JP2003074997A - Supercritical refrigeration unit - Google Patents

Supercritical refrigeration unit

Info

Publication number
JP2003074997A
JP2003074997A JP2001267605A JP2001267605A JP2003074997A JP 2003074997 A JP2003074997 A JP 2003074997A JP 2001267605 A JP2001267605 A JP 2001267605A JP 2001267605 A JP2001267605 A JP 2001267605A JP 2003074997 A JP2003074997 A JP 2003074997A
Authority
JP
Japan
Prior art keywords
compressor
pressure
stage
low
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001267605A
Other languages
Japanese (ja)
Inventor
Sadahiro Takizawa
禎大 滝澤
Kiyoshi Koyama
清 小山
Shigeo Tsukue
重男 机
Satoshi Hoshino
聡 星野
Chiaki Shikichi
千明 式地
Shigeya Ishigaki
茂弥 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001267605A priority Critical patent/JP2003074997A/en
Priority to KR10-2002-0052664A priority patent/KR100500617B1/en
Priority to CNB021415927A priority patent/CN1168943C/en
Publication of JP2003074997A publication Critical patent/JP2003074997A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To provide a supercritical refrigeration unit having a bypass device capable of preventing pressure difference between high pressure and low pressure of a high stage side compressor from increasing and a heat pump water heater using such a supercritical refrigeration unit. SOLUTION: A two-stage compressor 11 having a low stage side compressor 11a and the high side compressor 11b as its components, a high pressure side heat exchanger 12 for cooling gas discharged from the compressor 11b of the compressor 11, an expansion device 13 and an evaporator 14 for effecting heat exchange with outdoor air are connected sequentially so as to form a refrigerant circuit to turn high pressure side pressure into a supercritical state. The refrigerant circuit is provided with a bypass circuit 16 so as to bypass to the discharge side of the low stage side compressor the high pressure refrigerant which has been cooled in the high pressure side heat exchanger when outdoor temperature becomes low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超臨界冷凍装置に
関し、特に、外気を蒸発器の熱源流体とし、圧縮機とし
て2段圧縮機を用いた超臨界冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercritical refrigeration system, and more particularly to a supercritical refrigeration system that uses outside air as a heat source fluid for an evaporator and uses a two-stage compressor as a compressor.

【0002】[0002]

【従来の技術】外気を蒸発器の熱源流体とし、圧縮機と
して2段圧縮機を用いた超臨界冷凍装置では、一般的
に、外気温度が低下した場合、蒸発圧力、つまり低圧側
圧力が低下する。また、この低圧側圧力の低下に伴い低
段側圧縮機の吐出側圧力、つまり中間圧力が低下する。
これに対し高段側圧縮機の吐出圧力、つまり高圧側圧力
は、高段側圧縮機の吐出側ガスが水や空気などの利用側
熱交換媒体を加熱する熱源に使用されることから、高段
側圧縮機の吐出側ガスの温度を高く維持することが必要
となる場合、つまり、高圧側圧力を高く維持することが
必要となる場合(例えば、高圧圧力が低下しないように
する場合)がある。この場合、前記2段圧縮機を用いた
冷凍装置では、高圧側圧力と中間圧力との圧力差が外気
温の低下とともに大きくなっていた。
2. Description of the Related Art In a supercritical refrigeration system using outside air as a heat source fluid for an evaporator and a two-stage compressor as a compressor, generally, when the outside air temperature decreases, the evaporation pressure, that is, the low pressure side pressure decreases. To do. In addition, the discharge-side pressure of the low-stage compressor, that is, the intermediate pressure, decreases as the low-pressure side pressure decreases.
On the other hand, the discharge pressure of the high-stage compressor, that is, the high-pressure side pressure, is high because the discharge-side gas of the high-stage compressor is used as a heat source for heating the use side heat exchange medium such as water or air. When it is necessary to keep the temperature of the gas on the discharge side of the stage compressor high, that is, when it is necessary to keep the pressure on the high pressure high (for example, to prevent the high pressure from decreasing). is there. In this case, in the refrigeration system using the two-stage compressor, the pressure difference between the high-pressure side pressure and the intermediate pressure was large as the outside air temperature decreased.

【0003】[0003]

【発明が解決しようとする課題】ところが、このように
高圧側圧力と中間圧力との圧力差が外気温の低下ととも
に大きくなると、高段側圧縮機の高低圧力差が大きくな
るため、圧縮効率が悪くなるとともに各部材に作用する
力が大きくなり、耐久性が低下するという問題があっ
た。例えば、高低圧力差が大きくなると、例えば、高段
側圧縮機におけるベーンバルブや吐出弁の破損などにつ
ながる恐れがあった。
However, when the pressure difference between the high-pressure side pressure and the intermediate pressure increases as the outside air temperature decreases, the pressure difference between the high-stage side compressor and the high-side side pressure increases, resulting in a high compression efficiency. There is a problem in that the durability is deteriorated because the force acting on each member increases with the deterioration. For example, if the high-low pressure difference becomes large, for example, the vane valve and the discharge valve in the high-stage compressor may be damaged.

【0004】本発明は、このような従来の技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、高段側圧縮機の高低圧力差が増大するのを
防止するバイパス回路を備えた超臨界冷凍装置を提供す
ることにある。また、このような超臨界冷凍装置を用い
たヒートポンプ式給湯装置を提供することにある。
The present invention has been made by paying attention to the problems existing in such conventional techniques. It is an object of the present invention to provide a supercritical refrigeration system provided with a bypass circuit that prevents an increase in the high-low pressure difference of the high-stage compressor. Another object of the present invention is to provide a heat pump type hot water supply device using such a supercritical refrigeration system.

【0005】[0005]

【課題を解決するための手段】上記のような目的を達成
するために、本発明による超臨界冷凍装置は、低段側圧
縮機と高段側圧縮機を構成要素として備えている2段圧
縮機、この2段圧縮機の高段側圧縮機からの吐出ガスを
冷却する高圧側熱交換器、膨張装置、外気と熱交換する
蒸発器が順次接続され、高圧側圧力が超臨界となるよう
に形成された冷媒回路を有し、この冷媒回路は、さら
に、外気温度が低下したときに高圧側熱交換器で冷却さ
れた後の高圧ガス冷媒を前記低段側圧縮機の吐出側にバ
イパスするバイパス回路を有するものである。
In order to achieve the above object, a supercritical refrigeration system according to the present invention comprises a low-stage compressor and a high-stage compressor as two-stage compression. Machine, high-pressure side heat exchanger that cools the discharge gas from the high-stage side compressor of this two-stage compressor, expansion device, evaporator that exchanges heat with the outside air are sequentially connected so that the high-pressure side pressure becomes supercritical. The refrigerant circuit further includes a refrigerant circuit that bypasses the high-pressure gas refrigerant that has been cooled by the high-pressure side heat exchanger when the outside air temperature decreases to the discharge side of the low-stage compressor. The bypass circuit has a bypass circuit.

