WO2013145537A1 - Air conditioner device for vehicle - Google Patents

Air conditioner device for vehicle Download PDF

Info

Publication number
WO2013145537A1
WO2013145537A1 PCT/JP2013/000964 JP2013000964W WO2013145537A1 WO 2013145537 A1 WO2013145537 A1 WO 2013145537A1 JP 2013000964 W JP2013000964 W JP 2013000964W WO 2013145537 A1 WO2013145537 A1 WO 2013145537A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
heat exchanger
variable throttle
intermediate pressure
Prior art date
Application number
PCT/JP2013/000964
Other languages
French (fr)
Japanese (ja)
Inventor
稲葉 淳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2013145537A1 publication Critical patent/WO2013145537A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator

Definitions

  • This disclosure relates to an air conditioner for a vehicle that causes both defrosting of an outdoor heat exchanger and heating capability while not causing window fogging or bad odor. It is mainly suitable for an air conditioner for a vehicle that lacks a heat source for heating, such as a vehicle that does not have a combustion engine, such as an electric vehicle or a hybrid car, or a vehicle that does not operate the combustion engine very much.
  • an electric vehicle that has been widely used does not include an engine (internal combustion engine) that outputs driving force for traveling, and therefore cannot use waste heat of the engine as a heat source when heating the passenger compartment. . Therefore, as a vehicle air conditioner applied to an electric vehicle, an air conditioner that heats a vehicle interior using a high-temperature and high-pressure refrigerant discharged from an electric compressor of a heat pump cycle (vapor compression refrigeration cycle) as a heat source is known. Yes.
  • Patent Document 1 discloses an air conditioning system using a gas injection heat pump technology as an air conditioning system for an electric vehicle.
  • a defrosting technique which is a problem of the heat pump technology
  • a vehicle while defrosting an outdoor heat exchanger is disclosed.
  • Systems that can also be used for indoor heating have been proposed.
  • the air passage to the indoor condenser is fully closed by the mix door, and the discharged gas refrigerant (hot gas) from the compressor is not exchanged in the HVAC without exchanging heat by the indoor condenser. It is introduced into the indoor evaporator.
  • the indoor evaporator functions as a cooler in the cooling and dehumidifying modes, but is used as an air heater for heating the vehicle interior when the outdoor heat exchanger is defrosted.
  • the indoor evaporator retains water after dehumidifying operation etc. before defrosting, the water that has been retained evaporates as soon as the hot gas refrigerant flows into the indoor evaporator. It will be blown out into the passenger compartment.
  • Such steam blowing can be recondensed on the windshield and cause window fogging.
  • an odor component may be blown out together with steam to cause a bad odor.
  • the vehicle interior may not be sufficiently heated due to insufficient heating performance.
  • the present disclosure achieves both defrosting of the outdoor heat exchanger and heating capacity by a system that also performs hot gas heating while defrosting the hot heat of the outdoor heat exchanger.
  • the present invention provides an air conditioner for a vehicle that does not cause fogging or odor.
  • Hot gas heating and hot gas defrosting are heat exchange cycles performed using sensible heat of a high-temperature gas refrigerant from a compressor.
  • a compressor an indoor condenser, a first variable throttle, an outdoor heat exchanger, a refrigeration cycle apparatus having a main refrigerant circuit that is arranged in the order of the compressor and in which refrigerant circulates
  • a vehicle air conditioner comprising a blower that blows air blown into a vehicle interior and an indoor air conditioning unit that includes the indoor condenser that heats the air blown into the vehicle interior, wherein the indoor condenser is the air blown into the vehicle interior
  • the vehicle air conditioner is capable of defrosting hot gas while heating the interior of the vehicle by melting the ice that has been radiated and radiated by the outdoor heat exchanger.
  • FIGS. 1A to 6 the overall operation mode of the first embodiment of the present disclosure will be described with reference to FIGS. 1A to 6.
  • a defrost heating mode described later constitutes a feature point of the present disclosure.
  • the heat pump cycle 10 is applied to a vehicle air conditioner 1 for an electric vehicle that obtains a driving force for vehicle traveling from a traveling electric motor.
  • the heat pump cycle 10 functions in the vehicle air conditioner 1 to cool or heat the vehicle interior air blown into the vehicle interior that is the air-conditioning target space.
  • the heat pump cycle 10 includes a refrigerant in a cooling operation mode for cooling the vehicle interior or a dehumidification heating operation mode (dehumidification operation mode) for heating while dehumidifying the vehicle interior, as shown in the overall configuration diagram of FIG. 4A.
  • a refrigerant in a cooling operation mode for cooling the vehicle interior or a dehumidification heating operation mode (dehumidification operation mode) for heating while dehumidifying the vehicle interior as shown in the overall configuration diagram of FIG. 4A.
  • the refrigerant circuit in the heating operation mode for heating the vehicle interior can be switched.
  • the first heating mode (FIG. 1A) executed when the outside air temperature is low (for example, including 0 ° C. or less), normal heating is performed.
  • the second heating mode to be executed (FIG. 2A) can be executed.
  • the refrigerant flow in each operation mode is indicated by solid arrows.
  • the heat pump cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
  • HFC refrigerant specifically, R134a
  • coolants for example, R1234yf
  • the compressor 11 is disposed in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10.
  • the compressor 11 includes two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, each of which is a fixed-capacity compression mechanism, and both of the compression mechanisms.
  • This is a two-stage boosting type electric compressor configured to accommodate an electric motor that is driven to rotate.
  • a suction port 11a that sucks low-pressure refrigerant from the outside of the housing into the low-stage compression mechanism, and an intermediate pressure where intermediate-pressure refrigerant flows from the outside of the housing into the housing and merges with the refrigerant in the compression process.
  • a pressure port 11b and a discharge port 11c for discharging the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing are provided.
  • the intermediate pressure port 11b is connected to the refrigerant discharge port side of the low-stage compression mechanism (that is, the refrigerant suction port side of the high-stage compression mechanism).
  • the low-stage compression mechanism that is, the refrigerant suction port side of the high-stage compression mechanism.
  • Various types such as a scroll type compression mechanism, a vane type compression mechanism, and a rolling piston type compression mechanism can be adopted as the low stage side compression mechanism and the high stage side compressor.
  • the electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant
  • the compressor 11 which accommodated two compression mechanisms in one housing is employ
  • adopted the format of a compressor is not limited to this.
  • the intermediate pressure refrigerant can be introduced from the intermediate pressure port 11b and merged with the refrigerant in the compression process, one fixed capacity type compression mechanism and an electric motor that rotationally drives the compression mechanism are provided inside the housing.
  • An electric compressor configured to house a motor may be used.
  • the embodiment includes a case where the intermediate pressure refrigerant is not introduced.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11.
  • the indoor condenser 12 is disposed in an air conditioning case 31 of an indoor air conditioning unit 30 of the vehicle air conditioner 1 to be described later, and dissipates high-pressure refrigerant discharged from the compressor 11 (specifically, a high-stage compression mechanism). It is a radiator that heats the air blown into the passenger compartment that has passed through the indoor evaporator 23 described later.
  • the refrigerant outlet side of the indoor condenser 12 is connected to the inlet side of the first variable throttle 13 that can depressurize the high-pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate-pressure refrigerant.
  • the first variable throttle 13 is an electric variable variable valve that is configured to change the throttle opening and an electric actuator including a stepping motor that changes the throttle opening of the valve. An aperture mechanism.
  • the first variable throttle 13 is configured to be able to be set to a throttle state that exhibits a pressure reducing action and a fully open state that does not exhibit a pressure reducing action. More specifically, in the first variable throttle 13, when the refrigerant is depressurized, the throttle opening is changed in a range where the throttle passage area has an equivalent diameter ⁇ 0.5 to ⁇ 3 mm. Furthermore, when the throttle opening is fully opened, the throttle passage area can be ensured to have an equivalent diameter of about 10 mm so that the refrigerant decompression action is not exhibited. Further, the refrigerant flow path from the outdoor heat exchanger 20 to the indoor evaporator 23 can be closed by closing the throttle opening. The operation of the first variable aperture 13 is controlled by a control signal output from the air conditioning control device 40.
  • a gas-liquid separator 14 On the outlet side of the first variable throttle 13, there is a gas-liquid separator 14 as a gas-liquid separator that separates the gas-liquid of the intermediate pressure refrigerant that flows out of the indoor condenser 12 and is decompressed by the first variable throttle 13.
  • a refrigerant inflow port 14b is connected.
  • the gas-liquid separator 14 is of a centrifugal separation type that separates the gas-liquid refrigerant by the action of centrifugal force (see JP 2009-174836 A).
  • the gas-liquid separator 14 includes a refrigerant inlet port 14b in which a refrigerant inlet for allowing intermediate pressure refrigerant to flow in is formed, and a gas phase refrigerant in which a gas-phase refrigerant outlet for discharging separated vapor refrigerant is formed. It has an outflow port 14c and a liquid phase refrigerant outflow port 14d in which a liquid phase refrigerant outlet for allowing the separated liquid phase refrigerant to flow out is formed (see FIG. 1A). Normally, the liquid phase refrigerant flows out from the liquid phase refrigerant outflow port 14d, but in the case of the defrost heating mode described later, the gas phase refrigerant may flow out.
  • the intermediate pressure port 11 b of the compressor 11 is connected to the gas phase refrigerant outlet port 14 c of the gas-liquid separator 14 through the intermediate pressure refrigerant passage 15.
  • An intermediate pressure side opening / closing valve 16 a is disposed in the intermediate pressure refrigerant passage 15.
  • the intermediate pressure side opening / closing valve 16 a is an electromagnetic valve that opens and closes the intermediate pressure refrigerant passage 15, and its operation is controlled by a control signal output from the air conditioning control device 40.
  • the intermediate pressure side opening / closing valve 16a is a check that allows only the refrigerant to flow from the gas phase refrigerant outlet of the gas-liquid separator 14 to the intermediate pressure port 11b side of the compressor 11 when the intermediate pressure refrigerant passage 15 is opened. It also functions as a valve. This prevents the refrigerant from flowing back from the compressor 11 side to the gas-liquid separator 14 when the intermediate pressure side opening / closing valve 16a opens the intermediate pressure refrigerant passage 15.
  • the intermediate pressure side on-off valve 16a functions to switch the cycle configuration (refrigerant flow path) by opening and closing the intermediate pressure refrigerant passage 15. Therefore, the intermediate pressure side opening / closing valve 16a of the present embodiment constitutes a refrigerant flow path switching means for switching the refrigerant flow path of the refrigerant circulating in the cycle.
  • the intermediate pressure side on-off valve 16a of the present embodiment is configured to open and close the intermediate pressure refrigerant passage 15 in conjunction with the state (throttle state, full open state) of the low stage side pressure reducing means.
  • the low stage pressure reducing means refers to a combination of the second variable throttle 17 and the low pressure side on-off valve 16b inserted in parallel therewith.
  • the intermediate pressure side on / off valve 16a opens the intermediate pressure refrigerant passage 15 when the low pressure side on / off valve 16b of the low stage side pressure reducing means is closed and the entire low stage side pressure reducing means is in the throttle state. It is configured.
  • the intermediate pressure side on / off valve 16a is configured to close the intermediate pressure refrigerant passage 15 when the low pressure side on / off valve 16b of the low stage side pressure reducing means is opened and the entire low stage side pressure reducing means is fully opened. Yes.
  • the liquid-phase refrigerant outflow port 14d of the gas-liquid separator 14 is connected to the inlet side of the low-stage decompression means capable of decompressing the liquid-phase refrigerant flowing out of the gas-liquid separator 14, and the outlet of the low-stage decompression means
  • the refrigerant inlet side of the outdoor heat exchanger 20 is connected to the side.
  • the low-stage depressurization means of the present embodiment includes a second variable throttle 17 that depressurizes the liquid-phase refrigerant separated by the gas-liquid separator 14 until it becomes a low-pressure refrigerant, and the liquid phase separated by the gas-liquid separator 14.
  • the bypass passage 18 guides refrigerant to the outdoor heat exchanger 20 side by bypassing the second variable throttle 17, and the low-pressure side opening / closing valve 16b as a passage opening / closing valve for opening and closing the bypass passage 18.
  • the basic configuration of the low pressure side on / off valve 16b is the same as that of the intermediate pressure side on / off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40.
  • the pressure loss that occurs when the refrigerant passes through the low-pressure side opening / closing valve 16b is extremely small compared to the pressure loss that occurs when the refrigerant passes through the second variable throttle 17. Therefore, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the bypass passage 18 when the low-pressure side opening / closing valve 16b is open, and the low-pressure side opening / closing valve 16b is closed. In this case, the refrigerant flows into the outdoor heat exchanger 20 through the second variable throttle 17.
  • the low-stage pressure reducing means can be changed between a throttle state that exerts a pressure reducing action and a fully open state that does not exert a pressure reducing action by opening and closing the low pressure side opening / closing valve 16b.
  • the low-pressure side opening / closing valve 16b is connected to the outlet side of the liquid-phase refrigerant outlet port 14d of the gas-liquid separator 14 and the inlet side of the second variable throttle 17 and the outlet side of the outlet of the liquid-phase refrigerant outlet port 14d and the bypass passage.
  • An electric three-way valve or the like that switches the refrigerant circuit connecting the 18 inlet side may be adopted.
  • the second variable throttle 17 can be used as a fixed throttle with the throttle opening being fixed. In this case, since the throttle passage area is suddenly reduced or expanded rapidly, the flow rate of the refrigerant passing through the fixed throttle and the second variable throttle as the pressure difference between the upstream side and the downstream side (differential pressure between the inlet and outlet) changes. 17 The dryness X of the upstream refrigerant can be self-adjusted (balanced).
  • the refrigerant heat absorption in the outdoor heat exchanger 20 occurs when the outdoor heat exchanger 20 functions as an evaporator that exerts an endothermic effect on the refrigerant.
  • the amount of heat (refrigeration capacity) decreases and the coefficient of performance (COP) of the cycle deteriorates.
  • the opening degree is controlled so that the dryness X of the refrigerant upstream of the second variable throttle 17 is 0.1 or less even if the required circulating refrigerant flow rate changes due to the cycle load fluctuation in the heating operation mode. In addition, the deterioration of COP is suppressed.
  • the second variable throttle 17 of the present embodiment even if the refrigerant circulation flow rate Q and the differential pressure between the inlet and outlet of the second variable throttle 17 change within a range that is assumed when a load fluctuation occurs in the heat pump cycle 10.
  • the dryness X of the refrigerant upstream of the second variable throttle 17 is adjusted to 0.1 or less.
  • the outdoor heat exchanger 20 is arranged in the bonnet, and exchanges heat between the low-pressure refrigerant circulating inside and the outside air blown from the blower fan 21.
  • the outdoor heat exchanger 20 functions as an evaporator that evaporates the low-pressure refrigerant and exerts an endothermic effect in the first and second heating modes, and dissipates the high-pressure refrigerant in the cooling operation mode and the like. It is a heat exchanger that functions as a radiator.
  • the refrigerant inlet side of the third variable throttle 22 is connected to the refrigerant outlet side of the outdoor heat exchanger 20.
  • the third variable throttle 22 is for depressurizing the refrigerant that has flowed out of the outdoor heat exchanger 20 in the cooling operation mode or the like, and depressurizing the refrigerant that flows into the indoor evaporator 23.
  • the basic configuration of the third variable aperture 22 is the same as that of the first variable aperture 13, and its operation is controlled by a control signal output from the air conditioning control device 40.
  • the refrigerant inlet side of the indoor evaporator 23 is connected to the outlet side of the third variable throttle 22.
  • the indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30 on the upstream side of the air flow in the vehicle interior of the indoor condenser 12 and circulates in the dehumidifying and heating operation mode or the like in the cooling operation mode. It is an evaporator that cools the air blown into the passenger compartment by evaporating the refrigerant and exerting an endothermic effect.
  • the inlet side of the accumulator 24 is connected to the outlet side of the indoor evaporator 23.
  • the accumulator 24 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant.
  • the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Therefore, the indoor evaporator 23 is connected so as to flow out to the suction port 11 a side of the compressor 11.
  • bypass passage 25 that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 by bypassing the third variable throttle 22 and the indoor evaporator 23. It is connected.
  • a cooling on-off valve 16c for opening and closing the bypass passage 25 is disposed.
  • the basic configuration of the cooling on / off valve 16c is the same as that of the intermediate pressure side on / off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40. Further, the pressure loss that occurs when the refrigerant passes through the cooling on-off valve 16 c is extremely small compared to the pressure loss that occurs when the refrigerant passes through the third variable throttle 22.
  • the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 24 through the bypass passage 25 when the cooling on-off valve 16c is open.
  • the opening degree of the third variable throttle 22 may be fully closed.
  • the cooling on-off valve 16c when the cooling on-off valve 16 c is closed, it flows into the indoor evaporator 23 through the third variable throttle 22.
  • the cooling on-off valve 16c can switch the refrigerant flow path of the heat pump cycle 10. Therefore, the cooling on-off valve 16c of the present embodiment constitutes a refrigerant flow switching means together with the intermediate pressure side on-off valve 16a.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, forms an outer shell of the indoor air conditioning unit 30, and is blown into the vehicle interior in the vehicle interior.
  • the air-conditioning case 31 that forms the air passage is provided.
  • the air blower 32, the indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
  • Inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the air flow of air conditioning case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the air volume of the inside air and the outside air are adjusted.
  • the air volume ratio with the air volume is continuously changed.
  • a blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
  • the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 ⁇ the indoor condenser 12 with respect to the flow of the air blown into the vehicle interior.
  • the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.
  • a bypass passage 35 is provided in the air conditioning case 31 to flow the blown air after passing through the indoor evaporator 23, bypassing the indoor condenser 12, on the downstream side of the air flow of the indoor evaporator 23.
  • the air mix door 34 is arrange
  • the air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35 in the blown air that has passed through the indoor evaporator 23, and the heat of the indoor condenser 12. It is a heat exchange capacity adjustment means for adjusting the exchange capacity.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • a merging space 36 in which the indoor blast air merges is provided.
  • an opening hole for blowing the blown air merged in the merge space 36 into the vehicle interior which is a space to be cooled is arranged.
  • a defroster opening hole 37a that blows conditioned air toward the inner side surface of the vehicle front window glass
  • a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the passenger compartment
  • the foot opening hole 37c which blows air-conditioning wind toward is provided.
  • the temperature of the blown air in the merging space 36 is adjusted by adjusting the air volume ratio between the air volume that the air mix door 34 passes through the indoor condenser 12 and the air volume that passes through the bypass passage.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
  • the opening areas of the defroster door 38a and the face opening hole 37b for adjusting the opening area of the defroster opening hole 37a are adjusted.
  • a foot door 38c for adjusting the opening area of the face door 38b and the foot opening hole 37c is disposed.
  • the defroster door 38a, the face door 38b, and the foot door 38c constitute an opening hole mode switching unit that switches the opening hole mode.
  • the defroster door 38a, the face door 38b, and the foot door 38c are controlled by a control signal output from the air conditioning controller 40 via a link mechanism or the like. It is driven by a servo motor (not shown) whose operation is controlled.
  • the air flow downstream side of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages. Connected to the exit.
  • the air conditioning control device 40 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side.
  • the operation of the various air conditioning control devices (the compressor 11, the first to third variable throttles, the low pressure side opening / closing valve 16b of the low stage pressure reducing means, the refrigerant flow switching means 16a, 16c, the blower 32, etc.) is controlled.
  • an inside air sensor that detects the temperature inside the vehicle
  • an outside air sensor 41-1 that detects the outside air temperature Tam
  • a solar radiation sensor that detects the amount of solar radiation in the vehicle interior
  • an indoor evaporator 23 An evaporator temperature sensor for detecting the blown air temperature (evaporator temperature), a discharge pressure sensor for detecting the high-pressure refrigerant pressure discharged from the compressor 11, a suction pressure sensor for detecting the suction refrigerant pressure sucked into the compressor 11,
  • Various air conditioning control sensors 41 such as the outlet refrigerant temperature sensor 41-2 of the outdoor heat exchanger 20 are connected.
  • the outlet refrigerant temperature sensor 41-2 detects the outlet refrigerant temperature Tho of the outdoor heat exchanger 20.
  • an operation panel (not shown) disposed near the instrument panel in the front of the passenger compartment is connected to the input side of the air conditioning control device 40, and operation signals from various air conditioning operation switches provided on the operation panel are input.
  • various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, a selection switch between the cooling operation mode and the heating operation mode, and the like. Is provided.
  • the air-conditioning control device 40 is configured integrally with control means for controlling the operation of various air-conditioning control devices connected to the output side, but the configuration (hardware) for controlling the operation of each control target device. Hardware and software) constitutes control means for controlling the operation of each control target device.
  • the configuration (hardware and software) that controls the operation of the electric motor of the compressor 11 constitutes the discharge capacity control means
  • Hardware and software constitute the refrigerant flow path control means.
  • the discharge capacity control means and the refrigerant flow path control means may be configured as separate control devices for the air conditioning control device 40.
  • the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
  • switching to a cooling operation mode for cooling the vehicle interior, a heating operation mode for heating the vehicle interior, a defrost heating mode, and a dehumidifying heating mode for heating while dehumidifying the vehicle interior is performed.
  • Can do The operation in each operation mode will be described below.
  • the heating operation mode includes the following first heating mode and second heating mode, which are started when the heating operation mode is selected by the selection switch while the operation switch of the vehicle air conditioner is turned on.
  • the air conditioning control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the operation panel, and the refrigerant discharge capacity of the compressor 11 (the rotation speed of the compressor 11). To decide. Further, the first heating mode or the second heating mode is executed according to the determined rotation speed.
  • the air conditioning control device 40 sets the first variable throttle 13 in the throttle state, the third variable throttle 22 in the fully closed state, and the cooling on-off valve 16c in the valve open state.
  • the low-pressure side opening / closing valve 16b is closed, the low-stage pressure reducing means is set to a throttle state that exerts a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is opened in conjunction with the state of the low-pressure side opening / closing valve 16b.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 1A.
  • the air conditioning control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the operation panel, and based on the target blowing temperature TAO and the detection signal of the sensor group, The operating states of various air conditioning control devices connected to the output side of the air conditioning control device 40 are determined.
  • the control signal output to the first variable throttle 13 is determined so that the throttle opening of the first variable throttle 13 becomes a predetermined opening for the first heating mode.
  • the high-pressure refrigerant (point a7) discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12 as shown in the Mollier diagram of FIG. 1B.
  • the refrigerant that has flowed into the indoor condenser 12 exchanges heat with air blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat (point a7 ⁇ b7). Thereby, vehicle interior blowing air is heated.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate-pressure refrigerant at the first variable throttle 13 that is in the throttled state (b7 ⁇ c17 point). Then, the intermediate pressure refrigerant decompressed by the first variable throttle 13 is gas-liquid separated by the gas-liquid separator 14 (c7 ⁇ c27 point, c7 ⁇ c37 point).
  • the gas-phase refrigerant separated by the gas-liquid separator 14 flows into the intermediate pressure port 11b of the compressor 11 through the intermediate pressure refrigerant passage 15 because the intermediate pressure side opening / closing valve 16a is in the open state. (C2 7 ⁇ a 2 7 points), merges with the refrigerant discharged from the low stage compression mechanism (a 17 points) and is sucked into the high stage compression mechanism.
  • the liquid refrigerant separated by the gas-liquid separator 14 is decompressed and flows out until it becomes a low-pressure refrigerant in the low-stage decompression means because the low-stage decompression means is in the throttle state. It flows into the heat exchanger 20. That is, in the low-stage decompression means, the low-pressure side opening / closing valve 16b is closed, so that it is decompressed and expanded in an enthalpy manner until it flows into the second variable throttle 17 and becomes a low-pressure refrigerant (c37 ⁇ c47). point).
  • the refrigerant flowing out of the second variable throttle 17 flows into the outdoor heat exchanger 20, and absorbs heat by exchanging heat with the outside air blown from the blower fan 21 (c47 point ⁇ d7 point).
  • the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 24 via the bypass passage 25 and is separated into gas and liquid because the cooling on-off valve 16c is in the open state.
  • the separated gas-phase refrigerant is sucked from the suction port 11a (point e7) of the compressor 11 and compressed again.
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • the reason that the points d7 and e7 are different is that the pressure loss generated in the gas-phase refrigerant flowing through the refrigerant pipe from the accumulator 24 to the suction port 11a of the compressor 11 and the gas-phase refrigerant outside (outside air) ) Represents the amount of heat absorbed. Therefore, in an ideal cycle, it is desirable that the points d7 and e7 coincide. The same applies to the following Mollier diagram.
  • the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 is dissipated to the vehicle interior blown air, and the heated room blown air is blown out into the vehicle interior. it can. Thereby, heating of a vehicle interior is realizable.
  • the low-pressure refrigerant decompressed by the second variable throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the first variable throttle 13 is sucked by the intermediate pressure port.
  • a gas injection cycle (economizer refrigeration cycle) that flows into 11b and joins with the refrigerant in the pressure increasing process can be configured.
  • the compression efficiency of the high-stage compression mechanism can be improved, and both the low-stage compression mechanism and the high-stage compression mechanism can be improved.
  • the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure it is possible to improve the compression efficiency of both compression mechanisms.
  • the COP of the heat pump cycle 10 as a whole can be improved.
  • the air conditioning control device 40 sets the first variable throttle 13 to a throttle state that exerts a pressure reducing action, sets the third variable throttle 22 to a fully closed state, and sets the cooling on-off valve 16c. Open the valve.
  • the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened without exerting the pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 2A.
  • the air conditioning control device 40 determines the operating states of various air conditioning control devices and air conditioning units connected to the output side of the air conditioning control device 40 as in the first heating mode.
  • the high-pressure refrigerant (point a8) discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12, and the second As in the heating mode, heat is exchanged with the air blown into the passenger compartment to dissipate heat (a8 ⁇ b8 points). Thereby, vehicle interior blowing air is heated.
  • the refrigerant flowing out from the indoor condenser 12 is decompressed and expanded in an enthalpy manner (b8 ⁇ c8 point) until it becomes a low-pressure refrigerant in the throttled first variable throttle 13 and flows into the gas-liquid separator 14. To do. At this time, the refrigerant flowing into the gas-liquid separator 14 flows out from the liquid-phase refrigerant outflow port 14d without being separated into gas and liquid because the intermediate pressure side opening / closing valve 16a is closed.
  • the liquid-phase refrigerant separated by the gas-liquid separator 14 flows out with almost no decompression by the low-stage decompression means because the low-stage decompression means is fully open, and the outdoor heat exchange Flow into the vessel 20. That is, in the low stage pressure reducing means, the low pressure side opening / closing valve 16b is in the open state, and therefore flows into the outdoor heat exchanger 20 through the bypass passage 18 without flowing into the second variable throttle 17 side. .
  • the low-pressure refrigerant that has flowed into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 and absorbs heat (point c8 ⁇ point d8).
  • the subsequent operation is the same as in the first heating mode.
  • the effect of executing the second heating mode when the heating load is relatively low, such as when the outside air temperature is high, is described with respect to the first heating mode.
  • the rotation speed of the compressor 11 is the same, the first heating mode can exhibit higher heating performance than that in the second heating mode.
  • the rotation speed (refrigerant discharge capacity) of the compressor 11 necessary for exhibiting the same heating performance is lower in the second heating mode than in the first heating mode.
  • the compression mechanism has a maximum efficiency rotational speed at which the compression efficiency is maximized (peak), and has a characteristic that if the rotational speed is lower than the maximum efficient rotational speed, the compression efficiency is greatly reduced. For this reason, when the compressor 11 is operated at a rotation speed lower than the maximum efficiency rotation speed when the heating load is relatively low, the COP may decrease in the first heating mode.
  • the second heating mode is entered. Switching to the first heating mode is performed when the rotation speed becomes equal to or higher than the rotation speed obtained by adding a predetermined amount to the reference rotation speed during execution of the second heating mode.
  • the operation mode in which high COP can be exhibited is selected from the first heating mode and the second heating mode. Therefore, even when the rotation speed of the compressor 11 becomes equal to or lower than the reference rotation speed during execution of the first heating mode, the COP of the heat pump cycle 10 as a whole is improved by switching to the second heating mode. Can be made.
  • the outdoor heat exchanger 20 functions as an evaporator. Therefore, when condensed water is generated and the outdoor temperature is relatively low, the condensed water is frozen and the outdoor heat exchanger 20 is frosted. Occurs.
  • the frosting can occur even when the heating mode is the first and second heating modes, any of the defrosting heating modes of this embodiment can be applied.
  • the case of the 1st heating mode often performed at the time of low temperature is mentioned as an example, and is demonstrated below.
  • the first heating mode is changed to the defrosting heating mode, and the vehicle interior ventilation is performed by the indoor condenser 12. While heating the air, the outdoor heat exchanger 20 dissipates the heat of the hot gas refrigerant and melts the frosted ice so that the hot gas can be defrosted while the vehicle interior is heated.
  • the frosting state of the outdoor heat exchanger 20 can be determined by various means.
  • the outlet refrigerant temperature Tho of the outdoor heat exchanger 20 detected by the outlet refrigerant temperature sensor 41-2 decreases.
  • a predetermined value for example, 20 ° C.
  • the first heating mode is changed to the defrost heating mode.
  • the determination means it may be determined that the frost state is established when Tam-Tho continues for a predetermined time (for example, about 10 minutes) at a predetermined temperature difference (for example, 15 ° C.).
  • the determination of the frost formation state is not limited to these, and may be determined by other known means (paragraph 0042 of JP-A-2000-203249, paragraph 0057 of JP-A-2001-246930, etc.).
  • control for changing from the first heating mode to the defrosting heating mode will be described with reference to FIG. This control is the same except for the intermediate injection portion even when the second heating mode is changed to the defrosting heating mode.
  • 3A is the same as FIG. 1B.
  • the outdoor heat exchanger 20 absorbs heat from the outside air.
  • frost formation occurs in the outdoor heat exchanger 20.
  • frost formation state is determined, in order to obtain the refrigeration cycle shown in the lower diagram (b) of FIG. 3, that is, to change the outdoor heat exchanger 20 from heat absorption to heat release, Command to reduce the air flow.
  • the heat exchange amount in the indoor condenser 12 starts to decrease.
  • the cooling amount of the refrigerant that has been heat-exchanged in the indoor condenser 12 decreases, and the enthalpy h at the outlet of the indoor condenser 12 shifts to the right-hand side in FIG. 3 and is sent to the outdoor heat exchanger 20.
  • the enthalpy of the refrigerant is rising.
  • the opening of the first variable throttle 13 is controlled to open.
  • the opening degree of the first variable throttle 13 needs to correspond to the change from the liquid refrigerant to the gas refrigerant.
  • not the liquid phase refrigerant but the gas phase refrigerant flows out from the liquid phase refrigerant outlet 14 d of the gas-liquid separator 14 to the second variable throttle 17.
  • valve opening of the second variable throttle 17 is also adjusted at the same time so that the intermediate pressure is appropriate (in the second heating mode, the opening is adjusted by the opening of the first variable throttle 13).
  • the defrosting heating mode that performs injection at an intermediate pressure is powerful because the heating capacity in the hot gas cycle is small. Demonstrate. Therefore, in this embodiment, it is not only a mere defrost mode, but has a feature as a defrost heating mode in which sufficient heating can be performed even during defrosting.
  • the following sequence is also possible. If it is determined that the frosting state occurs during the operation in the first heating mode, first, the first and second variable throttles 13 and 17 are controlled to open. The cycle is operated so that the high pressure decreases and the low pressure increases, but the rotational speed of the compressor 11 is increased so that the high pressure does not decrease. Still, when the high-pressure side of the refrigeration cycle is lowered and the temperature of the blowout into the passenger compartment is lowered, the air volume is lowered for the first time, and the blowout temperature is maintained. Thereby, heating can be continued without affecting the heating function in the passenger compartment. Eventually, when the low-pressure side of the refrigeration cycle rises and the temperature of the refrigerant flowing into the outdoor heat exchanger exceeds 0 ° C., defrosting starts and defrosting begins, as shown in FIG. Operate to achieve cycle balance.
  • the flow rate of the compressor increases, and the energy given to the refrigerant can be increased.
  • the throttle opening is controlled to be opened by the first variable throttle 13 and the second variable throttle 17, so that the gas throttle can be operated with a good opening.
  • the first embodiment of the present disclosure can be applied to any vehicle air conditioner having at least the first heating mode or the second heating mode and the above-described defrosting heating mode.
  • it further has the following cooling operation mode and dehumidification heating operation mode, and these modes will be described below.
  • the cooling operation mode is started when the operation switch on the operation panel is turned on (ON) and the cooling operation mode is selected by the selection switch.
  • the air-conditioning control device 40 sets the first variable throttle 13 to a fully open state that does not exert a pressure reducing action, sets the third variable throttle 22 to a throttled state that exerts a pressure reducing action, and closes the cooling on-off valve 16c. State.
  • the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened so as not to exert a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b. .
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 4A.
  • the air conditioning controller 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the operation panel, calculates the target blowing temperature TAO, and calculates the calculated target blowing temperature TAO and Based on the detection signal of the sensor group, the operating state of various air conditioning control devices connected to the output side of the air conditioning control device 40 is determined.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
  • the blowing air temperature from the indoor evaporator 23 is determined using a feedback control method.
  • a control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
  • the degree of supercooling of the refrigerant flowing into the third variable throttle 22 approaches the target supercooling degree determined in advance so that the COP approaches the substantially maximum value.
  • the air mix door 34 closes the air passage of the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 23 is the bypass passage 35. Is determined to pass.
  • control signals determined as described above are output to various air conditioning control devices.
  • the above detection signal and operation signal are read at every predetermined control cycle ⁇ the target blowout temperature TAO is calculated ⁇ the operating states of various air conditioning control devices are determined -> Control routines such as control voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
  • the high-pressure refrigerant discharged from the discharge port 11c of compressor 11 (a 6 points) flows into indoor condenser 12.
  • the air mix door 34 closes the air passage of the indoor condenser 12
  • the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 without radiating heat to the vehicle interior air. Go.
  • the refrigerant that has flowed out of the indoor condenser 12 flows in the order of the first variable throttle 13 ⁇ the gas-liquid separator 14 ⁇ the low-pressure side on-off valve 16 b and flows into the outdoor heat exchanger 20. More specifically, since the first variable throttle 13 is fully opened, the refrigerant that has flowed out of the indoor condenser 12 flows out almost without being depressurized by the first variable throttle 13, and the gas-liquid separator 14. The refrigerant flows into the gas-liquid separator 14 from the refrigerant inflow port 14b.
  • the throttle opening degree of the third variable throttle 22 is determined so that the supercooling degree of the refrigerant flowing into the third variable throttle 22 approaches the target supercooling degree.
  • the refrigerant flowing into the liquid phase is in a liquid phase state having a degree of supercooling. Accordingly, the gas-liquid separator 14 does not separate the gas-liquid refrigerant, and the liquid-phase refrigerant flows out from the liquid-phase refrigerant outflow port 14d. Furthermore, since the intermediate pressure side on-off valve 16a is in the closed state, the liquid phase refrigerant does not flow out from the gas phase refrigerant outflow port 14c.
  • the refrigerant that has flowed out of the outdoor heat exchanger 20 is isoenthalpy until it flows into the third variable throttle 22 that is in a throttled state and becomes a low-pressure refrigerant because the cooling on-off valve 16c is in a closed state. reduced pressure is expanded to (b 6 points ⁇ c 6 points).
  • the low-pressure refrigerant decompressed by the third variable throttle 22 flows into the indoor evaporator 23, and absorbs heat from the air in-room air blown from the blower 32 to evaporate (c 6 points ⁇ d 6 points). Thereby, vehicle interior blowing air is cooled.
  • the refrigerant flowing out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid.
  • the separated gas-phase refrigerant is compressed again in the order of inhaled by the low-stage compression mechanism ⁇ the high-stage compression mechanism from the intake port 11a of the compressor 11 (e 6 points) (e 6 points ⁇ a1 6 points ⁇ a 6 points).
  • the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
  • both the first variable throttle 13 and the low stage pressure reducing means are in a fully open state in which the pressure reducing action is not exhibited.
  • the intermediate pressure side opening / closing valve 16a is opened and the gas injection cycle is realized, the gas-phase refrigerant discharged from the discharge port 11c of the compressor 11 is changed to the indoor condenser 12 ⁇ intermediate pressure refrigerant passage 15 ⁇ intermediate pressure.
  • the intermediate pressure side on-off valve 16a is closed in the cooling operation mode.
  • the dehumidifying and heating operation mode is executed when the set temperature set by the vehicle interior temperature setting switch in the cooling operation mode is set to a temperature higher than the outside air temperature.
  • the air conditioning control device 40 sets the first variable throttle 13 to a fully open state or throttle state, sets the third variable throttle 22 to a fully open state or throttle state, and closes the cooling on-off valve 16c.
  • the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened without exerting a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b.
  • the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as indicated by the solid line arrows in FIG. 4A similar to the cooling operation mode.
  • the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
  • the opening degrees of the first variable throttle 13 and the third variable throttle 22 are changed according to the temperature difference between the set temperature and the outside air temperature. Specifically, as the target blowout temperature TAO is increased, the throttle opening of the first variable throttle 13 is decreased and the throttle opening of the third variable throttle 22 is increased.
  • a four-stage dehumidifying heating mode is executed from the dehumidifying heating mode to the fourth dehumidifying heating mode.
  • the vehicle interior air cooled and dehumidified by the indoor evaporator 23 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the second dehumidifying and heating mode is executed.
  • the first variable throttle 13 is set to the throttled state
  • the throttle opening of the third variable throttle 22 is set to the throttled state in which the throttle opening is increased compared to the first dehumidifying and heating mode. Therefore, in the second dehumidifying and heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagrams of FIGS. 5B and 6A.
  • the refrigerant that has flowed out of the indoor condenser 12 is decompressed in an enthalpy manner (b1 10 points ⁇ b2 10 points) by the first variable throttle 13 in the throttled state until it becomes intermediate pressure refrigerant.
  • the intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 ⁇ the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
  • the low-pressure refrigerant that has flowed into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to dissipate heat (b2 10 points ⁇ b3 10 points).
  • the subsequent operation is the same as in the cooling operation mode.
  • the vehicle interior blown air that has been cooled and dehumidified by the indoor evaporator 23 is heated by the indoor condenser 12 into the vehicle interior. Can be blown out. Thereby, dehumidification heating of a vehicle interior is realizable.
  • the temperature of the refrigerant flowing into the outdoor heat exchanger 20 can be lowered compared to the first dehumidifying and heating mode. Therefore, the temperature difference between the temperature of the refrigerant in the outdoor heat exchanger 20 and the outside air temperature can be reduced, and the amount of heat released from the refrigerant in the outdoor heat exchanger 20 can be reduced.
  • the amount of refrigerant in the indoor condenser 12 can be increased, the temperature blown out from the indoor condenser 12 can be increased more than in the first dehumidifying and heating mode.
  • the third dehumidifying and heating mode is executed.
  • the throttle opening of the first variable throttle 13 is set to a throttled state that is reduced compared to the second dehumidifying and heating mode, and the throttle opening of the third variable throttle 22 is increased more than in the second dehumidifying and heating mode. . Therefore, in the third dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagrams of FIGS. 5C and 6B.
  • the high-pressure refrigerant discharged from the discharge port 11c of compressor 11 (a 11-point) is, like the first and second dehumidification and heating mode, and flows into indoor condenser 12, inside evaporator 23 and the cabin air blown heat exchange with dehumidified is cooled by radiating heat (a 11 point ⁇ b 11 points). Thereby, vehicle interior blowing air is heated.
  • the refrigerant flowing out of the indoor condenser 12 is decompressed in an enthalpy manner until it becomes an intermediate pressure refrigerant having a temperature lower than the outside air temperature by the first variable throttle 13 in the throttle state (b 11 point ⁇ c 11 11 point). ).
  • the intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 ⁇ the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
  • the low-pressure refrigerant flowing into the outdoor heat exchanger 20, and outside air heat exchange, which is blown from the blower fan 21 absorbs heat (c1 11 points ⁇ c2 11 points). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 is decompressed in an enthalpy manner by the third variable throttle 22 (c2 11 point ⁇ c3 11 point), and flows into the indoor evaporator 23. The subsequent operation is the same as in the cooling operation mode.
  • the outdoor heat exchanger 20 is operated as an evaporator by reducing the throttle opening of the first variable throttle 13, so that the indoor condenser 12 is compared with the second dehumidifying and heating mode.
  • the amount of refrigerant in can be increased.
  • the temperature blown out from the indoor condenser 12 can be increased more than in the second dehumidifying and heating mode.
  • the fourth dehumidifying heating mode is executed.
  • the throttle opening degree of the first variable throttle 13 is made smaller than that in the third dehumidifying and heating mode, and the third variable throttle 22 is fully opened. Therefore, in the fourth dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG. 5D.
  • the refrigerant flowing from the indoor condenser 12 is isenthalpic depressurize until low pressure refrigerant temperature than the outside air temperature by the first variable throttle 13 which is the stop state (b 12 points ⁇ c1 12 points) .
  • the intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 ⁇ the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
  • the low-pressure refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 and absorbs heat (c1 12 points ⁇ c2 12 points). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the indoor evaporator 23 without being reduced in pressure because the third variable throttle 22 is fully opened. The subsequent operation is the same as in the cooling operation mode.
  • the outdoor heat exchanger 20 is caused to act as an evaporator as in the third dehumidifying and heating mode, and the throttle opening of the first variable throttle 13 is reduced as compared with the third dehumidifying and heating mode. Therefore, the refrigerant evaporation temperature in the outdoor heat exchanger 20 can be lowered. Therefore, the amount of refrigerant in the indoor condenser 12 can be increased by expanding the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 20 as compared with the third dehumidifying and heating mode.
  • the temperature blown out from the indoor condenser 12 can be increased more than in the third dehumidifying heating mode.
  • the reason why the intermediate pressure side on-off valve 16a is closed in the dehumidifying and heating operation mode will be described.
  • the refrigerant flowing in the intermediate pressure refrigerant passage 15 is caused by the differential pressure between the refrigerant pressure in the gas-liquid separator 14 and the refrigerant pressure in the intermediate pressure port 11b of the compressor 11.
  • the flow rate changes.
  • the amount of heat released from the refrigerant in the indoor condenser 12 changes, making it difficult to adjust the temperature of the blown air, and to appropriately adjust the temperature of the blown air. This is because the cycle configuration and various controls become complicated.
  • the intermediate pressure side on-off valve 16a is set to the open state. If the gas injection cycle is realized, the target blowing temperature TAO and the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 are in a contradictory relationship, making it difficult to adjust the temperature of the blown air.
  • the first variable throttle 13 is fully opened, and the refrigerant in the gas-liquid separator 14 is opened.
  • the differential pressure between the pressure and the refrigerant pressure at the intermediate pressure port 11b of the compressor 11 is maximized.
  • the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 increases, the amount of heat release in the indoor condenser 12 increases, and it becomes difficult to lower the temperature of the blown air.
  • the fourth variable dehumidifying and heating mode executed when the target blowing temperature TAO is the highest, the first variable throttle 13 is in the throttle state, and the refrigerant in the gas-liquid separator 14
  • the differential pressure between the pressure and the refrigerant pressure at the intermediate pressure port 11b of the compressor 11 is minimized.
  • the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 decreases, the amount of heat released in the indoor condenser 12 decreases, and it becomes difficult to raise the temperature of the blown air.
  • the intermediate pressure side opening / closing valve 16a is closed in the dehumidifying heating operation mode in order to suppress the complexity of the cycle configuration and control when adjusting the temperature of the blown air.
  • the reason why the low-stage decompression means is in a fully open state that does not exert a decompression action is that when the low-stage decompression means is in the throttle state, the amount of heat absorbed and radiated in the outdoor heat exchanger 20 This is because the adjustment range is limited, and it is difficult to adjust the temperature of the blown air.
  • the intermediate pressure side opening / closing valve 16a is closed, and the low stage pressure reducing means is fully opened so as not to exert a pressure reducing action.
  • the temperature of the blown air is finely adjusted.
  • both the first variable throttle 13 and the low stage pressure reducing means can be set to a fully open state that does not exhibit a pressure reducing action. For this reason, the refrigerant flow path from the compressor 11 to the outdoor heat exchanger 20 is not separately provided according to each operation mode of the vehicle air conditioner 1, and the state of the first variable throttle 13 and the low-stage decompression means By changing the (throttle state, fully open state), the heat exchange amount (heat absorption amount and heat release amount) between the refrigerant and the outside air in the outdoor heat exchanger 20 can be adjusted according to each operation mode.
  • cooling, heating, and dehumidifying heating can be realized with a simple cycle configuration.
  • the heat pump cycle is changed to the gas injection cycle by opening and closing the intermediate pressure refrigerant passage 15 by the intermediate pressure side on / off valve 16a.
  • a normal cycle one-stage compression cycle
  • the intermediate pressure refrigerant passage 15 is closed by the intermediate pressure side opening / closing valve 16a, and the heat pump cycle 10 is switched to the normal cycle.
  • the dehumidifying and heating operation mode if the intermediate pressure refrigerant passage 15 is closed and the heat pump cycle is switched to the normal cycle, the heat release amount of the refrigerant in the indoor condenser 12 can be easily adjusted, and the configuration can be simplified. Appropriate temperature adjustment of the blown air can be realized.
  • the throttle openings of the first variable throttle 13 and the third variable throttle 22 are changed according to the target outlet temperature TAO, so that the refrigerant in the indoor condenser 12 is changed.
  • the amount of heat release and the amount of heat absorbed by the refrigerant in the indoor evaporator 23 can be adjusted appropriately, and an extremely fine temperature adjustment of the blown air can be realized with a simple configuration.
  • the intermediate pressure refrigerant passage 15 is opened by the intermediate pressure side opening / closing valve 16a and the heat pump cycle is switched to the gas injection cycle, so that the coefficient of performance (COP) of the cycle can be improved.
  • COP coefficient of performance
  • the waste heat of the engine cannot be used for heating the vehicle interior as in a vehicle equipped with an internal combustion engine (engine). Therefore, it is extremely effective that a high COP can be exhibited regardless of the heating load in the heating operation mode as in the heat pump cycle 10 of the present embodiment.
  • the centrifugal gas-liquid separator 14 is employed as the gas-liquid separating means, and the internal volume of the gas-liquid separator 14 is made smaller than the surplus refrigerant volume.
  • the physique of the liquid separating means can be reduced in size, and the mountability of the heat pump cycle 10 on the vehicle as a whole can be improved. Furthermore, even if a load fluctuation occurs in the cycle, surplus refrigerant can be stored in the accumulator 24, so that the cycle can be stably operated.
  • the centrifugal gas-liquid separator 14 employed in the heat pump cycle 10 of the present embodiment has a higher gas-liquid separation performance as the refrigerant flow rate increases, and is therefore operated at a relatively high load. It is effective when applied to the heat pump cycle 10 having a high frequency.
  • the low-stage decompression means refers to a combination of the second variable throttle 17 and the low-pressure side on-off valve 16b inserted in parallel therewith.
  • the second embodiment as shown in FIG. 7, one second variable throttle 17 with a fully open function is used, and the second variable throttle 17 is controlled and opened in the first heating mode and the defrost heating mode. Use as a pressure reducing device.
  • the second variable throttle 17 is used at the fully open position.
  • the operation and effect are the same as in the first embodiment.
  • Second variable throttle 17 full opening
  • 2nd variable aperture 17 control opening degree
  • the heat pump cycle 10 of the present embodiment does not directly radiate the heat of the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 to the blown air, but radiates it to the blown air via a heat medium made of an antifreeze liquid or the like. It is configured to do.
  • the radiator 52 is provided.
  • a heating heat exchanger 12 'for dissipating the heat of the heat medium heated by the refrigerant radiator 52 to the blown air and heating the blown air is arranged.
  • the heating heat exchanger 12 ′ is connected to the refrigerant radiator 52 via the heat medium circulation circuit 50, and the heat medium is pumped by a pressure pump 51 provided in the heat medium circulation circuit 50.
  • the intermediate pressure side on-off valve 16a is constituted by a differential pressure on / off valve that opens and closes the intermediate pressure refrigerant passage 15 in accordance with the differential pressure across the second variable throttle 17 of the low stage pressure reducing means.
  • the intermediate pressure side on / off valve 16a of the present embodiment is configured by a differential pressure on / off valve that closes the intermediate pressure refrigerant passage 15 when the differential pressure before and after the second variable throttle 17 becomes equal to or higher than a predetermined set pressure ⁇ . ing.
  • the intermediate pressure side on-off valve 16a closes the low-pressure side on-off valve 16b of the low-stage side pressure reducing means, and the differential pressure across the second variable throttle 17 increases.
  • the intermediate pressure refrigerant passage 15 is opened when the pressure becomes equal to or higher than the set pressure ⁇ .
  • the intermediate pressure side opening / closing valve 16a is opened by the low pressure side opening / closing valve 16b of the low stage side pressure reducing means, and the differential pressure across the second variable throttle 17 is reduced.
  • the intermediate pressure refrigerant passage 15 is closed.
  • the heat pump cycle 10 of the present embodiment configured as described above, in the cooling operation mode and the dehumidifying heating operation mode in which the low-pressure side opening / closing valve 16b is opened and the low-stage decompression unit is fully opened without exhibiting the decompression action.
  • the differential pressure across the second variable throttle 17 becomes less than the set pressure ⁇ , and the intermediate pressure side on-off valve 16a is closed.
  • the heat pump cycle 10 is switched to the refrigerant flow path of the normal cycle in which the refrigerant does not flow through the intermediate pressure refrigerant passage 15 as shown in the overall configuration diagram (solid arrow) in FIG. 9B.
  • the pressure becomes equal to or higher than the set pressure ⁇ , and the intermediate pressure side opening / closing valve 16a is opened.
  • the heat pump cycle 10 is switched to the refrigerant flow path of the gas injection cycle in which the refrigerant flows in the intermediate pressure refrigerant passage 15 as shown in the overall configuration diagram (solid arrow) in FIG. 9C.
  • intermediate pressure side opening / closing valve 16a is configured with a differential pressure opening / closing valve as in the present embodiment, switching between the gas injection cycle and the normal cycle can be realized with a simple configuration and control method.
  • the present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
  • the example in which the heat pump cycle 10 of the present disclosure is applied to the vehicle air conditioner 1 has been described, but the application of the present disclosure is not limited thereto.
  • the present invention may be applied to a stationary air conditioner, a cold storage container, and the like.
  • the heat pump cycle 10 that can realize various operation modes by switching the state of the first variable throttle 13 and the low-stage decompression unit and switching the refrigerant flow path of the heat pump cycle 10 has been described.
  • the present invention is not limited to this, and any configuration that can realize at least two operation modes of the heating operation mode and the defrosting heating mode may be used.
  • providing each operation mode in each operation mode is effective in that the temperature of the blown air can be adjusted appropriately.
  • the example in which the first heating mode and the second heating mode are switched according to the rotation speed of the compressor 11 in the heating operation mode has been described, but switching between the first heating mode and the second heating mode is described. Is not limited to this. That is, the switching between the first heating mode and the second heating mode may be switched to the heating mode that can exhibit a high COP in the first and second heating modes.
  • the switching between the first heating mode and the second heating mode may be switched to the heating mode that can exhibit a high COP in the first and second heating modes.
  • a predetermined reference outside air temperature for example, 0 ° C.
  • the first heating mode is executed, and the detected value is higher than the reference outside air temperature.
  • the second heating operation mode may be executed.
  • the air conditioning control device 40 is configured to block either the air passage or the bypass passage 35 of the indoor condenser 12 during each operation mode of the cooling operation mode, the heating operation mode, and the dehumidifying heating operation mode.
  • operation of the air mix door 34 is not limited to this. That is, the air mix door 34 may open both the air passage and the bypass passage 35 of the indoor condenser 12. And you may adjust the temperature of the ventilation air which blows off into the vehicle interior from the confluence
  • the example in which the first dehumidifying and heating mode is gradually switched from the first dehumidifying and heating mode to the fourth dehumidifying and heating mode has been described as the target blowing temperature TAO increases in the dehumidifying and heating operation mode.
  • Switching to the 4 dehumidifying heating mode is not limited to this.
  • the first dehumidifying and heating mode may be continuously switched from the first dehumidifying and heating mode to the target blowing temperature TAO. That is, as the target blowing temperature TAO increases, the throttle opening of the first variable throttle 13 may be gradually reduced, and the throttle opening of the third variable throttle 22 may be gradually increased.
  • the outdoor heat exchanger 20 Since the refrigerant pressure (temperature) in the outdoor heat exchanger 20 is adjusted by changing the throttle openings of the first variable throttle 13 and the third variable throttle 22 in this way, the outdoor heat exchanger 20 is automatically turned on. In addition, it is possible to switch from a state of acting as a radiator to a state of acting as an evaporator.
  • each operation mode of the air conditioner 1 in order to achieve fine temperature adjustment of the blown air in each operation mode of the air conditioner 1, it is desirable to provide the intermediate pressure side opening / closing valve 16a in the intermediate pressure refrigerant passage 15.
  • the present invention is not limited to this, and each operation mode may be realized with a simple configuration without providing the intermediate pressure side on-off valve 16a.
  • the refrigerant discharged from the compressor 11 is used as a refrigerant flow path that passes through the indoor condenser 12 and the refrigerant radiator 52 in the cooling operation mode.
  • the outdoor heat exchanger 20 is used in the cooling operation mode. It is good also as a refrigerant
  • the accumulator 24 is disposed on the outlet side of the indoor evaporator 23 in the heat pump cycle 10, but the present invention is not limited to this.
  • the heat pump cycle 10 includes a gas-liquid separator capable of storing excess refrigerant
  • the accumulator 24 may be eliminated. As a result, the cycle configuration can be simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An air conditioner device for a vehicle comprises: a refrigeration cycle device having a main refrigerant circuit for circulating refrigerant, the main refrigerant circuit being arranged in the sequence of a compressor (11), an indoor condenser (12), a first variable aperture (13), an outdoor heat exchanger (20), and the compressor (11); an air blower (32) for blowing at least vehicle-interior blown air; and an indoor air conditioning unit (30) having the indoor condenser (12) for heating the vehicle-interior blown air. The indoor condenser (12) heats the vehicle-interior blown air and melts the ice that has been deposited due to the heat radiation of the outdoor heat exchanger (20), whereby the vehicle interior can be hot-gas defrosted while being hot-gas heated.

