JP2012076589A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2012076589A
JP2012076589A JP2010223509A JP2010223509A JP2012076589A JP 2012076589 A JP2012076589 A JP 2012076589A JP 2010223509 A JP2010223509 A JP 2010223509A JP 2010223509 A JP2010223509 A JP 2010223509A JP 2012076589 A JP2012076589 A JP 2012076589A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
outdoor heat
air conditioner
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010223509A
Other languages
Japanese (ja)
Inventor
Yasufumi Takahashi
康文 高橋
Hiroshi Hamamoto
浩 濱本
Kohei Fukawatase
康平 深渡瀬
Norihiko Otake
慶彦 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Japan Climate Systems Corp
Original Assignee
Panasonic Corp
Japan Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Japan Climate Systems Corp filed Critical Panasonic Corp
Priority to JP2010223509A priority Critical patent/JP2012076589A/en
Publication of JP2012076589A publication Critical patent/JP2012076589A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle air conditioner for removing frost in a short period of time even though heating and defrosting are simultaneously performed.SOLUTION: The air conditioner for the vehicle 10A has: a heat pump circuit 2 including a compressor 11, a switching means 12A, an outdoor heat exchanger 13, an expansion mechanism 15, and an indoor heat exchanger 16; and a bypass passage 3 for bypassing the outdoor heat exchanger 13. The switching means 12A switches a flow direction of a coolant to a first direction (arrow C) during cooling operation, and switches to a second direction (arrow H) during heating operation. A heating device 14 heating the coolant up to an overheated state is arranged between the expansion mechanism 15 and the outdoor heat exchanger 13. The bypass passage 3 is branched from the heat pump circuit 2 between the heating device 14 and the outdoor heat exchanger 13. The bypass passage 3 is provided with a first flow amount adjusting valve 31, and the heat pump circuit 2 is provided with a second flow amount adjusting valve 32.

Description

本発明は、車室内の冷房および暖房を行う車両用空調装置に関する。   The present invention relates to a vehicle air conditioner that cools and heats a passenger compartment.

従来、例えばガソリンエンジンを備える自動車では、冷房にヒートポンプが用いられる一方、暖房にエンジンの廃熱が利用されていた。近年では、エンジンの廃熱量が少ないハイブリッド車、およびエンジンの廃熱が利用できない電気自動車が普及してきており、これに合わせて冷房だけでなく暖房にもヒートポンプを用いるようにした車両用空調装置が開発されてきている。例えば、特許文献1には、図9に示すようなエンジン150によって圧縮機111を駆動する空調装置100が開示されている。   Conventionally, for example, in a car equipped with a gasoline engine, a heat pump is used for cooling, while waste heat of the engine is used for heating. In recent years, hybrid vehicles with a small amount of engine waste heat and electric vehicles that cannot use engine waste heat have become widespread, and in response to this, vehicle air conditioners that use heat pumps for heating as well as cooling have become available. It has been developed. For example, Patent Document 1 discloses an air conditioner 100 that drives a compressor 111 by an engine 150 as shown in FIG.

この空調装置100は、圧縮機111、四方弁112、室外熱交換器113、室外膨張弁114、室内膨張弁115および室内熱交換器116を含むヒートポンプ回路110を備えている。冷房運転時には、圧縮機111で圧縮された冷媒が破線矢印Cの向きに流され、室外熱交換器113が凝縮器として機能し、室内熱交換器116が蒸発器として機能する。一方、暖房運転時には、圧縮機111で圧縮された冷媒が実線矢印Hの向きに流され、室内熱交換器116が凝縮器として機能し、室外熱交換器113が蒸発器として機能する。   The air conditioner 100 includes a heat pump circuit 110 including a compressor 111, a four-way valve 112, an outdoor heat exchanger 113, an outdoor expansion valve 114, an indoor expansion valve 115, and an indoor heat exchanger 116. During the cooling operation, the refrigerant compressed by the compressor 111 is caused to flow in the direction of the dashed arrow C, the outdoor heat exchanger 113 functions as a condenser, and the indoor heat exchanger 116 functions as an evaporator. On the other hand, during the heating operation, the refrigerant compressed by the compressor 111 is caused to flow in the direction of the solid line arrow H, the indoor heat exchanger 116 functions as a condenser, and the outdoor heat exchanger 113 functions as an evaporator.

また、ヒートポンプ回路110には、外気温度が低いときの外部吸熱を補うために、第1加熱器121および第2加熱器122が設けられている。第1加熱器121は、バーナー部160で加熱された水を放熱させる熱交換器であり、室内膨張弁115と室外膨張弁114の間に配置されている。第2加熱器122は、エンジン150を冷却した水を放熱させる熱交換器であり、四方弁112と圧縮機111の吸入口の間に配置されている。   Further, the heat pump circuit 110 is provided with a first heater 121 and a second heater 122 in order to supplement external heat absorption when the outside air temperature is low. The first heater 121 is a heat exchanger that radiates water heated by the burner unit 160, and is disposed between the indoor expansion valve 115 and the outdoor expansion valve 114. The second heater 122 is a heat exchanger that dissipates the water that has cooled the engine 150, and is disposed between the four-way valve 112 and the suction port of the compressor 111.

さらに、空調装置100は、室外熱交換器113に付着した霜を取り除く除霜運転を行うための構成として、第1バイパス路130と第2バイパス路140を備えている。第1バイパス路130は、圧縮機111の吐出口と四方弁112の間でヒートポンプ回路110から分岐して、室外膨張弁114と室外熱交換器113の間でヒートポンプ回路110につながっている。第2バイパス路140は、第1加熱器121と室外膨張弁114の間でヒートポンプ回路110から分岐して、四方弁112と第2加熱器122の間でヒートポンプ回路110につながっている。また、第1バイパス路130には制御弁131が設けられており、第2バイパス路140には開閉弁141が設けられている。   Further, the air conditioner 100 includes a first bypass path 130 and a second bypass path 140 as a configuration for performing a defrosting operation for removing frost attached to the outdoor heat exchanger 113. The first bypass 130 branches from the heat pump circuit 110 between the discharge port of the compressor 111 and the four-way valve 112 and is connected to the heat pump circuit 110 between the outdoor expansion valve 114 and the outdoor heat exchanger 113. The second bypass path 140 branches from the heat pump circuit 110 between the first heater 121 and the outdoor expansion valve 114 and is connected to the heat pump circuit 110 between the four-way valve 112 and the second heater 122. The first bypass passage 130 is provided with a control valve 131, and the second bypass passage 140 is provided with an on-off valve 141.

そして、特許文献1には、暖房運転中に室外熱交換器113の除霜が必要と判定されたときに、開閉弁141が開かれるとともに室外膨張弁114が閉じられ、さらに制御弁131が開かれることにより、実線矢印D1〜D5で示すように冷媒が流れ、暖房と除霜とが同時に行われる、と記載されている。   In Patent Document 1, when it is determined that defrosting of the outdoor heat exchanger 113 is necessary during the heating operation, the on-off valve 141 is opened, the outdoor expansion valve 114 is closed, and the control valve 131 is further opened. As shown by solid arrows D1 to D5, the refrigerant flows and heating and defrosting are performed simultaneously.

特開2002−106997号公報JP 2002-106997 A

しかしながら、図9に示す構成では、第1バイパス路130を通じた圧縮機111の吐出口から吸入口までのルートには膨張弁が設けられておらず、制御弁131が単なる流量調整弁である場合にはそもそも冷凍サイクルが成立しない。仮に、制御弁131が膨張弁であるとしても、第1加熱器121および第2加熱器122で吸熱した熱が室外熱交換器113に直接伝達されずに、除霜に長い時間がかかることになる。   However, in the configuration shown in FIG. 9, the expansion valve is not provided in the route from the discharge port to the suction port of the compressor 111 through the first bypass 130, and the control valve 131 is a simple flow rate adjustment valve. In the first place, the refrigeration cycle is not established. Even if the control valve 131 is an expansion valve, the heat absorbed by the first heater 121 and the second heater 122 is not directly transmitted to the outdoor heat exchanger 113, and it takes a long time to defrost. Become.

本発明は、このような事情に鑑みて、暖房と除霜を同時に行いつつも短い時間で除霜を行うことが可能な車両用空調装置を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a vehicle air conditioner that can perform defrosting in a short time while simultaneously performing heating and defrosting.