【0006】このように構成すると、外気温度の低下に
より高段側圧縮機の高圧側のガス冷媒が中間圧力部分に
バイパスされることにより中間圧力が上昇し、高段側圧
縮機における圧縮比が小さくなる。また、バイパスされ
る冷媒ガスが高圧側熱交換器で冷却された後のものであ
るため、高段側圧縮機に吸入される冷媒ガスの過熱度が
小さくなる。したがって、高段側圧縮機の高低圧力差が
小さくなることにより、吐出弁やベーンバルブの破損の
恐れがなくなり、圧縮機の耐久性が向上する。また、高
段側圧縮機の圧縮比が小さくなることと、吸入ガスの過
熱度が小さくなることから、その運転効率が向上する。
According to this structure, since the high-pressure side gas refrigerant of the high-stage compressor is bypassed to the intermediate pressure portion due to the decrease in the outside air temperature, the intermediate pressure rises, and the compression ratio in the high-stage compressor is increased. Get smaller. Further, since the bypassed refrigerant gas has been cooled by the high pressure side heat exchanger, the degree of superheat of the refrigerant gas sucked into the high pressure side compressor is reduced. Therefore, the pressure difference between the high-stage compressor and the low-pressure side becomes small, so that there is no fear of damage to the discharge valve or the vane valve, and the durability of the compressor is improved. Further, since the compression ratio of the high-stage compressor becomes small and the superheat of the intake gas becomes small, the operating efficiency of the compressor improves.

【0007】また、前記2段圧縮機は、外気温度が低下
したときに、圧縮機能力の低下を抑制するように容量制
御され、前記膨張弁装置は、外気温度が低下したとき
に、高段側圧縮機の吐出圧力の低下を抑制するように開
度制御されるようにしてもよい。このように構成すれ
ば、外気温度低下時に、高圧側圧力を高く維持し、高段
側圧縮機の吐出側ガスの温度を高く維持することができ
る。
Further, the capacity of the two-stage compressor is controlled so as to suppress the reduction of the compression function force when the outside air temperature decreases, and the expansion valve device has a high stage when the outside air temperature decreases. The opening degree may be controlled so as to suppress the decrease in the discharge pressure of the side compressor. According to this structure, when the outside air temperature decreases, the high pressure side pressure can be maintained high, and the discharge side gas temperature of the high stage side compressor can be maintained high.

【0008】また、前記冷媒回路は、冷媒として二酸化
炭素が充填されているものとしてもよい。このように構
成すれば、可燃性、毒性の無い冷媒を使用しながら、高
段側圧縮機の吐出側ガスの温度が高くなる超臨界冷凍サ
イクルとすることができる。また、前記バイパス回路の
作用により、高圧側圧力の低下を防止することができる
ことと相俟って、高段側圧縮機の吐出側ガスの温度を高
く維持することができる。
The refrigerant circuit may be filled with carbon dioxide as a refrigerant. According to this structure, a supercritical refrigeration cycle in which the temperature of the gas on the discharge side of the high-stage compressor becomes high while using a refrigerant that is inflammable and non-toxic is possible. Further, the action of the bypass circuit can prevent the pressure on the high-pressure side from being lowered, so that the temperature of the discharge-side gas of the high-stage compressor can be kept high.

【0009】また、前記2段圧縮機は、前記低段側圧縮
機の吐出ガスを導入した密閉ハウジング内に、前記低段
側圧縮機、高段側圧縮機及び駆動用電動機を内蔵したも
のとすることができる。このように構成すれば、圧縮機
ハウジング内に中間圧力が作用することになり、2段圧
縮機のシリンダー内外及び圧縮機ハウジング内外の圧力
差が半減され、各部に作用する力が小さくなる。この結
果、前記バイパス回路による高低圧力差の増大を防止す
る効果と相俟って、2段圧縮機の耐久性能がより一層向
上する。
The two-stage compressor has the low-stage compressor, the high-stage compressor and a driving electric motor built in a hermetically sealed housing into which the discharge gas of the low-stage compressor is introduced. can do. According to this structure, the intermediate pressure acts on the inside of the compressor housing, the pressure difference between the inside and outside of the cylinder of the two-stage compressor and the inside and outside of the compressor housing is halved, and the force acting on each part is reduced. As a result, the durability performance of the two-stage compressor is further improved in combination with the effect of preventing an increase in the high-low pressure difference due to the bypass circuit.

【0010】また、本発明によるヒートポンプ式給湯装
置は、上記のような超臨界冷凍装置を応用したものであ
るので、外気温度が低下した場合に、高段側圧縮機の高
低圧力差が増大するのを防止することができ、装置の耐
久性を劣化させることなく高温の温水を得ることができ
る。
Further, since the heat pump type hot water supply apparatus according to the present invention is an application of the above-mentioned supercritical refrigeration system, when the outside air temperature is lowered, the pressure difference between the high pressure side compressor and the high pressure side is increased. Can be prevented, and high-temperature hot water can be obtained without deteriorating the durability of the device.

【0011】[0011]

【発明の実施の形態】以下、本発明をヒートポンプ式給
湯装置に具体化した実施の形態を、図面を参照しながら
詳細に説明する。図1は本発明の実施の形態に係る給湯
装置の回路図であり、図2は本発明の実施の形態に係る
圧力制御の説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments in which the present invention is embodied in a heat pump type hot water supply apparatus will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram of a hot water supply device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of pressure control according to the embodiment of the present invention.