Description

車両用の空調装置Air conditioner for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年3月28日に出願された日本特許出願2012-74121を基にしている。 This application is based on Japanese Patent Application No. 2012-74121 filed on Mar. 28, 2012, the disclosure of which is incorporated herein by reference.
 本開示は、室外熱交換器の除霜と、暖房能力を両立させつつ、窓曇りや悪臭を引き起こさない車両用の空調装置に関する。主に、電気自動車やハイブリッドカーなど、燃焼エンジンがない車両、または、燃焼エンジンがあまり稼動しない車両など、暖房の熱源が不足する車両の空調装置に好適である。 This disclosure relates to an air conditioner for a vehicle that causes both defrosting of an outdoor heat exchanger and heating capability while not causing window fogging or bad odor. It is mainly suitable for an air conditioner for a vehicle that lacks a heat source for heating, such as a vehicle that does not have a combustion engine, such as an electric vehicle or a hybrid car, or a vehicle that does not operate the combustion engine very much.
 近年、普及が進んでいる電気自動車では、走行用の駆動力を出力するエンジン(内燃機関)を備えていないため、車室内の暖房を行う際の熱源としてエンジンの廃熱を利用することができない。そこで、電気自動車に適用される車両用空調装置として、ヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)の電動圧縮機から吐出された高温高圧冷媒を熱源として車室内の暖房を行う空調装置が知られている。 2. Description of the Related Art In recent years, an electric vehicle that has been widely used does not include an engine (internal combustion engine) that outputs driving force for traveling, and therefore cannot use waste heat of the engine as a heat source when heating the passenger compartment. . Therefore, as a vehicle air conditioner applied to an electric vehicle, an air conditioner that heats a vehicle interior using a high-temperature and high-pressure refrigerant discharged from an electric compressor of a heat pump cycle (vapor compression refrigeration cycle) as a heat source is known. Yes.
 特許文献1には、電気自動車用の空調システムとして、ガスインジェクションヒートポンプ技術を使った空調システムが開示されており、ヒートポンプ技術の課題である除霜技術について、室外熱交換器を除霜しながら車室内暖房も可能なシステムが提案されている。このシステムは、除霜時、ミックスドアで室内凝縮器への空気通路を全閉にして、圧縮機からの吐出ガス冷媒(ホットガス)を、室内凝縮器で熱交換せずに、HVAC内の室内蒸発器に導入するものである。そして、室内蒸発器は、冷房や除湿モードにおいては冷却器として機能するものでありながら、室外熱交換器の除霜時には、車室内暖房用に空気加熱器として使用している。 Patent Document 1 discloses an air conditioning system using a gas injection heat pump technology as an air conditioning system for an electric vehicle. Regarding a defrosting technique which is a problem of the heat pump technology, a vehicle while defrosting an outdoor heat exchanger is disclosed. Systems that can also be used for indoor heating have been proposed. In this system, during defrosting, the air passage to the indoor condenser is fully closed by the mix door, and the discharged gas refrigerant (hot gas) from the compressor is not exchanged in the HVAC without exchanging heat by the indoor condenser. It is introduced into the indoor evaporator. The indoor evaporator functions as a cooler in the cooling and dehumidifying modes, but is used as an air heater for heating the vehicle interior when the outdoor heat exchanger is defrosted.
 このため、除霜を行う前に除湿運転などをした後で、室内蒸発器が保水している場合などは、ホットガス冷媒が室内蒸発器に流入したとたん、保水していた水は蒸発し、車室内に吹出されることになる。このような蒸気の吹出しは、フロントガラスで再凝縮され、窓曇りを引き起こす可能性が生じる。また、蒸気とともに、臭気成分が吹出され悪臭を引き起こす場合も懸念される。さらに、このシステムでは暖房性能不足により車室内の暖房が充分行なうことができない場合があった。 For this reason, if the indoor evaporator retains water after dehumidifying operation etc. before defrosting, the water that has been retained evaporates as soon as the hot gas refrigerant flows into the indoor evaporator. It will be blown out into the passenger compartment. Such steam blowing can be recondensed on the windshield and cause window fogging. In addition, there is a concern that an odor component may be blown out together with steam to cause a bad odor. Furthermore, in this system, the vehicle interior may not be sufficiently heated due to insufficient heating performance.
特開2001-30744号公報JP 2001-30744 A
 本開示は、上記問題の可能性に鑑み、室外熱交換器の着霜時ホットガス除霜をしながらホットガス暖房も行うシステムにより、室外熱交換器の除霜と、暖房能力を両立させつつ、窓曇りや悪臭を引き起こさない車両用の空調装置を提供するものである。ホットガス暖房、ホットガス除霜とは、圧縮機からの高温ガス冷媒の顕熱を使って行なう熱交換サイクルである。 In view of the possibility of the above-mentioned problem, the present disclosure achieves both defrosting of the outdoor heat exchanger and heating capacity by a system that also performs hot gas heating while defrosting the hot heat of the outdoor heat exchanger. The present invention provides an air conditioner for a vehicle that does not cause fogging or odor. Hot gas heating and hot gas defrosting are heat exchange cycles performed using sensible heat of a high-temperature gas refrigerant from a compressor.
 本開示の1つの態様によると、圧縮機、室内凝縮器、第1可変絞り、室外熱交換器、前記圧縮機の順に配置されて冷媒が循環する主冷媒回路を有する冷凍サイクル装置と、少なくとも、車室内送風空気を送風する送風機と、該車室内送風空気を加熱する前記室内凝縮器を有する室内空調ユニットを具備する車両用の空調装置であって、前記室内凝縮器が、前記車室内送風空気を加熱するとともに、前記室外熱交換器が放熱して着霜した氷を融解させることにより、車室内をホットガス暖房しながらホットガス除霜できるようにした車両用の空調装置である。 According to one aspect of the present disclosure, a compressor, an indoor condenser, a first variable throttle, an outdoor heat exchanger, a refrigeration cycle apparatus having a main refrigerant circuit that is arranged in the order of the compressor and in which refrigerant circulates, A vehicle air conditioner comprising a blower that blows air blown into a vehicle interior and an indoor air conditioning unit that includes the indoor condenser that heats the air blown into the vehicle interior, wherein the indoor condenser is the air blown into the vehicle interior The vehicle air conditioner is capable of defrosting hot gas while heating the interior of the vehicle by melting the ice that has been radiated and radiated by the outdoor heat exchanger.
第1実施形態の第1暖房モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the 1st heating mode of 1st Embodiment. 第1実施形態の第1暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 1st heating mode of 1st Embodiment. 第1実施形態の第2暖房モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the 2nd heating mode of 1st Embodiment. 第1実施形態の第2暖房モード時の冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant at the time of the 2nd heating mode of 1st Embodiment. 暖房モードから除霜暖房モードに切替える場合のモリエル線図での説明図である。It is explanatory drawing in the Mollier diagram in the case of switching from heating mode to defrost heating mode. 第1実施形態の冷房運転モード/除湿暖房運転モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the air_conditionaing | cooling operation mode / dehumidification heating operation mode of 1st Embodiment. 第1実施形態の冷房運転モード時の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state at the time of the air_conditionaing | cooling operation mode of 1st Embodiment. 第1実施形態の第1除湿暖房運転モード時の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state at the time of the 1st dehumidification heating operation mode of 1st Embodiment. 第1実施形態の第2除湿暖房運転モード時の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state at the time of the 2nd dehumidification heating operation mode of 1st Embodiment. 第1実施形態の第3除湿暖房運転モード時の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state at the time of the 3rd dehumidification heating operation mode of 1st Embodiment. 第1実施形態の第4除湿暖房運転モード時の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state at the time of the 4th dehumidification heating operation mode of 1st Embodiment. 第1実施形態の第2除湿暖房運転モード時の冷媒状態を説明するモリエル線図である。It is a Mollier diagram explaining the refrigerant | coolant state at the time of the 2nd dehumidification heating operation mode of 1st Embodiment. 第1実施形態の第3除湿暖房運転モード時の冷媒状態を説明するモリエル線図である。It is a Mollier diagram explaining the refrigerant | coolant state at the time of the 3rd dehumidification heating operation mode of 1st Embodiment. 第2実施形態の第1、2暖房モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the 1st, 2nd heating mode of 2nd Embodiment. 第3実施形態の全体構成図である。It is a whole block diagram of 3rd Embodiment. 第4実施形態の中間圧側開閉弁の作動を説明する説明図である。It is explanatory drawing explaining the action | operation of the intermediate pressure side on-off valve of 4th Embodiment. 第4実施形態のヒートポンプサイクルの冷房運転モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the cooling operation mode of the heat pump cycle of 4th Embodiment. 第4実施形態のヒートポンプサイクルの暖房運転モード時の冷媒流路を示す全体構成図である。It is a whole block diagram which shows the refrigerant | coolant flow path at the time of the heating operation mode of the heat pump cycle of 4th Embodiment.
 まず、図1A~6により、本開示の第1実施形態の全体的運転モードについて説明する。そのうち、特に、後述する除霜暖房モードが本開示の特徴点を構成する。 First, the overall operation mode of the first embodiment of the present disclosure will be described with reference to FIGS. 1A to 6. Among them, in particular, a defrost heating mode described later constitutes a feature point of the present disclosure.
 本実施形態では、ヒートポンプサイクル10を走行用電動モータから車両走行用の駆動力を得る電気自動車の車両用空調装置1に適用している。このヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される車室内送風空気を冷却あるいは加熱する機能を果たす。 In this embodiment, the heat pump cycle 10 is applied to a vehicle air conditioner 1 for an electric vehicle that obtains a driving force for vehicle traveling from a traveling electric motor. The heat pump cycle 10 functions in the vehicle air conditioner 1 to cool or heat the vehicle interior air blown into the vehicle interior that is the air-conditioning target space.
 従って、本実施形態のヒートポンプサイクル10は、図4Aの全体構成図に示すように、車室内を冷房する冷房運転モードあるいは車室内を除湿しながら暖房する除湿暖房運転モード(除湿運転モード)の冷媒回路、および、図1A、2Aの全体構成図に示すように、車室内を暖房する暖房運転モードの冷媒回路を切替可能に構成されている。 Therefore, the heat pump cycle 10 according to the present embodiment includes a refrigerant in a cooling operation mode for cooling the vehicle interior or a dehumidification heating operation mode (dehumidification operation mode) for heating while dehumidifying the vehicle interior, as shown in the overall configuration diagram of FIG. 4A. As shown in the entire configuration diagram of the circuit and FIGS. 1A and 2A, the refrigerant circuit in the heating operation mode for heating the vehicle interior can be switched.
 さらに、このヒートポンプサイクル10では、後述するように暖房運転モードとして、外気温が低温時(例えば、0℃以下の場合も含む)に実行される第1暖房モード(図1A)、通常の暖房が実行される第2暖房モード(図2A)を実行することができる。なお、図1A、2A、4Aでは、それぞれの運転モードにおける冷媒の流れを実線矢印で示している。 Furthermore, in this heat pump cycle 10, as will be described later, as a heating operation mode, the first heating mode (FIG. 1A) executed when the outside air temperature is low (for example, including 0 ° C. or less), normal heating is performed. The second heating mode to be executed (FIG. 2A) can be executed. In FIGS. 1A, 2A, and 4A, the refrigerant flow in each operation mode is indicated by solid arrows.
 また、ヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。もちろん、HFO系冷媒(例えば、R1234yf)等を採用してもよい。この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 The heat pump cycle 10 employs an HFC refrigerant (specifically, R134a) as the refrigerant, and constitutes a vapor compression subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. Yes. Of course, you may employ | adopt HFO type refrigerant | coolants (for example, R1234yf). This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 なお、冷媒の封入量については、ヒートポンプサイクル10に最大冷凍能力を発揮させる高負荷運転時において、サイクルを循環させる必要のある最大循環流量に対して、予め定めた余剰量を加えた量としている。この余剰量は、経年使用によってサイクルに封入された冷媒が、ヒートポンプサイクル10の各構成機器同士を接続するゴムホースあるいはその他の接続部を介して、外部へ漏れてしまうことを考慮して決定されている。 In addition, about the amount of refrigerant | coolants enclosed, it is the quantity which added the predetermined surplus amount with respect to the maximum circulation flow rate which needs to circulate a cycle at the time of the high load driving | running which makes the heat pump cycle 10 exhibit the maximum refrigerating capacity. . This surplus amount is determined in consideration of the fact that the refrigerant sealed in the cycle due to aging leaks to the outside through a rubber hose or other connection part that connects each component of the heat pump cycle 10. Yes.
 ヒートポンプサイクル10の構成機器のうち、圧縮機11は、車両のボンネット内に配置され、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するものである。この圧縮機11は、その外殻を形成するハウジングの内部に、固定容量型の圧縮機構からなる低段側圧縮機構と高段側圧縮機構との2つの圧縮機構、および、双方の圧縮機構を回転駆動する電動モータを収容して構成された二段昇圧式の電動圧縮機である。 Among the components of the heat pump cycle 10, the compressor 11 is disposed in the hood of the vehicle, and inhales, compresses and discharges the refrigerant in the heat pump cycle 10. The compressor 11 includes two compression mechanisms, a low-stage compression mechanism and a high-stage compression mechanism, each of which is a fixed-capacity compression mechanism, and both of the compression mechanisms. This is a two-stage boosting type electric compressor configured to accommodate an electric motor that is driven to rotate.
 圧縮機11のハウジングには、ハウジングの外部から低段側圧縮機構へ低圧冷媒を吸入させる吸入ポート11a、ハウジングの外部からハウジングの内部へ中間圧冷媒を流入させて圧縮過程の冷媒に合流させる中間圧ポート11b、および、高段側圧縮機構から吐出された高圧冷媒をハウジングの外部へ吐出させる吐出ポート11cが設けられている。 A suction port 11a that sucks low-pressure refrigerant from the outside of the housing into the low-stage compression mechanism, and an intermediate pressure where intermediate-pressure refrigerant flows from the outside of the housing into the housing and merges with the refrigerant in the compression process. A pressure port 11b and a discharge port 11c for discharging the high-pressure refrigerant discharged from the high-stage compression mechanism to the outside of the housing are provided.
 より具体的には、中間圧ポート11bは、低段側圧縮機構の冷媒吐出口側(すなわち、高段側圧縮機構の冷媒吸入口側)に接続されている。また、低段側圧縮機構および高段側圧縮機は、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種形式のものを採用することができる。 More specifically, the intermediate pressure port 11b is connected to the refrigerant discharge port side of the low-stage compression mechanism (that is, the refrigerant suction port side of the high-stage compression mechanism). Various types such as a scroll type compression mechanism, a vane type compression mechanism, and a rolling piston type compression mechanism can be adopted as the low stage side compression mechanism and the high stage side compressor.
 電動モータは、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータが圧縮機11の吐出能力変更手段を構成している。 The electric motor is one whose operation (number of rotations) is controlled by a control signal output from the air conditioning control device 40 described later, and any type of an AC motor and a DC motor may be adopted. And the refrigerant | coolant discharge capability of the compressor 11 is changed by this rotation speed control. Therefore, in this embodiment, the electric motor constitutes the discharge capacity changing means of the compressor 11.
 なお、本実施形態では、2つの圧縮機構を1つのハウジング内に収容した圧縮機11を採用しているが、圧縮機の形式はこれに限定されない。つまり、中間圧ポート11bから中間圧冷媒を流入させて圧縮過程の冷媒に合流させることが可能であれば、ハウジングの内部に、1つの固定容量型の圧縮機構およびこの圧縮機構を回転駆動する電動モータを収容して構成された電動圧縮機であってもよい。なお、中間圧冷媒を流入させない場合の実施形態を含むものである。 In addition, in this embodiment, although the compressor 11 which accommodated two compression mechanisms in one housing is employ | adopted, the format of a compressor is not limited to this. In other words, if the intermediate pressure refrigerant can be introduced from the intermediate pressure port 11b and merged with the refrigerant in the compression process, one fixed capacity type compression mechanism and an electric motor that rotationally drives the compression mechanism are provided inside the housing. An electric compressor configured to house a motor may be used. The embodiment includes a case where the intermediate pressure refrigerant is not introduced.
 圧縮機11の吐出ポート11cには、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する車両用空調装置1の室内空調ユニット30の空調ケース31内に配置され、圧縮機11(具体的には、高段側圧縮機構)から吐出された高圧冷媒を放熱させて、後述する室内蒸発器23を通過した車室内送風空気を加熱する放熱器である。 室内凝縮器12の冷媒出口側には、室内凝縮器12から流出した高圧冷媒を中間圧冷媒となるまで減圧可能な第1可変絞り13の入口側が接続されている。この第1可変絞り13は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The refrigerant inlet side of the indoor condenser 12 is connected to the discharge port 11 c of the compressor 11. The indoor condenser 12 is disposed in an air conditioning case 31 of an indoor air conditioning unit 30 of the vehicle air conditioner 1 to be described later, and dissipates high-pressure refrigerant discharged from the compressor 11 (specifically, a high-stage compression mechanism). It is a radiator that heats the air blown into the passenger compartment that has passed through the indoor evaporator 23 described later. The refrigerant outlet side of the indoor condenser 12 is connected to the inlet side of the first variable throttle 13 that can depressurize the high-pressure refrigerant flowing out of the indoor condenser 12 until it becomes an intermediate-pressure refrigerant. The first variable throttle 13 is an electric variable variable valve that is configured to change the throttle opening and an electric actuator including a stepping motor that changes the throttle opening of the valve. An aperture mechanism.
 第1可変絞り13は、減圧作用を発揮する絞り状態と減圧作用を発揮しない全開状態とに設定可能に構成されている。より具体的には、第1可変絞り13では、冷媒を減圧させる際には、絞り通路面積が相当直径φ0.5~φ3mmとなる範囲で絞り開度を変化させる。さらに、絞り開度を全開とすると、絞り通路面積を相当直径φ10mm程度確保して、冷媒減圧作用を発揮させないようにすることもできる。また、絞り開度を全閉として室外熱交換器20から室内蒸発器23へ至る冷媒流路を閉塞させることもできる。なお、第1可変絞り13は、空調制御装置40から出力される制御信号によって、その作動が制御される。 The first variable throttle 13 is configured to be able to be set to a throttle state that exhibits a pressure reducing action and a fully open state that does not exhibit a pressure reducing action. More specifically, in the first variable throttle 13, when the refrigerant is depressurized, the throttle opening is changed in a range where the throttle passage area has an equivalent diameter φ0.5 to φ3 mm. Furthermore, when the throttle opening is fully opened, the throttle passage area can be ensured to have an equivalent diameter of about 10 mm so that the refrigerant decompression action is not exhibited. Further, the refrigerant flow path from the outdoor heat exchanger 20 to the indoor evaporator 23 can be closed by closing the throttle opening. The operation of the first variable aperture 13 is controlled by a control signal output from the air conditioning control device 40.
 第1可変絞り13の出口側には、室内凝縮器12から流出して第1可変絞り13にて減圧された中間圧冷媒の気液を分離する気液分離手段としての気液分離器14の冷媒流入ポート14bが接続されている。この気液分離器14は、遠心力の作用によって冷媒の気液を分離する遠心分離方式のものである(特開2009-174836号公報等参照)。 On the outlet side of the first variable throttle 13, there is a gas-liquid separator 14 as a gas-liquid separator that separates the gas-liquid of the intermediate pressure refrigerant that flows out of the indoor condenser 12 and is decompressed by the first variable throttle 13. A refrigerant inflow port 14b is connected. The gas-liquid separator 14 is of a centrifugal separation type that separates the gas-liquid refrigerant by the action of centrifugal force (see JP 2009-174836 A).
 本実施形態の気液分離器14は、中間圧冷媒を流入させる冷媒流入口が形成された冷媒流入ポート14b、分離された気相冷媒を流出させる気相冷媒流出口が形成された気相冷媒流出ポート14c、および、分離された液相冷媒を流出させる液相冷媒流出口が形成された液相冷媒流出ポート14dを有して構成されている(図1A参照)。液相冷媒流出ポート14dからは通常液相冷媒が流出するが、後述の除霜暖房モードの場合には気相冷媒が流出することもある。 The gas-liquid separator 14 according to the present embodiment includes a refrigerant inlet port 14b in which a refrigerant inlet for allowing intermediate pressure refrigerant to flow in is formed, and a gas phase refrigerant in which a gas-phase refrigerant outlet for discharging separated vapor refrigerant is formed. It has an outflow port 14c and a liquid phase refrigerant outflow port 14d in which a liquid phase refrigerant outlet for allowing the separated liquid phase refrigerant to flow out is formed (see FIG. 1A). Normally, the liquid phase refrigerant flows out from the liquid phase refrigerant outflow port 14d, but in the case of the defrost heating mode described later, the gas phase refrigerant may flow out.
 気液分離器14の気相冷媒流出ポート14cには、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bが接続されている。この中間圧冷媒通路15には、中間圧側開閉弁16aが配置されている。この中間圧側開閉弁16aは中間圧冷媒通路15を開閉する電磁弁であり、空調制御装置40から出力される制御信号によって、その作動が制御される。 The intermediate pressure port 11 b of the compressor 11 is connected to the gas phase refrigerant outlet port 14 c of the gas-liquid separator 14 through the intermediate pressure refrigerant passage 15. An intermediate pressure side opening / closing valve 16 a is disposed in the intermediate pressure refrigerant passage 15. The intermediate pressure side opening / closing valve 16 a is an electromagnetic valve that opens and closes the intermediate pressure refrigerant passage 15, and its operation is controlled by a control signal output from the air conditioning control device 40.
 なお、中間圧側開閉弁16aは、中間圧冷媒通路15を開いた際に気液分離器14の気相冷媒出口から圧縮機11の中間圧ポート11b側へ冷媒が流れることのみを許容する逆止弁としての機能を兼ね備えている。これにより、中間圧側開閉弁16aが中間圧冷媒通路15を開いた際に、圧縮機11側から気液分離器14へ冷媒が逆流することが防止される。 The intermediate pressure side opening / closing valve 16a is a check that allows only the refrigerant to flow from the gas phase refrigerant outlet of the gas-liquid separator 14 to the intermediate pressure port 11b side of the compressor 11 when the intermediate pressure refrigerant passage 15 is opened. It also functions as a valve. This prevents the refrigerant from flowing back from the compressor 11 side to the gas-liquid separator 14 when the intermediate pressure side opening / closing valve 16a opens the intermediate pressure refrigerant passage 15.
 さらに、中間圧側開閉弁16aは、中間圧冷媒通路15を開閉することによって、サイクル構成(冷媒流路)を切り替える機能を果たす。従って、本実施形態の中間圧側開閉弁16aは、サイクルを循環する冷媒の冷媒流路を切り替える冷媒流路切替手段を構成している。 Furthermore, the intermediate pressure side on-off valve 16a functions to switch the cycle configuration (refrigerant flow path) by opening and closing the intermediate pressure refrigerant passage 15. Therefore, the intermediate pressure side opening / closing valve 16a of the present embodiment constitutes a refrigerant flow path switching means for switching the refrigerant flow path of the refrigerant circulating in the cycle.
 本実施形態の中間圧側開閉弁16aは、低段側減圧手段の状態(絞り状態、全開状態)に連動して、中間圧冷媒通路15を開閉するように構成されている。低段側減圧手段とは、第2可変絞り17と、それに並列に挿入されている低圧側開閉弁16bとを合わせたものを指す。 The intermediate pressure side on-off valve 16a of the present embodiment is configured to open and close the intermediate pressure refrigerant passage 15 in conjunction with the state (throttle state, full open state) of the low stage side pressure reducing means. The low stage pressure reducing means refers to a combination of the second variable throttle 17 and the low pressure side on-off valve 16b inserted in parallel therewith.
 具体的には、中間圧側開閉弁16aは、低段側減圧手段の低圧側開閉弁16bが閉じ、低段側減圧手段全体が絞り状態となる際に、中間圧冷媒通路15を開放するように構成されている。また、中間圧側開閉弁16aは、低段側減圧手段の低圧側開閉弁16bが開き、低段側減圧手段全体が全開状態となる際に、中間圧冷媒通路15を閉鎖するように構成されている。 Specifically, the intermediate pressure side on / off valve 16a opens the intermediate pressure refrigerant passage 15 when the low pressure side on / off valve 16b of the low stage side pressure reducing means is closed and the entire low stage side pressure reducing means is in the throttle state. It is configured. The intermediate pressure side on / off valve 16a is configured to close the intermediate pressure refrigerant passage 15 when the low pressure side on / off valve 16b of the low stage side pressure reducing means is opened and the entire low stage side pressure reducing means is fully opened. Yes.
 一方、気液分離器14の液相冷媒流出ポート14dには、気液分離器14から流出した液相冷媒を減圧可能な低段側減圧手段の入口側が接続され、低段側減圧手段の出口側には、室外熱交換器20の冷媒入口側が接続されている。 On the other hand, the liquid-phase refrigerant outflow port 14d of the gas-liquid separator 14 is connected to the inlet side of the low-stage decompression means capable of decompressing the liquid-phase refrigerant flowing out of the gas-liquid separator 14, and the outlet of the low-stage decompression means The refrigerant inlet side of the outdoor heat exchanger 20 is connected to the side.
 本実施形態の低段側減圧手段は、気液分離器14にて分離された液相冷媒を低圧冷媒となるまで減圧させる第2可変絞り17、気液分離器14にて分離された液相冷媒を第2可変絞り17を迂回させて室外熱交換器20側へ導く迂回用通路18、迂回用通路18を開閉する通路開閉弁としての低圧側開閉弁16bを有して構成されている。なお、低圧側開閉弁16bの基本的構成は、中間圧側開閉弁16aと同等であり、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。 The low-stage depressurization means of the present embodiment includes a second variable throttle 17 that depressurizes the liquid-phase refrigerant separated by the gas-liquid separator 14 until it becomes a low-pressure refrigerant, and the liquid phase separated by the gas-liquid separator 14. The bypass passage 18 guides refrigerant to the outdoor heat exchanger 20 side by bypassing the second variable throttle 17, and the low-pressure side opening / closing valve 16b as a passage opening / closing valve for opening and closing the bypass passage 18. The basic configuration of the low pressure side on / off valve 16b is the same as that of the intermediate pressure side on / off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40.