前記課題を解決するために、本発明は、車室内の冷房および暖房を行う車両用空調装置であって、冷媒を圧縮する圧縮機、前記車室外の空気と冷媒との熱交換を行う室外熱交換器、冷媒を膨張させる膨張機構、およびダクト内に配置され、ブロワによって前記車室内に送られる空気と冷媒との熱交換を行う室内熱交換器を含むヒートポンプ回路と、前記ヒートポンプ回路に流れる冷媒の流れ方向を、冷房運転時には前記圧縮機から吐出された冷媒が前記室外熱交換器、前記膨張機構および前記室内熱交換器をこの順に通過して前記圧縮機に戻る第1方向に切り換え、暖房運転時には前記圧縮機から吐出された冷媒が前記室内熱交換器、前記膨張機構および前記室外熱交換器をこの順に通過して前記圧縮機に戻る第2方向に切り換える切換手段と、前記膨張機構と前記室外熱交換器の間に配置され、前記ヒートポンプ回路を流れる冷媒を過熱状態まで加熱可能な加熱器と、前記ヒートポンプ回路における前記加熱器と前記室外熱交換器の間の第1室外側流路から分岐して、前記ヒートポンプ回路における前記室外熱交換器と前記切換手段の間の第2室外側流路または前記切換手段と前記圧縮機の吸入口の間の吸入側流路につながるバイパス路と、前記バイパス路に設けられた第1流量調整弁と、前記第1室外側流路における前記バイパス路が分岐する位置よりも前記室外熱交換器側に設けられた第2流量調整弁と、を備える車両用空調装置を提供する。   In order to solve the above-described problems, the present invention provides a vehicle air conditioner that cools and heats a vehicle interior, the compressor compressing the refrigerant, and the outdoor heat performing heat exchange between the air outside the vehicle interior and the refrigerant. An exchanger, an expansion mechanism that expands the refrigerant, and a heat pump circuit that is disposed in the duct and includes an indoor heat exchanger that exchanges heat between the air sent to the vehicle interior by the blower and the refrigerant, and the refrigerant that flows through the heat pump circuit The flow direction of the refrigerant is switched to a first direction in which the refrigerant discharged from the compressor during the cooling operation passes through the outdoor heat exchanger, the expansion mechanism, and the indoor heat exchanger in this order and returns to the compressor. Switching means for switching to a second direction in which the refrigerant discharged from the compressor during operation passes through the indoor heat exchanger, the expansion mechanism, and the outdoor heat exchanger in this order and returns to the compressor A heater disposed between the expansion mechanism and the outdoor heat exchanger and capable of heating the refrigerant flowing through the heat pump circuit to an overheated state; and a heater between the heater and the outdoor heat exchanger in the heat pump circuit. A second outdoor flow path between the outdoor heat exchanger and the switching means in the heat pump circuit, or a suction-side flow path between the switching means and the suction port of the compressor; A second flow rate provided on the outdoor heat exchanger side than a position where the bypass route branches in the first outdoor flow path. An air conditioner for a vehicle provided with a regulating valve is provided.

上記の構成によれば、冷媒を過熱状態まで加熱可能な加熱器が設けられているので、この加熱器を蒸発器として機能させることができる。このため、室外熱交換器に霜が付着したときには、加熱器で冷媒を過熱し、その過熱された冷媒をバイパス路に流すとともに室外熱交換器に導けば、暖房と除霜を同時に行うことができる。しかも、加熱器から冷媒に熱が与えられるために低圧でありながら高温度の冷媒によって除霜が行われるので、短い時間で除霜を行うことが可能になる。   According to said structure, since the heater which can heat a refrigerant | coolant to an overheated state is provided, this heater can be functioned as an evaporator. For this reason, when frost adheres to the outdoor heat exchanger, heating and defrosting can be performed simultaneously by heating the refrigerant with the heater and flowing the overheated refrigerant to the bypass path and guiding it to the outdoor heat exchanger. it can. In addition, since heat is applied to the refrigerant from the heater, defrosting is performed by the high-temperature refrigerant at a low pressure, so that the defrosting can be performed in a short time.

本発明の第1実施形態に係る車両用空調装置の構成図The block diagram of the vehicle air conditioner which concerns on 1st Embodiment of this invention. (a)は第1および第2流量調整弁の調整方法を説明する図、(b)はそのように調整したときの室外熱交換器に流れる冷媒量の比率を示すグラフ(A) is a figure explaining the adjustment method of a 1st and 2nd flow regulating valve, (b) is a graph which shows the ratio of the refrigerant | coolant amount which flows into an outdoor heat exchanger when adjusted in that way (a)は通常暖房運転時のモリエル線図、(b)は暖房除霜運転時のモリエル線図(A) is a Mollier diagram during normal heating operation, (b) is a Mollier diagram during heating defrosting operation. 本発明の第2実施形態に係る車両用空調装置の構成図The block diagram of the vehicle air conditioner which concerns on 2nd Embodiment of this invention. 第2実施形態の変形例の車両用空調装置の構成図The block diagram of the vehicle air conditioner of the modification of 2nd Embodiment 本発明の第3実施形態に係る車両用空調装置の構成図The block diagram of the vehicle air conditioner which concerns on 3rd Embodiment of this invention. 第3実施形態の変形例の車両用空調装置の構成図The block diagram of the vehicle air conditioner of the modification of 3rd Embodiment (a)および(b)は代替案の切換手段の構成図(A) and (b) are block diagrams of alternative switching means 従来の車両用空調装置の構成図Configuration diagram of conventional vehicle air conditioner

以下、本発明の実施形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態に係る車両用空調装置10Aの構成図である。この車両用空調装置10Aは、図略の車室内の冷房および暖房を行うものであり、冷媒を循環させるヒートポンプ回路2と、後述する室外熱交換器13をバイパスするバイパス路3と、制御装置6とを備えている。なお、冷媒としては、R134a、R410A、HFO−1234yf、HFO−1234ze、CO2などに加え、他のHFC系、HC系などが利用できる。
(First embodiment)
FIG. 1 is a configuration diagram of a vehicle air conditioner 10A according to the first embodiment of the present invention. This vehicle air conditioner 10A cools and heats a vehicle interior (not shown), and includes a heat pump circuit 2 that circulates refrigerant, a bypass passage 3 that bypasses an outdoor heat exchanger 13 described later, and a control device 6. And. As the refrigerant, R134a, R410A, HFO-1234yf , HFO-1234ze, in addition to such CO 2, other HFC system, HC-based and available.

ヒートポンプ回路2は、圧縮機11、四方弁12A、室外熱交換器13、膨張弁15、および室内熱交換器16を含んでいる。四方弁12Aは、本発明の切換手段として機能するものであり、ヒートポンプ回路2に流れる冷媒の流れ方向を、冷房運転時には破線矢印Cで示す第1方向に切り換え、暖房運転時には実線矢印Hで示す第2方向に切り換える。第1方向は、圧縮機11から吐出された冷媒が室外熱交換器13、膨張弁15および室内熱交換器16をこの順に通過して圧縮機11に戻る方向であり、第2方向は、圧縮機11から吐出された冷媒が室内熱交換器16、膨張弁15および室外熱交換器13をこの順に通過して圧縮機11に戻る方向である。また、膨張弁15と室外熱交換器13の間には、必要に応じて冷媒を加熱する加熱器14が配置されている。これらの機器11〜16は、第1流路21〜第7流路27によって循環的に接続されている。   The heat pump circuit 2 includes a compressor 11, a four-way valve 12 </ b> A, an outdoor heat exchanger 13, an expansion valve 15, and an indoor heat exchanger 16. The four-way valve 12A functions as the switching means of the present invention, and the flow direction of the refrigerant flowing through the heat pump circuit 2 is switched to the first direction indicated by the dashed arrow C during the cooling operation, and is indicated by the solid arrow H during the heating operation. Switch to the second direction. The first direction is a direction in which the refrigerant discharged from the compressor 11 passes through the outdoor heat exchanger 13, the expansion valve 15 and the indoor heat exchanger 16 in this order and returns to the compressor 11, and the second direction is a compression direction. The refrigerant discharged from the machine 11 passes through the indoor heat exchanger 16, the expansion valve 15 and the outdoor heat exchanger 13 in this order and returns to the compressor 11. Moreover, between the expansion valve 15 and the outdoor heat exchanger 13, the heater 14 which heats a refrigerant | coolant as needed is arrange | positioned. These devices 11 to 16 are cyclically connected by the first channel 21 to the seventh channel 27.

圧縮機11は、電動モータ61により駆動されるものであり、吸入口11aから吸入した冷媒を圧縮して吐出口11bから吐出する。電動モータ61は、圧縮機11の内部に配置されていてもよいし、外部に配置されていてもよい。圧縮機11の吐出口11bは第1流路(本発明の吐出側流路に相当)21を介して四方弁12Aの第1ポートに接続されており、圧縮機11の吸入口11aは第7流路(本発明の吸入側流路に相当)27を介して四方弁12Aの第4ポートに接続されている。また、四方弁12Aの第2ポートは第2流路(本発明の第2室外側流路に相当)22を介して室外熱交換器13に接続されており、四方弁12Aの第3ポートは第6流路26を介して室内熱交換器16に接続されている。第7流路27には、圧縮機11に吸入される冷媒の圧力を検出する圧力センサ71が設けられているとともに、圧縮機11に吸入される冷媒の温度を検出する過熱度センサ81が設けられている。   The compressor 11 is driven by the electric motor 61, compresses the refrigerant sucked from the suction port 11a, and discharges it from the discharge port 11b. The electric motor 61 may be disposed inside the compressor 11 or may be disposed outside. The discharge port 11b of the compressor 11 is connected to the first port of the four-way valve 12A via a first flow path (corresponding to the discharge side flow path of the present invention) 21, and the suction port 11a of the compressor 11 is connected to the seventh port. It is connected to a fourth port of the four-way valve 12A via a flow path (corresponding to the suction-side flow path of the present invention) 27. The second port of the four-way valve 12A is connected to the outdoor heat exchanger 13 via a second flow path (corresponding to the second outdoor flow path of the present invention) 22, and the third port of the four-way valve 12A is It is connected to the indoor heat exchanger 16 via the sixth flow path 26. The seventh flow path 27 is provided with a pressure sensor 71 for detecting the pressure of the refrigerant sucked into the compressor 11 and a superheat degree sensor 81 for detecting the temperature of the refrigerant sucked into the compressor 11. It has been.

