described. FIG. 17 is a block diagram showing a refrigeration cycle apparatus in the seventh embodiment of the present invention. The refrigeration cycle apparatus of the present embodiment has substantially the same configuration as the refrigeration cycle apparatus of the first embodiment, and the same functional parts are denoted by the same reference numerals and description thereof is omitted. Further, the control method of the refrigeration cycle apparatus is also the same as that in the first embodiment, and thus the description thereof is omitted. The refrigeration cycle apparatus of the present embodiment will be described by taking a hot water heater as an example.
The refrigeration cycle apparatus of the present embodiment includes a refrigerant cycle circuit A and a hot water supply cycle circuit B. The refrigerant cycle circuit A includes a driving source 71 such as a motor, a compression mechanism 72 driven by the driving source 71, an auxiliary compression mechanism 73 that further compresses the refrigerant discharged from the compression mechanism 72, the radiator 2, and an expansion mechanism 74. And an evaporator 5 for exchanging heat with the outside air blown by the fan 4. The hot water supply cycle circuit B includes a water supply pump 6, a radiator 2, a hot water supply tank 7, and the like, as in the configuration of the first embodiment. Further, the auxiliary compression mechanism 73 is connected to an expansion mechanism 74 that converts pressure energy into power and a shaft 75, and is driven by the recovery power of the expansion mechanism 74.

次に、上述のように構成された冷凍サイクル装置の運転時の動作について、補助圧縮機構73のシリンダ容積をVCs、膨張機構74のシリンダ容積をVE、圧縮機構72の出口冷媒密度をDCs(補助圧縮機構73の流入冷媒密度)、放熱器2の出口冷媒密度をDE(膨張機構3の流入冷媒密度)として、説明する。まず、実際の運転状態での密度比(DE/DCs)が、設計時に想定した設計容積比(VCs/VE)と略同等である場合について説明する。
圧縮機構72は、臨界圧力を越える圧力(中間圧力)まで冷媒を圧縮する。その圧縮された冷媒は、さらに補助圧縮機構73により高圧側圧力まで圧縮される。そして、高温高圧状態となった冷媒は、放熱器2を流れる際に、水に放熱して冷却される。その後、冷媒は、膨張機構74で減圧されて気液二相状態となる。膨張機構74では冷媒の圧力エネルギーを動力に変換し、その動力は軸75に伝達される。この軸75に伝達された動力により補助圧縮機構73は駆動される。膨張機構74により減圧された冷媒は、蒸発器5に流入し、この蒸発器5で冷媒は空気によって冷却されて気液二相またはガス状態となる。その後、気液二相またはガス状態となった冷媒は、再び圧縮機構72に吸入される。
Next, regarding the operation during operation of the refrigeration cycle apparatus configured as described above, the cylinder volume of the auxiliary compression mechanism 73 is VCs, the cylinder volume of the expansion mechanism 74 is VE, and the outlet refrigerant density of the compression mechanism 72 is DCs (auxiliary). The description will be made assuming that the inflow refrigerant density of the compression mechanism 73) and the outlet refrigerant density of the radiator 2 are DE (inflow refrigerant density of the expansion mechanism 3). First, the case where the density ratio (DE / DCs) in the actual operation state is substantially equal to the design volume ratio (VCs / VE) assumed at the time of design will be described.
The compression mechanism 72 compresses the refrigerant to a pressure exceeding the critical pressure (intermediate pressure). The compressed refrigerant is further compressed to a high pressure side pressure by the auxiliary compression mechanism 73. And when the refrigerant | coolant used as the high temperature / high pressure state flows through the heat radiator 2, it radiates heat to water and is cooled. Thereafter, the refrigerant is decompressed by the expansion mechanism 74 to be in a gas-liquid two-phase state. The expansion mechanism 74 converts pressure energy of the refrigerant into power, and the power is transmitted to the shaft 75. The auxiliary compression mechanism 73 is driven by the power transmitted to the shaft 75. The refrigerant depressurized by the expansion mechanism 74 flows into the evaporator 5 where the refrigerant is cooled by air to be in a gas-liquid two-phase or gas state. Thereafter, the refrigerant in the gas-liquid two-phase or gas state is again sucked into the compression mechanism 72.

次に、実際の運転状態での密度比(DE/DCs)が、設計時に想定した設計容積比(VCs/VE)と異なる場合について説明する。まず、実際の運転状態での密度比(DE/DCs)が、設計時に想定した設計容積比(VCs/VE)より大きい場合の動作について説明する。
この場合には、密度比一定の制約のために、放熱器2出口(膨張機構74入口)の冷媒密度(DE)が小さくなるように、冷凍サイクルは高圧側圧力を低下させた状態でバランスしようとする。ところが、高圧側圧力が望ましい圧力より低下した状態では、吐出温度が低下して冷凍サイクル装置の加熱能力が低下したり、冷凍サイクル装置の効率が低下したりする。このため、バイパス弁11が全閉状態でなければ、バイパス弁11を閉方向に操作し、バイパス流路10に流入していた冷媒を膨張機構74に流入させる。あるいは、バイパス弁11が全閉状態であれば、予減圧弁12を閉方向に操作して膨張機構74に流入する冷媒を減圧し、冷媒密度を低下させる。これらの動作により、高圧側圧力を上昇させ、望ましい圧力に調整できるので、効率の良い運転を行うことができる。
Next, the case where the density ratio (DE / DCs) in the actual operation state is different from the design volume ratio (VCs / VE) assumed at the time of design will be described. First, the operation when the density ratio (DE / DCs) in the actual operation state is larger than the design volume ratio (VCs / VE) assumed at the time of design will be described.
In this case, the refrigeration cycle should be balanced in a state where the high-pressure side pressure is reduced so that the refrigerant density (DE) at the outlet of the radiator 2 (inlet of the expansion mechanism 74) is reduced due to the restriction of the density ratio. And However, in a state where the high-pressure side pressure is lower than the desired pressure, the discharge temperature is lowered and the heating capacity of the refrigeration cycle apparatus is reduced, or the efficiency of the refrigeration cycle apparatus is reduced. For this reason, if the bypass valve 11 is not fully closed, the bypass valve 11 is operated in the closing direction, and the refrigerant that has flowed into the bypass flow path 10 is caused to flow into the expansion mechanism 74. Alternatively, if the bypass valve 11 is in the fully closed state, the pre-reducing valve 12 is operated in the closing direction to depressurize the refrigerant flowing into the expansion mechanism 74 and reduce the refrigerant density. By these operations, the high-pressure side pressure can be increased and adjusted to a desired pressure, so that an efficient operation can be performed.