 ここで、冷媒が低圧側開閉弁16bを通過する際に生じる圧力損失は、第2可変絞り17を通過する際に生じる圧力損失に対して極めて小さい。従って、室内凝縮器12から流出した冷媒は、低圧側開閉弁16bが開いている場合には迂回用通路18側を介して室外熱交換器20へ流入し、低圧側開閉弁16bが閉じている場合には第2可変絞り17を介して室外熱交換器20へ流入する。 Here, the pressure loss that occurs when the refrigerant passes through the low-pressure side opening / closing valve 16b is extremely small compared to the pressure loss that occurs when the refrigerant passes through the second variable throttle 17. Therefore, the refrigerant flowing out of the indoor condenser 12 flows into the outdoor heat exchanger 20 via the bypass passage 18 when the low-pressure side opening / closing valve 16b is open, and the low-pressure side opening / closing valve 16b is closed. In this case, the refrigerant flows into the outdoor heat exchanger 20 through the second variable throttle 17.
 これにより、低段側減圧手段は、低圧側開閉弁16bの開閉により、減圧作用を発揮する絞り状態と、減圧作用を発揮しない全開状態とに変更することが可能となっている。なお、低圧側開閉弁16bを、気液分離器14の液相冷媒流出ポート14d出口側と第2可変絞り17入口側とを接続する冷媒回路および液相冷媒流出ポート14d出口側と迂回用通路18入口側とを接続する冷媒回路を切り替える電気式の三方弁等を採用してもよい。 Thus, the low-stage pressure reducing means can be changed between a throttle state that exerts a pressure reducing action and a fully open state that does not exert a pressure reducing action by opening and closing the low pressure side opening / closing valve 16b. The low-pressure side opening / closing valve 16b is connected to the outlet side of the liquid-phase refrigerant outlet port 14d of the gas-liquid separator 14 and the inlet side of the second variable throttle 17 and the outlet side of the outlet of the liquid-phase refrigerant outlet port 14d and the bypass passage. An electric three-way valve or the like that switches the refrigerant circuit connecting the 18 inlet side may be adopted.
 第2可変絞り17としては、絞り開度が固定された状態での固定絞りとして使用することができる。この場合では、絞り通路面積が急縮小あるいは急拡大するので、上流側と下流側との圧力差(出入口間差圧)の変化に伴って、固定絞りを通過する冷媒の流量および第2可変絞り17上流側冷媒の乾き度Xを自己調整(バランス)することができる。 The second variable throttle 17 can be used as a fixed throttle with the throttle opening being fixed. In this case, since the throttle passage area is suddenly reduced or expanded rapidly, the flow rate of the refrigerant passing through the fixed throttle and the second variable throttle as the pressure difference between the upstream side and the downstream side (differential pressure between the inlet and outlet) changes. 17 The dryness X of the upstream refrigerant can be self-adjusted (balanced).
 具体的には、圧力差が比較的大きい場合には、サイクルを循環させる必要のある必要循環冷媒流量が減少するに伴って、固定絞り上流側冷媒の乾き度が大きくなるようにバランスする。一方、圧力差が比較的小さい場合には、必要循環冷媒流量が増加するに伴って、固定絞り上流側冷媒の乾き度が小さくなるようにバランスする。 Specifically, when the pressure difference is relatively large, a balance is made so that the dryness of the refrigerant on the upstream side of the fixed throttle increases as the required circulating refrigerant flow rate that requires circulation of the cycle decreases. On the other hand, when the pressure difference is relatively small, it is balanced so that the dryness of the fixed throttle upstream side refrigerant decreases as the required circulating refrigerant flow rate increases.
 ところが、第2可変絞り17上流側冷媒の乾き度が大きくなってしまうと、室外熱交換器20が冷媒に吸熱作用を発揮させる蒸発器として機能する際に、室外熱交換器20における冷媒の吸熱量(冷凍能力)が減ってサイクルの成績係数(COP)が悪化してしまう。 However, if the degree of dryness of the refrigerant upstream of the second variable throttle 17 increases, the refrigerant heat absorption in the outdoor heat exchanger 20 occurs when the outdoor heat exchanger 20 functions as an evaporator that exerts an endothermic effect on the refrigerant. The amount of heat (refrigeration capacity) decreases and the coefficient of performance (COP) of the cycle deteriorates.
 そこで、本実施形態では暖房運転モード時にサイクルの負荷変動によって必要循環冷媒流量が変化しても、第2可変絞り17上流側冷媒の乾き度Xが0.1以下となるように開度を制御し、COPの悪化を抑制している。 Therefore, in this embodiment, the opening degree is controlled so that the dryness X of the refrigerant upstream of the second variable throttle 17 is 0.1 or less even if the required circulating refrigerant flow rate changes due to the cycle load fluctuation in the heating operation mode. In addition, the deterioration of COP is suppressed.
 つまり、本実施形態の第2可変絞り17では、ヒートポンプサイクル10に負荷変動が生じた際に想定される範囲で、冷媒循環流量Qおよび第2可変絞り17の出入口間差圧が変化しても、第2可変絞り17上流側冷媒の乾き度Xが0.1以下に調整される。 That is, in the second variable throttle 17 of the present embodiment, even if the refrigerant circulation flow rate Q and the differential pressure between the inlet and outlet of the second variable throttle 17 change within a range that is assumed when a load fluctuation occurs in the heat pump cycle 10. The dryness X of the refrigerant upstream of the second variable throttle 17 is adjusted to 0.1 or less.
 室外熱交換器20は、ボンネット内に配置されて、内部を流通する低圧冷媒と送風ファン21から送風された外気とを熱交換させるものである。この室外熱交換器20は、第1、第2暖房モード時等には、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転モード時等には、高圧冷媒を放熱させる放熱器として機能する熱交換器である。 The outdoor heat exchanger 20 is arranged in the bonnet, and exchanges heat between the low-pressure refrigerant circulating inside and the outside air blown from the blower fan 21. The outdoor heat exchanger 20 functions as an evaporator that evaporates the low-pressure refrigerant and exerts an endothermic effect in the first and second heating modes, and dissipates the high-pressure refrigerant in the cooling operation mode and the like. It is a heat exchanger that functions as a radiator.
 室外熱交換器20の冷媒出口側には、第3可変絞り22の冷媒入口側が接続されている。第3可変絞り22は、冷房運転モード時等に室外熱交換器20から流出した冷媒を減圧させ、室内蒸発器23へ流入する冷媒を減圧させるものである。この第3可変絞り22の基本的構成は、第1可変絞り13と同様であり、空調制御装置40から出力される制御信号によって、その作動が制御される。 The refrigerant inlet side of the third variable throttle 22 is connected to the refrigerant outlet side of the outdoor heat exchanger 20. The third variable throttle 22 is for depressurizing the refrigerant that has flowed out of the outdoor heat exchanger 20 in the cooling operation mode or the like, and depressurizing the refrigerant that flows into the indoor evaporator 23. The basic configuration of the third variable aperture 22 is the same as that of the first variable aperture 13, and its operation is controlled by a control signal output from the air conditioning control device 40.
 第3可変絞り22の出口側には、室内蒸発器23の冷媒入口側が接続されている。室内蒸発器23は、室内空調ユニット30の空調ケース31内のうち、室内凝縮器12の車室内送風空気流れ上流側に配置され、冷房運転モード時、除湿暖房運転モード等にその内部を流通する冷媒を蒸発させて吸熱作用を発揮させることにより車室内送風空気を冷却する蒸発器である。 The refrigerant inlet side of the indoor evaporator 23 is connected to the outlet side of the third variable throttle 22. The indoor evaporator 23 is disposed in the air conditioning case 31 of the indoor air conditioning unit 30 on the upstream side of the air flow in the vehicle interior of the indoor condenser 12 and circulates in the dehumidifying and heating operation mode or the like in the cooling operation mode. It is an evaporator that cools the air blown into the passenger compartment by evaporating the refrigerant and exerting an endothermic effect.
 室内蒸発器23の出口側には、アキュムレータ24の入口側が接続されている。アキュムレータ24は、その内部に流入した冷媒の気液を分離して余剰冷媒を蓄える低圧側気液分離器である。さらに、アキュムレータ24の気相冷媒出口には、圧縮機11の吸入ポート11aが接続されている。従って、室内蒸発器23は、圧縮機11の吸入ポート11a側へ流出させるように接続されている。 The inlet side of the accumulator 24 is connected to the outlet side of the indoor evaporator 23. The accumulator 24 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 24 and stores excess refrigerant. Furthermore, the suction port 11 a of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 24. Therefore, the indoor evaporator 23 is connected so as to flow out to the suction port 11 a side of the compressor 11.
 さらに、室外熱交換器20の冷媒出口側には、室外熱交換器20から流出した冷媒を第3可変絞り22および室内蒸発器23を迂回させてアキュムレータ24の入口側へ導く迂回用通路25が接続されている。この迂回用通路25には、迂回用通路25を開閉する冷房用開閉弁16cが配置されている。 Further, on the refrigerant outlet side of the outdoor heat exchanger 20, there is a bypass passage 25 that guides the refrigerant flowing out of the outdoor heat exchanger 20 to the inlet side of the accumulator 24 by bypassing the third variable throttle 22 and the indoor evaporator 23. It is connected. In the bypass passage 25, a cooling on-off valve 16c for opening and closing the bypass passage 25 is disposed.
 冷房用開閉弁16cの基本的構成は、中間圧側開閉弁16aと同等であり、空調制御装置40から出力される制御電圧によって、その開閉作動が制御される電磁弁である。また、冷媒が冷房用開閉弁16cを通過する際に生じる圧力損失は、第3可変絞り22を通過する際に生じる圧力損失に対して極めて小さい。 The basic configuration of the cooling on / off valve 16c is the same as that of the intermediate pressure side on / off valve 16a, and is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device 40. Further, the pressure loss that occurs when the refrigerant passes through the cooling on-off valve 16 c is extremely small compared to the pressure loss that occurs when the refrigerant passes through the third variable throttle 22.
 従って、室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開いている場合には迂回用通路25を介してアキュムレータ24へ流入する。この際、第3可変絞り22の絞り開度を全閉としてもよい。また、冷房用開閉弁16cが閉じている場合には第3可変絞り22を介して室内蒸発器23へ流入する。これにより、冷房用開閉弁16cは、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の冷房用開閉弁16cは、中間圧側開閉弁16aとともに冷媒流路切替手段を構成している。 Therefore, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 24 through the bypass passage 25 when the cooling on-off valve 16c is open. At this time, the opening degree of the third variable throttle 22 may be fully closed. Further, when the cooling on-off valve 16 c is closed, it flows into the indoor evaporator 23 through the third variable throttle 22. Thereby, the cooling on-off valve 16c can switch the refrigerant flow path of the heat pump cycle 10. Therefore, the cooling on-off valve 16c of the present embodiment constitutes a refrigerant flow switching means together with the intermediate pressure side on-off valve 16a.
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、室内空調ユニット30の外殻を形成するとともに、その内部に車室内に送風される車室内送風空気の空気通路を形成する空調ケース31を有している。そして、この空気通路に送風機32、室内凝縮器12、室内蒸発器23等が収容されている。 Next, the indoor air conditioning unit 30 will be described. The indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, forms an outer shell of the indoor air conditioning unit 30, and is blown into the vehicle interior in the vehicle interior. The air-conditioning case 31 that forms the air passage is provided. And the air blower 32, the indoor condenser 12, the indoor evaporator 23, etc. are accommodated in this air passage.
 空調ケース31の空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。この内外気切替装置33は、空調ケース31内に内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。 Inside / outside air switching device 33 for switching and introducing vehicle interior air (inside air) and outside air is arranged on the most upstream side of the air flow of air conditioning case 31. The inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, so that the air volume of the inside air and the outside air are adjusted. The air volume ratio with the air volume is continuously changed.
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。 A blower 32 that blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior is arranged on the downstream side of the air flow of the inside / outside air switching device 33. The blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (air flow rate) is controlled by a control voltage output from the air conditioning control device 40.
 送風機32の空気流れ下流側には、前述の室内蒸発器23および室内凝縮器12が、車室内送風空気の流れに対して、室内蒸発器23→室内凝縮器12の順に配置されている。換言すると、室内蒸発器23は、室内凝縮器12に対して、空気流れ上流側に配置されている。 On the downstream side of the air flow of the blower 32, the indoor evaporator 23 and the indoor condenser 12 are arranged in the order of the indoor evaporator 23 → the indoor condenser 12 with respect to the flow of the air blown into the vehicle interior. In other words, the indoor evaporator 23 is disposed on the upstream side of the air flow with respect to the indoor condenser 12.
 また、空調ケース31内には、室内蒸発器23通過後の送風空気を、室内凝縮器12を迂回して流すバイパス通路35が設けられており、室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の空気流れ上流側には、エアミックスドア34が配置されている。 Further, a bypass passage 35 is provided in the air conditioning case 31 to flow the blown air after passing through the indoor evaporator 23, bypassing the indoor condenser 12, on the downstream side of the air flow of the indoor evaporator 23. And the air mix door 34 is arrange | positioned in the air flow upstream of the indoor condenser 12. FIG.
 このエアミックスドア34は、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量とバイパス通路35を通過させる風量との風量割合を調整して、室内凝縮器12の熱交換能力を調整する熱交換能力調整手段である。なお、エアミックスドア34は、空調制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。 The air mix door 34 adjusts the air volume ratio between the air volume that passes through the indoor condenser 12 and the air volume that passes through the bypass passage 35 in the blown air that has passed through the indoor evaporator 23, and the heat of the indoor condenser 12. It is a heat exchange capacity adjustment means for adjusting the exchange capacity. The air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
 また、室内凝縮器12およびバイパス通路35の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された車室内送風空気とバイパス通路35を通過して加熱されていない車室内送風空気が合流する合流空間36が設けられている。 Further, on the downstream side of the air flow of the indoor condenser 12 and the bypass passage 35, the vehicle interior blown air heated by exchanging heat with the refrigerant in the indoor condenser 12 and the vehicle that has not passed through the bypass passage 35 and is not heated. A merging space 36 in which the indoor blast air merges is provided.
 空調ケース31の空気流れ最下流部には、合流空間36にて合流した送風空気を、冷却対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴37a、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴37b、乗員の足元に向けて空調風を吹き出すフット開口穴37cが設けられている。 In the most downstream part of the air flow of the air conditioning case 31, an opening hole for blowing the blown air merged in the merge space 36 into the vehicle interior which is a space to be cooled is arranged. Specifically, as this opening hole, a defroster opening hole 37a that blows conditioned air toward the inner side surface of the vehicle front window glass, a face opening hole 37b that blows conditioned air toward the upper body of the passenger in the passenger compartment, and the feet of the passenger The foot opening hole 37c which blows air-conditioning wind toward is provided.
 従って、エアミックスドア34が室内凝縮器12を通過させる風量とバイパス通路を通過させる風量との風量割合を調整することによって、合流空間36内の送風空気の温度が調整される。なお、エアミックスドア34は、空調制御装置40から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。 Therefore, the temperature of the blown air in the merging space 36 is adjusted by adjusting the air volume ratio between the air volume that the air mix door 34 passes through the indoor condenser 12 and the air volume that passes through the bypass passage. The air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning controller 40.
 さらに、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ上流側には、それぞれ、デフロスタ開口穴37aの開口面積を調整するデフロスタドア38a、フェイス開口穴37bの開口面積を調整するフェイスドア38b、フット開口穴37cの開口面積を調整するフットドア38cが配置されている。 Further, on the upstream side of the air flow of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c, the opening areas of the defroster door 38a and the face opening hole 37b for adjusting the opening area of the defroster opening hole 37a are adjusted. A foot door 38c for adjusting the opening area of the face door 38b and the foot opening hole 37c is disposed.
 これらのデフロスタドア38a、フェイスドア38bおよびフットドア38cは、開口穴モードを切り替える開口穴モード切替手段を構成するものであって、リンク機構等を介して、空調制御装置40から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。 The defroster door 38a, the face door 38b, and the foot door 38c constitute an opening hole mode switching unit that switches the opening hole mode. The defroster door 38a, the face door 38b, and the foot door 38c are controlled by a control signal output from the air conditioning controller 40 via a link mechanism or the like. It is driven by a servo motor (not shown) whose operation is controlled.
 また、デフロスタ開口穴37a、フェイス開口穴37bおよびフット開口穴37cの空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。 In addition, the air flow downstream side of the defroster opening hole 37a, the face opening hole 37b, and the foot opening hole 37c is respectively connected to a face air outlet, a foot air outlet, and a defroster air outlet provided in the vehicle interior via ducts that form air passages. Connected to the exit.
 次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器(圧縮機11、第1~3可変絞り、低段側減圧手段の低圧側開閉弁16b、冷媒流路切替手段16a、16c、送風機32等)の作動を制御する。 Next, the electric control unit of this embodiment will be described. The air conditioning control device 40 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. The operation of the various air conditioning control devices (the compressor 11, the first to third variable throttles, the low pressure side opening / closing valve 16b of the low stage pressure reducing means, the refrigerant flow switching means 16a, 16c, the blower 32, etc.) is controlled.
 また、空調制御装置40の入力側には、車室内温度を検出する内気センサ、外気温Tamを検出する外気センサ41-1、車室内の日射量を検出する日射センサ、室内蒸発器23からの吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、圧縮機11から吐出された高圧冷媒圧力を検出する吐出圧センサ、圧縮機11へ吸入される吸入冷媒圧力を検出する吸入圧センサ、室外熱交換器20の出口冷媒温度センサ41-2等の種々の空調制御用のセンサ群41が接続されている。出口冷媒温度センサ41-2は、室外熱交換器20の出口冷媒温度Thoを検出する。 Further, on the input side of the air-conditioning control device 40, there are an inside air sensor that detects the temperature inside the vehicle, an outside air sensor 41-1 that detects the outside air temperature Tam, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and an indoor evaporator 23. An evaporator temperature sensor for detecting the blown air temperature (evaporator temperature), a discharge pressure sensor for detecting the high-pressure refrigerant pressure discharged from the compressor 11, a suction pressure sensor for detecting the suction refrigerant pressure sucked into the compressor 11, Various air conditioning control sensors 41 such as the outlet refrigerant temperature sensor 41-2 of the outdoor heat exchanger 20 are connected. The outlet refrigerant temperature sensor 41-2 detects the outlet refrigerant temperature Tho of the outdoor heat exchanger 20.
 さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、具体的に、車両用空調装置1の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、冷房運転モードと暖房運転モードとの選択スイッチ等が設けられている。 Furthermore, an operation panel (not shown) disposed near the instrument panel in the front of the passenger compartment is connected to the input side of the air conditioning control device 40, and operation signals from various air conditioning operation switches provided on the operation panel are input. The Specifically, various air conditioning operation switches provided on the operation panel include an operation switch of the vehicle air conditioner 1, a vehicle interior temperature setting switch for setting the vehicle interior temperature, a selection switch between the cooling operation mode and the heating operation mode, and the like. Is provided.
 なお、空調制御装置40は、その出力側に接続された各種空調制御機器の作動を制御する制御手段が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。 The air-conditioning control device 40 is configured integrally with control means for controlling the operation of various air-conditioning control devices connected to the output side, but the configuration (hardware) for controlling the operation of each control target device. Hardware and software) constitutes control means for controlling the operation of each control target device.
 例えば、本実施形態では、圧縮機11の電動モータの作動を制御する構成(ハードウェアおよびソフトウェア)が吐出能力制御手段を構成し、冷媒流路切替手段16a~16cの作動を制御する構成(ハードウェアおよびソフトウェア)が冷媒流路制御手段を構成している。もちろん、吐出能力制御手段および冷媒流路制御手段を空調制御装置40に対して別体の制御装置として構成してもよい。 For example, in this embodiment, the configuration (hardware and software) that controls the operation of the electric motor of the compressor 11 constitutes the discharge capacity control means, and the configuration (hardware) that controls the operation of the refrigerant flow path switching means 16a to 16c. Hardware and software) constitute the refrigerant flow path control means. Of course, the discharge capacity control means and the refrigerant flow path control means may be configured as separate control devices for the air conditioning control device 40.
 次に、上記構成における本実施形態の車両用空調装置1の作動について説明する。本実施形態の車両用空調装置1では、車室内を冷房する冷房運転モード、車室内を暖房する暖房運転モード、除霜暖房モード、および、車室内を除湿しながら暖房する除湿暖房モードに切り替えることができる。以下に各運転モードにおける作動を説明する。 Next, the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described. In the vehicle air conditioner 1 of the present embodiment, switching to a cooling operation mode for cooling the vehicle interior, a heating operation mode for heating the vehicle interior, a defrost heating mode, and a dehumidifying heating mode for heating while dehumidifying the vehicle interior is performed. Can do. The operation in each operation mode will be described below.
 (暖房モード)
 暖房運転モードには、次の第1暖房モード、第2暖房モードがあり、車両用空調装置の作動スイッチが投入(ON)された状態で、選択スイッチによって暖房運転モードが選択されると開始される。
(Heating mode)
The heating operation mode includes the following first heating mode and second heating mode, which are started when the heating operation mode is selected by the selection switch while the operation switch of the vehicle air conditioner is turned on. The
 そして、暖房運転モードが開始されると、空調制御装置40が空調制御用のセンサ群41の検出信号および操作パネルの操作信号を読み込み、圧縮機11の冷媒吐出能力(圧縮機11の回転数)を決定する。さらに、決定された回転数に応じて、第1暖房モードあるいは第2暖房モード時を実行する。 When the heating operation mode is started, the air conditioning control device 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the operation panel, and the refrigerant discharge capacity of the compressor 11 (the rotation speed of the compressor 11). To decide. Further, the first heating mode or the second heating mode is executed according to the determined rotation speed.
 (第1暖房モード)
 まず、第1暖房モードについて説明する。第1暖房モードが実行されると、空調制御装置40が、第1可変絞り13を絞り状態とし、第3可変絞り22を全閉状態とし、冷房用開閉弁16cを開弁状態とする。
(First heating mode)
First, the first heating mode will be described. When the first heating mode is executed, the air conditioning control device 40 sets the first variable throttle 13 in the throttle state, the third variable throttle 22 in the fully closed state, and the cooling on-off valve 16c in the valve open state.
 さらに、低圧側開閉弁16bを閉弁状態として低段側減圧手段を減圧作用を発揮する絞り状態とし、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを開弁状態とする。これにより、ヒートポンプサイクル10は、図1Aの実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。 Further, the low-pressure side opening / closing valve 16b is closed, the low-stage pressure reducing means is set to a throttle state that exerts a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is opened in conjunction with the state of the low-pressure side opening / closing valve 16b. As a result, the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 1A.
 この冷媒流路構成(サイクル構成)で、空調制御装置40が、空調制御用のセンサ群41の検出信号および操作パネルの操作信号を読み込み、目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。 With this refrigerant flow path configuration (cycle configuration), the air conditioning control device 40 reads the detection signal of the sensor group 41 for air conditioning control and the operation signal of the operation panel, and based on the target blowing temperature TAO and the detection signal of the sensor group, The operating states of various air conditioning control devices connected to the output side of the air conditioning control device 40 are determined.
 なお、第1暖房モードでは、第1可変絞り13へ出力される制御信号については、第1可変絞り13の絞り開度が予め定めた第1暖房モード用の所定開度となるように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。 In the first heating mode, the control signal output to the first variable throttle 13 is determined so that the throttle opening of the first variable throttle 13 becomes a predetermined opening for the first heating mode. The Regarding the control signal output to the servo motor of the air mix door 34, the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
 従って、第1暖房モードのヒートポンプサイクル10では、図1Bのモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(a7点)が室内凝縮器12へ流入する。室内凝縮器12へ流入した冷媒は、送風機32から送風されて室内蒸発器23を通過した車室内送風空気と熱交換して放熱する(a7→b7点)。これにより、車室内送風空気が加熱される。 Therefore, in the heat pump cycle 10 in the first heating mode, the high-pressure refrigerant (point a7) discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12 as shown in the Mollier diagram of FIG. 1B. The refrigerant that has flowed into the indoor condenser 12 exchanges heat with air blown from the blower 32 and passed through the indoor evaporator 23 to dissipate heat (point a7 → b7). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている第1可変絞り13にて中間圧冷媒となるまで等エンタルピ的に減圧膨脹される(b7→c17点)。そして、第1可変絞り13にて減圧された中間圧冷媒は、気液分離器14にて気液分離される(c7→c27点、c7→c37点)。 The refrigerant that has flowed out of the indoor condenser 12 is decompressed and expanded in an enthalpy manner until it becomes an intermediate-pressure refrigerant at the first variable throttle 13 that is in the throttled state (b7 → c17 point). Then, the intermediate pressure refrigerant decompressed by the first variable throttle 13 is gas-liquid separated by the gas-liquid separator 14 (c7 → c27 point, c7 → c37 point).