室外熱交換器13は、例えば自動車のフロントに配置され、車両の走行およびファン17により供給される外気(車室外の空気)と冷媒との間で熱交換を行う。室外熱交換器13は、第3流路(本発明の第1室外側流路に相当)23を介して加熱器14に接続されている。   The outdoor heat exchanger 13 is disposed, for example, at the front of an automobile, and performs heat exchange between the running of the vehicle and the outside air (air outside the passenger compartment) supplied by the fan 17 and the refrigerant. The outdoor heat exchanger 13 is connected to the heater 14 via a third flow path (corresponding to the first outdoor flow path of the present invention) 23.

加熱器14は、ヒートポンプ回路2を流れる冷媒を過熱状態まで加熱可能な能力を有している。本実施形態では、加熱器14として、熱媒体と冷媒との熱交換を行う熱交換器が採用されている。具体的には、ポンプ41によって熱媒体回路4を循環させられる熱媒体が、熱源42によって加熱された後に加熱器14で放熱するようになっている。   The heater 14 has a capability of heating the refrigerant flowing through the heat pump circuit 2 to an overheated state. In the present embodiment, a heat exchanger that performs heat exchange between the heat medium and the refrigerant is employed as the heater 14. Specifically, the heat medium circulated in the heat medium circuit 4 by the pump 41 is radiated by the heater 14 after being heated by the heat source 42.

なお、熱媒体回路4には、加熱器14と直列的または並列的に、大気中に熱を逃がす放熱器が設けられていてもよい。熱源42は車両を走行させる駆動手段に応じて適宜選定可能であり、例えば発電機またはインバータなどを用いることができる。熱媒体は、例えば水である。ただし、本発明の加熱器はこれに限られるものではなく、例えばヒータ(例えばPTCヒータ)などの冷媒を直接加熱する加熱器を採用してもよい。加熱器14は、第4流路24を介して膨張弁15に接続されている。   Note that the heat medium circuit 4 may be provided with a radiator that releases heat to the atmosphere in series or in parallel with the heater 14. The heat source 42 can be appropriately selected according to the driving means for running the vehicle. For example, a generator or an inverter can be used. The heat medium is, for example, water. However, the heater of this invention is not restricted to this, For example, you may employ | adopt the heater which directly heats refrigerant | coolants, such as a heater (for example, PTC heater). The heater 14 is connected to the expansion valve 15 via the fourth flow path 24.

膨張弁15は、冷媒を膨張させるものであり、本発明の膨張機構の一例である。本発明の膨張機構としては、膨張する冷媒から動力を回収する容積型の膨張機等を採用してもよい。膨張弁15は、第5流路25を介して室内熱交換器16に接続されている。   The expansion valve 15 expands the refrigerant and is an example of the expansion mechanism of the present invention. As the expansion mechanism of the present invention, a positive displacement expander that recovers power from the expanding refrigerant may be employed. The expansion valve 15 is connected to the indoor heat exchanger 16 via the fifth flow path 25.

室内熱交換器16は、ダクト52内に配置され、ブロワ51によって車室内に送られる空気と冷媒との間で熱交換を行う。本実施形態では、ダクト52内に、ブロワ51により車室内の空気が流される。すなわち、車室内の空気は、ダクト52を通じて循環する。なお、ブロア51によりダクト52内に流される空気は、必ずしも車室内空気100%である必要はなく、車室内換気用の外気をある程度含んでいてもよいし、全て外気としてもよい。以下では、一例として、ブロア51によってダクト52内に取り込まれて室内熱交換器16に供給される空気が車室内空気100%であるとする。   The indoor heat exchanger 16 is disposed in the duct 52 and performs heat exchange between the air sent to the vehicle interior by the blower 51 and the refrigerant. In the present embodiment, air in the passenger compartment is caused to flow through the duct 52 by the blower 51. That is, the air in the passenger compartment circulates through the duct 52. Note that the air that is blown into the duct 52 by the blower 51 does not necessarily need to be 100% of the vehicle interior air, and may include some outside air for vehicle interior ventilation, or may be all outside air. Hereinafter, as an example, it is assumed that the air taken into the duct 52 by the blower 51 and supplied to the indoor heat exchanger 16 is 100% of the vehicle interior air.

ブロワ51は、図1に示すようにダクト52の入口側に配置されていてもよいし、ダクト52の出口側に配置されていてもよい。また、ブロワ51としては、ファンを用いてもよい。   As shown in FIG. 1, the blower 51 may be disposed on the inlet side of the duct 52, or may be disposed on the outlet side of the duct 52. A fan may be used as the blower 51.

バイパス路3は、ヒートポンプ回路2の第3流路23から分岐して第2流路22につながっている。ただし、バイパス路3は、第3流路23から分岐して第7流路27につながっていてもよい。バイパス路3には第1流量調整弁31が設けられており、第3流路23におけるバイパス路3が分岐する位置よりも室外熱交換器13側には第2流量調整弁32が設けられている。第1流量調整弁31は、通常は全閉状態に保たれ、室外熱交換器13の除霜が必要なときなどに開かれる。第2流量調整弁32は、通常は全開状態に保たれる。   The bypass path 3 branches from the third flow path 23 of the heat pump circuit 2 and is connected to the second flow path 22. However, the bypass path 3 may be branched from the third flow path 23 and connected to the seventh flow path 27. A first flow rate adjustment valve 31 is provided in the bypass passage 3, and a second flow rate adjustment valve 32 is provided closer to the outdoor heat exchanger 13 than the position where the bypass passage 3 branches in the third flow passage 23. Yes. The first flow rate adjusting valve 31 is normally kept in a fully closed state, and is opened when defrosting of the outdoor heat exchanger 13 is necessary. The second flow rate adjustment valve 32 is normally kept fully open.

本実施形態では、室外熱交換器13に霜が付着したことを判定するための着霜用検出手段として、蒸発器温度センサ82が用いられている。この蒸発器温度センサ82は、室外熱交換器13の表面温度を検出するように室外熱交換器13に設けられている。ただし、蒸発器温度センサ82は、必ずしも室外熱交換器13に設けられている必要はなく、室外熱交換器13に流入する冷媒の温度を検出するように第3流路23に設けられていてもよいし、室外熱交換器13と接触した後の空気の温度を検出するように室外熱交換器13の風下側に配置されていてもよい。   In the present embodiment, an evaporator temperature sensor 82 is used as frosting detection means for determining that frost has adhered to the outdoor heat exchanger 13. The evaporator temperature sensor 82 is provided in the outdoor heat exchanger 13 so as to detect the surface temperature of the outdoor heat exchanger 13. However, the evaporator temperature sensor 82 is not necessarily provided in the outdoor heat exchanger 13, and is provided in the third flow path 23 so as to detect the temperature of the refrigerant flowing into the outdoor heat exchanger 13. Alternatively, it may be arranged on the leeward side of the outdoor heat exchanger 13 so as to detect the temperature of the air after coming into contact with the outdoor heat exchanger 13.

さらに、上述したダクト52内には、ダクト52を通じて車室内に吹き出される空気の温度(吹出温度)を検出する吹出温度センサ83が設けられている。   Further, in the duct 52 described above, a blowing temperature sensor 83 that detects the temperature of the air blown into the vehicle interior through the duct 52 (blowing temperature) is provided.

制御装置6は、車室内に配置された操作パネル(図示せず)および上述した各種のセンサ71,81〜83と接続されている。そして、制御装置6は、四方弁12Aを制御して冷房運転と暖房運転とを切り替えるとともに、ファン17およびブロワ51の稼働、ポンプ41の稼働、圧縮機11を駆動する電動モータ61の回転数、膨張弁15の開度、ならびに第1流量調整弁31および第2流量調整弁32の開度を制御する。さらに、制御装置6は、暖房運転時に蒸発器温度センサ82の検出値に基づいて室外熱交換器13に霜が付着したと判定したときに、加熱器14で過熱された冷媒の一部をバイパス路3に流しつつ残りを室外熱交換器13に導く暖房除霜運転を行う。   The control device 6 is connected to an operation panel (not shown) disposed in the vehicle compartment and the various sensors 71 and 81 to 83 described above. The control device 6 controls the four-way valve 12A to switch between the cooling operation and the heating operation, and the operation of the fan 17 and the blower 51, the operation of the pump 41, the rotational speed of the electric motor 61 that drives the compressor 11, The opening degree of the expansion valve 15 and the opening degree of the first flow rate adjustment valve 31 and the second flow rate adjustment valve 32 are controlled. Furthermore, when it is determined that frost has adhered to the outdoor heat exchanger 13 based on the detected value of the evaporator temperature sensor 82 during the heating operation, the control device 6 bypasses a part of the refrigerant superheated by the heater 14. A heating defrosting operation is performed in which the remainder flows to the outdoor heat exchanger 13 while flowing through the path 3.

次に、車両用空調装置10Aにおける冷房運転時および暖房運転時の動作を説明する。   Next, operations during the cooling operation and the heating operation in the vehicle air conditioner 10A will be described.