逆に、実際の運転状態での密度比(DE/DCs)が、設計時に想定した設計容積比(VCs/VE)より小さい場合の動作について説明する。
この場合には、密度比一定の制約のために、放熱器2出口(膨張機構74入口)の冷媒密度(DE)が大きくなるように、冷凍サイクルは高圧側圧力を上昇させた状態でバランスしようとする。ところが、高圧側圧力が望ましい圧力より上昇した状態では、冷凍サイクル装置の運転効率が低下してしまう。このため、予減圧弁12が全開状態でなければ、予減圧弁12を開方向に操作し、膨張機構74に流入する冷媒を減圧しないようにして冷媒密度を上昇させる。あるいは、予減圧弁12が全開状態であれば、バイパス弁11を開方向に操作して膨張機構74に流入する冷媒の一部をバイパス流路10に流入させる。これらの動作により、高圧側圧力を低下させ、望ましい圧力に調整できるので、効率の良い運転を行うことができる。
Conversely, the operation when the density ratio (DE / DCs) in the actual operation state is smaller than the design volume ratio (VCs / VE) assumed at the time of design will be described.
In this case, the refrigeration cycle should be balanced in a state where the high-pressure side pressure is increased so that the refrigerant density (DE) at the outlet of the radiator 2 (inlet of the expansion mechanism 74) is increased due to the restriction of the constant density ratio. And However, in a state where the high-pressure side pressure is higher than the desired pressure, the operating efficiency of the refrigeration cycle apparatus is reduced. Therefore, if the pre-reducing valve 12 is not fully opened, the pre-reducing valve 12 is operated in the opening direction to increase the refrigerant density without reducing the pressure of the refrigerant flowing into the expansion mechanism 74. Alternatively, if the pre-pressure reducing valve 12 is in a fully open state, the bypass valve 11 is operated in the opening direction so that a part of the refrigerant flowing into the expansion mechanism 74 flows into the bypass flow path 10. By these operations, the high-pressure side pressure can be reduced and adjusted to a desired pressure, so that efficient operation can be performed.

以上説明したように、第7の実施例の冷凍サイクル装置では、密度比一定の制約のために、最適な高圧側圧力を維持することが困難である膨張機を用いた冷凍サイクル装置において、実際の運転状態での密度比(DE/DCs)が、設計時に想定した設計容積比(VCs/VE)より小さい場合でも、大きい場合でも、バイパス弁11と予減圧弁12の開度操作により、望ましい高圧側圧力に調整し、冷凍サイクル装置の運転効率や能力を低下させることなく運転できる。
なお、本実施例における冷凍サイクルの吐出温度は、補助圧縮機構73の出口温度であり、冷凍サイクルの過熱度は、圧縮機構72の吸入温度と蒸発器5の蒸発温度との差である。
As described above, in the refrigeration cycle apparatus according to the seventh embodiment, in the refrigeration cycle apparatus using an expander in which it is difficult to maintain the optimum high-pressure side pressure due to the restriction of a constant density ratio, Whether the density ratio (DE / DCs) in the operation state is smaller or larger than the design volume ratio (VCs / VE) assumed at the time of design, it is desirable depending on the opening operation of the bypass valve 11 and the pre-reducing valve 12. It is possible to operate without adjusting the operation efficiency and capacity of the refrigeration cycle device by adjusting to the high pressure side pressure.
The discharge temperature of the refrigeration cycle in the present embodiment is the outlet temperature of the auxiliary compression mechanism 73, and the superheat degree of the refrigeration cycle is the difference between the suction temperature of the compression mechanism 72 and the evaporation temperature of the evaporator 5.

本発明の第8の実施例における冷凍サイクル装置について説明する。なお、本実施例の冷凍サイクル装置の構成およびその制御方法は、第7の実施例と同様であるので、同様な構成及び動作等についての説明を省略する。
本実施例の冷凍サイクル装置の特徴とする構成は、補助圧縮機構73のシリンダ容積をVCs、膨張機構74のシリンダ容積をVE、圧縮機構72の出口冷媒密度をDCs、放熱器2の出口冷媒密度をDEとした場合に、設計容積比(VCs/VE)が、実際の運転状態での密度比(DE/DCs)が最も大きくなる条件での密度比(DE/DCs)の値とほぼ一致するように設計されている。さらに、具体的には、放熱器2の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DCs)の値とほぼ一致するように設計されている点にある。
また、給湯機として使用される冷凍サイクル装置においては、設計容積比(VCs/VE)が、給湯機の使用範囲内で、蒸発器5の周囲温度(外気温度)が最も低く、かつ、放熱器2に流入する水温(入水温度)が最も低く、かつ、放熱器2から流出させる湯温(出湯温度)が最も高い条件で運転された場合の密度比(DE/DCs)とほぼ一致するように設計されている構成を特徴とする。
さらに、具体的には、給湯機として使用される冷凍サイクル装置において、設計容積比(VCs/VE)は、3.5以上の値となるように設計されている構成を特徴とする。
A refrigeration cycle apparatus in the eighth embodiment of the present invention will be described. In addition, since the structure of the refrigerating-cycle apparatus and its control method of a present Example are the same as that of a 7th Example, description about the same structure, operation | movement, etc. is abbreviate | omitted.
The characteristic configuration of the refrigeration cycle apparatus of this embodiment is that the cylinder volume of the auxiliary compression mechanism 73 is VCs, the cylinder volume of the expansion mechanism 74 is VE, the outlet refrigerant density of the compression mechanism 72 is DCs, and the outlet refrigerant density of the radiator 2 is. When DE is DE, the design volume ratio (VCs / VE) is almost the same as the value of the density ratio (DE / DCs) under the condition that the density ratio (DE / DCs) in the actual operation state is the largest. Designed to be Furthermore, specifically, it is in the point designed so that it may correspond with the value of the density ratio (DE / DCs) in the conditions where the outlet refrigerant density (DE) of the heat radiator 2 becomes the largest.
In the refrigeration cycle apparatus used as a water heater, the design volume ratio (VCs / VE) has the lowest ambient temperature (outside air temperature) of the evaporator 5 within the range of use of the water heater, and a radiator. 2 so that it substantially matches the density ratio (DE / DCs) when the water temperature (incoming water temperature) flowing into 2 is the lowest and the hot water temperature (outlet temperature) flowing out of the radiator 2 is the highest. Characterized by the designed configuration.
Furthermore, specifically, a refrigeration cycle apparatus used as a hot water supply apparatus is characterized in that the design volume ratio (VCs / VE) is designed to be a value of 3.5 or more.