【0012】図1に示すように、実施の形態1に係る給
湯装置は、超臨界冷凍サイクル装置1、給湯ユニット2
及び制御装置3とを備えたものである。なお、この実施
の形態においては、制御装置3は超臨界冷凍サイクル装
置1内に設置されている。また、超臨界冷凍サイクル装
置1と給湯ユニット2とは連絡水用配管5、6により接
続されている。
As shown in FIG. 1, the hot water supply apparatus according to the first embodiment includes a supercritical refrigeration cycle apparatus 1 and a hot water supply unit 2.
And a control device 3. In addition, in this embodiment, the control device 3 is installed in the supercritical refrigeration cycle device 1. Further, the supercritical refrigeration cycle apparatus 1 and the hot water supply unit 2 are connected by the connecting water pipes 5 and 6.

【0013】超臨界冷凍サイクル装置1は、インバータ
駆動式2段圧縮機11、高圧側熱交換器12、電動膨張
弁13、蒸発器14、アキュムレータ15を順次接続し
た冷媒回路を備えている。また、この冷媒回路における
冷媒の流れは、定常運転時は図1の実線矢印のようにな
っている。
The supercritical refrigeration cycle apparatus 1 includes a refrigerant circuit in which an inverter-driven two-stage compressor 11, a high pressure side heat exchanger 12, an electric expansion valve 13, an evaporator 14 and an accumulator 15 are sequentially connected. Further, the flow of the refrigerant in this refrigerant circuit is as shown by the solid line arrow in FIG. 1 during steady operation.

【0014】インバータ駆動式2段圧縮機11は、密閉
ハウジング内に低段側圧縮機11a、高段側圧縮機11
b、これら圧縮機11a及び11bを駆動する共用の電
動機11cを内蔵したものであり、低段側圧縮機11a
の吐出側と高段側圧縮機11bの吸入側とを連絡配管1
1dにより連結している。また、密閉ハウジング内空間
は、中間圧力ガス、つまり低段側圧縮機11aの吐出ガ
スにより満たされている。
The inverter-driven two-stage compressor 11 includes a low-stage compressor 11a and a high-stage compressor 11 in a hermetically sealed housing.
b, a common electric motor 11c for driving these compressors 11a and 11b is built in, and the low-stage side compressor 11a
For connecting the discharge side of the high pressure side compressor 11b with the discharge side of the high pressure side compressor 11b
It is connected by 1d. Further, the space inside the closed housing is filled with the intermediate pressure gas, that is, the discharge gas of the low-stage side compressor 11a.

【0015】また、インバータ駆動式2段圧縮機11
は、超臨界冷凍サイクル運転中、後述する制御装置3に
より運転周波数が制御され、回転数が制御されている。
なお、高段側圧縮機11bの吐出配管には、高段側圧縮
機11bから吐出される吐出ガス温度を検出するための
吐出ガス温度検出器31が設けられている。
Further, the inverter-driven two-stage compressor 11
In the supercritical refrigeration cycle operation, the operating frequency is controlled by the control device 3 described later, and the rotation speed is controlled.
A discharge gas temperature detector 31 for detecting the temperature of the discharge gas discharged from the high-stage compressor 11b is provided in the discharge pipe of the high-stage compressor 11b.

【0016】高圧側熱交換器12は、高段側圧縮機11
bから吐出された高圧冷媒を導入する冷媒用熱交換チュ
ーブ12aと、給湯ユニット2内に配置されている貯湯
タンク21から送水される給湯水を導入する水用熱交換
チューブ12bとからなり、両者が熱交換関係に形成さ
れたものである。したがって、高段側圧縮機11bから
吐出された高温高圧の冷媒ガスは貯湯タンク21から送
水される給湯水により冷却され、この給湯水は高段側圧
縮機11bの吐出ガスが有する熱により加熱される。
The high pressure side heat exchanger 12 is a high stage side compressor 11
a heat exchanger tube 12a for refrigerant for introducing the high-pressure refrigerant discharged from b, and a heat exchanger tube 12b for water for introducing hot water supplied from the hot water storage tank 21 arranged in the hot water supply unit 2, Are formed in a heat exchange relationship. Therefore, the high-temperature and high-pressure refrigerant gas discharged from the high-stage compressor 11b is cooled by the hot water supplied from the hot water storage tank 21, and the hot water is heated by the heat of the discharge gas of the high-stage compressor 11b. It

【0017】電動膨張弁13は、高圧側熱交換器12で
冷却された高圧ガス冷媒を減圧するもので、パルスモー
タにより駆動される。また、超臨界冷凍サイクル運転中
は後述する制御装置3により開度制御されている。
The electric expansion valve 13 decompresses the high pressure gas refrigerant cooled by the high pressure side heat exchanger 12, and is driven by a pulse motor. Further, during the operation of the supercritical refrigeration cycle, the opening degree is controlled by the control device 3 described later.

【0018】蒸発器14は、電動膨張弁13により減圧
された低圧の気液混合冷媒を、熱源媒体としての外気と
熱交換させ、この冷媒を気化させるものである。なお、
この蒸発器14には外気温度を検出するための外気温度
検出器32が付設されている。
The evaporator 14 heat-exchanges the low-pressure gas-liquid mixed refrigerant decompressed by the electric expansion valve 13 with the outside air as a heat source medium to vaporize the refrigerant. In addition,
An outside air temperature detector 32 for detecting the outside air temperature is attached to the evaporator 14.

【0019】そして、上記のように構成され、上記のよ
うな構成機器を備えた冷媒回路には、高圧側熱交換器1
2の出口側配管から低段側圧縮機11aと高段側圧縮機
11bとを接続する連絡配管11dにかけてバイパス回
路16が設けられ、このバイパス回路16中に電磁開閉
弁17及びキャピラリ−チューブ18が設けられてい
る。
The high-pressure side heat exchanger 1 is installed in the refrigerant circuit having the above-mentioned configuration and the above-described components.
The bypass circuit 16 is provided from the outlet side pipe of 2 to the communication pipe 11d connecting the low-stage side compressor 11a and the high-stage side compressor 11b. In the bypass circuit 16, the electromagnetic opening / closing valve 17 and the capillary tube 18 are provided. It is provided.