冷房運転時は、圧縮機11で圧縮された高温高圧のガス冷媒が四方弁12Aを破線矢印Cの向きに流れる。ガス冷媒は、室外熱交換器13で外気に放熱して凝縮する。その後、液冷媒は、膨張弁15で絞られて断熱膨張し低温低圧となった後に、室内熱交換器16でブロワ51により供給される車室内循環空気から吸熱して蒸発するとともに、車室内循環空気を冷却する。室内熱交換器16から流出した冷媒は、再び四方弁12Aを通って再び圧縮機11に吸入される。   During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 flows through the four-way valve 12A in the direction of the broken line arrow C. The gas refrigerant radiates heat to the outside air in the outdoor heat exchanger 13 and condenses. Thereafter, the liquid refrigerant is throttled by the expansion valve 15 to adiabatically expand to a low temperature and low pressure, and then is absorbed by the indoor heat exchanger 16 from the vehicle interior circulation air supplied by the blower 51 to evaporate, and the vehicle interior circulation. Cool the air. The refrigerant flowing out of the indoor heat exchanger 16 is again sucked into the compressor 11 through the four-way valve 12A.

制御装置6は記憶部(図示せず)を有しており、この記憶部には冷媒圧力に応じた飽和温度が格納されている。制御装置6は、適時、圧力センサ71で検出される圧力における飽和温度を記憶部から読み出し、読み出した飽和温度と過熱度温度センサ81で検出される冷媒の温度とを比較し、それらの温度差が所定の過熱度となるように膨張弁15の開度を制御する。   The control device 6 has a storage unit (not shown), and a saturation temperature corresponding to the refrigerant pressure is stored in the storage unit. The control device 6 reads the saturation temperature at the pressure detected by the pressure sensor 71 from the storage unit at appropriate times, compares the read saturation temperature with the refrigerant temperature detected by the superheat temperature sensor 81, and the temperature difference therebetween. The degree of opening of the expansion valve 15 is controlled so that becomes a predetermined superheat degree.

なお、制御装置6の記憶部には必ずしも冷媒圧力に応じた飽和温度が格納されている必要はない。例えば、膨張弁15と蒸発器(冷房運転の場合は室内熱交換器16、暖房運転の場合は室外熱交換器13)の間の冷媒が気液二相状態であることを利用して飽和温度を取得するようにしてもよい。この場合は、圧力センサ71の代わりに温度センサを用いることができる。   The storage unit of the control device 6 does not necessarily need to store the saturation temperature corresponding to the refrigerant pressure. For example, using the fact that the refrigerant between the expansion valve 15 and the evaporator (the indoor heat exchanger 16 for cooling operation and the outdoor heat exchanger 13 for heating operation) is in a gas-liquid two-phase state, the saturation temperature May be obtained. In this case, a temperature sensor can be used instead of the pressure sensor 71.

暖房運転時は、圧縮機11で圧縮された高温高圧のガス冷媒が四方弁12Aを実線矢印Hの向きに流れる。ガス冷媒は、室内熱交換器16でブロワ51により供給される車室内循環空気に放熱して凝縮するとともに、車室内循環空気を加熱する。その後、液冷媒は、膨張弁15で絞られて断熱膨張して低温低圧となった後に、室外熱交換器13で外気から吸熱して蒸発する。室外熱交換器13から流出した冷媒は、再び四方弁12Aを通って再び圧縮機11に吸入される(通常暖房運転)。なお、暖房運転時の膨張弁15の開度の制御は、冷房運転時と同様である。   During the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 flows in the direction of the solid arrow H through the four-way valve 12A. The gas refrigerant radiates and condenses the vehicle interior circulation air supplied by the blower 51 in the indoor heat exchanger 16 and heats the vehicle interior circulation air. Thereafter, the liquid refrigerant is throttled by the expansion valve 15 and adiabatically expanded to become a low temperature and low pressure, and then is absorbed by the outdoor heat exchanger 13 from the outside air and evaporated. The refrigerant flowing out of the outdoor heat exchanger 13 is again sucked into the compressor 11 through the four-way valve 12A (normal heating operation). The control of the opening degree of the expansion valve 15 during the heating operation is the same as during the cooling operation.

図3(a)は、通常暖房運転時のモリエル線図を示す。冷媒は、点Aから点Dで示すように状態変化する。   Fig.3 (a) shows the Mollier diagram at the time of normal heating operation. The state of the refrigerant changes as indicated by point A to point D.

室外熱交換器13だけでは吸熱量が足りないとき、あるいは起動時などの急速に暖房を行いたいときには、制御装置6はポンプ41を稼働させて、加熱器14と室外熱交換器13の双方で冷媒を蒸発させる(補助加熱暖房運転)。また、室外熱交換器13が機能しないような超低外気温度時には、制御装置6は、第1流量調整弁31を全開状態にするとともに第2流量調整弁32を全閉状態にして、加熱器14のみで冷媒を蒸発させる(内熱暖房運転)。   When the outdoor heat exchanger 13 alone does not have enough heat absorption, or when it is desired to perform heating quickly such as at the time of start-up, the control device 6 operates the pump 41 so that both the heater 14 and the outdoor heat exchanger 13 operate. The refrigerant is evaporated (auxiliary heating / heating operation). Further, at an extremely low outside air temperature at which the outdoor heat exchanger 13 does not function, the control device 6 opens the first flow rate adjustment valve 31 and fully closes the second flow rate adjustment valve 32 so that the heater The refrigerant is evaporated only by 14 (internal heating operation).

通常暖房運転時または補助加熱暖房運転時に、蒸発器温度センサ82で検出される蒸発器の温度が一定時間(例えば、30分)継続して氷点下である所定温度(例えば、−3℃または−5℃)以下となったときには、制御装置6は、室外熱交換器13に霜が付着したと判定し、暖房運転から暖房除霜運転に移行する。   During normal heating operation or auxiliary heating heating operation, the temperature of the evaporator detected by the evaporator temperature sensor 82 is continuously below a freezing point for a certain time (for example, 30 minutes) (for example, −3 ° C. or −5 When the temperature becomes equal to or lower than (° C.), the control device 6 determines that frost has adhered to the outdoor heat exchanger 13 and shifts from the heating operation to the heating defrosting operation.

具体的に、制御装置6は、蒸発器温度センサ82で検出される蒸発器の温度が上記所定温度以下にある状態が上記一定時間維持されたときに、ファン17の稼働を停止するとともに、第1流量調整弁31を開き始める。これにより、実線矢印Dで示すようにバイパス路3にも冷媒が流れる。   Specifically, the control device 6 stops the operation of the fan 17 when the state where the evaporator temperature detected by the evaporator temperature sensor 82 is below the predetermined temperature is maintained for the predetermined time, and 1 Start to open the flow rate adjustment valve 31. Thereby, as shown by the solid line arrow D, the refrigerant also flows in the bypass passage 3.

制御装置6は、吹出温度センサ83で検出される吹出温度が所定の温度(例えば、50℃)となるように、第1流量調整弁31の開度および第2流量調整弁32の開度を調整する。本実施形態では、制御装置6は、暖房除霜運転を行う間は、第1流量調整弁31と第2流量調整弁32のどちらか一方を全開状態に保つ。   The control device 6 sets the opening degree of the first flow rate adjustment valve 31 and the opening degree of the second flow rate adjustment valve 32 so that the blowing temperature detected by the blowing temperature sensor 83 becomes a predetermined temperature (for example, 50 ° C.). adjust. In the present embodiment, the control device 6 keeps one of the first flow rate adjustment valve 31 and the second flow rate adjustment valve 32 in a fully open state during the heating defrosting operation.

図2(a)に示すように第2流量調整弁32を全開状態に保ったままで第1流量調整弁31の開度を徐々に大きくすると、図2(b)に示すように室外熱交換器13に流れる冷媒量の比率は徐々に低下する。室外熱交換器13は一般的にバイパス路3よりも圧力損失が大きな構造を有しているため、第1流量調整弁31と第2流量調整弁32の双方を全開状態にしても、室外熱交換器13に流れる冷媒量の比率は0.5よりも小さくなる(図2(b)では例示として0.3と記している)。第1流量調整弁31が全開状態となった後は、第1流量調整弁31を全開状態に保ったままで第2流量調整弁32の開度を徐々に小さくすると、室外熱交換器13に流れる冷媒量の比率はより緩やかな傾きで0まで徐々に低下する。   When the opening degree of the first flow rate adjustment valve 31 is gradually increased while the second flow rate adjustment valve 32 is kept fully open as shown in FIG. 2A, the outdoor heat exchanger is shown as shown in FIG. The ratio of the refrigerant amount flowing to 13 gradually decreases. Since the outdoor heat exchanger 13 generally has a structure in which the pressure loss is larger than that of the bypass passage 3, even if both the first flow rate adjustment valve 31 and the second flow rate adjustment valve 32 are fully opened, the outdoor heat The ratio of the amount of refrigerant flowing through the exchanger 13 is smaller than 0.5 (in FIG. 2B, 0.3 is shown as an example). After the first flow rate adjustment valve 31 is fully opened, if the opening degree of the second flow rate adjustment valve 32 is gradually reduced while the first flow rate adjustment valve 31 is kept in the fully open state, the first flow rate adjustment valve 31 flows to the outdoor heat exchanger 13. The ratio of the refrigerant amount gradually decreases to 0 with a gentler slope.