ところで、本実施例の冷凍サイクル装置では、第1の実施例で説明したように、実際の運転状態での密度比(DE/DCs)が、設計時に決定した設計容積比(VCs/VE)より小さい場合には、バイパス弁11を開方向に操作することにより、あるいは、密度比(DE/DCs)が設計容積比(VCs/VE)より大きい場合には、予減圧弁12を開方向に操作することにより密度比(DE/DCs)を設計容積比(VCs/VE)に一致させて、望ましい高圧側圧力に調整できる。しかし、バイパス流路10を流れる冷媒量が多くなったり、予減圧弁12で予め膨張させる圧力差が大きくなったりすると、回収できるはずの動力が減少してしまうため、運転効率(COP)の向上率も低下してしまう。したがって、設計容積比をいかに最適な値として設計するかが重要である。   By the way, in the refrigeration cycle apparatus of the present embodiment, as described in the first embodiment, the density ratio (DE / DCs) in the actual operation state is greater than the design volume ratio (VCs / VE) determined at the time of design. If it is smaller, the pre-reducing valve 12 is operated in the opening direction by operating the bypass valve 11 in the opening direction or when the density ratio (DE / DCs) is larger than the design volume ratio (VCs / VE). By doing so, the density ratio (DE / DCs) can be matched with the design volume ratio (VCs / VE) and adjusted to a desired high pressure side pressure. However, if the amount of refrigerant flowing through the bypass passage 10 increases or the pressure difference that is pre-expanded by the pre-reducing valve 12 increases, the power that can be recovered decreases, so that the operating efficiency (COP) is improved. The rate will also decline. Therefore, it is important how to design the design volume ratio as an optimal value.

そこで、本実施例の冷凍サイクル装置を給湯機として使用する場合の、その最適な設計容積比について、図18と図19を用いて詳しく説明する。
図18は、本発明の第8の実施例における密度比とCOP比の相関図であり、図19は、本発明の第8の実施例における密度比と冷媒密度との相関図である。
図18において、外気温度は温度が高い順に、夏期、中間期、冬期、低温期を想定している。入水温度はそれぞれの外気温度条件に応じた最も低い温度を想定し、出湯温度はそれぞれの外気温度条件に応じた標準的な温度を想定している。また、COP比はそれぞれの外気温度条件において、膨張機を用いていない冷凍サイクル装置のCOPを100とした。以下、夏期条件を例に取り説明する。
夏期条件において、実際の運転状態での密度比(DE/DCs)は、約4.1である。この値より大きい設計容積比(VCs/VE)で設計された冷凍サイクル装置の場合には、夏期条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、この値より小さい設計容積比(VCs/VE)で設計された冷凍サイクル装置の場合には、夏期条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、夏期条件で最適に設計された場合、すなわち、設計容積比(VCs/VE)を約4.1として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。
Then, the optimal design volume ratio when using the refrigeration cycle apparatus of a present Example as a hot water heater is demonstrated in detail using FIG. 18 and FIG.
FIG. 18 is a correlation diagram between the density ratio and the COP ratio in the eighth embodiment of the present invention, and FIG. 19 is a correlation diagram between the density ratio and the refrigerant density in the eighth embodiment of the present invention.
In FIG. 18, the outdoor temperature is assumed to be summer, intermediate, winter, and low temperature in descending order of temperature. The incoming water temperature is assumed to be the lowest temperature corresponding to each outdoor air temperature condition, and the tapping temperature is assumed to be a standard temperature corresponding to each outdoor air temperature condition. The COP ratio was set to 100 for the refrigeration cycle apparatus that does not use the expander in each outside air temperature condition. In the following, description will be made taking summer conditions as an example.
Under summer conditions, the density ratio (DE / DCs) in actual operating conditions is about 4.1. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VCs / VE) larger than this value, it is necessary to bypass the refrigerant to the bypass passage 10 in summer conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VCs / VE) smaller than this value, it is necessary to expand the pre-reducing valve 12 in advance in summer conditions. However, in both cases of bypass and pre-expansion, the COP ratio is lower than when designed optimally under summer conditions, that is, when designed with a design volume ratio (VCs / VE) of about 4.1. In particular, it can be seen that the COP ratio drastically decreases when pre-expanded.

一方、冬期条件、および、低温期条件では、実際の運転状態での密度比(DE/DCs)は、それぞれ、約4.3、および、約4.5である。これらの値より大きい設計容積比(VCs/VE)で設計された冷凍サイクル装置の場合には、冬期条件や低温期条件ではバイパス流路10に冷媒をバイパスさせる必要がある。逆に、これらの値より小さい設計容積比(VCs/VE)で設計された冷凍サイクル装置の場合には、冬期条件や低温期条件では予減圧弁12で予め膨張させる必要がある。しかし、バイパス、予膨張のいずれの場合でも、冬期条件、低温期条件のそれぞれの条件で最適に設計された場合、すなわち、設計容積比(VCs/VE)を約4.3や約4.5として設計した場合に比べて、COP比は低下し、特に、予膨張させた場合にはCOP比が急激に大きく低下することがわかる。   On the other hand, under winter conditions and low temperature conditions, the density ratios (DE / DCs) in the actual operation state are about 4.3 and about 4.5, respectively. In the case of a refrigeration cycle apparatus designed with a design volume ratio (VCs / VE) larger than these values, it is necessary to bypass the refrigerant to the bypass passage 10 in winter conditions and low temperature conditions. Conversely, in the case of a refrigeration cycle apparatus designed with a design volume ratio (VCs / VE) smaller than these values, it is necessary to expand the pre-reducing valve 12 in advance in winter conditions or low temperature conditions. However, in both cases of bypass and pre-expansion, when designed optimally under winter conditions and low temperature conditions, that is, the design volume ratio (VCs / VE) is about 4.3 or about 4.5. It can be seen that the COP ratio decreases compared to the case where the COP ratio is designed, and in particular, the COP ratio rapidly decreases greatly when pre-expanded.