【0020】また、上記冷媒回路の内部には、代替冷媒
としての二酸化炭素(CO2)が充填されている。冷凍
・空調用の代表的な自然冷媒としては、ハイドロカーボ
ン(HC:プロパンやイソブタンなど)、アンモニア、
空気そしてCO2等が挙げられる。しかしながら、冷媒
特性として、ハイドロカーボンとアンモニアはエネルギ
ー効率が良いという反面可燃性や毒性の問題があり、空
気は超低温域以外でエネルギー効率が劣るなどといった
問題がある。これに対し二酸化炭素は、可燃性や毒性が
なく安全である。
The inside of the refrigerant circuit is filled with carbon dioxide (CO 2 ) as an alternative refrigerant. Typical natural refrigerants for refrigeration and air conditioning are hydrocarbons (HC: propane, isobutane, etc.), ammonia,
Examples include air and CO 2 . However, as the refrigerant characteristics, hydrocarbon and ammonia have high energy efficiency, but on the other hand, they have problems of flammability and toxicity, and air has a problem that energy efficiency is poor except in the ultralow temperature range. On the other hand, carbon dioxide is safe without combustibility and toxicity.

【0021】次に、給湯ユニット2は、貯湯タンク2
1、温水循環ポンプ22、給湯配管23、給水配管24
を備えて構成されている。そして、貯湯タンク21の上
部及び下部は、前記水用熱交換チューブ12bに対し、
連絡水用配管5、6を含む温水循環回路Pにより接続さ
れている。
Next, the hot water supply unit 2 includes the hot water storage tank 2
1, hot water circulation pump 22, hot water supply pipe 23, water supply pipe 24
It is configured with. And the upper part and the lower part of the hot water storage tank 21 are different from the heat exchange tube 12b for water.
They are connected by a hot water circulation circuit P including the connecting water pipes 5 and 6.

【0022】温水循環回路Pは、貯湯タンク21下部の
温度の低い水を水用熱交換チューブ12bに送水し、水
用熱交換チューブ12bで加熱された温度の高い水を貯
湯タンク21の上部に導くように形成されている。ま
た、温水循環回路P中に温水循環ポンプ22が取り付け
られている。なお、貯湯タンク21内では、比重力の差
により上部では温度の高い温水が貯留され、下部では温
度の低い水が貯留されている。また、貯湯タンク21内
上部の温水温度、すなわち焚き上げ温度は、貯湯タンク
21上部に設けられた焚き上げ温度検出器33により測
定されている。
The hot water circulation circuit P sends water having a low temperature in the lower portion of the hot water storage tank 21 to the water heat exchange tube 12b, and sends water having a high temperature heated by the water heat exchange tube 12b to the upper portion of the hot water storage tank 21. It is formed to guide. A hot water circulation pump 22 is attached in the hot water circulation circuit P. In the hot water storage tank 21, hot water having a high temperature is stored in the upper portion and water having a low temperature is stored in the lower portion due to the difference in specific gravity. The hot water temperature in the upper part of the hot water storage tank 21, that is, the heating temperature, is measured by the heating temperature detector 33 provided in the upper part of the hot water storage tank 21.

【0023】給湯配管23は、温水蛇口、浴槽などに温
水を供給するためのものであり、貯湯タンク21中の高
い温度の温水を供給できるように、貯湯タンク21の上
部に接続されている。なお、この給湯回路には開閉弁2
5が取り付けられている。給水配管24は、貯湯タンク
21内に常時水道水を供給可能とするものであり、逆止
弁26、減圧弁27を介し貯湯タンク21の底部に接続
されている。
The hot water supply pipe 23 is for supplying hot water to a hot water faucet, a bathtub, etc., and is connected to the upper part of the hot water storage tank 21 so that the hot water of high temperature in the hot water storage tank 21 can be supplied. The hot water supply circuit has an on-off valve 2
5 is attached. The water supply pipe 24 is capable of constantly supplying tap water into the hot water storage tank 21, and is connected to the bottom of the hot water storage tank 21 via a check valve 26 and a pressure reducing valve 27.

【0024】制御装置3は、定常運転中所定の手順に従
いインバータ駆動式2段圧縮機の運転周波数及び電動膨
張弁13の開度を制御するものであるが、外気温度が低
下したときは次のような制御をする。すなわち、外気温
度検出器32が検出する外気温度が所定温度、例えば0
℃以下においては、外気温度の低下に対し、高圧側圧力
の低下を抑制するように電動膨張弁13の開度を絞り制
御するとともに、圧縮機能力をほぼ一定とするようにイ
ンバータ駆動式2段圧縮機11の回転数(運転周波数)
を大きくするように制御している。また、制御装置3
は、上記外気温度が上記所定温度(0℃)まで低下した
ときに、電磁開閉弁17を開放している。電磁開閉弁1
7が開放されることにより、図1において破線矢印で示
すように高圧ガス冷媒が中間圧力の連絡配管11dにバ
イパスされる。
The control device 3 controls the operating frequency of the inverter-driven two-stage compressor and the opening degree of the electric expansion valve 13 according to a predetermined procedure during steady operation. Control like this. That is, the outside air temperature detected by the outside air temperature detector 32 is a predetermined temperature, for example, 0.
When the temperature is lower than or equal to ℃, the opening degree of the electric expansion valve 13 is throttle-controlled so as to suppress the decrease in the pressure on the high-pressure side with respect to the decrease in the outside air temperature, and the inverter-driven two-stage is used so that the compression functional force is substantially constant. Rotational speed of compressor 11 (operating frequency)
Is controlled to be larger. In addition, the control device 3
Opens the electromagnetic opening / closing valve 17 when the outside air temperature drops to the predetermined temperature (0 ° C.). Solenoid valve 1
When 7 is opened, the high-pressure gas refrigerant is bypassed to the intermediate-pressure connecting pipe 11d as shown by the broken line arrow in FIG.

【0025】以上のように制御されることにより、図2
に示すように、高圧側圧力は、外気温度の低下に対し略
一定の圧力を保持するように制御される。また、中間圧
力は、従来のようにバイパス回路16が無いときには、
図2の破線のように低下するのに対し、この実施の形態
の場合には、同図の実線のようにその圧力低下が抑制さ
れている。したがって、高段側圧縮機11bの高低圧力
差の増大が抑制される。また、このときバイパスされる
高圧側冷媒ガスが高圧側熱交換器12で冷却されている
ため、高段側圧縮機11bに吸入される冷媒ガスの過熱
度が小さくなる。
By controlling as described above, FIG.
As shown in, the high-pressure side pressure is controlled so as to maintain a substantially constant pressure with respect to the decrease in the outside air temperature. In addition, the intermediate pressure, when there is no bypass circuit 16 as in the conventional case,
While the pressure drops as shown by the broken line in FIG. 2, in the case of this embodiment, the pressure drop is suppressed as shown by the solid line in FIG. Therefore, the increase in the pressure difference between the high-stage compressor 11b and the high-low pressure is suppressed. Further, since the high pressure side refrigerant gas bypassed at this time is cooled by the high pressure side heat exchanger 12, the degree of superheat of the refrigerant gas drawn into the high pressure side compressor 11b becomes small.

【0026】なお、中間圧力ついて、本発明のものと従
来のものとでは、外気温度の低下に対し従来のものとの
圧力差が拡大しているが、これはキャピラリーチューブ
18の作用によるものである。また、図2において、圧
力線図を外気温度−10℃までのみ示しているが、これ
は、偶々この給湯装置の運転許容範囲を−10℃と定め
ていることによるものである。
Regarding the intermediate pressure, the pressure difference between the present invention and the conventional one increases with the decrease in the outside air temperature, but this is due to the action of the capillary tube 18. is there. Further, in FIG. 2, the pressure diagram is shown only up to the outside air temperature of −10 ° C., but this is due to the fact that the operation allowable range of this water heater is accidentally set to −10 ° C.

【0027】以上のように構成された実施の形態によれ
ば、外気温度が低下したとき、高段側圧縮機11bにお
いては、高低圧力差が小さくなることにより、吐出弁や
ベーンバルブの破損の恐れがなくなり、圧縮機の耐久性
が向上する。また、高段側圧縮機の圧縮比が小さくなる
ことと、吸入ガスの過熱度小さくなることから、その運
転効率が向上する。
According to the embodiment configured as described above, when the outside air temperature decreases, in the high-stage compressor 11b, the pressure difference between the high and low sides becomes small, which may damage the discharge valve or the vane valve. Is eliminated and the durability of the compressor is improved. Further, since the compression ratio of the high-pressure stage compressor is small and the superheat of the intake gas is small, the operating efficiency of the compressor is improved.

【0028】また、外気温度が低下したとき、高圧側圧
力が高く維持されるため、高段側圧縮機の吐出側ガス温
度が高く維持される。特に図2のように、高圧側圧力が
一定に維持されるような場合は、給湯用温水を所定値、
この場合略一定値に維持することが可能となる。 ま
た、この実施の形態においては、冷媒として二酸化炭素
を使用しているので、冷媒ガスについて可燃性や毒性の
問題が無く、取り扱いが容易となる。
Further, when the outside air temperature decreases, the high pressure side pressure is kept high, so that the discharge side gas temperature of the high stage side compressor is kept high. In particular, as shown in FIG. 2, when the high-pressure side pressure is kept constant, the hot water for hot water supply is set to a predetermined value,
In this case, it is possible to maintain a substantially constant value. Further, in this embodiment, since carbon dioxide is used as the refrigerant, there is no problem of flammability or toxicity of the refrigerant gas, and the handling is easy.

【0029】また、インバータ駆動式2段圧縮機11
は、低段側圧縮機11aの吐出ガスを導入した密閉ハウ
ジング内に低段側圧縮機11a、高段側圧縮機11b及
び駆動用電動機11cを内蔵しているので、圧縮機ハウ
ジング内が中間圧力となる。したがって、シリンダー内
外及び圧縮機ハウジング内外の圧力差が半減され、各部
に作用する力が小さくなる。この結果、バイパス回路1
6による高低圧力差の増大防止効果と相俟って、インバ
ータ駆動式2段圧縮機11の耐久性能をより一層向上さ
せることができる。
Further, the inverter-driven two-stage compressor 11
Since the low-stage side compressor 11a, the high-stage side compressor 11b and the drive motor 11c are built in the hermetically sealed housing into which the discharge gas of the low-stage side compressor 11a is introduced, the inside of the compressor housing is at an intermediate pressure. Becomes Therefore, the pressure difference between the inside and outside of the cylinder and the inside and outside of the compressor housing is halved, and the force acting on each part is reduced. As a result, the bypass circuit 1
Combined with the effect of preventing the increase in the pressure difference between high and low by 6, the durability performance of the inverter-driven two-stage compressor 11 can be further improved.

【0030】なお、本発明は、次のように変形して具体
化することも可能である。 (1) 上記実施の形態においては、バイパス回路16
を0℃にて開放するようにしているが、この温度は冷凍
装置の設計により適宜変更することが可能である。
The present invention can be modified and embodied as follows. (1) In the above embodiment, the bypass circuit 16
Is opened at 0 ° C., but this temperature can be appropriately changed depending on the design of the refrigerator.

【0031】(2) また、バイパス回路16には、電
磁開閉弁17及びキャピラリーチューブ18が設けられ
ているが、これらに代え電動弁を用い、外気温度の低下
に従いその開度を徐々に大きくするようにすることも可
能である。このようにすれば、バイパス回路開放時、圧
力変化が急に生じるようなことが無く、滑らかな制御が
可能となる。
(2) In addition, the bypass circuit 16 is provided with an electromagnetic opening / closing valve 17 and a capillary tube 18. Instead of these, an electric valve is used and its opening is gradually increased as the outside air temperature decreases. It is also possible to do so. In this way, when the bypass circuit is opened, the pressure does not suddenly change, and smooth control is possible.

【0032】(3) また、バイパス回路16における
電磁開閉弁17とキャピラリーチューブ18との接続順
序を逆にしても良い。すなわち、バイパスされる冷媒ガ
スがキャピラリーチューブ18を通過した後に電磁開閉
弁17を通過するようにすることも可能である。ただ
し、この場合、電磁開閉弁17は、減圧された後の冷媒
ガスの流通を開閉することになるので、取り扱うガスの
比容積が大きくなる分口径の大きな電磁開閉弁が必要と
なる欠点がある。
(3) Further, the connection order of the electromagnetic opening / closing valve 17 and the capillary tube 18 in the bypass circuit 16 may be reversed. That is, it is also possible that the refrigerant gas to be bypassed passes through the electromagnetic on-off valve 17 after passing through the capillary tube 18. However, in this case, since the electromagnetic on-off valve 17 opens and closes the flow of the refrigerant gas after being depressurized, there is a drawback that an electromagnetic on-off valve having a large diameter is required to increase the specific volume of the gas to be handled. .