例えば、制御装置6は、第1流量調整弁31を一定の開度まで開いた後、あるいは第1流量調整弁31を全開まで開き、第2流量調整弁32を一定の開度まで閉じた後に、吹出温度が所定の温度よりも高い場合は室外熱交換器13に流れる冷媒量の比率を上げ(図2(a)の左向きへ補正し)、低い場合は室外熱交換器13に流れる冷媒量の比率を下げ(図2(a)の右向きへ補正し)てもよい。   For example, the controller 6 opens the first flow rate adjustment valve 31 to a certain degree of opening, or opens the first flow rate adjustment valve 31 until it is fully opened and closes the second flow rate adjustment valve 32 to a certain degree of opening. When the blowout temperature is higher than the predetermined temperature, the ratio of the amount of refrigerant flowing through the outdoor heat exchanger 13 is increased (corrected to the left in FIG. 2A), and when it is low, the amount of refrigerant flowing through the outdoor heat exchanger 13 is increased. May be reduced (corrected to the right in FIG. 2A).

さらに、制御装置6は、第1流量調整弁31を開き始めるのと同時に、今まで機能していなかったまたは補助的な加熱を行っていた加熱器14を蒸発器として機能させる。具体的には、制御装置6は、ポンプ41が稼働していなければポンプ41の稼働を開始する。制御装置6は、ポンプ41が稼働中であった場合には、ポンプ41の回転数を上げてもよい。加えて、制御装置6は、膨張弁15の開度を若干大きくして冷凍サイクルの高低圧差を小さくする。   Further, at the same time as the control device 6 starts to open the first flow rate adjustment valve 31, the control device 6 causes the heater 14 that has not been functioning until now or performs auxiliary heating to function as an evaporator. Specifically, if the pump 41 is not operating, the control device 6 starts operating the pump 41. The control device 6 may increase the rotation speed of the pump 41 when the pump 41 is in operation. In addition, the control device 6 slightly increases the opening degree of the expansion valve 15 to reduce the high / low pressure difference of the refrigeration cycle.

図3(b)は、暖房除霜運転時のモリエル線図を示す。なお、図3(b)では、第2流量調整弁32が全開状態、第1流量調整弁31が所定の開度とされた状態を描いている。膨張弁15を通過した冷媒(点D)は、加熱器14によって過熱される(点E)。過熱された冷媒の一部はバイパス路3を流れ、第1流量調整弁31によって若干減圧される(点F)。一方、過熱された冷媒の残りは室外熱交換器13に流入し、ここで放熱して室外熱交換器13に付着した霜を溶かす(点G)。その後、それらの冷媒が合流し(点A)、再び圧縮機11に吸入される。   FIG.3 (b) shows the Mollier diagram at the time of heating defrost operation. FIG. 3B illustrates a state in which the second flow rate adjustment valve 32 is fully opened and the first flow rate adjustment valve 31 is at a predetermined opening. The refrigerant (point D) that has passed through the expansion valve 15 is overheated by the heater 14 (point E). A part of the overheated refrigerant flows through the bypass passage 3 and is slightly decompressed by the first flow rate adjusting valve 31 (point F). On the other hand, the remainder of the overheated refrigerant flows into the outdoor heat exchanger 13, where it dissipates heat and melts frost adhering to the outdoor heat exchanger 13 (point G). Thereafter, these refrigerants merge (point A) and are sucked into the compressor 11 again.

図3(b)に示すように、暖房除霜運転中は室内熱交換器16の入口(点B)と出口(点C)での比エンタルピ差が小さくなるため、制御装置6は、暖房運転から暖房除霜運転に移行したときに、圧縮機11を駆動する電動モータ61の回転数を大きくして冷媒の循環量を増大させることが好ましい。   As shown in FIG. 3B, the specific enthalpy difference between the inlet (point B) and the outlet (point C) of the indoor heat exchanger 16 is reduced during the heating defrosting operation. It is preferable to increase the circulation amount of the refrigerant by increasing the number of rotations of the electric motor 61 that drives the compressor 11 when the operation is shifted to the heating defrosting operation.

なお、暖房除霜運転中はブロワ51の風量を低減してダクト52から吹き出される空気の温度低下を防止することが好ましい。   In addition, it is preferable to reduce the temperature of the air blown out from the duct 52 by reducing the air volume of the blower 51 during the heating defrosting operation.

以上説明したように、本実施形態の車両用空調装置10Aでは、室外熱交換器13の除霜が必要と判定されたときには、加熱器14で冷媒を過熱し、その過熱された冷媒をバイパス路3に流すとともに室外熱交換器13に導いている。これにより、暖房と除霜を同時に行うことができる。しかも、加熱器14から冷媒に熱が与えられるために低圧でありながら高温度の冷媒によって除霜が行われるので、短い時間で除霜を行うことが可能になる。   As described above, in the vehicle air conditioner 10A according to the present embodiment, when it is determined that defrosting of the outdoor heat exchanger 13 is necessary, the heater 14 superheats the refrigerant, and bypasses the overheated refrigerant. 3 and led to the outdoor heat exchanger 13. Thereby, heating and defrosting can be performed simultaneously. And since heat is given to a refrigerant | coolant from the heater 14, defrosting is performed by the high temperature refrigerant | coolant, although it is low pressure, Therefore It becomes possible to perform defrosting in a short time.

さらに、本実施形態では、暖房除霜運転を行う間は第1流量調整弁31と第2流量調整弁32のどちらか一方が全開状態に保たれるので、圧力損失を小さく抑えることができる。   Furthermore, in this embodiment, since either one of the 1st flow regulating valve 31 and the 2nd flow regulating valve 32 is maintained in a full open state during heating defrosting operation, pressure loss can be restrained small.

効率的な除霜を行うためには、室外熱交換器13に十分な量の冷媒を分配する必要があるが、氷点下になった室外熱交換器13に過熱された冷媒を流すと、凝縮温度と室外熱交換器13温度との温度差が大きすぎて冷媒の液化が激しく起こる。一方で、圧縮機11の液圧縮を防止するためには、圧縮機11に戻る冷媒を過熱状態で運転する必要がある。このため、上記した第1流量調整弁31と第2流量調整弁32の制御に加え、膨張弁15の開度による過熱度制御が必要になる。   In order to perform efficient defrosting, it is necessary to distribute a sufficient amount of refrigerant to the outdoor heat exchanger 13, but if the superheated refrigerant is allowed to flow to the outdoor heat exchanger 13 that is below freezing point, the condensation temperature And the temperature of the outdoor heat exchanger 13 is so large that the refrigerant is liquefied vigorously. On the other hand, in order to prevent liquid compression of the compressor 11, it is necessary to operate the refrigerant that returns to the compressor 11 in an overheated state. For this reason, in addition to the control of the first flow rate adjustment valve 31 and the second flow rate adjustment valve 32 described above, superheat degree control by the opening degree of the expansion valve 15 is required.

また、暖房の観点からも、吹出温度を所定の温度(例えば、50℃)へ調整することと、圧縮機11に戻る冷媒を過熱状態で運転することが必要である。   Also from the viewpoint of heating, it is necessary to adjust the blowing temperature to a predetermined temperature (for example, 50 ° C.) and to operate the refrigerant returning to the compressor 11 in an overheated state.

このため、吹出温度センサ83を使用した第1流量調整弁31および第2流量調整弁32の開度調整と、膨張弁15の開度による過熱度制御とにより、暖房除霜運転時にも車室内に適温の空気を供給することができる。   For this reason, by adjusting the opening degree of the first flow rate adjusting valve 31 and the second flow rate adjusting valve 32 using the blowing temperature sensor 83 and the superheat degree control by the opening degree of the expansion valve 15, the interior of the vehicle compartment is also obtained during the heating defrosting operation. Can be supplied with air at a suitable temperature.

<変形例>
前記実施形態では、着霜用検出手段として蒸発器温度センサ82を用いたが、本発明の着霜用検出手段はこれに限られるものではない。例えば、第2流路22におけるバイパス路3がつながる位置よりも室外熱交換器13側に、室外熱交換器13から流出する冷媒の温度を検出する冷媒温度センサを設け、この冷媒温度センサを着霜用検出手段として用いてもよい。室外熱交換器13に霜が付着すると、室外熱交換器13を空気が通過できなくなって空気と冷媒との熱交換量が減少するため、室外熱交換器13から流出した冷媒の温度が外気温度よりも一定温度低くなったときに、室外熱交換器13に霜が付着したと判定することができる。
<Modification>
In the said embodiment, although the evaporator temperature sensor 82 was used as a detection means for frost formation, the detection means for frost formation of this invention is not restricted to this. For example, a refrigerant temperature sensor for detecting the temperature of the refrigerant flowing out of the outdoor heat exchanger 13 is provided on the outdoor heat exchanger 13 side of the second flow path 22 from the position where the bypass path 3 is connected, and the refrigerant temperature sensor is attached. You may use as a detection means for frost. When frost adheres to the outdoor heat exchanger 13, air cannot pass through the outdoor heat exchanger 13 and the amount of heat exchange between the air and the refrigerant decreases, so the temperature of the refrigerant flowing out of the outdoor heat exchanger 13 is the outside air temperature. It can be determined that frost has adhered to the outdoor heat exchanger 13 when the temperature becomes lower than the predetermined temperature.