つまり、季節等によって異なる運転条件により、最適な設計容積比は異なるが、補助圧縮機構73と膨張機構74とが一本の軸75により直結された冷凍サイクル装置では、設計容積比(VCs/VE)は設計時に1つの値に決めざるを得ない。このため、例えば、夏期条件で最適となるように設計容積比(VCs/VE)を約4.1として設計した場合には、夏期条件ではCOP比は約112となるが、他の季節条件ではCOP比が約105となる。
これに対し、低温期条件で最適となるように設計容積比(VCs/VE)を約4.5として設計した場合には、低温期条件でのCOP比は約110であり、他の季節条件でも110〜111となる。あるいは、冬期条件で最適となるように設計容積比(VCs/VE)を設計した場合も同様である。
このように、設計容積比(VCs/VE)を冬期条件や低温期条件で最適となるように設計すれば、COP向上率の季節差を小さくすることができ、季節等の運転条件が異なっても、常に高い運転効率を維持することが可能である。
That is, the optimum design volume ratio varies depending on the operating conditions that vary depending on the season, etc., but in the refrigeration cycle apparatus in which the auxiliary compression mechanism 73 and the expansion mechanism 74 are directly connected by a single shaft 75, the design volume ratio (VCs / VE ) Must be set to one value at the time of design. For this reason, for example, when the design volume ratio (VCs / VE) is designed to be about 4.1 so as to be optimal under summer conditions, the COP ratio is about 112 under summer conditions, but under other seasonal conditions. The COP ratio is about 105.
On the other hand, when the design volume ratio (VCs / VE) is designed to be about 4.5 so as to be optimal under the low temperature condition, the COP ratio under the low temperature condition is about 110. But it becomes 110-111. Alternatively, the same applies when the design volume ratio (VCs / VE) is designed to be optimal under winter conditions.
In this way, if the design volume ratio (VCs / VE) is designed to be optimal under winter conditions and low temperature conditions, the seasonal difference in COP improvement rate can be reduced and the operating conditions such as seasons differ. However, it is possible to always maintain high operating efficiency.

すなわち、第8の実施例の冷凍サイクル装置では、図18から明らかなように、予膨張させる場合はバイパスさせる場合と比べてCOPの向上率が小さいことに着目し、運転条件が異なっても可能な限り予膨張させないように、設計容積比(VCs/VE)を、実際の運転状態での密度比(DE/DCs)が最も大きくなる条件(図18の場合には低温期条件)での密度比(DE/DCs)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル運転が可能である。   That is, in the refrigeration cycle apparatus of the eighth embodiment, as apparent from FIG. 18, it is possible even if the operating conditions are different, paying attention to the fact that the improvement rate of COP is smaller when pre-expanding than when bypassing. In order to prevent pre-expansion as much as possible, the design volume ratio (VCs / VE) is a density under the condition that the density ratio (DE / DCs) in the actual operation state is the largest (in the case of FIG. 18, the low temperature period condition). The refrigeration cycle operation that always maintains a high operation efficiency is possible by designing it so that it substantially coincides with the value of the ratio (DE / DCs).

更には、図19に示す圧縮機構71の出口冷媒密度(DCs)、あるいは放熱器2の出口冷媒密度(DE)と、密度比(DE/DCs)との相関から、密度比(DE/DCs)は、圧縮機構71の出口冷媒密度(DCs)の変化より、放熱器2の出口冷媒密度の変化からより影響を受け、さらに、放熱器2の出口冷媒密度(DE)とほぼ比例関係にあることがわかる。
従って、本実施例の冷凍サイクル装置の設計容積比(VCs/VE)を、実際の運転状態での密度比(DE/DCs)が最も大きくなる条件、すなわち、放熱器2の出口冷媒密度(DE)が最も大きくなる条件での密度比(DE/DCs)の値とほぼ一致するように設計することで、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
Further, from the correlation between the outlet refrigerant density (DCs) of the compression mechanism 71 shown in FIG. 19 or the outlet refrigerant density (DE) of the radiator 2 and the density ratio (DE / DCs), the density ratio (DE / DCs). Is more influenced by the change in the outlet refrigerant density of the radiator 2 than the change in the outlet refrigerant density (DCs) of the compression mechanism 71, and is substantially proportional to the outlet refrigerant density (DE) of the radiator 2. I understand.
Therefore, the design volume ratio (VCs / VE) of the refrigeration cycle apparatus of the present embodiment is set to the condition that the density ratio (DE / DCs) in the actual operation state is the largest, that is, the outlet refrigerant density (DE) of the radiator 2. ) Is designed to substantially match the value of the density ratio (DE / DCs) under the largest conditions, it is possible to operate the refrigeration cycle apparatus that always maintains high operating efficiency.