【0033】(4) 上記実施の形態においては、圧縮
機はインバータ駆動式2段圧縮機11としているが、他
の形式の容量可変2段圧縮機を用いても良い。
(4) In the above embodiment, the compressor is the inverter-driven two-stage compressor 11, but a variable capacity two-stage compressor of another type may be used.

【0034】(5) また、上記実施の形態は、本発明
に係る超臨界冷凍装置をヒートポンプ式給湯装置に具体
化したものであるが、この超臨界冷凍装置を他の加熱装
置、例えば、室内空気を加熱する暖房機に具体化するこ
とも可能である。
(5) Further, in the above embodiment, the supercritical refrigeration system according to the present invention is embodied as a heat pump type hot water supply system. It can also be embodied in a heater that heats air.

【0035】[0035]

【発明の効果】本発明は以上のように構成されているの
で、次のような効果を奏する。請求項1記載の発明に係
る超臨界冷凍装置によれば、低段側圧縮機と高段側圧縮
機を構成要素として備えている2段圧縮機、この2段圧
縮機の高段側圧縮機からの吐出ガスを冷却する高圧側熱
交換器、膨張装置、外気と熱交換する蒸発器が順次接続
され、高圧側圧力が超臨界となるように形成された冷媒
回路を有し、この冷媒回路は、さらに、外気温度が低下
したときに高圧側熱交換器で冷却された後の高圧ガス冷
媒を前記低段側圧縮機の吐出側にバイパスするバイパス
回路を有するので、高段側圧縮機において、高低圧力差
が小さくり、吐出弁やベーンバルブの破損の恐れがなく
なり、その耐久性が向上する。また、高段側圧縮機にお
いて、圧縮比が小さくなることと、吸入ガスの過熱度小
さくなることから、その運転効率が向上する。
Since the present invention is constructed as described above, it has the following effects. According to the supercritical refrigeration system of the first aspect of the present invention, a two-stage compressor including a low-stage compressor and a high-stage compressor as constituent elements, and a high-stage compressor of the two-stage compressor. High-pressure side heat exchanger for cooling the discharge gas from the, expansion device, an evaporator for heat exchange with the outside air are sequentially connected, and has a refrigerant circuit formed so that the high-pressure side pressure becomes supercritical. Further has a bypass circuit that bypasses the high pressure gas refrigerant after being cooled by the high pressure side heat exchanger to the discharge side of the low pressure side compressor when the outside air temperature decreases, so that in the high pressure side compressor The pressure difference between high and low is small, there is no risk of damage to the discharge valve or the vane valve, and its durability is improved. Further, in the high-pressure stage compressor, the compression ratio becomes small and the superheat degree of the intake gas becomes small, so that the operating efficiency thereof is improved.

【0036】また、請求項2記載の発明によれば、請求
項1記載の発明において、前記2段圧縮機は、外気温度
が低下したときに、圧縮機能力の低下を抑制するように
容量制御され、前記膨張弁装置は、外気温度が低下した
ときに、高段側圧縮機の吐出圧力の低下を抑制するよう
に開度制御されるので、外気温度低下時に、高圧側圧力
を高く維持し、高段側圧縮機の吐出側ガスの温度を高く
維持することができる。
According to a second aspect of the present invention, in the first aspect of the invention, the two-stage compressor is capacity-controlled so as to suppress a reduction in compression functional force when the outside air temperature decreases. Since the expansion valve device is controlled in opening degree so as to suppress the decrease in the discharge pressure of the high-stage compressor when the outside air temperature decreases, the high pressure side pressure is maintained high when the outside air temperature decreases. The temperature of the discharge side gas of the high pressure side compressor can be kept high.

【0037】また、請求項3記載の発明によれば、請求
項1または2記載の発明において、冷媒回路は、冷媒と
して二酸化炭素が充填されているので、可燃性、毒性の
無い冷媒を使用しながら、高段側圧縮機の吐出側ガスの
温度が高くなる超臨界冷凍サイクルとすることができ
る。また、前記バイパス回路の作用により、高圧側圧力
の低下を防止することができることと相俟って、高段側
圧縮機の吐出側ガスの温度を高く維持することができ
る。
According to the invention of claim 3, in the invention of claim 1 or 2, since the refrigerant circuit is filled with carbon dioxide as a refrigerant, a refrigerant which is not flammable or toxic is used. However, a supercritical refrigeration cycle in which the temperature of the gas on the discharge side of the high-stage compressor becomes high can be achieved. Further, the action of the bypass circuit can prevent the pressure on the high-pressure side from being lowered, so that the temperature of the discharge-side gas of the high-stage compressor can be kept high.

【0038】また、請求項4記載の発明によれば、前記
2段圧縮機は、前記低段側圧縮機の吐出ガスを導入した
密閉ハウジング内に、前記低段側圧縮機、高段側圧縮機
及び駆動用電動機を内蔵したものであるので、2段圧縮
機のシリンダー内外及び圧縮機ハウジング内外の圧力差
が半減され、各部に作用する力が小さくなる。この結
果、前記バイパス回路による高低圧力差の増大を防止す
る効果と相俟って、2段圧縮機の耐久性能がより一層向
上する。
Further, according to the invention of claim 4, in the two-stage compressor, the low-stage compressor and the high-stage compressor are provided in a hermetically sealed housing into which the discharge gas of the low-stage compressor is introduced. Since the machine and the drive motor are built in, the pressure difference between the inside and outside of the cylinder and the inside and outside of the compressor housing of the two-stage compressor is halved, and the force acting on each part is reduced. As a result, the durability performance of the two-stage compressor is further improved in combination with the effect of preventing an increase in the high-low pressure difference due to the bypass circuit.