 気液分離器14にて分離された気相冷媒は、中間圧側開閉弁16aが開弁状態となっているので、中間圧冷媒通路15を介して、圧縮機11の中間圧ポート11bへ流入し(c27→a27点)、低段側圧縮機構吐出冷媒(a17点)と合流して、高段側圧縮機構へ吸入される。 The gas-phase refrigerant separated by the gas-liquid separator 14 flows into the intermediate pressure port 11b of the compressor 11 through the intermediate pressure refrigerant passage 15 because the intermediate pressure side opening / closing valve 16a is in the open state. (C2 7 → a 2 7 points), merges with the refrigerant discharged from the low stage compression mechanism (a 17 points) and is sucked into the high stage compression mechanism.
 一方、気液分離器14にて分離された液相冷媒は、低段側減圧手段が絞り状態となっているので、低段側減圧手段にて低圧冷媒となるまで減圧されて流出し、室外熱交換器20へ流入する。つまり、低段側減圧手段では、低圧側開閉弁16bが閉弁状態となっているので、第2可変絞り17へ流入して低圧冷媒となるまで等エンタルピ的に減圧膨脹される(c37→c47点)。第2可変絞り17から流出した冷媒は、室外熱交換器20へ流入して、送風ファン21から送風された外気と熱交換して吸熱する(c47点→d7点)。 On the other hand, the liquid refrigerant separated by the gas-liquid separator 14 is decompressed and flows out until it becomes a low-pressure refrigerant in the low-stage decompression means because the low-stage decompression means is in the throttle state. It flows into the heat exchanger 20. That is, in the low-stage decompression means, the low-pressure side opening / closing valve 16b is closed, so that it is decompressed and expanded in an enthalpy manner until it flows into the second variable throttle 17 and becomes a low-pressure refrigerant (c37 → c47). point). The refrigerant flowing out of the second variable throttle 17 flows into the outdoor heat exchanger 20, and absorbs heat by exchanging heat with the outside air blown from the blower fan 21 (c47 point → d7 point).
 室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが開弁状態となっているので迂回用通路25を介して、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(e7点)から吸入されて再び圧縮される。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。 The refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the accumulator 24 via the bypass passage 25 and is separated into gas and liquid because the cooling on-off valve 16c is in the open state. The separated gas-phase refrigerant is sucked from the suction port 11a (point e7) of the compressor 11 and compressed again. On the other hand, the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
 なお、図1Bにおいてd7点とe7点が異なっている理由は、アキュムレータ24から圧縮機11の吸入ポート11aへ至る冷媒配管を流通する気相冷媒に生じる圧力損失と、気相冷媒が外部(外気)から吸熱する吸熱量を表したものである。従って、理想的なサイクルでは、d7点とe7点が一致していることが望ましい。このことは、以下のモリエル線図においても同様である。 In FIG. 1B, the reason that the points d7 and e7 are different is that the pressure loss generated in the gas-phase refrigerant flowing through the refrigerant pipe from the accumulator 24 to the suction port 11a of the compressor 11 and the gas-phase refrigerant outside (outside air) ) Represents the amount of heat absorbed. Therefore, in an ideal cycle, it is desirable that the points d7 and e7 coincide. The same applies to the following Mollier diagram.
 以上の如く、第1暖房モードでは、室内凝縮器12にて圧縮機11から吐出された冷媒の有する熱を車室内送風空気に放熱させて、加熱された室内送風空気を車室内へ吹き出すことができる。これにより、車室内の暖房を実現することができる。 As described above, in the first heating mode, the heat of the refrigerant discharged from the compressor 11 by the indoor condenser 12 is dissipated to the vehicle interior blown air, and the heated room blown air is blown out into the vehicle interior. it can. Thereby, heating of a vehicle interior is realizable.
 さらに、第1暖房モードでは、第2可変絞り17にて減圧された低圧冷媒を圧縮機11の吸入ポート11aから吸入させるとともに、第1可変絞り13にて減圧された中間圧冷媒を中間圧ポート11bへ流入させて昇圧過程の冷媒と合流させる、ガスインジェクションサイクル(エコノマイザ式冷凍サイクル)を構成することができる。 Further, in the first heating mode, the low-pressure refrigerant decompressed by the second variable throttle 17 is sucked from the suction port 11a of the compressor 11, and the intermediate-pressure refrigerant decompressed by the first variable throttle 13 is sucked by the intermediate pressure port. A gas injection cycle (economizer refrigeration cycle) that flows into 11b and joins with the refrigerant in the pressure increasing process can be configured.
 従って、高段側圧縮機構に、温度の低い混合冷媒を吸入させることによって、高段側圧縮機構の圧縮効率を向上させることができるとともに、低段側圧縮機構および高段側圧縮機構の双方の吸入冷媒圧力と吐出冷媒圧力との圧力差を縮小させて、双方の圧縮機構の圧縮効率を向上させることができる。その結果、ヒートポンプサイクル10全体としてのCOPを向上させることができる。 Therefore, by allowing the high-stage compression mechanism to suck the refrigerant mixture having a low temperature, the compression efficiency of the high-stage compression mechanism can be improved, and both the low-stage compression mechanism and the high-stage compression mechanism can be improved. By reducing the pressure difference between the suction refrigerant pressure and the discharge refrigerant pressure, it is possible to improve the compression efficiency of both compression mechanisms. As a result, the COP of the heat pump cycle 10 as a whole can be improved.
 (第2暖房モード)
 次に、第2暖房モードについて説明する。第2暖房モード時が実行されると、空調制御装置40が、第1可変絞り13を、減圧作用を発揮する絞り状態とし、第3可変絞り22を全閉状態とし、冷房用開閉弁16cを開弁状態とする。
(Second heating mode)
Next, the second heating mode will be described. When the second heating mode is executed, the air conditioning control device 40 sets the first variable throttle 13 to a throttle state that exerts a pressure reducing action, sets the third variable throttle 22 to a fully closed state, and sets the cooling on-off valve 16c. Open the valve.
 さらに、低圧側開閉弁16bを開弁状態として低段側減圧手段を、減圧作用を発揮しない全開状態とし、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを閉弁状態とする。ヒートポンプサイクル10は、図2Aの実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。 Further, the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened without exerting the pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b. . The heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 2A.
 この冷媒流路構成(サイクル構成)で、空調制御装置40が、第1暖房モードと同様に空調制御装置40の出力側に接続された各種空調制御機器、空調ユニットの作動状態を決定する。 In this refrigerant flow path configuration (cycle configuration), the air conditioning control device 40 determines the operating states of various air conditioning control devices and air conditioning units connected to the output side of the air conditioning control device 40 as in the first heating mode.
 第2暖房モード時のヒートポンプサイクル10では、図2Bのモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(a8点)が室内凝縮器12へ流入し、第2暖房モード時と同様に、車室内送風空気と熱交換して放熱する(a8→b8点)。これにより、車室内送風空気が加熱される。 In the heat pump cycle 10 in the second heating mode, as shown in the Mollier diagram of FIG. 2B, the high-pressure refrigerant (point a8) discharged from the discharge port 11c of the compressor 11 flows into the indoor condenser 12, and the second As in the heating mode, heat is exchanged with the air blown into the passenger compartment to dissipate heat (a8 → b8 points). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている第1可変絞り13にて低圧冷媒となるまで等エンタルピ的に減圧膨脹されて(b8→c8点)、気液分離器14へ流入する。この際、気液分離器14へ流入した冷媒は、中間圧側開閉弁16aが閉弁状態となっているので、気液分離されることなく、液相冷媒流出ポート14dから流出していく。 The refrigerant flowing out from the indoor condenser 12 is decompressed and expanded in an enthalpy manner (b8 → c8 point) until it becomes a low-pressure refrigerant in the throttled first variable throttle 13 and flows into the gas-liquid separator 14. To do. At this time, the refrigerant flowing into the gas-liquid separator 14 flows out from the liquid-phase refrigerant outflow port 14d without being separated into gas and liquid because the intermediate pressure side opening / closing valve 16a is closed.
 一方、気液分離器14にて分離された液相冷媒は、低段側減圧手段が全開状態となっているので、低段側減圧手段にて殆ど減圧されることなく流出し、室外熱交換器20へ流入する。つまり、低段側減圧手段では、低圧側開閉弁16bが開弁状態となっているので、第2可変絞り17側へ流入することなく迂回用通路18を介して室外熱交換器20へ流入する。そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(c8点→d8点)。以降の作動は第1暖房モードと同様である。 On the other hand, the liquid-phase refrigerant separated by the gas-liquid separator 14 flows out with almost no decompression by the low-stage decompression means because the low-stage decompression means is fully open, and the outdoor heat exchange Flow into the vessel 20. That is, in the low stage pressure reducing means, the low pressure side opening / closing valve 16b is in the open state, and therefore flows into the outdoor heat exchanger 20 through the bypass passage 18 without flowing into the second variable throttle 17 side. . The low-pressure refrigerant that has flowed into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 and absorbs heat (point c8 → point d8). The subsequent operation is the same as in the first heating mode.
 ここで、第2暖房モード時を、第1暖房モードに対して、外気温が高い場合等のように暖房負荷が比較的低い場合に実行することの効果を説明する。理論的には、圧縮機11の回転数が同一であれば、第1暖房モードは、第2暖房モード時よりも高い暖房性能を発揮することができる。換言すると、同一の暖房性能を発揮させるために必要な圧縮機11の回転数(冷媒吐出能力)は、第1暖房モードよりも第2暖房モード時の方が低くなる。 Here, the effect of executing the second heating mode when the heating load is relatively low, such as when the outside air temperature is high, is described with respect to the first heating mode. Theoretically, if the rotation speed of the compressor 11 is the same, the first heating mode can exhibit higher heating performance than that in the second heating mode. In other words, the rotation speed (refrigerant discharge capacity) of the compressor 11 necessary for exhibiting the same heating performance is lower in the second heating mode than in the first heating mode.
 ところが、圧縮機構には、圧縮効率が最大(ピーク)となる最大効率回転数があり、最大効率回転数よりも回転数が低くなると、圧縮効率が大きく低下してしまうという特性がある。このため、暖房負荷が比較的低い場合に圧縮機11を最大効率回転数よりも低い回転数で作動させると、第1暖房モードでは、却ってCOPが低下してしまうことがある。 However, the compression mechanism has a maximum efficiency rotational speed at which the compression efficiency is maximized (peak), and has a characteristic that if the rotational speed is lower than the maximum efficient rotational speed, the compression efficiency is greatly reduced. For this reason, when the compressor 11 is operated at a rotation speed lower than the maximum efficiency rotation speed when the heating load is relatively low, the COP may decrease in the first heating mode.
 そこで、本実施形態では、上述の最大効率回転数を基準回転数として、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数以下となってしまう場合に第2暖房モードへ切り替え、第2暖房モードの実行中に基準回転数に対して予め定めた所定量を加えた回転数以上となった際に第1暖房モードへ切り替えるようにしている。 Therefore, in the present embodiment, when the rotation speed of the compressor 11 becomes equal to or less than the reference rotation speed during execution of the first heating mode with the above-described maximum efficiency rotation speed as the reference rotation speed, the second heating mode is entered. Switching to the first heating mode is performed when the rotation speed becomes equal to or higher than the rotation speed obtained by adding a predetermined amount to the reference rotation speed during execution of the second heating mode.
 これにより、第1暖房モードおよび第2暖房モードのうち高いCOPを発揮できる運転モードを選択している。従って、第1暖房モードの実行中に、圧縮機11の回転数が基準回転数以下となってしまう場合であっても、第2暖房モードへ切り替えることにより、ヒートポンプサイクル10全体としてのCOPを向上させることができる。 Thereby, the operation mode in which high COP can be exhibited is selected from the first heating mode and the second heating mode. Therefore, even when the rotation speed of the compressor 11 becomes equal to or lower than the reference rotation speed during execution of the first heating mode, the COP of the heat pump cycle 10 as a whole is improved by switching to the second heating mode. Can be made.
 (除霜暖房モード)
 暖房モードを実施すると、室外熱交換器20は蒸発器として機能するため、凝縮水が発生し、外気温が比較的低い場合などでは、凝縮水は凍結し、室外熱交換器20に着霜状態が生じる。ここで、暖房モードは、第1、2暖房モードであっても着霜は発生しうるので、本実施形態の除霜暖房モードはいずれも適用可能である。ここでは、低温時に実行されることが多い第1暖房モードの場合を、一例として挙げて、以下説明する。室外熱交換器20に着霜状態が、空調制御装置40によって判定されると、図3に示すように、第1暖房モードから除霜暖房モードに変更させて、室内凝縮器12で車室内送風空気を加熱するとともに、室外熱交換器20においてホットガス冷媒の熱を放熱して着霜した氷を融解させることにより、車室内をホットガス暖房しながらホットガス除霜できるように制御する。
(Defrost heating mode)
When the heating mode is performed, the outdoor heat exchanger 20 functions as an evaporator. Therefore, when condensed water is generated and the outdoor temperature is relatively low, the condensed water is frozen and the outdoor heat exchanger 20 is frosted. Occurs. Here, since the frosting can occur even when the heating mode is the first and second heating modes, any of the defrosting heating modes of this embodiment can be applied. Here, the case of the 1st heating mode often performed at the time of low temperature is mentioned as an example, and is demonstrated below. When the frosting state of the outdoor heat exchanger 20 is determined by the air conditioning control device 40, as shown in FIG. 3, the first heating mode is changed to the defrosting heating mode, and the vehicle interior ventilation is performed by the indoor condenser 12. While heating the air, the outdoor heat exchanger 20 dissipates the heat of the hot gas refrigerant and melts the frosted ice so that the hot gas can be defrosted while the vehicle interior is heated.
 室外熱交換器20の着霜状態は、種々の手段で判定することができる。室外熱交換器20の着霜する場合には、出口冷媒温度センサ41-2によって検出された室外熱交換器20の出口冷媒温度Thoが低下する。本実施形態では、外気温Tamと出口冷媒温度Thoの差Tam-Thoが、所定値(例えば、20℃など)より大きくなると、室外熱交換器20が着霜したことを判定する。この判定により、第1暖房モードから除霜暖房モードに変更する。判定手段としては、Tam-Thoが所定の温度差(例えば、15℃など)で所定の時間(例えば10分程度)以上継続した場合において着霜状態と判定しても良い。着霜状態の判定は、これらに限らず、その他の周知の手段(特開2000-203249号公報の段落0042、特開2001-246930号公報の段落0057など)で判定しても良い。 The frosting state of the outdoor heat exchanger 20 can be determined by various means. When the outdoor heat exchanger 20 is frosted, the outlet refrigerant temperature Tho of the outdoor heat exchanger 20 detected by the outlet refrigerant temperature sensor 41-2 decreases. In the present embodiment, when the difference Tam-Th between the outside air temperature Tam and the outlet refrigerant temperature Th becomes larger than a predetermined value (for example, 20 ° C.), it is determined that the outdoor heat exchanger 20 has been frosted. By this determination, the first heating mode is changed to the defrost heating mode. As the determination means, it may be determined that the frost state is established when Tam-Tho continues for a predetermined time (for example, about 10 minutes) at a predetermined temperature difference (for example, 15 ° C.). The determination of the frost formation state is not limited to these, and may be determined by other known means (paragraph 0042 of JP-A-2000-203249, paragraph 0057 of JP-A-2001-246930, etc.).
 次に、図3を参照して、第1暖房モードから除霜暖房モードに変更する制御について説明する。なお、この制御は、第2暖房モードから除霜暖房モードに変更する場合であっても、中間インジェクション部分を除き同様である。図3の上図(a)は、図1Bと同じである。第1暖房モードでは、室外熱交換器20は外気から吸熱を行っている。 Next, control for changing from the first heating mode to the defrosting heating mode will be described with reference to FIG. This control is the same except for the intermediate injection portion even when the second heating mode is changed to the defrosting heating mode. 3A is the same as FIG. 1B. In the first heating mode, the outdoor heat exchanger 20 absorbs heat from the outside air.
 この図の例示のように、外気温が0℃近くになるような場合には、室外熱交換器20に着霜が発生してしまう。着霜状態が判定されると、図3の下図(b)の冷凍サイクルにするため、すなわち、室外熱交換器20を吸熱から放熱に変化させるために、まず、室内空調ユニット30の送風機32に指令して、送風量を低下させる。すると、室内凝縮器12での熱交換量が減少し始める。室内凝縮器12で熱交換されていた冷媒の冷却量が低下して、室内凝縮器12の出口でのエンタルピhが、図3の右手側にシフトしてゆくとともに、室外熱交換器20に送り込まれる冷媒のエンタルピが上昇してゆく。これと同時に、第1可変絞り13の開度を開くように制御する。このとき、第1可変絞り13の開度は、液相冷媒からガス冷媒への変化に対応させる必要がある。この時、気液分離器14の液相冷媒流出口14dからは液相冷媒でなく、気相冷媒が第2可変絞り17に流出する。 As illustrated in this figure, when the outdoor temperature is close to 0 ° C., frost formation occurs in the outdoor heat exchanger 20. When the frost formation state is determined, in order to obtain the refrigeration cycle shown in the lower diagram (b) of FIG. 3, that is, to change the outdoor heat exchanger 20 from heat absorption to heat release, Command to reduce the air flow. Then, the heat exchange amount in the indoor condenser 12 starts to decrease. The cooling amount of the refrigerant that has been heat-exchanged in the indoor condenser 12 decreases, and the enthalpy h at the outlet of the indoor condenser 12 shifts to the right-hand side in FIG. 3 and is sent to the outdoor heat exchanger 20. The enthalpy of the refrigerant is rising. At the same time, the opening of the first variable throttle 13 is controlled to open. At this time, the opening degree of the first variable throttle 13 needs to correspond to the change from the liquid refrigerant to the gas refrigerant. At this time, not the liquid phase refrigerant but the gas phase refrigerant flows out from the liquid phase refrigerant outlet 14 d of the gas-liquid separator 14 to the second variable throttle 17.
 さらに、第1暖房モードの場合には、中間圧が適切になるように同時に第2可変絞り17の弁開度も調整する(第2暖房モードでは第1可変絞り13の開度で調整)。これらの制御に加えて、同時に圧縮機11の回転数を増大させる制御も行うと良い。 Furthermore, in the case of the first heating mode, the valve opening of the second variable throttle 17 is also adjusted at the same time so that the intermediate pressure is appropriate (in the second heating mode, the opening is adjusted by the opening of the first variable throttle 13). In addition to these controls, it is preferable to perform control to increase the rotational speed of the compressor 11 at the same time.
 以上の調整により、やがて室外熱交換器20に流入する冷媒の温度が外気温より高くなってくると、もはや、ヒートポンプサイクルから離脱して、室外熱交換器20が吸熱することができなくなる。そして、図3の下図(b)のホットガスサイクルに移行して室外熱交換器20においてホットガス冷媒の熱を放熱し始めて(除霜暖房モード)、着霜した氷を融解させるようになる。 As a result of the above adjustment, when the temperature of the refrigerant flowing into the outdoor heat exchanger 20 eventually becomes higher than the outside air temperature, it is no longer separated from the heat pump cycle and the outdoor heat exchanger 20 can no longer absorb heat. And it transfers to the hot gas cycle of the lower figure (b) of FIG. 3, and it starts to thermally radiate the heat | fever of a hot gas refrigerant | coolant in the outdoor heat exchanger 20 (defrost heating mode), and comes to melt | dissolve the frosted ice.
 ホットガスサイクルでは、圧縮機から冷媒に与えられたエネルギを暖房と除霜に分配している。つまり、いかに冷媒にエネルギ(エンタルピ×流量)を与えるかが、暖房性能と除霜性能に関わっていることになる。しかも、ホットガスサイクルでは、潜熱が利用できず顕熱による加熱となるので、車室内の暖房能力に不足が生じることがある。そこで、除霜暖房モードにおいても、中間圧でのインジェクションを行い、室内凝縮器12に流れる冷媒流量を増加させて、車室内の暖房能力アップを図るようにすると好適である。特に、HFC、HFO系冷媒(R134a、R1234yf等)を使用した場合などには、ホットガスサイクルでの加熱能力が少ないため、中間圧でのインジェクションを行うようにした除霜暖房モードが、威力を発揮する。したがって、本実施形態では、単なる除霜モードに過ぎないものではなく、除霜時にも充分な暖房を行うことのできる除霜暖房モードとして特徴を有するものである。 In the hot gas cycle, energy given to the refrigerant from the compressor is distributed to heating and defrosting. That is, how energy (enthalpy × flow rate) is given to the refrigerant is related to the heating performance and the defrosting performance. In addition, in the hot gas cycle, the latent heat cannot be used and heating is performed by sensible heat, so that the heating capacity in the passenger compartment may be insufficient. Therefore, in the defrost heating mode, it is preferable to increase the heating capacity in the passenger compartment by performing injection at an intermediate pressure and increasing the flow rate of the refrigerant flowing through the indoor condenser 12. In particular, when HFC, HFO refrigerants (R134a, R1234yf, etc.) are used, the defrosting heating mode that performs injection at an intermediate pressure is powerful because the heating capacity in the hot gas cycle is small. Demonstrate. Therefore, in this embodiment, it is not only a mere defrost mode, but has a feature as a defrost heating mode in which sufficient heating can be performed even during defrosting.
 以上の制御に加えて、次のようなシーケンスで制御することも可能である。第1暖房モードでの運転時に着霜状態と判定されたら、まず、第1、2可変絞り13、17の開度を開くように制御する。サイクル的には高圧が下がり、低圧が上がるように作動するが、ここで高圧が下がらないように、圧縮機11の回転数を上昇させる。それでも冷凍サイクルの高圧側が下がってしまい、車室内への吹出し温度が下がってしまう場合に、初めて風量を低下させ、吹出し温度を保つように作動させる。これにより、車室内の暖房機能に影響を与えることなく暖房を継続することができる。やがて、冷凍サイクルの低圧側が上がり、室外熱交換器に流入する冷媒温度が0℃を上回るようになると、除霜暖房モードに移行して除霜が始まり、図3の下図(b)のようなサイクルバランスになる様に作動させる。 In addition to the above control, the following sequence is also possible. If it is determined that the frosting state occurs during the operation in the first heating mode, first, the first and second variable throttles 13 and 17 are controlled to open. The cycle is operated so that the high pressure decreases and the low pressure increases, but the rotational speed of the compressor 11 is increased so that the high pressure does not decrease. Still, when the high-pressure side of the refrigeration cycle is lowered and the temperature of the blowout into the passenger compartment is lowered, the air volume is lowered for the first time, and the blowout temperature is maintained. Thereby, heating can be continued without affecting the heating function in the passenger compartment. Eventually, when the low-pressure side of the refrigeration cycle rises and the temperature of the refrigerant flowing into the outdoor heat exchanger exceeds 0 ° C., defrosting starts and defrosting begins, as shown in FIG. Operate to achieve cycle balance.
 以上説明したように、本実施形態によれば、エバポレータを加熱器として使う必要がないため、保水された凝縮水の再蒸発が発生しない。よって悪臭や、窓曇りの問題を引き起こすことが無い。また、除霜暖房モード時、ガスインジェクションを行う場合には、圧縮機流量が増大し、冷媒へ与えられるエネルギを増大することができる。ホットガスサイクル時には、第1可変絞り13、第2可変絞り17によって絞り開度を開きめに制御し、ガス絞りとしての良好な開度で作動させることができる。 As described above, according to the present embodiment, it is not necessary to use an evaporator as a heater, and therefore re-evaporation of retained condensed water does not occur. Therefore, it does not cause problems of bad odor and window fogging. In addition, when performing gas injection in the defrost heating mode, the flow rate of the compressor increases, and the energy given to the refrigerant can be increased. During the hot gas cycle, the throttle opening is controlled to be opened by the first variable throttle 13 and the second variable throttle 17, so that the gas throttle can be operated with a good opening.
 本開示の第1実施形態は、少なくとも第1暖房モード又は第2暖房モードと、上述の除霜暖房モードを有した任意の車両用の空調装置に適用することができる。本実施形態の場合には、さらに、次のような冷房運転モードや除湿暖房運転モードを有しており、これらのモードについて、以下に説明する。 The first embodiment of the present disclosure can be applied to any vehicle air conditioner having at least the first heating mode or the second heating mode and the above-described defrosting heating mode. In the case of the present embodiment, it further has the following cooling operation mode and dehumidification heating operation mode, and these modes will be described below.
 (冷房運転モード)
 冷房運転モードは、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって冷房運転モードが選択されると開始される。冷房運転モードでは、空調制御装置40が、第1可変絞り13を、減圧作用を発揮しない全開状態とし、第3可変絞り22を減圧作用を発揮する絞り状態とし、冷房用開閉弁16cを閉弁状態とする。
(Cooling operation mode)
The cooling operation mode is started when the operation switch on the operation panel is turned on (ON) and the cooling operation mode is selected by the selection switch. In the cooling operation mode, the air-conditioning control device 40 sets the first variable throttle 13 to a fully open state that does not exert a pressure reducing action, sets the third variable throttle 22 to a throttled state that exerts a pressure reducing action, and closes the cooling on-off valve 16c. State.
 さらに、低圧側開閉弁16bを、開弁状態として低段側減圧手段を減圧作用を発揮しない全開状態とし、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを閉弁状態とする。これにより、ヒートポンプサイクル10は、図4Aの実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。 Further, the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened so as not to exert a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b. . As a result, the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as shown by the solid line arrows in FIG. 4A.
 この冷媒流路の構成で、空調制御装置40が上述の空調制御用のセンサ群41の検出信号および操作パネルの操作信号を読み込み、目標吹出温度TAOを算出し、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置40の出力側に接続された各種空調制御機器の作動状態を決定する。 With this refrigerant flow path configuration, the air conditioning controller 40 reads the detection signal of the air conditioning control sensor group 41 and the operation signal of the operation panel, calculates the target blowing temperature TAO, and calculates the calculated target blowing temperature TAO and Based on the detection signal of the sensor group, the operating state of various air conditioning control devices connected to the output side of the air conditioning control device 40 is determined.
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。 For example, the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, the target evaporator outlet temperature TEO of the indoor evaporator 23 is determined based on the target outlet temperature TAO with reference to a control map stored in the air conditioning controller 40 in advance.
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された室内蒸発器23からの吹出空気温度との偏差に基づいて、フィードバック制御手法を用いて室内蒸発器23からの吹出空気温度が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。 And based on the deviation of this target evaporator blowing temperature TEO and the blowing air temperature from the indoor evaporator 23 detected by the evaporator temperature sensor, the blowing air temperature from the indoor evaporator 23 is determined using a feedback control method. A control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
 また、第3可変絞り22へ出力される制御信号については、第3可変絞り22へ流入する冷媒の過冷却度が、COPを略最大値に近づくように予め決定された目標過冷却度に近づくように決定される。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34が室内凝縮器12の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量がバイパス通路35を通過するように決定される。 As for the control signal output to the third variable throttle 22, the degree of supercooling of the refrigerant flowing into the third variable throttle 22 approaches the target supercooling degree determined in advance so that the COP approaches the substantially maximum value. To be determined. Regarding the control signal output to the servo motor of the air mix door 34, the air mix door 34 closes the air passage of the indoor condenser 12, and the total flow rate of the blown air after passing through the indoor evaporator 23 is the bypass passage 35. Is determined to pass.
 そして、上記の如く決定された制御信号等を各種空調制御機器へ出力する。その後、操作パネルによって車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種空調制御機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。 Then, the control signals determined as described above are output to various air conditioning control devices. After that, until the operation of the vehicle air conditioner is requested by the operation panel, the above detection signal and operation signal are read at every predetermined control cycle → the target blowout temperature TAO is calculated → the operating states of various air conditioning control devices are determined -> Control routines such as control voltage and control signal output are repeated. Such a control routine is repeated in the other operation modes.
 従って、冷房運転モードのヒートポンプサイクル10では、図4Bのモリエル線図に示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(a6点)が室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は殆ど車室内送風空気へ放熱することなく、室内凝縮器12から流出していく。 Therefore, in the heat pump cycle 10 of the cooling operation mode, as shown in the Mollier diagram of FIG. 4B, the high-pressure refrigerant discharged from the discharge port 11c of compressor 11 (a 6 points) flows into indoor condenser 12. At this time, since the air mix door 34 closes the air passage of the indoor condenser 12, the refrigerant flowing into the indoor condenser 12 flows out of the indoor condenser 12 without radiating heat to the vehicle interior air. Go.
 室内凝縮器12から流出した冷媒は、第1可変絞り13→気液分離器14→低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。より詳細には、室内凝縮器12から流出した冷媒は、第1可変絞り13が全開状態となっているので、第1可変絞り13にて殆ど減圧されることなく流出し、気液分離器14の冷媒流入ポート14bから気液分離器14内へ流入する。 The refrigerant that has flowed out of the indoor condenser 12 flows in the order of the first variable throttle 13 → the gas-liquid separator 14 → the low-pressure side on-off valve 16 b and flows into the outdoor heat exchanger 20. More specifically, since the first variable throttle 13 is fully opened, the refrigerant that has flowed out of the indoor condenser 12 flows out almost without being depressurized by the first variable throttle 13, and the gas-liquid separator 14. The refrigerant flows into the gas-liquid separator 14 from the refrigerant inflow port 14b.
 ここで、前述の如く、第3可変絞り22の絞り開度が第3可変絞り22へ流入する冷媒の過冷却度が目標過冷却度に近づくように決定されているので、気液分離器14へ流入する冷媒は過冷却度を有する液相状態となっている。従って、気液分離器14では冷媒の気液が分離されることなく、液相冷媒が液相冷媒流出ポート14dから流出していく。さらに、中間圧側開閉弁16aが閉弁状態となっているので、気相冷媒流出ポート14cから液相冷媒が流出することはない。 Here, as described above, the throttle opening degree of the third variable throttle 22 is determined so that the supercooling degree of the refrigerant flowing into the third variable throttle 22 approaches the target supercooling degree. The refrigerant flowing into the liquid phase is in a liquid phase state having a degree of supercooling. Accordingly, the gas-liquid separator 14 does not separate the gas-liquid refrigerant, and the liquid-phase refrigerant flows out from the liquid-phase refrigerant outflow port 14d. Furthermore, since the intermediate pressure side on-off valve 16a is in the closed state, the liquid phase refrigerant does not flow out from the gas phase refrigerant outflow port 14c.
 液相冷媒流出ポート14dから流出した液相冷媒は、低段側減圧手段が全開状態となっているので、低段側減圧手段にて殆ど減圧されることなく流出し、室外熱交換器20へ流入する。つまり、低段側減圧手段では、低圧側開閉弁16bが開弁状態であるため、第2可変絞り17側へ流入することなく迂回用通路18を介して室外熱交換器20へ流入する。室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(a6点→b6点)。 The liquid-phase refrigerant that has flowed out of the liquid-phase refrigerant outflow port 14d flows out to the outdoor heat exchanger 20 because the low-stage depressurizing means is fully opened, and is almost not depressurized by the low-stage depressurizing means. Inflow. That is, in the low stage pressure reducing means, since the low pressure side opening / closing valve 16b is in the open state, it flows into the outdoor heat exchanger 20 through the bypass passage 18 without flowing into the second variable throttle 17 side. Low-pressure refrigerant flowing into the outdoor heat exchanger 20, radiates heat to outdoor air heat exchanger that has been blown from the blower fan 21 (a 6-point → b 6 points).
 室外熱交換器20から流出した冷媒は、冷房用開閉弁16cが閉弁状態となっているので、絞り状態となっている第3可変絞り22へ流入して低圧冷媒となるまで、等エンタルピ的に減圧膨脹される(b6点→c6点)。そして、第3可変絞り22にて減圧された低圧冷媒は、室内蒸発器23へ流入し、送風機32から送風された室内送風空気から吸熱して蒸発する(c6点→d6点)。これにより、車室内送風空気が冷却される。 The refrigerant that has flowed out of the outdoor heat exchanger 20 is isoenthalpy until it flows into the third variable throttle 22 that is in a throttled state and becomes a low-pressure refrigerant because the cooling on-off valve 16c is in a closed state. reduced pressure is expanded to (b 6 points → c 6 points). The low-pressure refrigerant decompressed by the third variable throttle 22 flows into the indoor evaporator 23, and absorbs heat from the air in-room air blown from the blower 32 to evaporate (c 6 points → d 6 points). Thereby, vehicle interior blowing air is cooled.
 室内蒸発器23から流出した冷媒は、アキュムレータ24へ流入して気液分離される。そして、分離された気相冷媒が圧縮機11の吸入ポート11a(e6点)から吸入されて低段側圧縮機構→高段側圧縮機構の順に再び圧縮される(e6点→a16点→a6点)。一方、分離された液相冷媒はサイクルが要求されている冷凍能力を発揮するために必要としていない余剰冷媒としてアキュムレータ24内に蓄えられる。 The refrigerant flowing out of the indoor evaporator 23 flows into the accumulator 24 and is separated into gas and liquid. The separated gas-phase refrigerant is compressed again in the order of inhaled by the low-stage compression mechanism → the high-stage compression mechanism from the intake port 11a of the compressor 11 (e 6 points) (e 6 points → a1 6 points → a 6 points). On the other hand, the separated liquid-phase refrigerant is stored in the accumulator 24 as surplus refrigerant that is not necessary for exhibiting the refrigerating capacity required for the cycle.
 ここで、冷房運転モードにおいて、中間圧側開閉弁16aを閉弁状態とする理由を説明する。冷房運転モードでは、前述のように第1可変絞り13、および低段側減圧手段の双方を減圧作用を発揮しない全開状態としている。このため、中間圧側開閉弁16aを開弁状態として、ガスインジェクションサイクルを実現すると、圧縮機11の吐出ポート11cから吐出された気相冷媒が、室内凝縮器12→中間圧冷媒通路15→中間圧ポート11bの順に流れて、圧縮機11で再び圧縮されるといったことが繰り返されるだけで、車室内の冷房に有効に機能せず、単に圧縮機11のエネルギが無駄に消費してしまうからである。このように、本実施形態では、圧縮機11の無駄なエネルギ消費を低減するために、冷房運転モードに中間圧側開閉弁16aを閉弁状態としている。 Here, the reason why the intermediate pressure side on-off valve 16a is closed in the cooling operation mode will be described. In the cooling operation mode, as described above, both the first variable throttle 13 and the low stage pressure reducing means are in a fully open state in which the pressure reducing action is not exhibited. For this reason, when the intermediate pressure side opening / closing valve 16a is opened and the gas injection cycle is realized, the gas-phase refrigerant discharged from the discharge port 11c of the compressor 11 is changed to the indoor condenser 12 → intermediate pressure refrigerant passage 15 → intermediate pressure. This is because it simply repeats that it flows in the order of the port 11b and is compressed again by the compressor 11, and does not function effectively for cooling the passenger compartment, and simply consumes energy of the compressor 11. . Thus, in this embodiment, in order to reduce the wasteful energy consumption of the compressor 11, the intermediate pressure side on-off valve 16a is closed in the cooling operation mode.
 (除湿暖房運転モード)
 次に、除湿暖房運転モードについて説明する。除湿暖房運転モードは、冷房運転モード時に車室内温度設定スイッチによって設定された設定温度が外気温よりも高い温度に設定された際に実行される。
(Dehumidifying heating operation mode)
Next, the dehumidifying and heating operation mode will be described. The dehumidifying and heating operation mode is executed when the set temperature set by the vehicle interior temperature setting switch in the cooling operation mode is set to a temperature higher than the outside air temperature.
 除湿暖房モードが実行されると、空調制御装置40が、第1可変絞り13を全開状態あるいは絞り状態とし、第3可変絞り22を全開状態あるいは絞り状態とし、冷房用開閉弁16cを閉弁状態とする。 When the dehumidifying and heating mode is executed, the air conditioning control device 40 sets the first variable throttle 13 to a fully open state or throttle state, sets the third variable throttle 22 to a fully open state or throttle state, and closes the cooling on-off valve 16c. And
 さらに、低圧側開閉弁16bを開弁状態として低段側減圧手段を減圧作用を発揮しない全開状態とし、低圧側開閉弁16bの状態に連動して中間圧側開閉弁16aを閉弁状態とする。これにより、ヒートポンプサイクル10は、冷房運転モードと同様の図4Aの実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。また、エアミックスドア34のサーボモータへ出力される制御信号については、エアミックスドア34がバイパス通路35を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を通過するように決定される。 Further, the low-pressure side opening / closing valve 16b is opened, the low-stage pressure reducing means is fully opened without exerting a pressure reducing action, and the intermediate pressure-side opening / closing valve 16a is closed in conjunction with the state of the low-pressure side opening / closing valve 16b. As a result, the heat pump cycle 10 is switched to the refrigerant flow path through which the refrigerant flows as indicated by the solid line arrows in FIG. 4A similar to the cooling operation mode. Regarding the control signal output to the servo motor of the air mix door 34, the air mix door 34 closes the bypass passage 35, and the entire flow rate of the blown air after passing through the indoor evaporator 23 passes through the indoor condenser 12. To be determined.
 さらに、本実施形態の除湿暖房モードでは、設定温度と外気温との温度差に応じて、第1可変絞り13および第3可変絞り22の絞り開度を変化させている。具体的には、前述した目標吹出温度TAOの上昇に伴って、第1可変絞り13の絞り開度を減少させると共に第3可変絞り22の絞り開度を増加させることで、以下に示す第1除湿暖房モードから第4除湿暖房モードの4段階の除湿暖房モードを実行する。 Furthermore, in the dehumidifying and heating mode of the present embodiment, the opening degrees of the first variable throttle 13 and the third variable throttle 22 are changed according to the temperature difference between the set temperature and the outside air temperature. Specifically, as the target blowout temperature TAO is increased, the throttle opening of the first variable throttle 13 is decreased and the throttle opening of the third variable throttle 22 is increased. A four-stage dehumidifying heating mode is executed from the dehumidifying heating mode to the fourth dehumidifying heating mode.
 (第1除湿暖房モード)
 第1除湿暖房モードでは、第1可変絞り13を全開状態とし、第3可変絞り22を絞り状態とする。従って、サイクル構成(冷媒流路)については、冷房運転モードと全く同様となるものの、エアミックスドア34が室内凝縮器12の空気通路を全開しているので、サイクルを循環する冷媒の状態については図5Aのモリエル線図に示すように変化する。
(First dehumidifying heating mode)
In the first dehumidifying and heating mode, the first variable throttle 13 is in a fully open state, and the third variable throttle 22 is in a throttle state. Therefore, although the cycle configuration (refrigerant flow path) is exactly the same as that in the cooling operation mode, the air mix door 34 fully opens the air passage of the indoor condenser 12, so that the state of the refrigerant circulating in the cycle is It changes as shown in the Mollier diagram of FIG. 5A.
 以上の如く、第1除湿暖房モード時には、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the first dehumidifying heating mode, the vehicle interior air cooled and dehumidified by the indoor evaporator 23 can be heated by the indoor condenser 12 and blown out into the vehicle interior. Thereby, dehumidification heating of a vehicle interior is realizable.
 (第2除湿暖房モード)
 次に、第1除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第1基準温度よりも高くなった際には、第2除湿暖房モードが実行される。第2除湿暖房モードでは、第1可変絞り13を絞り状態とし、第3可変絞り22の絞り開度を第1除湿暖房モードよりも増加させた絞り状態とする。従って、第2除湿暖房モードでは、サイクルを循環する冷媒の状態については図5B、図6Aのモリエル線図に示すように変化する。
(Second dehumidifying heating mode)
Next, when the target blowing temperature TAO becomes higher than the predetermined first reference temperature during the execution of the first dehumidifying and heating mode, the second dehumidifying and heating mode is executed. In the second dehumidifying and heating mode, the first variable throttle 13 is set to the throttled state, and the throttle opening of the third variable throttle 22 is set to the throttled state in which the throttle opening is increased compared to the first dehumidifying and heating mode. Therefore, in the second dehumidifying and heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagrams of FIGS. 5B and 6A.
 すなわち、図5Bに示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(図11のa10点)は、第1除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(a10点→b110点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 5B, (a 10 point in FIG. 11) the high-pressure refrigerant discharged from the discharge port 11c of compressor 11, as in the first dehumidification and heating mode, and flows into indoor condenser 12, inside evaporator 23 and the cabin air blown heat exchange with dehumidified is cooled by radiating heat (10 → b1 10 a). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている第1可変絞り13によって中間圧冷媒となるまで等エンタルピ的に減圧される(b110点→b210点)。第1可変絞り13にて減圧された中間圧冷媒は、気液分離器14→低段側減圧手段の低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。 The refrigerant that has flowed out of the indoor condenser 12 is decompressed in an enthalpy manner (b1 10 points → b2 10 points) by the first variable throttle 13 in the throttled state until it becomes intermediate pressure refrigerant. The intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 → the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
 そして、図6Aに示すように、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して放熱する(b210点→b310点)。
以降の作動は冷房運転モードと同様である。
6A, the low-pressure refrigerant that has flowed into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 to dissipate heat (b2 10 points → b3 10 points).
The subsequent operation is the same as in the cooling operation mode.
 以上の如く、第2除湿暖房モードでは、第1除湿暖房モード時と同様に、室内蒸発器23にて冷却され除湿された車室内送風空気を、室内凝縮器12にて加熱して車室内へ吹き出すことができる。これにより、車室内の除湿暖房を実現することができる。 As described above, in the second dehumidifying and heating mode, as in the first dehumidifying and heating mode, the vehicle interior blown air that has been cooled and dehumidified by the indoor evaporator 23 is heated by the indoor condenser 12 into the vehicle interior. Can be blown out. Thereby, dehumidification heating of a vehicle interior is realizable.
 この際、第2除湿暖房モードでは、第1可変絞り13を絞り状態としているので、第1除湿暖房モードに対して、室外熱交換器20へ流入する冷媒の温度を低下させることができる。従って、室外熱交換器20における冷媒の温度と外気温との温度差を縮小して、室外熱交換器20における冷媒の放熱量を低減できる。 At this time, since the first variable throttle 13 is in the throttle state in the second dehumidifying and heating mode, the temperature of the refrigerant flowing into the outdoor heat exchanger 20 can be lowered compared to the first dehumidifying and heating mode. Therefore, the temperature difference between the temperature of the refrigerant in the outdoor heat exchanger 20 and the outside air temperature can be reduced, and the amount of heat released from the refrigerant in the outdoor heat exchanger 20 can be reduced.
 その結果、室内凝縮器12における冷媒の量を増加させることができるので、第1除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。 As a result, since the amount of refrigerant in the indoor condenser 12 can be increased, the temperature blown out from the indoor condenser 12 can be increased more than in the first dehumidifying and heating mode.
 (第3除湿暖房モード)
 次に、第2除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第2基準温度よりも高くなった際には、第3除湿暖房モードが実行される。第3除湿暖房モードでは、第1可変絞り13の絞り開度を第2除湿暖房モードよりも縮小させた絞り状態とし、第3可変絞り22の絞り開度を第2除湿暖房モードよりも増加させる。従って、第3除湿暖房モードでは、サイクルを循環する冷媒の状態については図5C、図6Bのモリエル線図に示すように変化する。
(Third dehumidifying heating mode)
Next, when the target blowing temperature TAO becomes higher than the predetermined second reference temperature during the execution of the second dehumidifying and heating mode, the third dehumidifying and heating mode is executed. In the third dehumidifying and heating mode, the throttle opening of the first variable throttle 13 is set to a throttled state that is reduced compared to the second dehumidifying and heating mode, and the throttle opening of the third variable throttle 22 is increased more than in the second dehumidifying and heating mode. . Therefore, in the third dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagrams of FIGS. 5C and 6B.
 すなわち、図5Cに示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(a11点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(a11点→b11点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 5C, the high-pressure refrigerant discharged from the discharge port 11c of compressor 11 (a 11-point) is, like the first and second dehumidification and heating mode, and flows into indoor condenser 12, inside evaporator 23 and the cabin air blown heat exchange with dehumidified is cooled by radiating heat (a 11 point → b 11 points). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている第1可変絞り13によって外気温よりも温度の低い中間圧冷媒となるまで等エンタルピ的に減圧される(b11点→c111点)。第1可変絞り13にて減圧された中間圧冷媒は、気液分離器14→低段側減圧手段の低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。 The refrigerant flowing out of the indoor condenser 12 is decompressed in an enthalpy manner until it becomes an intermediate pressure refrigerant having a temperature lower than the outside air temperature by the first variable throttle 13 in the throttle state (b 11 point → c 11 11 point). ). The intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 → the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
 そして、図6Bに示すように、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(c111点→c211点)。さらに、室外熱交換器20から流出した冷媒は、第3可変絞り22にて等エンタルピ的に減圧されて(c211点→c311点)、室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。 Then, as shown in FIG. 6B, the low-pressure refrigerant flowing into the outdoor heat exchanger 20, and outside air heat exchange, which is blown from the blower fan 21 absorbs heat (c1 11 points → c2 11 points). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 is decompressed in an enthalpy manner by the third variable throttle 22 (c2 11 point → c3 11 point), and flows into the indoor evaporator 23. The subsequent operation is the same as in the cooling operation mode.
 第3除湿暖房モードでは、第1可変絞り13の絞り開度を縮小させることによって、室外熱交換器20を蒸発器として作用させているので、第2除湿暖房モードに対して、室内凝縮器12における冷媒の量を増加させることができる。その結果、第2除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。 In the third dehumidifying and heating mode, the outdoor heat exchanger 20 is operated as an evaporator by reducing the throttle opening of the first variable throttle 13, so that the indoor condenser 12 is compared with the second dehumidifying and heating mode. The amount of refrigerant in can be increased. As a result, the temperature blown out from the indoor condenser 12 can be increased more than in the second dehumidifying and heating mode.
 (第4除湿暖房モード)
 次に、第3除湿暖房モードの実行中に、目標吹出温度TAOが予め定めた第3基準温度よりも高くなった際には、第4除湿暖房モードが実行される。第4除湿暖房モードでは、第1可変絞り13の絞り開度を第3除湿暖房モードよりも縮小させた絞り状態とし、第3可変絞り22を全開状態とする。従って、第4除湿暖房モードでは、サイクルを循環する冷媒の状態については図5Dのモリエル線図に示すように変化する。
(4th dehumidifying heating mode)
Next, when the target blowing temperature TAO becomes higher than a predetermined third reference temperature during execution of the third dehumidifying heating mode, the fourth dehumidifying heating mode is executed. In the fourth dehumidifying and heating mode, the throttle opening degree of the first variable throttle 13 is made smaller than that in the third dehumidifying and heating mode, and the third variable throttle 22 is fully opened. Therefore, in the fourth dehumidifying heating mode, the state of the refrigerant circulating in the cycle changes as shown in the Mollier diagram of FIG. 5D.
 すなわち、図5Dに示すように、圧縮機11の吐出ポート11cから吐出された高圧冷媒(a12点)は、第1、第2除湿暖房モードと同様に、室内凝縮器12へ流入して、室内蒸発器23にて冷却されて除湿された車室内送風空気と熱交換して放熱する(a12点→b12点)。これにより、車室内送風空気が加熱される。 That is, as shown in FIG. 5D, the high-pressure refrigerant (a 12 point) discharged from the discharge port 11c of compressor 11, first, similarly to the second dehumidification and heating mode, and flows into indoor condenser 12, inside evaporator 23 and the cabin air blown heat exchange with dehumidified is cooled by radiating heat (a 12 point → b 12 points). Thereby, vehicle interior blowing air is heated.
 室内凝縮器12から流出した冷媒は、絞り状態となっている第1可変絞り13によって外気温よりも温度の低い低圧冷媒となるまで等エンタルピ的に減圧される(b12点→c112点)。第1可変絞り13にて減圧された中間圧冷媒は、気液分離器14→低段側減圧手段の低圧側開閉弁16bの順に流れて室外熱交換器20へ流入する。 The refrigerant flowing from the indoor condenser 12 is isenthalpic depressurize until low pressure refrigerant temperature than the outside air temperature by the first variable throttle 13 which is the stop state (b 12 points → c1 12 points) . The intermediate-pressure refrigerant decompressed by the first variable throttle 13 flows in the order of the gas-liquid separator 14 → the low-pressure side opening / closing valve 16 b of the low-stage decompression means, and flows into the outdoor heat exchanger 20.
 そして、室外熱交換器20へ流入した低圧冷媒は、送風ファン21から送風された外気と熱交換して吸熱する(c112点→c212点)。さらに、室外熱交換器20から流出した冷媒は、第3可変絞り22が全開状態となっているので、減圧されることなく室内蒸発器23へ流入する。以降の作動は冷房運転モードと同様である。 The low-pressure refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outside air blown from the blower fan 21 and absorbs heat (c1 12 points → c2 12 points). Furthermore, the refrigerant that has flowed out of the outdoor heat exchanger 20 flows into the indoor evaporator 23 without being reduced in pressure because the third variable throttle 22 is fully opened. The subsequent operation is the same as in the cooling operation mode.
 この際、第4除湿暖房モードでは、第3除湿暖房モードと同様に、室外熱交換器20を蒸発器として作用させるとともに、第3除湿暖房モードよりも第1可変絞り13の絞り開度を縮小させているので、室外熱交換器20における冷媒蒸発温度を低下させることができる。従って、第3除湿暖房モードよりも室外熱交換器20における冷媒の温度と外気温との温度差を拡大させて、室内凝縮器12における冷媒の量を増加させることができる。 At this time, in the fourth dehumidifying and heating mode, the outdoor heat exchanger 20 is caused to act as an evaporator as in the third dehumidifying and heating mode, and the throttle opening of the first variable throttle 13 is reduced as compared with the third dehumidifying and heating mode. Therefore, the refrigerant evaporation temperature in the outdoor heat exchanger 20 can be lowered. Therefore, the amount of refrigerant in the indoor condenser 12 can be increased by expanding the temperature difference between the refrigerant temperature and the outside air temperature in the outdoor heat exchanger 20 as compared with the third dehumidifying and heating mode.
 その結果、第3除湿暖房モードよりも室内凝縮器12から吹き出される温度を上昇させることができる。 As a result, the temperature blown out from the indoor condenser 12 can be increased more than in the third dehumidifying heating mode.
 ここで、除湿暖房運転モードにおいて、中間圧側開閉弁16aを閉弁状態とする理由を説明する。除湿暖房運転モードにおいて、ガスインジェクションサイクルを実現する場合、気液分離器14における冷媒圧力と、圧縮機11の中間圧ポート11bにおける冷媒圧力との差圧により、中間圧冷媒通路15に流れる冷媒の流量が変化してしまう。この中間圧冷媒通路15を流れる冷媒の流量が変化によって、室内凝縮器12における冷媒の放熱量が変化してしまい、送風空気の温度調整が難しくなり、送風空気の適切な温度調整を図るために、サイクル構成や各種制御が複雑となってしまうからである。 Here, the reason why the intermediate pressure side on-off valve 16a is closed in the dehumidifying and heating operation mode will be described. When the gas injection cycle is realized in the dehumidifying heating operation mode, the refrigerant flowing in the intermediate pressure refrigerant passage 15 is caused by the differential pressure between the refrigerant pressure in the gas-liquid separator 14 and the refrigerant pressure in the intermediate pressure port 11b of the compressor 11. The flow rate changes. To change the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15, the amount of heat released from the refrigerant in the indoor condenser 12 changes, making it difficult to adjust the temperature of the blown air, and to appropriately adjust the temperature of the blown air. This is because the cycle configuration and various controls become complicated.
 特に、本実施形態の除湿暖房運転モードのように目標吹出温度TAOに応じて第1可変絞り13および第3可変絞り22の絞り開度を変化させる場合、中間圧側開閉弁16aを開弁状態としてガスインジェクションサイクルを実現すると、目標吹出温度TAOと中間圧冷媒通路15を流れる冷媒の流量とが相反した関係となり、送風空気の温度調整が難しくなる。 In particular, when the throttle openings of the first variable throttle 13 and the third variable throttle 22 are changed according to the target blowing temperature TAO as in the dehumidifying and heating operation mode of the present embodiment, the intermediate pressure side on-off valve 16a is set to the open state. If the gas injection cycle is realized, the target blowing temperature TAO and the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 are in a contradictory relationship, making it difficult to adjust the temperature of the blown air.
 例えば、第1~第4除湿暖房運転モードのうち、最も目標吹出温度TAOが低い際に実行する第1除湿暖房運転モードでは、第1可変絞り13が全開状態となり、気液分離器14における冷媒圧力と圧縮機11の中間圧ポート11bにおける冷媒圧力との差圧が最大となる。この結果、中間圧冷媒通路15を流れる冷媒の流量が増加して、室内凝縮器12における放熱量が増加し、吹出空気の温度を低下させることが難しくなってしまう。 For example, in the first dehumidifying heating operation mode executed when the target blowing temperature TAO is the lowest among the first to fourth dehumidifying heating operation modes, the first variable throttle 13 is fully opened, and the refrigerant in the gas-liquid separator 14 is opened. The differential pressure between the pressure and the refrigerant pressure at the intermediate pressure port 11b of the compressor 11 is maximized. As a result, the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 increases, the amount of heat release in the indoor condenser 12 increases, and it becomes difficult to lower the temperature of the blown air.
 また、第1~第4除湿暖房運転モードのうち、最も目標吹出温度TAOが高い際に実行する第4除湿暖房運転モードでは、第1可変絞り13が絞り状態となり、気液分離器14における冷媒圧力と圧縮機11の中間圧ポート11bにおける冷媒圧力との差圧が最小となる。この結果、中間圧冷媒通路15を流れる冷媒の流量が減少して、室内凝縮器12における放熱量が減少し、吹出空気の温度を上昇させることが難しくなる。 In the first dehumidifying and heating mode, the fourth variable dehumidifying and heating mode executed when the target blowing temperature TAO is the highest, the first variable throttle 13 is in the throttle state, and the refrigerant in the gas-liquid separator 14 The differential pressure between the pressure and the refrigerant pressure at the intermediate pressure port 11b of the compressor 11 is minimized. As a result, the flow rate of the refrigerant flowing through the intermediate pressure refrigerant passage 15 decreases, the amount of heat released in the indoor condenser 12 decreases, and it becomes difficult to raise the temperature of the blown air.
 このように、本実施形態では、送風空気の温度を調整する際のサイクル構成や制御が複雑化することを抑制するために、除湿暖房運転モードに中間圧側開閉弁16aを閉弁状態としている。 Thus, in the present embodiment, the intermediate pressure side opening / closing valve 16a is closed in the dehumidifying heating operation mode in order to suppress the complexity of the cycle configuration and control when adjusting the temperature of the blown air.
 また、除湿暖房運転モードにおいて、低段側減圧手段を、減圧作用を発揮しない全開状態とする理由は、低段側減圧手段を絞り状態とする場合、室外熱交換器20における吸熱量および放熱量の調整範囲が制限されてしまい、送風空気の極め細やかな温度調整が難しくなるからである。 In the dehumidifying and heating operation mode, the reason why the low-stage decompression means is in a fully open state that does not exert a decompression action is that when the low-stage decompression means is in the throttle state, the amount of heat absorbed and radiated in the outdoor heat exchanger 20 This is because the adjustment range is limited, and it is difficult to adjust the temperature of the blown air.
 このように、本実施形態の除湿暖房運転モードでは、中間圧側開閉弁16aを閉弁状態とし、さらに、低段側減圧手段を、減圧作用を発揮しない全開状態とすることで、送風空気の温度を調整する際のサイクル構成や制御が複雑化することを抑制すると共に、送風空気の極め細やかな温度調整を実現している。 As described above, in the dehumidifying and heating operation mode of the present embodiment, the intermediate pressure side opening / closing valve 16a is closed, and the low stage pressure reducing means is fully opened so as not to exert a pressure reducing action. In addition to suppressing the complexity of the cycle configuration and control when adjusting the air flow, the temperature of the blown air is finely adjusted.
 以上説明した本実施形態の車両用空調装置1では、第1可変絞り13、および、低段側減圧手段の双方を減圧作用を発揮しない全開状態に設定可能としている。このため、圧縮機11から室外熱交換器20に至る冷媒流路を、車両用空調装置1の各運転モードに応じて別個に設けることなく、第1可変絞り13および低段側減圧手段の状態(絞り状態、全開状態)を変更することで、各運転モードに応じて室外熱交換器20における冷媒と外気との熱交換量(吸熱量および放熱量)を調整することができる。 In the vehicle air conditioner 1 of the present embodiment described above, both the first variable throttle 13 and the low stage pressure reducing means can be set to a fully open state that does not exhibit a pressure reducing action. For this reason, the refrigerant flow path from the compressor 11 to the outdoor heat exchanger 20 is not separately provided according to each operation mode of the vehicle air conditioner 1, and the state of the first variable throttle 13 and the low-stage decompression means By changing the (throttle state, fully open state), the heat exchange amount (heat absorption amount and heat release amount) between the refrigerant and the outside air in the outdoor heat exchanger 20 can be adjusted according to each operation mode.
 従って、ガスインジェクションサイクルを構成するヒートポンプサイクルにおいて、冷房、暖房、および除湿暖房を簡素化なサイクル構成で実現することができる。 Therefore, in the heat pump cycle constituting the gas injection cycle, cooling, heating, and dehumidifying heating can be realized with a simple cycle configuration.
 また、本実施形態では、中間圧冷媒通路15を開閉する中間圧側開閉弁16aを設けているので、中間圧側開閉弁16aにて中間圧冷媒通路15を開閉することで、ヒートポンプサイクルをガスインジェクションサイクルと、通常サイクル(一段圧縮サイクル)とに切り替えることができる。 In this embodiment, since the intermediate pressure side on / off valve 16a for opening and closing the intermediate pressure refrigerant passage 15 is provided, the heat pump cycle is changed to the gas injection cycle by opening and closing the intermediate pressure refrigerant passage 15 by the intermediate pressure side on / off valve 16a. And a normal cycle (one-stage compression cycle).
 さらに、本実施形態では、冷房運転モードおよび除湿暖房運転モードには、中間圧側開閉弁16aにて中間圧冷媒通路15を閉鎖して、ヒートポンプサイクル10を通常サイクルに切り替える構成としている。 Further, in the present embodiment, in the cooling operation mode and the dehumidifying heating operation mode, the intermediate pressure refrigerant passage 15 is closed by the intermediate pressure side opening / closing valve 16a, and the heat pump cycle 10 is switched to the normal cycle.
 このように冷房運転モード時において、中間圧冷媒通路15を閉鎖して、ヒートポンプサイクルを通常サイクルに切り替える構成とすれば、圧縮機11の無駄なエネルギ消費を低減することができる。 Thus, in the cooling operation mode, if the intermediate pressure refrigerant passage 15 is closed and the heat pump cycle is switched to the normal cycle, useless energy consumption of the compressor 11 can be reduced.
 また、除湿暖房運転モード時において、中間圧冷媒通路15を閉鎖して、ヒートポンプサイクルを通常サイクルに切り替える構成とすれば、室内凝縮器12における冷媒の放熱量の調整が容易となり、簡易な構成で送風空気の適切な温度調整を実現することができる。 Further, in the dehumidifying and heating operation mode, if the intermediate pressure refrigerant passage 15 is closed and the heat pump cycle is switched to the normal cycle, the heat release amount of the refrigerant in the indoor condenser 12 can be easily adjusted, and the configuration can be simplified. Appropriate temperature adjustment of the blown air can be realized.
 特に、本実施形態では、除湿暖房運転モードにおいて、目標吹出温度TAOに応じて第1可変絞り13および第3可変絞り22の絞り開度を変化させる構成としているので、室内凝縮器12における冷媒の放熱量および室内蒸発器23における冷媒の吸熱量を適切に調整することができ、簡易な構成で送風空気の極め細やかな温度調整を実現することができる。 In particular, in the present embodiment, in the dehumidifying and heating operation mode, the throttle openings of the first variable throttle 13 and the third variable throttle 22 are changed according to the target outlet temperature TAO, so that the refrigerant in the indoor condenser 12 is changed. The amount of heat release and the amount of heat absorbed by the refrigerant in the indoor evaporator 23 can be adjusted appropriately, and an extremely fine temperature adjustment of the blown air can be realized with a simple configuration.
 また、暖房運転モード時には、中間圧側開閉弁16aにて中間圧冷媒通路15を開放して、ヒートポンプサイクルをガスインジェクションサイクルに切り替えるので、サイクルの成績係数(COP)の向上を図ることができる。 In the heating operation mode, the intermediate pressure refrigerant passage 15 is opened by the intermediate pressure side opening / closing valve 16a and the heat pump cycle is switched to the gas injection cycle, so that the coefficient of performance (COP) of the cycle can be improved.
 さらに、本実施形態のように電気自動車に適用される車両用空調装置1では、内燃機関(エンジン)を搭載する車両のようにエンジンの廃熱を車室内の暖房のために利用できない。従って、本実施形態のヒートポンプサイクル10のように、暖房運転モード時に暖房負荷によらず高いCOPを発揮できることは、極めて有効である。 Furthermore, in the vehicle air conditioner 1 applied to the electric vehicle as in the present embodiment, the waste heat of the engine cannot be used for heating the vehicle interior as in a vehicle equipped with an internal combustion engine (engine). Therefore, it is extremely effective that a high COP can be exhibited regardless of the heating load in the heating operation mode as in the heat pump cycle 10 of the present embodiment.
 また、本実施形態のヒートポンプサイクル10では、気液分離手段として遠心分離方式の気液分離器14を採用し、気液分離器14の内容積を余剰冷媒体積よりも小さくしているので、気液分離手段の体格を小型化させて、ヒートポンプサイクル10全体としての車両への搭載性を向上させることができる。さらに、サイクルに負荷変動が生じたとしても、アキュムレータ24にて余剰となる冷媒を蓄えることができるので、サイクルを安定して作動させることができる。 Further, in the heat pump cycle 10 of the present embodiment, the centrifugal gas-liquid separator 14 is employed as the gas-liquid separating means, and the internal volume of the gas-liquid separator 14 is made smaller than the surplus refrigerant volume. The physique of the liquid separating means can be reduced in size, and the mountability of the heat pump cycle 10 on the vehicle as a whole can be improved. Furthermore, even if a load fluctuation occurs in the cycle, surplus refrigerant can be stored in the accumulator 24, so that the cycle can be stably operated.
 なお、本実施形態のヒートポンプサイクル10に採用されている遠心分離方式の気液分離器14は、冷媒の流速が速くなるに伴って気液分離性能が高くなるので、比較的高負荷で運転される頻度の高いヒートポンプサイクル10に適用して有効である。 The centrifugal gas-liquid separator 14 employed in the heat pump cycle 10 of the present embodiment has a higher gas-liquid separation performance as the refrigerant flow rate increases, and is therefore operated at a relatively high load. It is effective when applied to the heat pump cycle 10 having a high frequency.
 (第2実施形態)
 第1実施形態において、低段側減圧手段は、第2可変絞り17と、それに並列に挿入されている低圧側開閉弁16bとを合わせたものを指していた。第2実施形態においては、図7に示すように、全開機能付の第2可変絞り17を1つ使用しており、第1暖房モードや除霜暖房モード時は第2可変絞り17を制御開度で使用し、減圧装置として使う。第2暖房モードや冷房モードなどでは第2可変絞り17を全開開度で使用する。作用、効果は第1実施形態と同じである。図7の実線矢印は、第2暖房モードの冷媒流路(第2可変絞り17:全開開度)を示しており、実線矢印と点線矢印と合わせた矢印は、第1暖房モードの冷媒流路(第2可変絞り17:制御開度)を示している。
(Second Embodiment)
In the first embodiment, the low-stage decompression means refers to a combination of the second variable throttle 17 and the low-pressure side on-off valve 16b inserted in parallel therewith. In the second embodiment, as shown in FIG. 7, one second variable throttle 17 with a fully open function is used, and the second variable throttle 17 is controlled and opened in the first heating mode and the defrost heating mode. Use as a pressure reducing device. In the second heating mode, the cooling mode, etc., the second variable throttle 17 is used at the fully open position. The operation and effect are the same as in the first embodiment. The solid arrow in FIG. 7 indicates the refrigerant flow path in the second heating mode (second variable throttle 17: full opening), and the arrow combined with the solid arrow and the dotted arrow indicates the refrigerant flow path in the first heating mode. (2nd variable aperture 17: control opening degree) is shown.
 (第3実施形態)
 本実施形態では、第1実施形態に対してヒートポンプサイクル10のサイクル構成を変更した例について説明する。本実施形態のヒートポンプサイクル10は、圧縮機11の吐出ポート11cから吐出された高圧冷媒の熱を直接的に送風空気に放熱するのではなく、不凍液等からなる熱媒体を介して送風空気に放熱する構成としている。
(Third embodiment)
This embodiment demonstrates the example which changed the cycle structure of the heat pump cycle 10 with respect to 1st Embodiment. The heat pump cycle 10 of the present embodiment does not directly radiate the heat of the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 to the blown air, but radiates it to the blown air via a heat medium made of an antifreeze liquid or the like. It is configured to do.
 具体的には、図8の全体構成図に示すように、ヒートポンプサイクル10に圧縮機11の吐出ポート11cから吐出された高圧冷媒の熱を、送風空気を加熱すための熱媒体に放熱する冷媒放熱器52を設ける構成としている。 Specifically, as shown in the overall configuration diagram of FIG. 8, the refrigerant that radiates the heat of the high-pressure refrigerant discharged from the discharge port 11c of the compressor 11 to the heat pump cycle 10 to the heat medium for heating the blown air. The radiator 52 is provided.
 また、室内空調ユニット30には、冷媒放熱器52にて加熱された熱媒体の熱を送風空気に放熱して、送風空気を加熱する加熱用熱交換器12’を配置するようにしている。この加熱用熱交換器12’は、熱媒体循環回路50を介して冷媒放熱器52に接続されており、熱媒体循環回路50に設けられた圧送ポンプ51により熱媒体が圧送される。 In the indoor air conditioning unit 30, a heating heat exchanger 12 'for dissipating the heat of the heat medium heated by the refrigerant radiator 52 to the blown air and heating the blown air is arranged. The heating heat exchanger 12 ′ is connected to the refrigerant radiator 52 via the heat medium circulation circuit 50, and the heat medium is pumped by a pressure pump 51 provided in the heat medium circulation circuit 50.
 このように構成すると、室内空調ユニット30の外部に冷媒放熱器52を配置する構成となるので、現状の室内空調ユニット30の内部構成を変更することなく、本実施形態を適用することが可能となる。このことは、空調装置のシステム構築のコストを抑えることができる点で有効である。 If comprised in this way, since it becomes the structure which arrange | positions the refrigerant | coolant heat radiator 52 outside the indoor air conditioning unit 30, it will be possible to apply this embodiment, without changing the internal structure of the present indoor air conditioning unit 30. Become. This is effective in that the cost for constructing the system of the air conditioner can be suppressed.
 (第4実施形態)
 本実施形態では、図9A~9Cを参照して、第1実施形態に対して中間圧側開閉弁16aの構成を変更した例について説明する。本実施形態では、中間圧側開閉弁16aを、低段側減圧手段の第2可変絞り17の前後差圧に応じて中間圧冷媒通路15を開閉する差圧開閉弁で構成している。
(Fourth embodiment)
In the present embodiment, an example in which the configuration of the intermediate pressure side on-off valve 16a is changed with respect to the first embodiment will be described with reference to FIGS. 9A to 9C. In the present embodiment, the intermediate pressure side on / off valve 16a is constituted by a differential pressure on / off valve that opens and closes the intermediate pressure refrigerant passage 15 in accordance with the differential pressure across the second variable throttle 17 of the low stage pressure reducing means.
 本実施形態の中間圧側開閉弁16aは、第2可変絞り17の前後の差圧が、所定の設定圧力α以上となった際に、中間圧冷媒通路15を閉鎖する差圧開閉弁で構成されている。 The intermediate pressure side on / off valve 16a of the present embodiment is configured by a differential pressure on / off valve that closes the intermediate pressure refrigerant passage 15 when the differential pressure before and after the second variable throttle 17 becomes equal to or higher than a predetermined set pressure α. ing.
 具体的には、中間圧側開閉弁16aは、図9A上部(a)に示すように、低段側減圧手段の低圧側開閉弁16bが閉じて、第2可変絞り17の前後差圧が増大して設定圧力α以上となった際に、中間圧冷媒通路15を開放するように構成されている。 Specifically, as shown in the upper part (a) of FIG. 9A, the intermediate pressure side on-off valve 16a closes the low-pressure side on-off valve 16b of the low-stage side pressure reducing means, and the differential pressure across the second variable throttle 17 increases. The intermediate pressure refrigerant passage 15 is opened when the pressure becomes equal to or higher than the set pressure α.
 また、中間圧側開閉弁16aは、図9A下部(b)に示すように、低段側減圧手段の低圧側開閉弁16bが開いて、第2可変絞り17の前後差圧が減少して設定圧力α未満となった際に、中間圧冷媒通路15を閉鎖するように構成されている。 Further, as shown in the lower part (b) of FIG. 9A, the intermediate pressure side opening / closing valve 16a is opened by the low pressure side opening / closing valve 16b of the low stage side pressure reducing means, and the differential pressure across the second variable throttle 17 is reduced. When it becomes less than α, the intermediate pressure refrigerant passage 15 is closed.
 このように構成される本実施形態のヒートポンプサイクル10では、低圧側開閉弁16bを開弁状態として低段側減圧手段を、減圧作用を発揮しない全開状態とする冷房運転モードおよび除湿暖房運転モードにおいて、第2可変絞り17の前後差圧が設定圧力α未満となり、中間圧側開閉弁16aが閉弁する。これにより、ヒートポンプサイクル10は、図9Bの全体構成図(実線矢印)に示すように、中間圧冷媒通路15に冷媒が流れない通常サイクルの冷媒流路に切り替えられる。 In the heat pump cycle 10 of the present embodiment configured as described above, in the cooling operation mode and the dehumidifying heating operation mode in which the low-pressure side opening / closing valve 16b is opened and the low-stage decompression unit is fully opened without exhibiting the decompression action. The differential pressure across the second variable throttle 17 becomes less than the set pressure α, and the intermediate pressure side on-off valve 16a is closed. As a result, the heat pump cycle 10 is switched to the refrigerant flow path of the normal cycle in which the refrigerant does not flow through the intermediate pressure refrigerant passage 15 as shown in the overall configuration diagram (solid arrow) in FIG. 9B.
 また、本実施形態のヒートポンプサイクル10では、低圧側開閉弁16bを閉弁状態として低段側減圧手段を、減圧作用を発揮させる絞り状態とする暖房運転モードにおいて、第2可変絞り17の前後差圧が設定圧力α以上となり、中間圧側開閉弁16aが開弁する。これにより、ヒートポンプサイクル10は、図9Cの全体構成図(実線矢印)に示すように、中間圧冷媒通路15に冷媒が流れるガスインジェクションサイクルの冷媒流路に切り替えられる。 Further, in the heat pump cycle 10 of the present embodiment, the front-rear difference of the second variable throttle 17 in the heating operation mode in which the low-pressure side opening / closing valve 16b is closed and the low-stage pressure reducing means is in the throttled state in which the pressure reducing action is exerted. The pressure becomes equal to or higher than the set pressure α, and the intermediate pressure side opening / closing valve 16a is opened. Thereby, the heat pump cycle 10 is switched to the refrigerant flow path of the gas injection cycle in which the refrigerant flows in the intermediate pressure refrigerant passage 15 as shown in the overall configuration diagram (solid arrow) in FIG. 9C.
 本実施形態のように、中間圧側開閉弁16aを差圧開閉弁で構成すれば、ガスインジェクションサイクルと、通常サイクルとの切り替えを簡易な構成および制御手法で実現することができる。 If the intermediate pressure side opening / closing valve 16a is configured with a differential pressure opening / closing valve as in the present embodiment, switching between the gas injection cycle and the normal cycle can be realized with a simple configuration and control method.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。上述の実施形態では、本開示のヒートポンプサイクル10を車両用空調装置1に適用した例を説明したが、本開示の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫等に適用してもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure. In the above-described embodiment, the example in which the heat pump cycle 10 of the present disclosure is applied to the vehicle air conditioner 1 has been described, but the application of the present disclosure is not limited thereto. For example, the present invention may be applied to a stationary air conditioner, a cold storage container, and the like.
 上述の実施形態では、第1可変絞り13および低段側減圧手段の状態の切り替え、およびヒートポンプサイクル10の冷媒流路の切り替え等によって、種々の運転モードを実現可能なヒートポンプサイクル10について説明したが、これに限定されず、少なくとも暖房運転モード、除霜暖房モードの2つの運転モードが実現可能な構成であればよい。勿論、各運転モードにおいて、種々の運転モードを設ける方が、送風空気の温度を適切に温度調整できる点で有効である。 In the above-described embodiment, the heat pump cycle 10 that can realize various operation modes by switching the state of the first variable throttle 13 and the low-stage decompression unit and switching the refrigerant flow path of the heat pump cycle 10 has been described. However, the present invention is not limited to this, and any configuration that can realize at least two operation modes of the heating operation mode and the defrosting heating mode may be used. Of course, providing each operation mode in each operation mode is effective in that the temperature of the blown air can be adjusted appropriately.
 上述の実施形態では、暖房運転モード時に圧縮機11の回転数に応じて、第1暖房モードと第2暖房モードとを切り替える例を説明したが、第1暖房モードと第2暖房モードとの切り替えはこれに限定されない。つまり、第1暖房モードと第2暖房モードとの切り替えは、第1、第2暖房モードのうち高いCOPを発揮できる暖房モードに切り替えればよい。例えば、外気センサの検出値に基づいて、検出値が予め定めた基準外気温(例えば、0℃)以下である場合には、第1暖房モードを実行し、検出値が基準外気温よりも高い場合には、第2暖房運転モードを実行するようにしてもよい。 In the above-described embodiment, the example in which the first heating mode and the second heating mode are switched according to the rotation speed of the compressor 11 in the heating operation mode has been described, but switching between the first heating mode and the second heating mode is described. Is not limited to this. That is, the switching between the first heating mode and the second heating mode may be switched to the heating mode that can exhibit a high COP in the first and second heating modes. For example, when the detected value is equal to or lower than a predetermined reference outside air temperature (for example, 0 ° C.) based on the detected value of the outside air sensor, the first heating mode is executed, and the detected value is higher than the reference outside air temperature. In this case, the second heating operation mode may be executed.
 上述の実施形態では、冷房運転モード、暖房運転モードおよび除湿暖房運転モードの各運転モード時に、空調制御装置40が、室内凝縮器12の空気通路あるいはバイパス通路35のいずれか一方を閉塞するようにエアミックスドア34を作動させる例を説明したが、エアミックスドア34の作動はこれに限定されない。つまり、エアミックスドア34が室内凝縮器12の空気通路およびバイパス通路35の双方を開くようにしてもよい。そして、室内凝縮器12を通過させる風量とバイパス通路を通過させる風量との風量割合を調整することによって、合流空間36から車室内へ吹き出される送風空気の温度を調整してもよい。このような温度調整は、車室内送風空気の温度を微調整しやすい点で有効である。 In the above-described embodiment, the air conditioning control device 40 is configured to block either the air passage or the bypass passage 35 of the indoor condenser 12 during each operation mode of the cooling operation mode, the heating operation mode, and the dehumidifying heating operation mode. Although the example which operates the air mix door 34 was demonstrated, the action | operation of the air mix door 34 is not limited to this. That is, the air mix door 34 may open both the air passage and the bypass passage 35 of the indoor condenser 12. And you may adjust the temperature of the ventilation air which blows off into the vehicle interior from the confluence | merging space 36 by adjusting the air volume ratio of the air volume which passes the indoor condenser 12, and the air volume which passes a bypass channel. Such temperature adjustment is effective in that it is easy to finely adjust the temperature of the air blown into the passenger compartment.
 上述の実施形態では、除湿暖房運転モード時に目標吹出温度TAOの上昇に伴って、第1除湿暖房モードから第4除湿暖房モードへ段階的に切り替える例を説明したが、第1除湿暖房モードから第4除湿暖房モードへの切り替えはこれに限定されない。例えば、目標吹出温度TAOに増加に伴って、第1除湿暖房モードから第4除湿暖房モードへ連続的に切り替えるようにしてもよい。すなわち、目標吹出温度TAOの上昇に伴って、第1可変絞り13を絞り開度を徐々に縮小させ、さらに、第3可変絞り22の絞り開度を徐々に拡大させればよい。このように第1可変絞り13および第3可変絞り22の絞り開度を変化させることによって、室外熱交換器20における冷媒の圧力(温度)が調整されるので、室外熱交換器20を自動的に、放熱器として作用させる状態から蒸発器として作用させる状態へ切り替えることができる。 In the above-described embodiment, the example in which the first dehumidifying and heating mode is gradually switched from the first dehumidifying and heating mode to the fourth dehumidifying and heating mode has been described as the target blowing temperature TAO increases in the dehumidifying and heating operation mode. Switching to the 4 dehumidifying heating mode is not limited to this. For example, the first dehumidifying and heating mode may be continuously switched from the first dehumidifying and heating mode to the target blowing temperature TAO. That is, as the target blowing temperature TAO increases, the throttle opening of the first variable throttle 13 may be gradually reduced, and the throttle opening of the third variable throttle 22 may be gradually increased. Since the refrigerant pressure (temperature) in the outdoor heat exchanger 20 is adjusted by changing the throttle openings of the first variable throttle 13 and the third variable throttle 22 in this way, the outdoor heat exchanger 20 is automatically turned on. In addition, it is possible to switch from a state of acting as a radiator to a state of acting as an evaporator.
 上述の各実施形態で説明したように、空調装置1の各運転モードにおける送風空気の極め細かな温度調整を実現するためには、中間圧冷媒通路15に中間圧側開閉弁16aを設けることが望ましいが、これに限定されず、中間圧側開閉弁16aを設けることなく、簡素な構成で各運転モードを実現するようにしてもよい。 As described in the above embodiments, in order to achieve fine temperature adjustment of the blown air in each operation mode of the air conditioner 1, it is desirable to provide the intermediate pressure side opening / closing valve 16a in the intermediate pressure refrigerant passage 15. However, the present invention is not limited to this, and each operation mode may be realized with a simple configuration without providing the intermediate pressure side on-off valve 16a.
 上述の各実施形態では、冷房運転モード時に、圧縮機11から吐出された冷媒を室内凝縮器12や冷媒放熱器52を通過させる冷媒流路としているが、冷房運転モード時には、室外熱交換器20にて冷媒の熱を外気に放熱可能であり、室内凝縮器12や冷媒放熱器52に冷媒を通過させない冷媒流路としてもよい。 In each of the above-described embodiments, the refrigerant discharged from the compressor 11 is used as a refrigerant flow path that passes through the indoor condenser 12 and the refrigerant radiator 52 in the cooling operation mode. However, in the cooling operation mode, the outdoor heat exchanger 20 is used. It is good also as a refrigerant | coolant flow path which can radiate | emit the heat | fever of a refrigerant | coolant to external air and does not let a refrigerant | coolant pass through the indoor condenser 12 or the refrigerant | coolant heat radiator 52.
 上述の各実施形態では、ヒートポンプサイクル10における室内蒸発器23の出口側にアキュムレータ24を配置する構成としているが、これに限定されない。例えば、ヒートポンプサイクル10が余剰となる冷媒を蓄えることが可能な気液分離器を備える場合、アキュムレータ24を廃してもよい。これにより、サイクル構成の簡素化を図ることが可能となる。 In each of the above-described embodiments, the accumulator 24 is disposed on the outlet side of the indoor evaporator 23 in the heat pump cycle 10, but the present invention is not limited to this. For example, when the heat pump cycle 10 includes a gas-liquid separator capable of storing excess refrigerant, the accumulator 24 may be eliminated. As a result, the cycle configuration can be simplified.