また、図18ですでに説明したように、給湯機として使用される冷凍サイクル装置において、その使用範囲内で、蒸発器5の周囲温度(外気温度)が最も低く、かつ、放熱器2に流入する水温(入水温度)が最も低く、かつ、放熱器2から流出させる湯温(出湯温度)が最も高い条件で運転された場合が、冷凍サイクル装置の実際の運転状態での密度比(DE/DCs)が最も大きくなる条件で運転された場合(図18の場合の低温期条件)に相当するので、この運転状態での密度比(DE/DCs)と、設計容積比(VCs/VE)とをほぼ一致するように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
また、補助圧縮機構73を備えた給湯機として使用される冷凍サイクル装置において、設計容積比(VCs/VE)を、4以上の値(図18の場合の夏期条件、中間期条件、冬期条件及び低温期条件のほぼ全てに対応する値)となるように設計することにより、常に高い運転効率を維持した冷凍サイクル運転が可能である。
さらに、本実施例の構成によれば、図18に示したように、第5の実施例の図12と比べて、季節等の運転条件が異なった場合の容積比の変化が小さくなるために、常に高い運転効率を維持した冷凍サイクル装置の運転が可能である。
換言すれば、補助圧縮機構73を備える冷凍サイクル装置では、実際の運転状態での容積比の変化が小さくなるために、設計時に設定した設計容積比と異なっても、バイパス弁11のみの開度操作により、望ましい高圧側圧力に調整することができ、常に高い運転効率を維持した冷凍サイクル運転が可能である。即ち、予減圧弁12がなくバイパス弁11のみの構成でも良く、また、バイパス弁11のみの構成の場合でも、設計時に設定する設計容積比を大きめの値とすることが望ましい。
Further, as already described with reference to FIG. 18, in the refrigeration cycle apparatus used as a hot water heater, the ambient temperature (outside air temperature) of the evaporator 5 is the lowest within the use range and flows into the radiator 2. The ratio of the density of the refrigeration cycle device in the actual operating state (DE /) is determined when the water temperature (incoming water temperature) to be operated is the lowest and the hot water temperature to be discharged from the radiator 2 is the highest. DCs) corresponds to the case where the operation is performed at the maximum condition (low temperature period condition in the case of FIG. 18), and therefore the density ratio (DE / DCs) in this operation state and the design volume ratio (VCs / VE) Are designed so that they substantially coincide with each other, it is possible to perform a refrigeration cycle operation that always maintains high operation efficiency.
Further, in the refrigeration cycle apparatus used as a water heater provided with the auxiliary compression mechanism 73, the design volume ratio (VCs / VE) is set to a value of 4 or more (summer condition, intermediate condition, winter condition in FIG. The refrigeration cycle operation that always maintains a high operation efficiency is possible by designing it to be a value that corresponds to almost all of the low temperature conditions.
Furthermore, according to the configuration of the present embodiment, as shown in FIG. 18, the change in the volume ratio when the operation conditions such as the season are different is smaller than in FIG. 12 of the fifth embodiment. It is possible to operate the refrigeration cycle apparatus that always maintains high operating efficiency.
In other words, in the refrigeration cycle apparatus including the auxiliary compression mechanism 73, since the change in the volume ratio in the actual operation state is small, the opening degree of only the bypass valve 11 is different from the design volume ratio set at the time of design. The operation can be adjusted to a desired high pressure side pressure, and a refrigeration cycle operation that always maintains a high operation efficiency is possible. That is, it is possible to use only the bypass valve 11 without the pre-reducing valve 12, and even in the case of only the bypass valve 11, it is desirable to set the design volume ratio set at the time of design to a larger value.

本発明の冷凍サイクル装置及びその制御方法は、給湯装置(給湯器)、家庭用空気調和機、業務用空気調和機、車両用空気調和機(カーエアコン)等に適している。そして、幅広い運転範囲の中で高い動力回収効果を得て、効率のよい運転が可能な冷凍サイクル装置を提供することができる。特に、二酸化炭素を用いた冷凍サイクルの高圧側が超臨界状態となりうる冷凍サイクル装置で効果が大きい。   The refrigeration cycle apparatus and its control method of the present invention are suitable for a hot water supply apparatus (hot water heater), a domestic air conditioner, a commercial air conditioner, a vehicle air conditioner (car air conditioner), and the like. In addition, it is possible to provide a refrigeration cycle apparatus capable of obtaining a high power recovery effect in a wide operation range and performing an efficient operation. In particular, the effect is large in a refrigeration cycle apparatus in which the high pressure side of the refrigeration cycle using carbon dioxide can be in a supercritical state.

本発明の第1の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in 1st Example of this invention. 本発明の第1の実施例における冷凍サイクル装置の制御方法を示すフローチャートThe flowchart which shows the control method of the refrigerating-cycle apparatus in 1st Example of this invention. 本発明の第1の実施例における制御手段の関連を示す模式図The schematic diagram which shows the relationship of the control means in 1st Example of this invention 本発明の第2の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in 2nd Example of this invention. 本発明の第2の実施例における冷凍サイクル装置の制御方法を示すフローチャートThe flowchart which shows the control method of the refrigerating-cycle apparatus in 2nd Example of this invention. 本発明の第3の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 3rd Example of this invention. 本発明の第3の実施例における冷凍サイクル装置の制御方法を示すフローチャートThe flowchart which shows the control method of the refrigerating-cycle apparatus in the 3rd Example of this invention. 本発明の第3の実施例における制御手段の関連を示す模式図The schematic diagram which shows the relationship of the control means in 3rd Example of this invention. 本発明の第4の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 4th Example of this invention. 本発明の第4の実施例における冷凍サイクル装置の制御方法を示すフローチャートThe flowchart which shows the control method of the refrigerating-cycle apparatus in the 4th Example of this invention. 本発明の第4の実施例における制御手段の関連を示す模式図The schematic diagram which shows the relationship of the control means in 4th Example of this invention 本発明の第5の実施例における密度比とCOP比との相関図Correlation diagram between density ratio and COP ratio in the fifth embodiment of the present invention 本発明の第5の実施例における密度比と冷媒密度との相関図Correlation diagram between density ratio and refrigerant density in the fifth embodiment of the present invention 本発明の第6の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 6th Example of this invention. 本発明の第6の実施例における密度比とCOP比との相関図Correlation diagram between density ratio and COP ratio in the sixth embodiment of the present invention 本発明の第6の実施例における密度比と冷媒密度との相関図Correlation diagram between density ratio and refrigerant density in the sixth embodiment of the present invention 本発明の第7の実施例における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 7th Example of this invention. 本発明の第8の実施例における密度比とCOP比との相関図Correlation diagram between density ratio and COP ratio in the eighth embodiment of the present invention 本発明の第8の実施例における密度比と冷媒密度との相関図Correlation diagram between density ratio and refrigerant density in the eighth embodiment of the present invention

符号の説明Explanation of symbols

1,72 圧縮機構
2 放熱器
3,74 膨張機構
4 ファン
5 蒸発器
6 給水ポンプ
7 給湯タンク
8,71 駆動源
9,75 軸
10 バイパス流路
11 バイパス弁
12 予減圧弁
20 吐出温度検知手段
21 第1操作器
30 蒸発温度検知手段
31 吸入温度検知手段
32 第2操作器
40 第3操作器
50 第4操作器
60 第1四方弁
61 室外熱交換器
62 室外ファン
63 第2四方弁
64 室内熱交換器
65 室内ファン
73 補助圧縮機構
A 冷媒サイクル回路
B 給湯サイクル回路
C 室外機
D 室内機
DESCRIPTION OF SYMBOLS 1,72 Compression mechanism 2 Radiator 3,74 Expansion mechanism 4 Fan 5 Evaporator 6 Water supply pump 7 Hot water supply tank 8,71 Drive source 9,75 Shaft 10 Bypass flow path 11 Bypass valve 12 Pre-reduction valve 20 Discharge temperature detection means 21 First operation unit 30 Evaporation temperature detection means 31 Suction temperature detection unit 32 Second operation unit 40 Third operation unit 50 Fourth operation unit 60 First four-way valve 61 Outdoor heat exchanger 62 Outdoor fan 63 Second four-way valve 64 Indoor heat Exchanger 65 Indoor fan 73 Auxiliary compression mechanism A Refrigerant cycle circuit B Hot water supply cycle circuit C Outdoor unit D Indoor unit