または、上記のような現象が発生すると、着霜により室外熱交換器13の通風抵抗が増加してファン17への入力が増加するため、ファン17の駆動電流が一定値以上になったときに室外熱交換器13に霜が付着したと判定することもできる。   Alternatively, when the above phenomenon occurs, the ventilation resistance of the outdoor heat exchanger 13 increases due to frost formation, and the input to the fan 17 increases, so that when the drive current of the fan 17 becomes a certain value or more. It can also be determined that frost has adhered to the outdoor heat exchanger 13.

あるいは、室内熱交換器16の温度を検出する凝縮器温度センサと車室内の温度を検出する車室内温度センサを設け、これらの温度センサの検出値の温度差から室外熱交換器13に霜が付着したと判定してもよい。   Alternatively, a condenser temperature sensor that detects the temperature of the indoor heat exchanger 16 and a vehicle interior temperature sensor that detects the temperature of the vehicle interior are provided, and frost is generated in the outdoor heat exchanger 13 from the temperature difference between the detected values of these temperature sensors. You may determine with having adhered.

また、暖房よりも除霜が優先されるときには、ファン17およびブロア51を稼働させずに破線矢印Cの向きに冷媒を流して、急速除霜運転を行うようにしてもよい。あるいは、この急速除霜運転中にポンプ41を稼働させて、室外熱交換器13で放熱した冷媒を加熱器14で加熱することにより、さらに除霜に使用する熱量を増大させてもよい。ただし、これらの運転は、ヒートポンプ回路2に冷媒を暖房運転と反対向きに流す必要があるために、暖房運転と連続して行うことができない。これに対し、前記実施形態のような暖房除霜運転では、ヒートポンプ回路2に暖房運転と同じ向きに冷媒が流れるため、暖房運転から直ちに除霜を開始することができる。   Further, when defrosting is prioritized over heating, the rapid defrosting operation may be performed by causing the refrigerant to flow in the direction of the broken line arrow C without operating the fan 17 and the blower 51. Alternatively, the amount of heat used for defrosting may be further increased by operating the pump 41 during the rapid defrosting operation and heating the refrigerant radiated by the outdoor heat exchanger 13 with the heater 14. However, these operations cannot be performed continuously with the heating operation because the refrigerant needs to flow through the heat pump circuit 2 in the opposite direction to the heating operation. On the other hand, in the heating defrosting operation as in the above embodiment, since the refrigerant flows in the heat pump circuit 2 in the same direction as the heating operation, the defrosting can be started immediately from the heating operation.

前記実施形態では、吹出温度が所定の温度となるように第1流量調整弁31および第2流量調整弁32の開度を調整している。ただし、第1流量調整弁31および第2流量調整弁32の開度の調整方法はこれに限られない。他の調整方法としては、外気温度Tair(℃)と暖房連続時間t(sec)から室外熱交換器13に流れる冷媒量の比率rを決定する方法がある。比率rは、例えば次の式によって算出することができる。
r=(10−Tair)/40×t/30
(0.1<r<0.6、−10<Tair<10、10<t<60)
In the said embodiment, the opening degree of the 1st flow regulating valve 31 and the 2nd flow regulating valve 32 is adjusted so that blowing temperature may become predetermined | prescribed temperature. However, the adjustment method of the opening degree of the 1st flow regulating valve 31 and the 2nd flow regulating valve 32 is not restricted to this. As another adjustment method, there is a method of determining the ratio r of the amount of refrigerant flowing into the outdoor heat exchanger 13 from the outside air temperature Tair (° C.) and the heating continuous time t (sec). The ratio r can be calculated by the following equation, for example.
r = (10−Tair) / 40 × t / 30
(0.1 <r <0.6, −10 <Tair <10, 10 <t <60)

さらに、第1流量調整弁31および第2流量調整弁32の開度の調整は、必ずしもどちらか一方を全開状態に保ちながら行う必要はなく、双方の開度を同時に所定の開度に調整することも可能である。   Furthermore, it is not always necessary to adjust the opening degree of the first flow rate adjustment valve 31 and the second flow rate adjustment valve 32 while keeping either one of them fully open, and both opening degrees are simultaneously adjusted to a predetermined opening degree. It is also possible.

(第2実施形態)
図4は、本発明の第2実施形態に係る車両用空調装置10Bの構成図である。なお、本実施形態では、第1実施形態と同じ構成部分には同じ符号を付し、その説明を省略する。この点は、後述する第3実施形態でも同様である。
(Second Embodiment)
FIG. 4 is a configuration diagram of a vehicle air conditioner 10B according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. This is the same in the third embodiment described later.

本実施形態では、第1流路21に、ブロワ51によって車室内に送られる空気と冷媒との熱交換を行う副熱交換器18が設けられている。この副熱交換器18は、ダクト52内で室内熱交換器16の風下側に配置されている。なお、車両用空調装置10Bのその他の構成は、第1実施形態の車両用空調装置10Aと同じである。   In the present embodiment, the first flow passage 21 is provided with the auxiliary heat exchanger 18 that performs heat exchange between the air sent to the vehicle interior by the blower 51 and the refrigerant. The auxiliary heat exchanger 18 is disposed in the duct 52 on the leeward side of the indoor heat exchanger 16. The other configuration of the vehicle air conditioner 10B is the same as that of the vehicle air conditioner 10A of the first embodiment.

具体的に、副室内熱交換器18は、ダクト52内で当該副室内熱交換器18を経由する第1風路と当該副室内熱交換器18を経由しない第2風路とが層をなすように配置されている。これを実現するには、例えば、副室内熱交換器18の脇から室内熱交換器16がダクト52の出口側に露出するように、換言すれば副室内熱交換器18の脇に副室内熱交換器18をバイパスする空気が流れる一定の空間が確保されるように、副室内熱交換器18をダクト52の壁面近くに片寄せて配置してもよい。あるいは、ダクト52における副室内熱交換器18を取り囲む部分の一部を膨らませて、その膨らませた部分に副室内熱交換器18をバイパスする空気を流すようにしてもよい。   Specifically, in the sub indoor heat exchanger 18, a first air path that passes through the sub indoor heat exchanger 18 and a second air path that does not pass through the sub indoor heat exchanger 18 form a layer in the duct 52. Are arranged as follows. In order to realize this, for example, the indoor heat exchanger 16 is exposed from the side of the sub-indoor heat exchanger 18 to the outlet side of the duct 52, in other words, the sub-indoor heat is placed beside the sub-indoor heat exchanger 18. The sub-indoor heat exchanger 18 may be arranged near the wall surface of the duct 52 so that a certain space through which air that bypasses the exchanger 18 flows is secured. Alternatively, a part of the duct 52 surrounding the sub-indoor heat exchanger 18 may be inflated, and air that bypasses the sub-indoor heat exchanger 18 may be allowed to flow through the inflated portion.

なお、本実施形態では、ダクト52内に、上記第1風路と上記第2風路とを仕切る仕切り板、および上記第1風路を流れる風量と上記第2風路を流れる風量の比率を調整するダンパが設けられていることが好ましい。   In the present embodiment, the partition plate that partitions the first air path and the second air path in the duct 52, and the ratio of the air volume flowing through the first air path and the air volume flowing through the second air path are set. It is preferable that a damper to be adjusted is provided.

このような構成では、室内熱交換器16で加熱された車室内循環空気を副室内熱交換器18でさらに加熱することができるので、暖房能力を高める効果を得ることができる。なお、車両用空調装置10Bでも、第1実施形態の車両用空調装置10Aと同様の効果が得られることは言うまでもない。   In such a configuration, the vehicle interior circulating air heated by the indoor heat exchanger 16 can be further heated by the sub-indoor heat exchanger 18, so that an effect of increasing the heating capacity can be obtained. Needless to say, the vehicle air conditioner 10B can achieve the same effects as the vehicle air conditioner 10A of the first embodiment.

<変形例>
ところで、前記実施形態の車両用空調装置10Bでは、副室内熱交換器18からは常に熱が放出されるため、暖房しながら車室内循環空気を除湿するには室内熱交換器16を蒸発器として機能させる必要がある。これを実現するには、冷媒を破線矢印Cで示す向きに流さなければならない。しかしながら、このようにすると室外熱交換器13からも熱が放出されるため、外気の熱を利用したヒートポンプ暖房を行うことができない。
<Modification>
By the way, in the vehicle air conditioner 10B of the above embodiment, since heat is always released from the sub-indoor heat exchanger 18, the indoor heat exchanger 16 is used as an evaporator to dehumidify the circulating air in the vehicle interior while heating. Need to work. In order to realize this, the refrigerant must flow in the direction indicated by the broken line arrow C. However, since heat is also released from the outdoor heat exchanger 13 in this manner, heat pump heating using the heat of the outside air cannot be performed.

これに対し、図5に示す変形例の車両用空調装置10Cのように、第2流路22に第2の膨張弁19を設けるとともに、ヒートポンプ回路2に、膨張弁15をバイパスする、開閉弁92付の第1選択路91と、第2の膨張弁19をバイパスする、開閉弁94付の第2選択路93とを設けてもよい。この構成では、開閉弁92を開くとともに膨張弁15を全閉にし、さらに開閉弁94を閉じた上で、冷媒を破線矢印Cの向きに流せば、暖房しながら車室内循環空気を除湿することができる。   On the other hand, like the vehicle air conditioner 10C of the modification shown in FIG. 5, the second expansion valve 19 is provided in the second flow path 22 and the on-off valve bypasses the expansion valve 15 in the heat pump circuit 2. A first selection path 91 with 92 and a second selection path 93 with an on-off valve 94 that bypasses the second expansion valve 19 may be provided. In this configuration, if the on-off valve 92 is opened, the expansion valve 15 is fully closed, the on-off valve 94 is closed, and the refrigerant is allowed to flow in the direction of the broken line arrow C, the vehicle interior circulation air is dehumidified while heating. Can do.

(第3実施形態)
図6は、本発明の第3実施形態に係る車両用空調装置10Dの構成図である。本実施形態では、第7流路27に、ブロワ51によって車室内に送られる空気と冷媒との熱交換を行う副熱交換器18が設けられている。この副熱交換器18は、ダクト52内で室内熱交換器16の風上側に配置されている。なお、車両用空調装置10Dのその他の構成は、第1実施形態の車両用空調装置10Aと同じである。
(Third embodiment)
FIG. 6 is a configuration diagram of a vehicle air conditioner 10D according to the third embodiment of the present invention. In the present embodiment, the seventh flow path 27 is provided with the auxiliary heat exchanger 18 that performs heat exchange between the air sent to the vehicle interior by the blower 51 and the refrigerant. The auxiliary heat exchanger 18 is disposed in the duct 52 on the windward side of the indoor heat exchanger 16. The remaining configuration of the vehicle air conditioner 10D is the same as that of the vehicle air conditioner 10A of the first embodiment.

具体的に、副室内熱交換器18は、ダクト52内で当該副室内熱交換器18を経由する第1風路と当該副室内熱交換器18を経由しない第2風路とが層をなすように配置されている。これを実現するには、例えば、副室内熱交換器18の脇から室内熱交換器16がダクト52の入口側に露出するように、換言すれば副室内熱交換器18の脇に副室内熱交換器18をバイパスする空気が流れる一定の空間が確保されるように、副室内熱交換器18をダクト52の壁面近くに片寄せて配置してもよい。あるいは、ダクト52における副室内熱交換器18を取り囲む部分の一部を膨らませて、その膨らませた部分に副室内熱交換器18をバイパスする空気を流すようにしてもよい。   Specifically, in the sub indoor heat exchanger 18, a first air path that passes through the sub indoor heat exchanger 18 and a second air path that does not pass through the sub indoor heat exchanger 18 form a layer in the duct 52. Are arranged as follows. In order to realize this, for example, the indoor heat exchanger 16 is exposed from the side of the sub-indoor heat exchanger 18 to the inlet side of the duct 52, in other words, the sub-indoor heat is located beside the sub-indoor heat exchanger 18. The sub-indoor heat exchanger 18 may be arranged near the wall surface of the duct 52 so that a certain space through which air that bypasses the exchanger 18 flows is secured. Alternatively, a part of the duct 52 surrounding the sub-indoor heat exchanger 18 may be inflated, and air that bypasses the sub-indoor heat exchanger 18 may be allowed to flow through the inflated portion.

なお、本実施形態では、ダクト52内に、上記第1風路と上記第2風路とを仕切る仕切り板、および上記第1風路を流れる風量と上記第2風路を流れる風量の比率を調整するダンパが設けられていることが好ましい。   In the present embodiment, the partition plate that partitions the first air path and the second air path in the duct 52, and the ratio of the air volume flowing through the first air path and the air volume flowing through the second air path are set. It is preferable that a damper to be adjusted is provided.

このような構成では、冷房運転時には2つの熱交換器16,18で車室内循環空気を冷却することができ、暖房運転時には副室内熱交換器18で車室内循環空気を除湿することができる。なお、車両用空調装置10Bでも、第1実施形態の車両用空調装置10Aと同様の効果が得られることは言うまでもない。   In such a configuration, the circulating air in the vehicle interior can be cooled by the two heat exchangers 16 and 18 during the cooling operation, and the circulating air in the vehicle interior can be dehumidified by the auxiliary indoor heat exchanger 18 during the heating operation. Needless to say, the vehicle air conditioner 10B can achieve the same effects as the vehicle air conditioner 10A of the first embodiment.

<変形例>
前記実施形態では、副室内熱交換器18がダクト52内で当該副室内熱交換器18を経由する第1風路と当該副室内熱交換器18を経由しない第2風路とが層をなすように配置されている。これに対し、図7に示す変形例の車両用空調装置10Eのように、室内熱交換器16のみをダクト52内で当該室内熱交換器16を経由する第3風路と当該室内熱交換器16を経由しない第4風路とが層をなすように配置することも可能である。
<Modification>
In the embodiment, the first air passage through which the auxiliary indoor heat exchanger 18 passes through the auxiliary indoor heat exchanger 18 in the duct 52 and the second air passage that does not pass through the auxiliary indoor heat exchanger 18 form a layer. Are arranged as follows. On the other hand, like the vehicle air conditioner 10E of the modification shown in FIG. 7, only the indoor heat exchanger 16 is connected to the third air passage through the indoor heat exchanger 16 in the duct 52 and the indoor heat exchanger. It is also possible to arrange so that the fourth air passage that does not pass through 16 forms a layer.

あるいは、図示は省略するが、副室内熱交換器18と室内熱交換器16の双方を、第1風路と第2風路とが層をなし、かつ、第3風路と第4風路とが層をなすように配置することも可能である。   Or although illustration is abbreviate | omitted, both the sub indoor heat exchanger 18 and the indoor heat exchanger 16 have a 1st air path and a 2nd air path, and a 3rd air path and a 4th air path. It is also possible to arrange them in layers.

(その他の実施形態)
前記各実施形態では、切換手段として四方弁12Aが用いられていたが、本発明の切換手段はこれに限られるものではない。例えば、切換手段は、図8(a)に示すような、第1流路21および第7流路27と接続された2つの三方弁121が一対の配管122によってループ状に接続され、それらの配管122に第2流路22および第6流路26が接続された回路12Bであってもよい。あるいは、切換手段は、図8(b)に示すようないわゆるブリッジ回路12Cであってもよい。
(Other embodiments)
In each of the above embodiments, the four-way valve 12A is used as the switching means, but the switching means of the present invention is not limited to this. For example, in the switching means, as shown in FIG. 8 (a), two three-way valves 121 connected to the first flow path 21 and the seventh flow path 27 are connected in a loop shape by a pair of pipes 122. A circuit 12B in which the second flow path 22 and the sixth flow path 26 are connected to the pipe 122 may be used. Alternatively, the switching means may be a so-called bridge circuit 12C as shown in FIG.

本発明の車両用空調装置は、排熱を有効に活用することができるので、特に電気自動車や燃料電池自動車などの非燃焼系の自動車に有用である。   The vehicle air conditioner of the present invention can effectively utilize exhaust heat, and is particularly useful for non-combustion vehicles such as electric vehicles and fuel cell vehicles.

10A〜10E 車両用空調装置
11 圧縮機
11a 吸入口
11b 吐出口
12A 四方弁(切換手段)
12B 回路(切換手段)
12C ブリッジ回路(切換手段)
13 室外熱交換器
14 加熱器
15 膨張機構
16 室内熱交換器
18 副室内熱交換器
2 ヒートポンプ回路
21 第1流路(吐出側流路)
22 第2流路(第2室外側流路)
23 第3流路(第1室外側流路)
27 第7流路(吸入側流路)
3 バイパス路
31 第1流量調整弁
32 第2流量調整弁
51 ブロア
52 ダクト
6 制御装置
82 蒸発器温度センサ(着霜用検出手段)
83 吹出温度センサ
10A to 10E Vehicle air conditioner 11 Compressor 11a Suction port 11b Discharge port 12A Four-way valve (switching means)
12B circuit (switching means)
12C Bridge circuit (switching means)
DESCRIPTION OF SYMBOLS 13 Outdoor heat exchanger 14 Heater 15 Expansion mechanism 16 Indoor heat exchanger 18 Sub indoor heat exchanger 2 Heat pump circuit 21 1st flow path (discharge side flow path)
22 Second channel (second outdoor channel)
23 Third channel (first outdoor channel)
27 Seventh channel (suction side channel)
DESCRIPTION OF SYMBOLS 3 Bypass path 31 1st flow regulating valve 32 2nd flow regulating valve 51 Blower 52 Duct 6 Control apparatus 82 Evaporator temperature sensor (detection means for frost formation)
83 Blowout temperature sensor

Claims (8)

車室内の冷房および暖房を行う車両用空調装置であって、
冷媒を圧縮する圧縮機、前記車室外の空気と冷媒との熱交換を行う室外熱交換器、冷媒を膨張させる膨張機構、およびダクト内に配置され、ブロワによって前記車室内に送られる空気と冷媒との熱交換を行う室内熱交換器を含むヒートポンプ回路と、
前記ヒートポンプ回路に流れる冷媒の流れ方向を、冷房運転時には前記圧縮機から吐出された冷媒が前記室外熱交換器、前記膨張機構および前記室内熱交換器をこの順に通過して前記圧縮機に戻る第1方向に切り換え、暖房運転時には前記圧縮機から吐出された冷媒が前記室内熱交換器、前記膨張機構および前記室外熱交換器をこの順に通過して前記圧縮機に戻る第2方向に切り換える切換手段と、
前記膨張機構と前記室外熱交換器の間に配置され、前記ヒートポンプ回路を流れる冷媒を過熱状態まで加熱可能な加熱器と、
前記ヒートポンプ回路における前記加熱器と前記室外熱交換器の間の第1室外側流路から分岐して、前記ヒートポンプ回路における前記室外熱交換器と前記切換手段の間の第2室外側流路または前記切換手段と前記圧縮機の吸入口の間の吸入側流路につながるバイパス路と、
前記バイパス路に設けられた第1流量調整弁と、
前記第1室外側流路における前記バイパス路が分岐する位置よりも前記室外熱交換器側に設けられた第2流量調整弁と、
を備える車両用空調装置。
A vehicle air conditioner for cooling and heating a passenger compartment,
A compressor that compresses the refrigerant, an outdoor heat exchanger that exchanges heat between the air outside the passenger compartment and the refrigerant, an expansion mechanism that expands the refrigerant, and an air and refrigerant that are arranged in a duct and are sent into the passenger compartment by a blower A heat pump circuit including an indoor heat exchanger for exchanging heat with
The flow direction of the refrigerant flowing through the heat pump circuit is such that the refrigerant discharged from the compressor during the cooling operation passes through the outdoor heat exchanger, the expansion mechanism, and the indoor heat exchanger in this order and returns to the compressor. Switching means for switching to one direction and switching to a second direction in which refrigerant discharged from the compressor passes through the indoor heat exchanger, the expansion mechanism and the outdoor heat exchanger in this order and returns to the compressor during heating operation When,
A heater that is disposed between the expansion mechanism and the outdoor heat exchanger and that can heat the refrigerant flowing through the heat pump circuit to an overheated state;
A second outdoor flow path between the outdoor heat exchanger and the switching means in the heat pump circuit, branched from a first outdoor flow path between the heater and the outdoor heat exchanger in the heat pump circuit; A bypass path connected to a suction-side flow path between the switching means and the suction port of the compressor;
A first flow rate adjusting valve provided in the bypass path;
A second flow rate adjustment valve provided on the outdoor heat exchanger side from a position where the bypass path branches in the first outdoor flow path;
A vehicle air conditioner.
前記室外熱交換器に霜が付着したことを判定するための着霜用検出手段と、
暖房運転時に前記着霜用検出手段の検出値に基づいて前記室外熱交換器に霜が付着したと判定したときに、前記加熱器で過熱された冷媒の一部を前記バイパス路に流しつつ残りを前記室外熱交換器に導く暖房除霜運転を行う制御装置と、
をさらに備える請求項1に記載の車両用空調装置。
Frosting detection means for determining that frost has adhered to the outdoor heat exchanger;
When it is determined that frost has adhered to the outdoor heat exchanger based on the detection value of the frosting detection means during heating operation, a part of the refrigerant superheated by the heater flows through the bypass passage and remains A control device that performs a heating defrosting operation that guides the outdoor heat exchanger to the outdoor heat exchanger;
The vehicle air conditioner according to claim 1, further comprising:
前記ダクトを通じて前記車室内に吹き出される空気の温度を検出する吹出温度センサをさらに備え、
前記制御装置は、前記吹出温度センサで検出される温度が所定の温度となるように前記第1流量調整弁の開度および前記第2流量調整弁の開度を調整する、請求項2に記載の車両用空調装置。
A blowout temperature sensor for detecting a temperature of air blown into the vehicle compartment through the duct;
The said control apparatus adjusts the opening degree of the said 1st flow regulating valve and the opening degree of the said 2nd flow regulating valve so that the temperature detected by the said blowing temperature sensor may become predetermined | prescribed temperature. Vehicle air conditioner.
前記制御装置は、前記暖房除霜運転を行う間は、前記第1流量調整弁と前記第2流量調整弁の一方を全開状態に保つ、請求項3に記載の車両用空調装置。   4. The vehicle air conditioner according to claim 3, wherein the control device keeps one of the first flow rate adjustment valve and the second flow rate adjustment valve in a fully open state during the heating defrosting operation. 前記圧縮機は、電動モータによって駆動されるものであり、
前記制御装置は、前記暖房運転から前記暖房除霜運転に移行したときに、前記電動モータの回転数を大きくする、請求項2〜4のいずれか一項に記載の車両用空調装置。
The compressor is driven by an electric motor,
The said control apparatus is a vehicle air conditioner as described in any one of Claims 2-4 which enlarges the rotation speed of the said electric motor, when it transfers to the said heating defrost operation from the said heating operation.
前記ヒートポンプ回路における前記圧縮機の吐出口と前記切換手段の間の吐出側流路には、前記ブロワによって前記車室内に送られる空気と冷媒との熱交換を行う副室内熱交換器が設けられており、
前記副室内熱交換器は、前記ダクト内で前記室内熱交換器の風下側に配置されている、請求項1〜5のいずれか一項に記載の車両用空調装置。
In the discharge side flow path between the discharge port of the compressor and the switching means in the heat pump circuit, a sub-indoor heat exchanger that performs heat exchange between the air sent to the vehicle interior by the blower and the refrigerant is provided. And
The vehicular air conditioner according to any one of claims 1 to 5, wherein the sub-indoor heat exchanger is disposed on the leeward side of the indoor heat exchanger in the duct.
前記吸入側流路には、前記ブロワによって前記車室内に送られる空気と冷媒との熱交換を行う副室内熱交換器が設けられており、
前記副室内熱交換器は、前記ダクト内で前記室内熱交換器の風上側に配置されている、請求項1〜5のいずれか一項に記載の車両用空調装置。
The suction side flow path is provided with a sub-indoor heat exchanger that performs heat exchange between the air sent to the vehicle interior by the blower and the refrigerant,
The vehicular air conditioner according to any one of claims 1 to 5, wherein the sub-indoor heat exchanger is disposed on the windward side of the indoor heat exchanger in the duct.
前記副室内熱交換器は、前記ダクト内で当該副室内熱交換器を経由する第1風路と当該副室内熱交換器を経由しない第2風路とが層をなすように配置されている、請求項6または7に記載の車両用空調装置。   The sub-indoor heat exchanger is disposed in the duct so that a first air passage that passes through the sub-indoor heat exchanger and a second air passage that does not pass through the sub-indoor heat exchanger form a layer. The vehicle air conditioner according to claim 6 or 7.
JP2010223509A 2010-10-01 2010-10-01 Air conditioner for vehicle Pending JP2012076589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010223509A JP2012076589A (en) 2010-10-01 2010-10-01 Air conditioner for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010223509A JP2012076589A (en) 2010-10-01 2010-10-01 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2012076589A true JP2012076589A (en) 2012-04-19

Family

ID=46237324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010223509A Pending JP2012076589A (en) 2010-10-01 2010-10-01 Air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP2012076589A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002411A1 (en) * 2012-06-29 2014-01-03 サンデン株式会社 Vehicular air-conditioning unit
JP2014196018A (en) * 2013-03-29 2014-10-16 株式会社日本クライメイトシステムズ Vehicle air conditioner
CN107160972A (en) * 2017-06-19 2017-09-15 珠海格力电器股份有限公司 A kind of electric automobile, electric automobile heat-pump air-conditioning assembly and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002411A1 (en) * 2012-06-29 2014-01-03 サンデン株式会社 Vehicular air-conditioning unit
JP2014008857A (en) * 2012-06-29 2014-01-20 Sanden Corp Vehicle air conditioner
US9562712B2 (en) 2012-06-29 2017-02-07 Sanden Holdings Corporation Vehicular air-conditioning unit
JP2014196018A (en) * 2013-03-29 2014-10-16 株式会社日本クライメイトシステムズ Vehicle air conditioner
CN107160972A (en) * 2017-06-19 2017-09-15 珠海格力电器股份有限公司 A kind of electric automobile, electric automobile heat-pump air-conditioning assembly and its control method

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP5005122B2 (en) Air conditioner for vehicles
JP5423528B2 (en) Heat pump cycle
WO2014188674A1 (en) Refrigeration cycle device
JP5533207B2 (en) Heat pump cycle
JP5786615B2 (en) Automotive temperature control system
JP2013217631A (en) Refrigeration cycle device
WO2004056594A1 (en) Air conditioner
JP2005263200A (en) Air conditioner for vehicle
WO2003083381A1 (en) Refrigerating cycle device
JP2011178372A (en) Air conditioner for vehicle and operation switching method thereof
JP2018091536A (en) Refrigeration cycle device
WO2013145537A1 (en) Air conditioner device for vehicle
JP5884080B2 (en) Air conditioner for vehicles
JP4156422B2 (en) Refrigeration cycle equipment
JP4400533B2 (en) Ejector refrigeration cycle
JP2012076589A (en) Air conditioner for vehicle
JP4274886B2 (en) Heat pump air conditioner
JP6167891B2 (en) Heat pump cycle device.
JP5925048B2 (en) Vehicle air conditioner and vehicle
JP6544287B2 (en) Air conditioner
JP7053906B1 (en) Temperature control system
JP2019188852A (en) Air conditioner
JP7221789B2 (en) Vehicle air conditioner
KR101430005B1 (en) Heat pump system for vehicle and its control method