Claims (13)

  1.  圧縮機(11)、室内凝縮器(12)、第1可変絞り(13)、室外熱交換器(20)、前記圧縮機(11)の順に配置されて冷媒が循環する主冷媒回路を有する冷凍サイクル装置と、
     少なくとも、車室内送風空気を送風する送風機(32)と、該車室内送風空気を加熱する前記室内凝縮器(12)を有する室内空調ユニット(30)を具備する車両用の空調装置であって、
     前記室内凝縮器(12)が、前記車室内送風空気を加熱するとともに、前記室外熱交換器(20)が放熱して着霜した氷を融解させることにより、車室内をホットガス暖房しながらホットガス除霜できるようにした車両用の空調装置。
    A compressor (11), an indoor condenser (12), a first variable throttle (13), an outdoor heat exchanger (20), a refrigeration having a main refrigerant circuit in which refrigerant is circulated in the order of the compressor (11). A cycle device;
    An air conditioner for a vehicle comprising at least a blower (32) that blows air blown into the vehicle interior and an indoor air conditioning unit (30) that has the indoor condenser (12) that heats the air blown into the vehicle interior,
    The indoor condenser (12) heats the air blown in the vehicle interior, and the outdoor heat exchanger (20) dissipates heat and melts frosted ice, so that the vehicle interior is heated while hot gas is heated. An air conditioner for vehicles that allows gas defrosting.
  2.  前記室外熱交換器(20)が着霜したことを判定した場合、前記室外熱交換器(20)を吸熱から放熱に変化させるために、前記送風機(32)の送風量を低下させるか、又は、前記第1可変絞り(13)の弁開度を調整するか、いずれか一方、若しくは、双方を行うことを特徴とした請求項1に記載の車両用の空調装置。 When it is determined that the outdoor heat exchanger (20) is frosted, in order to change the outdoor heat exchanger (20) from heat absorption to heat dissipation, the air flow rate of the blower (32) is reduced, or The vehicle air conditioner according to claim 1, wherein the valve opening of the first variable throttle (13) is adjusted, or one or both of them are performed.
  3.  前記主冷媒回路において、前記室内凝縮器(12)と第1可変絞り(13)の順に続いて気液分離器(14)を配置し、さらに、該気液分離器(14)と前記室外熱交換器(20)との間に、前記気液分離器(14)を経由した液相又は気相冷媒が導入される第2可変絞り(17)を配置して、
     前記気液分離器(14)を経由した中間圧の気相冷媒を、前記圧縮機(11)に設けられた中間圧ポート(11b)へ導いて、圧縮過程の冷媒に合流させる中間圧冷媒通路(15)を設けたことを特徴とする請求項2に記載の車両用の空調装置。
    In the main refrigerant circuit, a gas-liquid separator (14) is arranged in the order of the indoor condenser (12) and the first variable throttle (13), and further, the gas-liquid separator (14) and the outdoor heat are arranged. Between the exchanger (20), a second variable throttle (17) for introducing a liquid phase or gas phase refrigerant via the gas-liquid separator (14) is disposed,
    An intermediate pressure refrigerant passage for introducing an intermediate pressure gas-phase refrigerant that has passed through the gas-liquid separator (14) to an intermediate pressure port (11b) provided in the compressor (11) and joining the refrigerant in the compression process. The vehicle air conditioner according to claim 2, wherein (15) is provided.
  4.  前記室外熱交換器(20)が着霜したことを判定した場合、前記室外熱交換器(20)を吸熱から放熱に変化させるために、さらに、前記第2可変絞り(17)の弁開度を調整したことを特徴とした請求項3に記載の車両用の空調装置。 When it is determined that the outdoor heat exchanger (20) is frosted, the valve opening of the second variable throttle (17) is further changed to change the outdoor heat exchanger (20) from heat absorption to heat dissipation. The vehicle air conditioner according to claim 3, wherein the air conditioner is adjusted.
  5.  前記室外熱交換器(20)が着霜したことを判定した場合、前記圧縮機(11)の回転数を増大させたことを特徴とする請求項1から4のいずれか1項に記載の車両用の空調装置。 The vehicle according to any one of claims 1 to 4, wherein when it is determined that the outdoor heat exchanger (20) has formed frost, the rotational speed of the compressor (11) is increased. Air conditioner.
  6.  前記室外熱交換器(20)が除霜運転中、車室内暖房能力を上昇させるため、前記第1可変絞り(13)の弁開度を、第2可変絞り(17)の弁開度よりも相対的に増大させて前記中間圧力を上昇させ、前記中間圧ポート(11b)から前記圧縮機(11)へ、中間圧冷媒のインジェクション流量を増大させた特徴とする請求項3又は4に記載の車両用の空調装置。 During the defrosting operation of the outdoor heat exchanger (20), the valve opening of the first variable throttle (13) is made larger than the valve opening of the second variable throttle (17) in order to increase the vehicle interior heating capacity. The intermediate pressure is increased by relatively increasing the intermediate pressure to increase the injection flow rate of the intermediate pressure refrigerant from the intermediate pressure port (11b) to the compressor (11). Air conditioner for vehicles.
  7.  前記中間圧冷媒通路(15)には、中間圧側開閉弁(16a)を設置したことを特徴とする請求項3、4及び6のいずれか1項に記載の車両用の空調装置。 The vehicle air conditioner according to any one of claims 3, 4, and 6, wherein an intermediate pressure side on-off valve (16a) is installed in the intermediate pressure refrigerant passage (15).
  8.  前記中間圧側開閉弁(16a)が、前記第2可変絞り(17)の前後の差圧に応じて開閉したことを特徴とする請求項7に記載の車両用の空調装置。 The vehicle air conditioner according to claim 7, wherein the intermediate pressure side on-off valve (16a) opens and closes according to a differential pressure before and after the second variable throttle (17).
  9.  前記主冷媒回路の前記室外熱交換器(20)の下流において、冷房用開閉弁(16c)、アキュムレータ(24)、前記圧縮機(11)の順に冷媒が流れるように、冷房用開閉弁(16c)、アキュムレータ(24)を配置し、
     前記室外熱交換器(20)と前記冷房用開閉弁(16c)の間で前記主冷媒回路から分岐して、第3可変絞り(22)、室内蒸発器(23)の順に経て、前記冷房用開閉弁(16c)と前記アキュムレータ(24)との間で前記主冷媒回路に合流するバイパス回路を配置し、
     前記中間圧冷媒通路(15)には、中間圧側開閉弁(16a)を設置したことを特徴とする請求項3から6のいずれか1項に記載の車両用の空調装置。
    On the downstream side of the outdoor heat exchanger (20) of the main refrigerant circuit, the cooling on-off valve (16c) is arranged so that the refrigerant flows in the order of the cooling on-off valve (16c), the accumulator (24), and the compressor (11). ), Place the accumulator (24),
    Branching from the main refrigerant circuit between the outdoor heat exchanger (20) and the cooling on-off valve (16c), passing through a third variable throttle (22) and an indoor evaporator (23) in this order, A bypass circuit that joins the main refrigerant circuit between the on-off valve (16c) and the accumulator (24);
    The vehicle air conditioner according to any one of claims 3 to 6, wherein an intermediate pressure side on-off valve (16a) is installed in the intermediate pressure refrigerant passage (15).
  10.  前記室内空調ユニット(30)が、さらに、前記室内蒸発器(23)とエアミックスドア(34)を具備することを特徴とする請求項9に記載の車両用の空調装置。 The vehicle air conditioner according to claim 9, wherein the indoor air conditioning unit (30) further includes the indoor evaporator (23) and an air mix door (34).
  11.  前記第1可変絞り(13)、及び、前記第2可変絞り(17)は、減圧作用を発揮する絞り状態に加えて、減圧作用を発揮しない全開状態、全閉状態に設定可能に構成されていることを特徴とする請求項3、4、6ないし10のいずれか1項に記載の車両用の空調装置。 The first variable throttle (13) and the second variable throttle (17) are configured to be set to a fully open state and a fully closed state that do not exhibit a pressure reducing action, in addition to a throttle state that exhibits a pressure reducing action. The vehicle air conditioner according to any one of claims 3, 4, 6 to 10, wherein the vehicle air conditioner is provided.
  12.  前記主冷媒回路において、前記第2可変絞り(17)と並列に低圧側開閉弁(16b)が挿入されていることを特徴とする請求項3、4、6ないし10のいずれか1項に記載の車両用の空調装置。 The low pressure side on-off valve (16b) is inserted in parallel with the 2nd variable throttle (17) in the main refrigerant circuit, The Claim 3, 4, 6 thru / or 10 characterized by the above-mentioned. Air conditioner for vehicles.
  13.  室内凝縮器(12)が、冷媒放熱器(52)と加熱用熱交換器(12’)から構成され、前記冷媒放熱器(52)は、前記主冷媒回路において前記圧縮機(11)と前記第1可変絞り(13)の間で、前記加熱用熱交換器(12’)を熱媒体が循環する熱媒体循環回路(50)に熱交換することを特徴とする請求項1から12のいずれか1項に記載の車両用の空調装置。 The indoor condenser (12) includes a refrigerant radiator (52) and a heat exchanger (12 ′) for heating, and the refrigerant radiator (52) is connected to the compressor (11) and the heat exchanger in the main refrigerant circuit. The heat exchanger (12 ') is heated between the first variable throttles (13) to a heat medium circulation circuit (50) through which the heat medium circulates. An air conditioner for a vehicle as set forth in claim 1.
PCT/JP2013/000964 2012-03-28 2013-02-21 Air conditioner device for vehicle WO2013145537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-074121 2012-03-28
JP2012074121A JP2013203221A (en) 2012-03-28 2012-03-28 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
WO2013145537A1 true WO2013145537A1 (en) 2013-10-03

Family

ID=49258862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000964 WO2013145537A1 (en) 2012-03-28 2013-02-21 Air conditioner device for vehicle

Country Status (2)

Country Link
JP (1) JP2013203221A (en)
WO (1) WO2013145537A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391835B2 (en) 2015-05-15 2019-08-27 Ford Global Technologies, Llc System and method for de-icing a heat pump
WO2024070703A1 (en) * 2022-09-27 2024-04-04 株式会社デンソー Heat pump cycle device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6223753B2 (en) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6197642B2 (en) * 2013-12-26 2017-09-20 株式会社デンソー Air conditioner for vehicles
JP6390431B2 (en) * 2015-01-07 2018-09-19 株式会社デンソー Refrigeration cycle equipment
US20180201094A1 (en) * 2015-07-14 2018-07-19 Denso Corporation Heat pump cycle
JP6852642B2 (en) 2017-10-16 2021-03-31 株式会社デンソー Heat pump cycle
JP2022184446A (en) 2021-06-01 2022-12-13 株式会社デンソー vehicle air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232547A (en) * 1994-02-25 1995-09-05 Sanden Corp Air conditioner for vehicle
JPH09290622A (en) * 1996-04-24 1997-11-11 Denso Corp Vehicular air conditioner
JPH11153363A (en) * 1997-11-20 1999-06-08 Matsushita Electric Ind Co Ltd Device for controlling refrigerating cycle having injection function
JPH11223407A (en) * 1998-02-05 1999-08-17 Nippon Soken Inc Heat pump type air conditioner
JP2000203249A (en) * 1999-01-13 2000-07-25 Denso Corp Air conditioner
JP2002081779A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2010111222A (en) * 2008-11-05 2010-05-20 Denso Corp Air-conditioner for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598887A (en) * 1993-10-14 1997-02-04 Sanden Corporation Air conditioner for vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232547A (en) * 1994-02-25 1995-09-05 Sanden Corp Air conditioner for vehicle
JPH09290622A (en) * 1996-04-24 1997-11-11 Denso Corp Vehicular air conditioner
JPH11153363A (en) * 1997-11-20 1999-06-08 Matsushita Electric Ind Co Ltd Device for controlling refrigerating cycle having injection function
JPH11223407A (en) * 1998-02-05 1999-08-17 Nippon Soken Inc Heat pump type air conditioner
JP2000203249A (en) * 1999-01-13 2000-07-25 Denso Corp Air conditioner
JP2002081779A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2010111222A (en) * 2008-11-05 2010-05-20 Denso Corp Air-conditioner for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391835B2 (en) 2015-05-15 2019-08-27 Ford Global Technologies, Llc System and method for de-icing a heat pump
WO2024070703A1 (en) * 2022-09-27 2024-04-04 株式会社デンソー Heat pump cycle device

Also Published As

Publication number Publication date
JP2013203221A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP6794964B2 (en) Refrigeration cycle equipment
JP5949648B2 (en) Refrigeration cycle equipment
JP5780166B2 (en) Heat pump cycle
US11718156B2 (en) Refrigeration cycle device
WO2014188674A1 (en) Refrigeration cycle device
JP5533207B2 (en) Heat pump cycle
WO2013145537A1 (en) Air conditioner device for vehicle
CN107848374B (en) Air conditioner for vehicle
WO2016203903A1 (en) Air conditioner for vehicle
US11506404B2 (en) Refrigeration cycle device
CN109890636B (en) Refrigeration cycle device
JP2018091536A (en) Refrigeration cycle device
JP6394505B2 (en) Heat pump cycle
JP5935625B2 (en) Refrigeration cycle controller
JP6390437B2 (en) Air conditioner for vehicles
WO2018088034A1 (en) Refrigeration cycle device
WO2018096869A1 (en) Vehicle air conditioning device
JP5935714B2 (en) Refrigeration cycle equipment
JP6167891B2 (en) Heat pump cycle device.
JP7392296B2 (en) Refrigeration cycle equipment
JP2022117351A (en) temperature control system
WO2024101062A1 (en) Vehicular heat pump cycle device
WO2022030182A1 (en) Refrigeration cycle device
JP5888126B2 (en) Air conditioner for vehicles
WO2023074322A1 (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13770371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13770371

Country of ref document: EP

Kind code of ref document: A1