Claims (19)

圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記膨張機構に流入する冷媒を減圧する予減圧弁と、前記バイパス弁と前記予減圧弁との動作を制御する操作器とを備え、前記操作器が、前記バイパス弁と前記予減圧弁との開度を、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. In the refrigeration cycle apparatus, a bypass flow path that bypasses the expansion mechanism, a bypass valve provided on the bypass flow path, a pre-reduction valve that depressurizes refrigerant flowing into the expansion mechanism, the bypass valve, and the pre-decompression pressure and a control Gosuru operating device the operation of the valve, the operating device is, the opening degree of said bypass valve said pre pressure reducing valve, by changing the basis of the discharge temperature or superheat of the refrigeration cycle apparatus A refrigeration cycle apparatus for adjusting a high-pressure side pressure . 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記バイパス弁の動作と前記駆動源の回転数とを制御する操作器とを備え、前記操作器が、前記バイパス弁の開度と前記駆動源の回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. in the refrigeration cycle apparatus includes a bypass flow path for bypassing said expansion mechanism, a bypass valve provided in the bypass flow path, and a control Gosuru operating device and a rotational speed of operation and the driving source of the bypass valve The operating device adjusts the high-pressure side pressure by changing the opening degree of the bypass valve and the rotational speed of the drive source based on the discharge temperature or the degree of superheat of the refrigeration cycle apparatus. Refrigeration cycle equipment. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記蒸発器に送風するファンと、前記バイパス弁と前記ファンの回転数とを制御する操作器とを備え、前記操作器が、前記バイパス弁の開度と前記ファンの回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. in the refrigeration cycle device, a bypass passage bypassing the expansion mechanism, a bypass valve provided in the bypass flow path, and a fan for blowing air to the evaporator, Gosei the rotational speed of the fan and the bypass valve And adjusting the high-pressure side pressure by changing the opening degree of the bypass valve and the rotational speed of the fan based on the discharge temperature or the superheat degree of the refrigeration cycle apparatus. A refrigeration cycle apparatus characterized by: 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、冷凍サイクル装置の運転状態で前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. In the refrigeration cycle apparatus, the design volume ratio of the compression mechanism and the expansion mechanism is substantially matched with the largest value among the ratios of the outlet refrigerant densities of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus. A refrigeration cycle apparatus characterized by that. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. In the refrigeration cycle apparatus, the outlet volume refrigerant of each of the radiator and the evaporator in the operating state of the refrigeration cycle apparatus in which the refrigerant density at the outlet of the radiator is the largest is the design volume ratio of the compression mechanism and the expansion mechanism. A refrigeration cycle apparatus characterized by substantially matching a density ratio. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記蒸発器の周囲温度が最も低く、かつ、前記放熱器に流入する水温が最も低く、かつ、前記放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. In the refrigeration cycle apparatus, the design volume ratio of the compression mechanism and the expansion mechanism is set so that the ambient temperature of the evaporator is the lowest, the water temperature flowing into the radiator is the lowest, and the hot water is allowed to flow out of the radiator. A refrigeration cycle apparatus characterized by substantially matching a ratio of outlet refrigerant densities of the radiator and the evaporator in an operating state of the refrigeration cycle apparatus having the highest temperature. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備え、冷媒として二酸化炭素が用いられ、給湯機として使用される冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を10以上としたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source connected to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and an evaporator that heats the refrigerant flowing out of the expansion mechanism, In the refrigeration cycle apparatus that uses carbon dioxide as a refrigerant and is used as a hot water heater, the design volume ratio of the compression mechanism and the expansion mechanism is 10 or more. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を、前記蒸発器に送風される空気の温度が最も低く、かつ、前記放熱器に送風される空気の温度が最も低く、かつ、前記放熱器から吹き出される空気温度が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記蒸発器のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism and an evaporator that heats the refrigerant flowing out of the expansion mechanism are provided. In the refrigeration cycle apparatus, the design volume ratio of the compression mechanism and the expansion mechanism is such that the temperature of the air blown to the evaporator is the lowest, and the temperature of the air blown to the radiator is the lowest, and A refrigeration cycle apparatus characterized in that the ratio of outlet refrigerant densities of the radiator and the evaporator in an operating state of the refrigeration cycle apparatus with the highest temperature of air blown out from the radiator is substantially the same. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備え、冷媒として二酸化炭素が用いられ、空気調和機として使用される冷凍サイクル装置において、前記圧縮機構と前記膨張機構の設計容積比を8以上としたことを特徴とする冷凍サイクル装置。 A compression mechanism, an expansion mechanism, and a drive source connected to a single shaft, a radiator that cools the refrigerant discharged from the compression mechanism, and an evaporator that heats the refrigerant flowing out of the expansion mechanism, A refrigeration cycle apparatus using carbon dioxide as a refrigerant and used as an air conditioner, wherein a design volume ratio of the compression mechanism and the expansion mechanism is 8 or more. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記膨張機構に流入する冷媒を減圧する予減圧弁とを備えた冷凍サイクル装置において、前記バイパス弁と前記予減圧弁との開度、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置の制御方法。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism, an evaporator that heats the refrigerant flowing out of the expansion mechanism, and the expansion A refrigeration cycle apparatus comprising: a bypass flow path that bypasses a mechanism; a bypass valve provided on the bypass flow path; and a pre-reducing valve that depressurizes refrigerant flowing into the expansion mechanism. A control method for a refrigeration cycle apparatus, comprising adjusting a high-pressure side pressure by changing an opening with a valve based on a discharge temperature or a superheat degree of the refrigeration cycle apparatus. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁とを備えた冷凍サイクル装置において、前記バイパス弁の開度と前記駆動源の回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置の制御方法。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism, an evaporator that heats the refrigerant flowing out of the expansion mechanism, and the expansion In the refrigeration cycle apparatus including a bypass flow path that bypasses the mechanism and a bypass valve provided on the bypass flow path, the opening degree of the bypass valve and the rotational speed of the drive source are determined by discharging the refrigeration cycle apparatus. A control method for a refrigeration cycle apparatus, wherein the high-pressure side pressure is adjusted by changing the temperature or the degree of superheat. 圧縮機構と膨張機構と駆動源とを一本の軸に連結するとともに、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器と、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記蒸発器に送風するファンとを備えた冷凍サイクル装置において、前記バイパス弁の開度と前記ファンの回転数とを、前記冷凍サイクル装置の吐出温度または過熱度に基づいて変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置の制御方法。 A compression mechanism, an expansion mechanism, and a drive source are connected to a single shaft, and a radiator that cools the refrigerant discharged from the compression mechanism, an evaporator that heats the refrigerant flowing out of the expansion mechanism, and the expansion In a refrigeration cycle apparatus including a bypass flow path that bypasses a mechanism, a bypass valve provided on the bypass flow path, and a fan that blows air to the evaporator, the opening degree of the bypass valve and the rotational speed of the fan Is controlled based on the discharge temperature or the degree of superheat of the refrigeration cycle apparatus, thereby adjusting the high-pressure side pressure . 補助圧縮機構と膨張機構とを一本の軸に連結するとともに、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒をさらに圧縮する補助圧縮機構と、前記補助圧縮機構から吐出された冷媒を冷却する放熱器と、前記膨張機構から流出した冷媒を加熱する蒸発器とを備えた冷凍サイクル装置において、前記膨張機構をバイパスするバイパス流路と、前記バイパス流路上に設けられたバイパス弁と、前記バイパス弁の動作を制御する操作器とを備え、前記操作器が、前記バイパス弁の開度を変更することで、高圧側圧力を調整することを特徴とする冷凍サイクル装置。 The auxiliary compression mechanism and the expansion mechanism are connected to a single shaft, and the compression mechanism that compresses the refrigerant, the auxiliary compression mechanism that further compresses the refrigerant discharged from the compression mechanism, and the auxiliary compression mechanism that is discharged from the auxiliary compression mechanism In the refrigeration cycle apparatus including a radiator that cools the refrigerant and an evaporator that heats the refrigerant that has flowed out of the expansion mechanism, a bypass channel that bypasses the expansion mechanism, and a bypass valve that is provided on the bypass channel And a controller for controlling the operation of the bypass valve, wherein the controller adjusts the high-pressure side pressure by changing the opening of the bypass valve . 前記膨張機構に流入する冷媒を減圧する予減圧弁を備えたことを特徴とする請求項13に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 13, further comprising a pre-reducing valve that depressurizes the refrigerant flowing into the expansion mechanism. 前記操作器が、前記バイパス弁と前記予減圧弁との開度当該冷凍サイクル装置の吐出温度または過熱度に基づいて変更ることを特徴とする請求項14に記載の冷凍サイクル装置。 The operating device is, the opening degree of said bypass valve said pre reducing valve, a refrigeration cycle apparatus according to claim 14, wherein the benzalkonium change based on the discharge temperature or superheat of the refrigeration cycle apparatus . 前記補助圧縮機構と前記膨張機構の設計容積比を、冷凍サイクル装置の運転状態で前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比のうち最も大きくなる値と略一致させたことを特徴とする請求項13に記載の冷凍サイクル装置。 The design volume ratio of the auxiliary compression mechanism and the expansion mechanism is approximately matched with the largest value among the ratios of the outlet refrigerant densities of the radiator and the compression mechanism in the operating state of the refrigeration cycle apparatus. The refrigeration cycle apparatus according to claim 13. 前記補助圧縮機構と前記膨張機構の設計容積比を、前記放熱器の出口の冷媒密度が最も大きくなる冷凍サイクル装置の運転状態での前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする請求項13に冷凍サイクル装置。 The design volume ratio of the auxiliary compression mechanism and the expansion mechanism is the ratio of the outlet refrigerant density of each of the radiator and the compression mechanism in the operating state of the refrigeration cycle apparatus in which the refrigerant density at the outlet of the radiator is the largest. The refrigeration cycle apparatus according to claim 13, which is substantially matched. 前記補助圧縮機構と前記膨張機構の設計容積比を、前記蒸発器の周囲温度が最も低く、かつ、前記放熱器に流入する水温が最も低く、かつ、前記放熱器から流出させる湯温が最も高くなる冷凍サイクル装置の運転状態での前記放熱器と前記圧縮機構のそれぞれの出口冷媒密度の比と略一致させたことを特徴とする請求項13に記載の冷凍サイクル装置。 The design volume ratio of the auxiliary compression mechanism and the expansion mechanism is such that the ambient temperature of the evaporator is the lowest, the water temperature flowing into the radiator is the lowest, and the hot water temperature flowing out from the radiator is the highest. 14. The refrigeration cycle apparatus according to claim 13, wherein the refrigeration cycle apparatus is substantially equal to a ratio of outlet refrigerant densities of the radiator and the compression mechanism in an operation state of the refrigeration cycle apparatus. 冷媒として二酸化炭素が用いられ、給湯機として使用される冷凍サイクル装置であって、前記補助圧縮機構と前記膨張機構の設計容積比を4以上としたことを特徴とする請求項13に記載の冷凍サイクル装置。 The refrigeration cycle apparatus using carbon dioxide as a refrigerant and being used as a water heater, wherein the design volume ratio of the auxiliary compression mechanism and the expansion mechanism is 4 or more. Cycle equipment.
JP2004107079A 2004-03-31 2004-03-31 Refrigeration cycle apparatus and control method thereof Expired - Fee Related JP3708536B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004107079A JP3708536B1 (en) 2004-03-31 2004-03-31 Refrigeration cycle apparatus and control method thereof
CNB2005100628492A CN100513930C (en) 2004-03-31 2005-03-31 Refrigeration circulation device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107079A JP3708536B1 (en) 2004-03-31 2004-03-31 Refrigeration cycle apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP3708536B1 true JP3708536B1 (en) 2005-10-19
JP2005291622A JP2005291622A (en) 2005-10-20