【0039】また、請求項5記載の発明に係るヒートポ
ンプ式給湯装置よれば、請求項1〜4のいずれかに記載
の超臨界冷凍装置を応用したものであるので、外気温度
が低下した場合に、高段側圧縮機の高低圧力差が増大す
るのを防止することができ、装置の耐久性を劣化させる
ことなく高温の温水を得ることができる。
Further, according to the heat pump type hot water supply apparatus according to the invention described in claim 5, since the supercritical refrigeration system according to any one of claims 1 to 4 is applied, when the outside air temperature is lowered. It is possible to prevent an increase in the pressure difference between the high-pressure stage compressor and the high-pressure compressor, and it is possible to obtain high-temperature hot water without degrading the durability of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る給湯装置の回路図で
ある。
FIG. 1 is a circuit diagram of a hot water supply device according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る圧力制御の説明図で
ある。
FIG. 2 is an explanatory diagram of pressure control according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超臨界冷凍サイクル装置 2 給湯ユニット 3 制御装置 5 連絡水用配管 11 インバータ駆動式2段圧縮機 11a 低段側圧縮機 11b 高段側圧縮機 11c 駆動用電動機 11d 連絡配管 12 高圧側熱交換器 13 電動膨張弁 14 蒸発器 16 バイパス回路 17 電磁開閉弁 18 キャピラリーチューブ 21 貯湯タンク 32 外気温度検出器 1 Supercritical refrigeration cycle equipment 2 Hot water supply unit 3 control device 5 Connection water piping 11 Inverter-driven two-stage compressor 11a Low-stage compressor 11b High-stage compressor 11c Drive motor 11d Communication piping 12 High-pressure side heat exchanger 13 Electric expansion valve 14 Evaporator 16 Bypass circuit 17 Solenoid open / close valve 18 capillary tubes 21 Hot water storage tank 32 Outside temperature detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 1/00 371 F25B 1/00 371F 395 395Z (72)発明者 小山 清 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 机 重男 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 星野 聡 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 式地 千明 栃木県足利市大月町1番地 三洋電機空調 株式会社内 (72)発明者 石垣 茂弥 栃木県足利市大月町1番地 三洋電機空調 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F25B 1/00 371 F25B 1/00 371F 395 395Z (72) Inventor Kiyoshi Koyama 1 Otsukimachi, Ashikaga City, Tochigi Prefecture Address Sanyo Denki Air Conditioning Co., Ltd. (72) Inventor Shigeo Desk 1 Otsukimachi, Ashikaga City, Tochigi Prefecture Sanyo Denki Air Conditioning Co., Ltd. (72) Satoshi Hoshino 1 Otsuki Town, Ashikaga City, Tochigi Sanyo Denki Air Conditioning Co., Ltd. (72) Inventor Shichichi 1 Otsuki-cho, Ashikaga City, Tochigi Prefecture Sanyo Electric Air Conditioning Co., Ltd. (72) Inventor Shigumi Ishigaki 1 Otsuki-cho, Ashikaga City, Tochigi Sanyo Electric Air Conditioning Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低段側圧縮機と高段側圧縮機を構成要素
として備えている2段圧縮機、この2段圧縮機の高段側
圧縮機からの吐出ガスを冷却する高圧側熱交換器、膨張
装置、外気と熱交換する蒸発器が順次接続され、高圧側
圧力が超臨界となるように形成された冷媒回路を有し、
この冷媒回路は、さらに、外気温度が低下したときに高
圧側熱交換器で冷却された後の高圧ガス冷媒を前記低段
側圧縮機の吐出側にバイパスするバイパス回路を有する
超臨界冷凍装置。
1. A two-stage compressor comprising a low-stage side compressor and a high-stage side compressor as constituent elements, and a high-pressure side heat exchange for cooling discharge gas from the high-stage side compressor of the two-stage compressor. A condenser, an expansion device, and an evaporator that exchanges heat with the outside air are sequentially connected, and have a refrigerant circuit formed so that the high-pressure side pressure becomes supercritical,
The refrigerant circuit further includes a bypass circuit that bypasses the high-pressure gas refrigerant, which has been cooled by the high-pressure side heat exchanger when the outside air temperature decreases, to the discharge side of the low-stage side compressor.
【請求項2】 前記2段圧縮機は、外気温度が低下した
ときに、圧縮機能力の低下を抑制するように容量制御さ
れ、前記膨張弁装置は、外気温度が低下したときに、高
段側圧縮機の吐出圧力の低下を抑制するように開度制御
される請求項1記載の超臨界冷凍装置。
2. The two-stage compressor is capacity-controlled so as to suppress a reduction in compression function force when the outside air temperature is lowered, and the expansion valve device is a high stage compressor when the outside air temperature is lowered. The supercritical refrigeration system according to claim 1, wherein the opening degree is controlled so as to suppress a decrease in discharge pressure of the side compressor.
【請求項3】 前記冷媒回路は、冷媒として二酸化炭素
が充填されている請求項1又は2記載の超臨界冷凍装
置。
3. The supercritical refrigeration system according to claim 1, wherein the refrigerant circuit is filled with carbon dioxide as a refrigerant.
【請求項4】 前記2段圧縮機は、前記低段側圧縮機の
吐出ガスを導入した密閉ハウジング内に、前記低段側圧
縮機、高段側圧縮機及び駆動用電動機を内蔵したもので
ある請求項〜3のいずれか1項記載の超臨界冷凍装置。
4. The two-stage compressor has the low-stage side compressor, the high-stage side compressor and a drive motor built in a hermetically sealed housing into which the discharge gas of the low-stage side compressor is introduced. The supercritical refrigeration apparatus according to any one of claims 1 to 3.
【請求項5】 請求項1〜4のいずれか1項記載の超臨
界冷凍装置を応用したヒートポンプ式給湯装置。
5. A heat pump hot water supply apparatus to which the supercritical refrigeration apparatus according to any one of claims 1 to 4 is applied.
JP2001267605A 2001-09-04 2001-09-04 Supercritical refrigeration unit Pending JP2003074997A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001267605A JP2003074997A (en) 2001-09-04 2001-09-04 Supercritical refrigeration unit
KR10-2002-0052664A KR100500617B1 (en) 2001-09-04 2002-09-03 Supercritical refrigerating apparatus
CNB021415927A CN1168943C (en) 2001-09-04 2002-09-03 Supercritical refrigerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267605A JP2003074997A (en) 2001-09-04 2001-09-04 Supercritical refrigeration unit

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2006069503A Division JP2006153455A (en) 2006-03-14 2006-03-14 Supercritical refrigerating device
JP2006069461A Division JP2006194582A (en) 2006-03-14 2006-03-14 Supercritical refrigerating apparatus
JP2006069484A Division JP2006153454A (en) 2006-03-14 2006-03-14 Supercritical refrigerating device

Publications (1)

Publication Number Publication Date
JP2003074997A true JP2003074997A (en) 2003-03-12

Family

ID=19093712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267605A Pending JP2003074997A (en) 2001-09-04 2001-09-04 Supercritical refrigeration unit

Country Status (3)

Country Link
JP (1) JP2003074997A (en)
KR (1) KR100500617B1 (en)
CN (1) CN1168943C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269804A (en) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd Refrigerant circuit device
EP1441185A3 (en) * 2003-01-16 2004-10-06 Matsushita Electric Industrial Co., Ltd. Refrigerator
EP1486742A1 (en) * 2003-06-10 2004-12-15 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1520990A2 (en) 2003-09-30 2005-04-06 SANYO ELECTRIC Co., Ltd. Rotary compressor
US7024877B2 (en) * 2003-12-01 2006-04-11 Tecumseh Products Company Water heating system
JP2007132628A (en) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd Heat pump type hot water heater
CN100339664C (en) * 2004-03-30 2007-09-26 株式会社日立空调系统 Refrigeration system
JP2007309117A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Compressor and heat pump type water heater
CN100387916C (en) * 2003-06-04 2008-05-14 三洋电机株式会社 Cooling apparatus and method for setting refrigerant sealing amount for the same
US7600390B2 (en) 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
CN107202422A (en) * 2017-05-25 2017-09-26 海宁金能热水器有限公司 The air source water heater that a kind of hot and cold water is quickly mixed
CN115200180A (en) * 2022-06-29 2022-10-18 山东雅士股份有限公司 High-stability variable-frequency heated water heater control system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321095B2 (en) * 2003-04-09 2009-08-26 日立アプライアンス株式会社 Refrigeration cycle equipment
JP3708536B1 (en) * 2004-03-31 2005-10-19 松下電器産業株式会社 Refrigeration cycle apparatus and control method thereof
CN100510577C (en) * 2004-07-12 2009-07-08 三洋电机株式会社 Heat exchange apparatus and refrigerating machine
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
JP5496645B2 (en) * 2009-12-25 2014-05-21 三洋電機株式会社 Refrigeration equipment
JP2011133206A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
CN101852489A (en) * 2010-05-10 2010-10-06 冼泰来 Technique of water supply, heat supply and cold supply power plant by trans-critical carbon dioxide to absorb air, water and solar heat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210568A (en) * 1987-02-27 1988-09-01 株式会社東芝 Air conditioner
JPH024164A (en) * 1988-06-22 1990-01-09 Toshiba Corp Freezing cycle device
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner
JP2001194017A (en) * 1999-10-28 2001-07-17 Denso Corp Supercritical vapor compressor type freezing cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210568A (en) * 1987-02-27 1988-09-01 株式会社東芝 Air conditioner
JPH024164A (en) * 1988-06-22 1990-01-09 Toshiba Corp Freezing cycle device
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner
JP2001194017A (en) * 1999-10-28 2001-07-17 Denso Corp Supercritical vapor compressor type freezing cycle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269804A (en) * 2002-03-13 2003-09-25 Sanyo Electric Co Ltd Refrigerant circuit device
EP1441185A3 (en) * 2003-01-16 2004-10-06 Matsushita Electric Industrial Co., Ltd. Refrigerator
US7024879B2 (en) 2003-01-16 2006-04-11 Matsushita Electric Industrial Co., Ltd. Refrigerator
CN100387916C (en) * 2003-06-04 2008-05-14 三洋电机株式会社 Cooling apparatus and method for setting refrigerant sealing amount for the same
EP1486742A1 (en) * 2003-06-10 2004-12-15 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
US7462021B2 (en) 2003-09-30 2008-12-09 Sanyo Electric Co., Ltd. Rotary compressor, and car air conditioner and heat pump type water heater using the compressor
EP1972787A2 (en) 2003-09-30 2008-09-24 Sanyo Electric Co., Ltd. Rotary compressor with noise silencing chamber.
EP1972786A2 (en) 2003-09-30 2008-09-24 Sanyo Electric Co., Ltd. Rotary compressor, car air conditioner and water heater including the compressor
EP1520990A2 (en) 2003-09-30 2005-04-06 SANYO ELECTRIC Co., Ltd. Rotary compressor
US7024877B2 (en) * 2003-12-01 2006-04-11 Tecumseh Products Company Water heating system
CN100339664C (en) * 2004-03-30 2007-09-26 株式会社日立空调系统 Refrigeration system
US7600390B2 (en) 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
JP2007132628A (en) * 2005-11-14 2007-05-31 Sanyo Electric Co Ltd Heat pump type hot water heater
JP4657087B2 (en) * 2005-11-14 2011-03-23 三洋電機株式会社 Heat pump water heater
JP2007309117A (en) * 2006-05-16 2007-11-29 Mitsubishi Electric Corp Compressor and heat pump type water heater
CN107202422A (en) * 2017-05-25 2017-09-26 海宁金能热水器有限公司 The air source water heater that a kind of hot and cold water is quickly mixed
CN115200180A (en) * 2022-06-29 2022-10-18 山东雅士股份有限公司 High-stability variable-frequency heated water heater control system

Also Published As

Publication number Publication date
KR100500617B1 (en) 2005-07-14
CN1168943C (en) 2004-09-29
KR20030020836A (en) 2003-03-10
CN1403769A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP2003074997A (en) Supercritical refrigeration unit
JP4613916B2 (en) Heat pump water heater
JP5349686B2 (en) Refrigeration cycle equipment
US9395105B2 (en) Refrigeration cycle device
JP2001241780A (en) Refrigerating air conditioner
US11280525B2 (en) Refrigeration apparatus
KR100500618B1 (en) Heat Pump Type Hot Water Supply Apparatus
JP4641683B2 (en) Refrigeration cycle equipment
JP4622193B2 (en) Refrigeration equipment
JP3199054B2 (en) Refrigeration equipment
JP2005214575A (en) Refrigerator
JP4650049B2 (en) Refrigeration equipment
WO2006013970A1 (en) Freezing cycle apparatus
JP2007155143A (en) Refrigerating device
JP2003148821A (en) Supercritical refrigerating cycle device and water heater
JP7078724B2 (en) Refrigeration cycle device and its control method
JP2007147228A (en) Refrigerating device
JP2003185308A (en) Heat pump type hot-water supplying apparatus
JP2006153455A (en) Supercritical refrigerating device
JP2006194582A (en) Supercritical refrigerating apparatus
JP2004138316A (en) Combined refrigeration device
JP2006284086A (en) Refrigerating device
JP4661561B2 (en) Refrigeration equipment
JP4779609B2 (en) Refrigeration equipment
JP2009008350A (en) Refrigerating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040723

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706