Family

ID=35049678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107079A Expired - Fee Related JP3708536B1 (en) 2004-03-31 2004-03-31 Refrigeration cycle apparatus and control method thereof

Country Status (2)

Country Link
JP (1) JP3708536B1 (en)
CN (1) CN100513930C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162438A (en) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp Air conditioner and its operating method
WO2009147882A1 (en) 2008-06-05 2009-12-10 三菱電機株式会社 Refrigeration cycle apparatus
WO2011117924A1 (en) 2010-03-25 2011-09-29 三菱電機株式会社 Refrigeration cycle apparatus and method for operating same
CN112665098A (en) * 2020-12-09 2021-04-16 珠海格力电器股份有限公司 Air conditioner pipeline pressure control method, controller and air conditioner
CN112710071A (en) * 2020-12-28 2021-04-27 宁波奥克斯电气股份有限公司 Method and device for controlling adjusting speed of electronic expansion valve and multi-split air conditioning system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736727B2 (en) * 2005-11-11 2011-07-27 ダイキン工業株式会社 Heat pump water heater
JP4665736B2 (en) * 2005-11-30 2011-04-06 パナソニック株式会社 Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle
JP4857903B2 (en) * 2006-05-17 2012-01-18 ダイキン工業株式会社 Water heater
JP5040256B2 (en) * 2006-10-19 2012-10-03 パナソニック株式会社 Refrigeration cycle apparatus and control method thereof
US20100031677A1 (en) * 2007-03-16 2010-02-11 Alexander Lifson Refrigerant system with variable capacity expander
EP2163838A4 (en) 2007-05-25 2013-11-06 Mitsubishi Electric Corp Refrigeration cycle device
EP2306120B1 (en) * 2008-05-22 2018-02-28 Mitsubishi Electric Corporation Refrigerating cycle device
US8511112B2 (en) 2009-06-02 2013-08-20 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US9353975B2 (en) * 2009-09-24 2016-05-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus with an expander to recover power from refrigerant
JP4941581B2 (en) * 2010-07-15 2012-05-30 ダイキン工業株式会社 Heat pump system
US8646286B2 (en) 2010-12-30 2014-02-11 Pdx Technologies Llc Refrigeration system controlled by refrigerant quality within evaporator
WO2013030896A1 (en) 2011-09-01 2013-03-07 三菱電機株式会社 Refrigeration cycle device
TWI444579B (en) * 2011-11-09 2014-07-11 Ind Tech Res Inst Heat recovered cooling system
JP6266942B2 (en) * 2013-10-10 2018-01-24 日立ジョンソンコントロールズ空調株式会社 Air conditioner
US9791188B2 (en) 2014-02-07 2017-10-17 Pdx Technologies Llc Refrigeration system with separate feedstreams to multiple evaporator zones
CN104296648A (en) * 2014-09-12 2015-01-21 浙江万安科技股份有限公司 Displacement sensor for brake valve and EBS brake valve of displacement sensor
CN106839539A (en) * 2017-03-02 2017-06-13 钟晓华 A kind of energy circulation type air conditioner energy saving technology
US11828507B2 (en) 2018-09-25 2023-11-28 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system and control method therefor
CN110953699B (en) * 2018-09-26 2021-05-18 杭州三花研究院有限公司 Air conditioning system and control method thereof
CN112229043A (en) * 2020-10-19 2021-01-15 珠海格力电器股份有限公司 Air conditioner operation method and device, electronic equipment and computer readable medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934424A (en) * 1973-12-07 1976-01-27 Enserch Corporation Refrigerant expander compressor
US5467613A (en) * 1994-04-05 1995-11-21 Carrier Corporation Two phase flow turbine
US6112547A (en) * 1998-07-10 2000-09-05 Spauschus Associates, Inc. Reduced pressure carbon dioxide-based refrigeration system
JP2000320910A (en) * 1999-05-11 2000-11-24 Bosch Automotive Systems Corp Control method for freezing cycle and freezing cycle using this method
JP2003074997A (en) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd Supercritical refrigeration unit
JP3952951B2 (en) * 2003-01-08 2007-08-01 ダイキン工業株式会社 Refrigeration equipment
US6968708B2 (en) * 2003-06-23 2005-11-29 Carrier Corporation Refrigeration system having variable speed fan

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162438A (en) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp Air conditioner and its operating method
WO2009147882A1 (en) 2008-06-05 2009-12-10 三菱電機株式会社 Refrigeration cycle apparatus
US8769983B2 (en) 2008-06-05 2014-07-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2011117924A1 (en) 2010-03-25 2011-09-29 三菱電機株式会社 Refrigeration cycle apparatus and method for operating same
US9222706B2 (en) 2010-03-25 2015-12-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus and operating method of same
CN112665098A (en) * 2020-12-09 2021-04-16 珠海格力电器股份有限公司 Air conditioner pipeline pressure control method, controller and air conditioner
CN112710071A (en) * 2020-12-28 2021-04-27 宁波奥克斯电气股份有限公司 Method and device for controlling adjusting speed of electronic expansion valve and multi-split air conditioning system

Also Published As

Publication number Publication date
CN100513930C (en) 2009-07-15
JP2005291622A (en) 2005-10-20
CN1677017A (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
USRE43312E1 (en) Refrigeration cycle apparatus
JP5349686B2 (en) Refrigeration cycle equipment
JP4321095B2 (en) Refrigeration cycle equipment
EP1489367B1 (en) Refrigerating cycle device
JP5018496B2 (en) Refrigeration equipment
US7730729B2 (en) Refrigerating machine
JP4273493B2 (en) Refrigeration air conditioner
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP4317793B2 (en) Cooling system
JP6080939B2 (en) Air conditioner
JP2007212024A (en) Refrigerating cycle device and its control method
JP4156422B2 (en) Refrigeration cycle equipment
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2008002743A (en) Refrigerating device
JP3863555B2 (en) Refrigeration cycle equipment
EP1830143A2 (en) Refrigeration cycle apparatus
JP4581795B2 (en) Refrigeration equipment
JP2006242480A (en) Vapor compression cycle system
JP2006194537A (en) Heat pump device
JP2012076589A (en) Air conditioner for vehicle
JP4644278B2 (en) Refrigeration cycle equipment
JP2005037003A (en) Air-conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees