WO2022030182A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022030182A1
WO2022030182A1 PCT/JP2021/025950 JP2021025950W WO2022030182A1 WO 2022030182 A1 WO2022030182 A1 WO 2022030182A1 JP 2021025950 W JP2021025950 W JP 2021025950W WO 2022030182 A1 WO2022030182 A1 WO 2022030182A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
outside air
heating mode
heat
temperature
Prior art date
Application number
PCT/JP2021/025950
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 加見
大輝 加藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021004134.7T priority Critical patent/DE112021004134T5/en
Publication of WO2022030182A1 publication Critical patent/WO2022030182A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3257Cooling devices information from a variable is obtained related to temperature of the refrigerant at a compressing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/3258Cooling devices information from a variable is obtained related to temperature of the air at a condensing unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • B60H2001/326Cooling devices information from a variable is obtained related to temperature of the refrigerant at a condensing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Definitions

  • the present disclosure relates to a refrigeration cycle device that absorbs heat from a plurality of heat sources to perform heating.
  • the vehicle air conditioner described in Patent Document 1 heats the vehicle interior by absorbing heat from an outdoor heat exchanger and a non-temperature control target.
  • the waste heat of the non-temperature control target is used for heating, thereby improving the efficiency and performance of the heating.
  • the refrigerant temperature in the outdoor heat exchanger may be higher than the outside air temperature.
  • the outdoor heat exchanger dissipates heat from the refrigerant to the outside air, which deteriorates the efficiency and performance of heating.
  • the present disclosure aims to improve the efficiency of heating in a refrigeration cycle apparatus that absorbs heat from a plurality of heat sources to perform heating.
  • the refrigerating cycle apparatus includes a compressor, a heating unit, an expansion valve for heating, an outdoor heat exchanger, an expansion valve for cooling, an indoor evaporator, an expansion valve for heat absorption, and an endothermic unit. , A refrigerant circuit switching unit, and a control unit.
  • the compressor compresses and discharges the refrigerant.
  • the heating unit heats the air blown to the air-conditioned space using the discharged refrigerant discharged from the compressor as a heat source.
  • the expansion valve for heating decompresses the refrigerant flowing out from the heating part.
  • the outdoor heat exchanger exchanges heat between the refrigerant flowing out from the heating expansion valve and the outside air.
  • the cooling expansion valve reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger.
  • the indoor evaporator evaporates the refrigerant flowing out from the cooling expansion valve to cool the air before being heated by the heating unit.
  • the endothermic expansion valve reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger.
  • the endothermic unit evaporates the refrigerant flowing out from the endothermic expansion valve and absorbs heat from the endothermic object.
  • the refrigerant circuit switching unit is a waste heat heating mode refrigerant circuit that does not absorb heat from the outside air with the outdoor heat exchanger but absorbs heat from the endothermic object with the heat absorbing part, and the outdoor heat exchanger absorbs heat from the outside air and the endothermic object with the heat absorbing part. Switch to the outside air waste heat heating mode endothermic circuit that absorbs heat from.
  • the control unit In the outside air waste heat heating mode, the control unit has the outside air refrigerant temperature difference, which is the temperature difference obtained by subtracting the temperature of the refrigerant sucked into the compressor from the outside air temperature Tam, not more than the lower limit temperature difference, and the temperature of the heat absorbing object. If is equal to or higher than the heat absorption temperature, the refrigerant circuit switching unit is controlled so as to switch to the waste heat heating mode.
  • the refrigeration cycle device 10 of the present embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle.
  • An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned.
  • the vehicle air conditioner 1 includes a refrigerating cycle device 10, an indoor air conditioner unit 30, a high temperature side heat medium circuit 40, a low temperature side heat medium circuit 50, and the like.
  • the refrigerating cycle device 10 cools the air blown into the vehicle interior and heats the high temperature side heat medium circulating in the high temperature side heat medium circuit 40 in order to air-condition the vehicle interior.
  • the refrigeration cycle device 10 cools the low temperature side heat medium circulating in the low temperature side heat medium circuit 50 in order to absorb heat from the waste heat device 80.
  • the refrigerating cycle device 10 can switch the refrigerant circuit for various operation modes in order to perform air conditioning in the vehicle interior. For example, the refrigerant circuit in the cooling mode, the refrigerant circuit in the dehumidifying / heating mode, the refrigerant circuit in the heating mode, and the like can be switched.
  • the refrigeration cycle apparatus 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant, and the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant, which is a steam compression type subcritical. It constitutes a refrigeration cycle.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in front of the vehicle interior and is arranged in the drive unit chamber in which the electric motor and the like are housed.
  • the compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the control device 60 shown in FIG.
  • the inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • the water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the high-pressure refrigerant discharged from the compressor 11 and a water passage for circulating the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40.
  • the water refrigerant heat exchanger 12 is a heat exchanger for heating that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the water passage.
  • the inlet side of the first joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes second to fourth joints 13b to 13d.
  • the third joint 13c is a three-way joint similar to the first joint 13a.
  • the second joint 13b and the fourth joint 13d are four-sided joints having four inflow ports communicating with each other.
  • the inlet side of the heating expansion valve 14a is connected to one of the outlets of the first joint 13a.
  • One inlet side of the second joint 13b is connected to the other outlet of the first joint 13a via a bypass passage 22a.
  • a dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
  • the dehumidifying on-off valve 15a is a solenoid valve that opens and closes the bypass passage 22a.
  • the refrigeration cycle device 10 includes a heating on-off valve 15b.
  • the basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b are refrigerant circuit switching units that switch the refrigerant circuit of the cycle.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the control device 60.
  • the heating expansion valve 14a reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 at least in the operation mode of heating the vehicle interior, and reduces the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side. It is a decompression unit for heating to be adjusted.
  • the heating expansion valve 14a is an electric type having a valve body configured to change the throttle opening degree and an electric actuator (in other words, an electric mechanism) for changing the opening degree of the valve body.
  • Variable throttle mechanism in other words, an electric expansion valve).
  • the refrigeration cycle device 10 includes a cooling expansion valve 14b and an endothermic expansion valve 14c.
  • the basic configuration of the cooling expansion valve 14b and the endothermic expansion valve 14c is the same as that of the heating expansion valve 14a.
  • the expansion valve 14a for heating, the expansion valve 14b for cooling, and the expansion valve 14c for endothermic function have a fully open function that functions as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action by fully opening the valve opening. It also has a fully closed function that closes the refrigerant passage by fully closing the valve opening.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c can switch the refrigerant circuit in each operation mode.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c function as a refrigerant circuit switching unit.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c are controlled by a control signal (control pulse) output from the control device 60.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by a cooling fan (not shown).
  • the outdoor heat exchanger 16 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind can be applied to the outdoor heat exchanger 16.
  • the inlet side of the third joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16.
  • the first inlet side of the fourth joint 13d is connected to one outlet of the third joint 13c via the heating passage 22b.
  • a heating on-off valve 15b for opening and closing the refrigerant passage is arranged in the heating passage 22b.
  • a first check valve 17a is arranged in the heating passage 22b. The first check valve 17a allows the refrigerant to flow from the third joint 13c side to the fourth joint 13d side, and prohibits the refrigerant from flowing from the fourth joint 13d side to the third joint 13c side.
  • the other inlet side of the second joint 13b is connected to the other outlet of the third joint 13c.
  • a second check valve 17b is arranged in a refrigerant passage connecting the other outlet side of the third joint 13c and the other inlet side of the second joint 13b.
  • the second check valve 17b allows the refrigerant to flow from the third joint 13c side to the second joint 13b side, and prohibits the refrigerant from flowing from the second joint 13b side to the third joint 13c side.
  • the inlet side of the cooling expansion valve 14b is connected to one of the outlets of the second joint 13b.
  • the inlet side of the endothermic expansion valve 14c is connected to the other outlet of the second joint 13b.
  • the cooling expansion valve 14b is an air-conditioning decompression unit that depressurizes the refrigerant flowing out from the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the vehicle interior.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b.
  • the indoor evaporator 18 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the indoor evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the air blown from the blower 32 to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exert a heat absorbing action to absorb air. It is an air conditioning evaporative unit that cools.
  • the indoor evaporator 18 is the first evaporation unit.
  • the second inflow port side of the fourth joint 13d is connected to the refrigerant outlet of the indoor evaporator 18.
  • a third check valve 17c is arranged in the refrigerant passage connecting the refrigerant outlet side of the indoor evaporator 18 and the second inlet side of the fourth joint 13d.
  • the third check valve 17c allows the refrigerant to flow from the indoor evaporator 18 side to the fourth joint 13d side, and prohibits the refrigerant from flowing from the fourth joint 13d side to the indoor evaporator 18 side.
  • the endothermic expansion valve 14c is an endothermic decompression unit that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side in the operation mode in which heat is absorbed from the waste heat device 80. ..
  • the inlet side of the refrigerant passage of the chiller 19 is connected to the outlet of the endothermic expansion valve 14c.
  • the chiller 19 has a refrigerant passage for circulating a low-pressure refrigerant decompressed by the heat absorption expansion valve 14c, and a water passage for circulating a low-temperature side heat medium circulating in the low-temperature side heat medium circuit 50.
  • the chiller 19 is an evaporation unit that exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage to evaporate the low-pressure refrigerant and exert a heat absorbing action.
  • the third inflow port side of the fourth joint 13d is connected to the outlet of the refrigerant passage of the chiller 19.
  • the indoor evaporator 18 and the chiller 19 are connected in parallel to each other with respect to the refrigerant flow.
  • the inlet side of the accumulator 21 is connected to the outlet of the fourth joint 13d.
  • the accumulator 21 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed into the inside and stores the excess liquid-phase refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
  • the accumulator 21 is formed with an oil return hole for returning the refrigerating machine oil mixed in the separated liquid phase refrigerant to the compressor 11.
  • the refrigerating machine oil in the accumulator 21 is returned to the compressor 11 together with a small amount of liquid phase refrigerant.
  • the high temperature side heat medium circuit 40 is a heat medium circulation circuit that circulates the high temperature side heat medium.
  • a solution containing ethylene glycol, dimethylpolysiloxane, a nanofluid, or the like, an antifreeze solution, or the like can be adopted.
  • a water passage of the water refrigerant heat exchanger 12 a high temperature side heat medium pump 41, a heater core 42, an electric heater 43, and the like are arranged.
  • the high temperature side heat medium pump 41 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60.
  • the heat medium inlet side of the heater core 42 is connected to the outlet of the water passage of the water refrigerant heat exchanger 12.
  • the heater core 42 is a heat exchanger that heats the air by exchanging heat between the high temperature side heat medium heated by the water refrigerant heat exchanger 12 and the air that has passed through the indoor evaporator 18.
  • the heater core 42 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the suction port side of the high temperature side heat medium pump 41 is connected to the heat medium outlet of the heater core 42.
  • the high temperature side heat medium pump 41 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 42 to dissipate heat of the high temperature side heat medium in the heater core 42 to the air (that is, that is). , The amount of heat of air in the heater core 42) can be adjusted.
  • the water-refrigerant heat exchanger 12, the high-temperature side heat medium circuit 40, and the heater core 42 are heating units that heat air using the refrigerant discharged from the compressor 11 as a heat source.
  • the electric heater 43 is, for example, a PTC heater having a PTC element (that is, a positive characteristic thermistor).
  • the electric heater 43 can arbitrarily adjust the amount of heat for heating the high temperature side heat medium by the control voltage output from the control device 60.
  • the low temperature side heat medium circuit 50 is a heat medium circulation circuit that circulates the low temperature side heat medium.
  • the low temperature side heat medium the same fluid as the high temperature side heat medium can be adopted.
  • a water passage of a chiller 19 a low temperature side heat medium pump 51, a waste heat device 80, and the like are arranged.
  • the low temperature side heat medium pump 51 is a water pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 19.
  • the basic configuration of the low temperature side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
  • the inlet side of the waste heat device 80 is connected to the discharge port of the low temperature side heat medium pump 51.
  • the waste heat device 80 is provided with a heat medium flow path through which the low temperature side heat medium flows.
  • the waste heat device 80 is an in-vehicle device that generates waste heat as it operates.
  • the waste heat device 80 is, for example, an inverter, a motor generator, a power control unit, or the like, which generates waste heat as the vehicle travels.
  • the waste heat device 80 may be a secondary battery for storing electric power supplied to an in-vehicle device such as an electric motor.
  • the inlet side of the water passage of the chiller 19 is connected to the heat medium outlet of the waste heat apparatus 80.
  • the suction port side of the low temperature side heat medium pump 51 is connected to the outlet of the water passage of the chiller 19.
  • the low temperature side heat medium circuit 50 may be provided with a low temperature side radiator that dissipates heat from the low temperature side heat medium to the outside air.
  • the low temperature side heat medium pump 51 adjusts the flow rate of the low temperature side heat medium flowing into the waste heat device 80 to adjust the amount of heat absorbed by the low temperature side heat medium from the waste heat device 80. can do.
  • the chiller 19 and the low temperature side heat medium circuit 50 are endothermic portions that evaporate the refrigerant flowing out from the endothermic expansion valve 14c and absorb heat from the waste heat apparatus 80.
  • the waste heat device 80 and the low temperature side heat medium are endothermic objects that are endothermic by the refrigerant flowing through the chiller 19.
  • the indoor air conditioning unit 30 blows out air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 30 houses a blower 32, an indoor evaporator 18, a heater core 42, and the like in an air passage formed in an air conditioning case 31 forming an outer shell thereof.
  • the air conditioning case 31 forms an air passage for air to be blown into the vehicle interior.
  • the air-conditioning case 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case 31.
  • the inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the air conditioning case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening areas of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the introduction air volume of the inside air and the outside air. Change the introduction ratio with the introduction air volume.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door.
  • the electric actuator for the inside / outside air switching door is controlled by a control signal output from the control device 60.
  • a blower 32 is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the control device 60.
  • the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the air flow.
  • the indoor evaporator 18 is arranged on the upstream side of the air flow with respect to the heater core 42.
  • the air conditioning case 31 is provided with a cold air bypass passage 35 that allows air after passing through the indoor evaporator 18 to bypass the heater core 42.
  • An air mix door 34 is arranged on the downstream side of the air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the air flow of the heater core 42.
  • the air mix door 34 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air volume of the air passing through the heater core 42 side and the air volume of the air passing through the cold air bypass passage 35 among the air after passing through the indoor evaporator 18. ..
  • the air mix door 34 is driven by an electric actuator for the air mix door. This electric actuator is controlled by a control signal output from the control device 60.
  • a mixing space is arranged on the downstream side of the air flow of the heater core 42 and the cold air bypass passage 35 in the air conditioning case 31.
  • the mixing space is a space in which the air heated by the heater core 42 and the unheated air passing through the cold air bypass passage 35 are mixed.
  • an opening hole for blowing out the air mixed in the mixing space (that is, the air conditioning air) into the vehicle interior, which is the air conditioning target space, is arranged.
  • the face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
  • These face opening holes, foot opening holes, and defroster opening holes are the face outlets, foot outlets, and defroster outlets (none of which are shown) provided in the vehicle interior via ducts forming air passages, respectively. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. As a result, the temperature of the air (air-conditioned air) blown from each outlet into the vehicle interior is adjusted.
  • Face doors, foot doors, and defroster doors are arranged on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively.
  • the face door adjusts the opening area of the face opening hole.
  • the foot door adjusts the opening area of the foot opening hole.
  • the defroster door adjusts the opening area of the defroster opening hole.
  • These face doors, foot doors, and defroster doors constitute an outlet mode switching device that switches the outlet mode.
  • These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of this electric actuator is also controlled by a control signal output from the control device 60.
  • the face mode is an outlet mode in which the face outlet is fully opened and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an outlet mode in which both the face outlet and the foot outlet are opened to blow air toward the upper body and feet of the passengers in the passenger compartment.
  • the foot mode is an outlet mode in which the foot outlet is fully opened and the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
  • the occupant can also switch to the defroster mode by manually operating the blowout mode changeover switch provided on the operation panel 70 shown in FIG.
  • the defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the front window glass.
  • the control device 60 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. Then, various operations and processes are performed based on the control program stored in the ROM, and various controlled devices 11, 14a to 14c, 15a to 15b, 32, 41, 51 and the like connected to the output side are operated. To control.
  • a first refrigerant pressure sensor 65a, a second refrigerant pressure sensor 65b, a high temperature side heat medium temperature sensor 66a, a first low temperature side heat medium temperature sensor 67a, a second low temperature side heat medium temperature sensor 67b, and the like are connected. Then, the detection signals of these sensor groups are input to the control device 60.
  • the internal air temperature sensor 61 is an internal air temperature detection unit that detects the internal air temperature Tr (that is, the vehicle interior temperature).
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature Tam (that is, the outside air temperature of the vehicle interior).
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
  • the first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12.
  • the third refrigerant temperature sensor 64c is a third refrigerant temperature detection unit that detects the temperature T3 of the refrigerant flowing out of the outdoor heat exchanger 16.
  • the fourth refrigerant temperature sensor 64d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out from the indoor evaporator 18.
  • the fifth refrigerant temperature sensor 64e is a fifth refrigerant temperature detection unit that detects the temperature T5 of the refrigerant flowing out from the refrigerant passage of the chiller 19.
  • the evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the evaporator temperature Tefien, which is the refrigerant evaporation temperature in the indoor evaporator 18.
  • the evaporator temperature sensor 64f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
  • the first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12.
  • the second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the refrigerant passage of the chiller 19.
  • the high temperature side heat medium temperature sensor 66a is a high temperature side heat medium temperature detection unit that detects the high temperature side heat medium temperature TWH, which is the temperature of the high temperature side heat medium flowing out from the water passage of the water refrigerant heat exchanger 12.
  • the first low temperature side heat medium temperature sensor 67a is a first low temperature side heat medium temperature detection unit that detects the first low temperature side heat medium temperature TWL1, which is the temperature of the low temperature side heat medium flowing out from the water passage of the chiller 19.
  • the second low temperature side heat medium temperature sensor 67b is a second low temperature side heat medium temperature detection unit that detects the second low temperature side heat medium temperature TWL2 which is the temperature of the low temperature side heat medium flowing out from the waste heat apparatus 80.
  • an operation panel 70 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 60, and operation signals from various operation switches provided on the operation panel 70 are connected. Is entered.
  • the various operation switches provided on the operation panel 70 include an auto switch that sets or cancels the automatic control operation of the vehicle air conditioner, an air conditioner switch that requires the indoor evaporator 18 to cool the air, and the like.
  • the control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 60.
  • the configuration (hardware and software) that controls the operation of each of the control target devices in the control device 60 is a control unit that controls the operation of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) is the compressor control unit 60a.
  • the configuration for controlling the operation of the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c is the expansion valve control unit 60b.
  • the configuration that controls the operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is the refrigerant circuit switching control unit 60c.
  • the configuration for controlling the pumping capacity of the high temperature side heat medium of the high temperature side heat medium pump 41 is the high temperature side heat medium pump control unit 60d.
  • the configuration for controlling the pumping capacity of the low temperature side heat medium of the low temperature side heat medium pump 51 is the low temperature side heat medium pump control unit 60e.
  • the refrigerant circuit can be switched to perform air conditioning operation in the following five operation modes.
  • Cooling mode is an operation mode in which the interior of the vehicle is cooled by cooling the air and blowing it into the interior of the vehicle.
  • the outside air heating mode is an operation mode in which the inside of the vehicle is heated by heating the air using the heat absorbed from the outside air and blowing it into the vehicle interior.
  • outside air waste heat heating mode In the outside air waste heat heating mode, the air is heated by using the heat absorbed from the outside air and the waste heat absorbed from the waste heat device 80 and blown into the vehicle interior. This is an operation mode for heating.
  • Waste heat heating mode is an operation mode in which the inside of the vehicle is heated by heating the air using the waste heat absorbed from the waste heat device 80 and blowing it into the vehicle interior.
  • Waste heat heating mode during frost formation In the waste heat heating mode during frost formation, the air is heated by using the waste heat absorbed from the waste heat device 80 when the outdoor heat exchanger 16 is frosted and cannot be used. This is an operation mode in which the interior of the vehicle is heated by blowing it into the interior of the vehicle.
  • the control program is executed when the ignition switch of the vehicle is turned on (ON).
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
  • Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the internal air temperature sensor 61. Tam is the outside temperature of the vehicle interior detected by the outside air temperature sensor 62. As is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • the outside air temperature Tam is less than the heating reference temperature Tht, or when the air conditioner switch is not turned on (OFF), one of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode is selected. To.
  • the intake refrigerant temperature Ts, the outside temperature Tam, and the second low temperature side heat medium temperature are selected.
  • TWL2 the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode are switched.
  • frost is formed on the outdoor heat exchanger 16 in the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode, the mode is switched to the waste heat heating mode at the time of frost formation.
  • the suction refrigerant temperature Ts is the temperature of the refrigerant sucked into the compressor 11.
  • the refrigerant saturation temperature calculated from the refrigerant pressure P2 that is, the pressure of the refrigerant flowing out from the refrigerant passage of the chiller 19
  • the second refrigerant pressure sensor 65b is used as the suction refrigerant temperature Ts.
  • the temperature T3 of the refrigerant detected by the third refrigerant temperature sensor 64c (that is, the temperature of the refrigerant flowing out from the outdoor heat exchanger 16) and the temperature T5 of the refrigerant detected by the fifth refrigerant temperature sensor 64e (that is, the temperature of the refrigerant flowing out from the outdoor heat exchanger 16). That is, the lower temperature of the temperature of the refrigerant flowing out from the refrigerant passage of the chiller 19) may be used.
  • the second low temperature side heat medium temperature TWL2 is the temperature of the low temperature side heat medium flowing out from the waste heat apparatus 80.
  • the state in which the temperature difference (outside air refrigerant temperature difference) obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat-absorbable temperature difference ⁇ 1 continues for the first duration t1 or more, and is the first. 2
  • the mode shifts to the outside air waste heat heating mode.
  • the endothermic temperature difference ⁇ 1 is about 0 to 10 ° C (for example, 5 ° C).
  • the first duration t1 is about 0 to 60 seconds (for example, 30 seconds).
  • the values of the endothermic temperature difference ⁇ 1 and the first duration t1 are the values experimentally obtained as the endothermic temperature difference and time that can be reliably absorbed from the outside air by the outdoor heat exchanger 16.
  • the first predetermined temperature difference ⁇ 1 is about 0 to 5 ° C.
  • the value of the first predetermined temperature difference ⁇ 1 is a value experimentally obtained as a temperature difference capable of reliably absorbing heat from the low temperature side heat medium in the chiller 19.
  • the endothermic temperature TW1 is the larger of the value obtained by adding the second predetermined temperature difference ⁇ 2 to the outside air temperature Tam and the value obtained by adding the third predetermined temperature difference ⁇ 3 to the endothermic lower limit temperature TWmin. That is, the endothermic temperature TW1 is determined using the following mathematical formula F2.
  • TW1 MAX [Tam + ⁇ 2, TWmin + ⁇ 3] ... (F2)
  • the second predetermined temperature difference ⁇ 2 is about 0 to 10 ° C (for example, 5 ° C).
  • the third predetermined temperature difference ⁇ 3 is about 0 to 10 ° C (for example, 5 ° C).
  • the values of the second predetermined temperature difference ⁇ 2 and the third predetermined temperature difference ⁇ 3 are the values experimentally obtained as the temperature difference in which the low temperature side heat medium can be used as the heat source for heating.
  • the endothermic lower limit temperature TWmin is a temperature set from the viewpoint of preventing dew condensation on the waste heat device 80 and from the device characteristics, and is basically set to a temperature equal to or higher than the outside air temperature.
  • the state in which the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference ⁇ 2 or less continues for the second duration t2 or more, and the second low temperature side heat medium.
  • the temperature TWL2 is equal to or higher than the heat absorbing temperature TW1, the mode shifts to the waste heat heating mode.
  • the lower limit temperature difference ⁇ 2 is about 0 to 4 ° C (for example, 2 ° C).
  • the second duration t2 is about 0 to 60 seconds (for example, 30 seconds).
  • the lower limit temperature difference ⁇ 2 and the second duration t2 are values experimentally obtained as the temperature difference and time at which it becomes difficult for the outdoor heat exchanger 16 to absorb heat from the outside air.
  • the lower limit temperature difference ⁇ 2 is set to a value smaller than the endothermic temperature difference ⁇ 1.
  • the outside air waste heat heating mode when the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the endothermic temperature difference ⁇ 1 or more for the first duration t1 or more, the outside air waste heat heating mode is set. Transition.
  • the mode shifts to the outside air heating mode.
  • the state in which the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference ⁇ 2 or less continues for the second duration t2 or more, and the second low temperature side heat medium.
  • the mode shifts to the outside air heating mode.
  • the mode shifts to the outside air heating mode.
  • frost occurs on the outdoor heat exchanger 16 in any of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode, the mode shifts to the waste heat heating mode at the time of frost formation. For example, when the intake refrigerant temperature Ts is lower than the outside air temperature Tam by a predetermined value or more for a predetermined time or longer, it is determined that frost has formed on the outdoor heat exchanger 16.
  • the mode shifts to one of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode. For example, it shifts to the operation mode that was executed immediately before shifting to the waste heat heating mode at the time of frost formation. For example, when the suction refrigerant temperature Ts continues to be at or above the frosting temperature (for example, 0 ° C.) for a predetermined time or longer, it is determined that frosting has not occurred in the outdoor heat exchanger 16.
  • the frosting temperature for example, 0 ° C.
  • control device 60 executes the control flow of each operation mode.
  • Cooling mode In the control flow of the cooling mode, the rotation speed of the compressor 11 is based on the deviation between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f, by a feedback control method. , The evaporator temperature Tefin is determined to approach the target evaporator temperature TEO.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 60. In the control map of the present embodiment, it is determined that the target evaporator temperature TEO increases as the target blowout temperature TAO increases.
  • the throttle opening of the cooling expansion valve 14b is based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method.
  • the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is determined to approach the target supercooling degree SCO1.
  • the target supercooling degree SCO1 is determined with reference to the control map, for example, based on the outside air temperature Tam.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the degree of supercooling SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the opening SW of the air mix door 34 is calculated using the following mathematical formula F3.
  • SW ⁇ TAO- (Tefin + C2) ⁇ / ⁇ TWH- (Tefin + C2) ⁇ ...
  • the TWH is the high temperature side heat medium temperature detected by the high temperature side heat medium temperature sensor 66a.
  • C2 is a constant for control.
  • the expansion valve 14a for heating is set to the fully open state
  • the expansion valve 14b for cooling is set to the throttle state to exert the refrigerant depressurizing action, and endothermic.
  • the expansion valve 14c is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the second check valve 17b, the cooling expansion valve 14b, and the indoor evaporator
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of 18, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11 for cooling.
  • a steam compression type refrigeration cycle is configured in which the expansion valve 14b functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the indoor evaporator 18 functions as an evaporator.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
  • the vehicle air conditioner 1 in the cooling mode a part of the air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and approaches the target blowout temperature TAO.
  • TAO target blowout temperature
  • the rotation speed of the compressor 11 is on the high temperature side by the feedback control method based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH.
  • the heat medium temperature TWH is determined to approach the target high temperature side heat medium temperature TWHO.
  • the target high temperature side heat medium temperature TWHO is determined with reference to the control map based on the target blowout temperature TAO and the efficiency of the heater core 42. In the control map of the present embodiment, it is determined that the target high temperature side heat medium temperature TWHO increases as the target blowout temperature TAO increases.
  • the throttle opening of the heating expansion valve 14a is a feedback control method based on the deviation between the target supercooling degree SCO2 and the supercooling degree SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12. Therefore, the supercooling degree SC2 is determined to approach the target supercooling degree SCO2.
  • the target supercooling degree SCO2 is determined with reference to the control map, for example, based on the outside air temperature Tam.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the degree of supercooling SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the endothermic expansion valve 14c In the control flow of the outside air heating mode, the endothermic expansion valve 14c is fully closed, and the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the target outlet temperature TAO becomes high, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the outside air heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
  • the heating expansion valve 14a In the control flow of the outside air heating mode, in order to switch the refrigerating cycle device 10 to the refrigerant circuit of the outside air heating mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and the endothermic expansion valve 14c is set. Is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is opened.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are used in this order.
  • a circulating steam compression refrigeration cycle is constructed.
  • the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a decompresses.
  • a refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as an evaporator, which functions as a unit.
  • heat can be absorbed from the outside air by the outdoor heat exchanger 16 and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the outside air heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
  • the throttle opening of the endothermic expansion valve 14c is based on the deviation between the target superheat degree SHCO and the superheat degree SHC of the outlet side refrigerant of the chiller 19, and the degree of superheat is determined by the feedback control method.
  • the SHC is determined to approach the target superheat degree SHCO.
  • a predetermined constant 5 ° C. in this embodiment
  • the degree of superheat SHC of the outlet side refrigerant of the chiller 19 is calculated based on the temperature T5 detected by the fifth refrigerant temperature sensor 64e and the pressure P2 detected by the second refrigerant pressure sensor 65b.
  • the throttle opening of the heat absorption expansion valve 14c is the second by the feedback control method based on the deviation between the target low temperature side heat medium temperature TWLO and the second low temperature side heat medium temperature TWL2.
  • the low temperature side heat medium temperature TWL2 is determined so as not to fall below the target low temperature side heat medium temperature TWLO.
  • the throttle opening of the heat absorption expansion valve 14c is reduced to reduce the flow rate of the refrigerant in the chiller 19. Thereby, the amount of heat absorbed from the low temperature side heat medium in the chiller 19 is reduced to suppress the decrease in the second low temperature side heat medium temperature TWL2.
  • the suction refrigerant temperature Ts is set to the outside air temperature by the feedback control method based on the deviation between the outside air temperature Tam and the intake refrigerant temperature Ts in the throttle opening of the endothermic expansion valve 14c. It is decided not to exceed Tam. Specifically, when the suction refrigerant temperature Ts is about to exceed the outside temperature Tam, the throttle opening of the heat absorption expansion valve 14c is reduced to reduce the refrigerant flow rate in the chiller 19, thereby reducing the low temperature side in the chiller 19. The amount of heat absorbed from the heat medium is reduced to suppress an increase in the intake refrigerant temperature Ts.
  • the heating expansion valve 14a In the control flow of the outside air waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the outside air waste heat heating mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and heat absorption is performed.
  • the expansion valve 14c is set to the throttled state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened.
  • the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in this order.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the heat absorption expansion valve 14c, the chiller 19, the accumulator 21, and the compressor 11 is configured. Will be done.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a
  • a refrigeration cycle is configured in which the heat absorption expansion valve 14c functions as a pressure reducing unit, and the outdoor heat exchanger 16 and the chiller 19 function as an evaporator.
  • the outdoor heat exchanger 16 absorbs heat from the outside air
  • the chiller 19 absorbs heat from the waste heat device 80 via the low temperature side heat medium
  • the water refrigerant heat exchanger 12 heats the high temperature side heat medium. can do. Therefore, in the vehicle air conditioner 1 in the outside air waste heat heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
  • Waste heat heating mode In the control flow of the waste heat heating mode, the rotation speed of the compressor 11 and the opening SW of the air mix door 34 are determined as in the outside air heating mode. In the control flow of the waste heat heating mode, the heating expansion valve 14a is fully closed.
  • the throttle opening of the heat absorption expansion valve 14c is feedback controlled based on the deviation between the target supercooling degree SCO2 and the supercooling degree SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12. The method determines that the supercooling degree SC2 approaches the target supercooling degree SCO2.
  • the target supercooling degree SCO2 is determined with reference to the control map, for example, based on the outside air temperature Tam.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the degree of supercooling SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the heating expansion valve 14a and the cooling expansion valve 14b are fully closed, and the endothermic expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is closed.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a heat dissipation unit) that dissipates heat from the refrigerant discharged from the compressor 11, and the endothermic expansion valve 14c is used.
  • a refrigeration cycle is configured in which the chiller 19 functions as a decompressor and an evaporator.
  • the chiller 19 can absorb heat from the waste heat device 80 via the low temperature side heat medium, and the water refrigerant heat exchanger 12 can heat the high temperature side heat medium. Therefore, in the vehicle air conditioner 1 in the waste heat heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
  • Waste heat heating mode during frost formation In the control flow of the waste heat heating mode during frost formation, the throttle opening of the endothermic expansion valve 14c and the opening SW of the air mix door 34 are determined as in the waste heat heating mode. Will be done. In the control flow of the waste heat heating mode at the time of frost formation, the heating expansion valve 14a is fully closed as in the waste heat heating mode.
  • the rotation speed of the compressor 11 is basically determined in the same manner as in the waste heat heating mode. However, in the control flow of the waste heat heating mode at the time of frost formation, the rotation speed of the compressor 11 is determined so that the second low temperature side heat medium temperature TWL2 does not fall below the endothermic lower limit temperature TWmin. Specifically, when the second low temperature side heat medium temperature TWL2 is likely to fall below the endothermic lower limit temperature TWmin, the rotation speed of the compressor 11 is lowered. This is because if the second low temperature side heat medium temperature TWL2 falls below the endothermic lower limit temperature TWmin, the chiller 19 cannot absorb heat, the compressor 11 stops, and heating cannot be performed.
  • the refrigeration cycle device 10 In the control flow of the waste heat heating mode at the time of frost, the refrigeration cycle device 10 is switched to the same refrigerant circuit as the waste heat heating mode.
  • the interior of the vehicle can be heated while maintaining the state where the chiller 19 can absorb heat from the low temperature side heat medium as much as possible.
  • dehumidifying and heating can be performed by setting the cooling expansion valve 14b to the throttled state.
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior.
  • FIG. 4 is a Moriel diagram showing a change in the state of the refrigerant in the outside air waste heat heating mode of the present embodiment.
  • the refrigerant temperature in the outdoor heat exchanger 16 is lower than the outside air temperature
  • the refrigerant temperature in the chiller 19 is higher than the waste heat temperature (that is, the temperature of the low temperature side heat medium). If it is low, the heat can be absorbed from the outside air and the waste heat of the waste heat apparatus 80 can be absorbed for heating, so that the efficiency and performance of heating can be improved.
  • FIG. 5 is a Moriel diagram showing a change in the state of the refrigerant in the outside air waste heat heating mode of the comparative example.
  • the low pressure of the refrigeration cycle rises by absorbing the waste heat of the waste heat device 80 in the outside air waste heat heating mode, and the refrigerant temperature in the outdoor heat exchanger 16 becomes higher than the outside air temperature. Shows.
  • the outdoor heat exchanger 16 dissipates heat from the refrigerant to the outside air, resulting in deterioration of heating efficiency and performance.
  • the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference ⁇ 2 or less, and the temperature TWL2 of the low temperature side heat medium absorbs heat. If the possible temperature is TW1 or higher, the mode is switched to the waste heat heating mode.
  • the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat absorbing temperature difference ⁇ 1, and the temperature TWL2 of the low temperature side heat medium is first predetermined to the heat absorbing temperature TW1. If the temperature difference is equal to or greater than the value obtained by adding ⁇ 1, the mode is switched to the outside air waste heat heating mode.
  • the mode in the waste heat heating mode, when the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat absorbing possible temperature difference ⁇ 1, the mode is switched to the outside air waste heat heating mode.
  • the heating efficiency and performance can be improved by switching to the outside air waste heat heating mode.
  • the mode in the waste heat heating mode, when the temperature TWL2 of the low temperature side heat medium is equal to or less than the endothermic lower limit temperature TWmin, the mode is switched to the outside air heating mode. As a result, the heating operation can be continued while suppressing the supercooling of the waste heat device 80.
  • the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside temperature Tam is the lower limit temperature difference ⁇ 2 or less, and the temperature TWL2 of the low temperature side heat medium is less than the heat absorbing temperature difference ⁇ 1.
  • the mode is switched to the outside air heating mode.
  • the heat can be absorbed from the outside air as soon as possible by switching to the outside air heating mode.
  • the waste heat device 80 can switch to the outside air heating mode and continue the heating operation while suppressing supercooling.
  • the refrigerant discharge capacity of the compressor 11 is controlled so as to prevent the temperature TWL2 of the low temperature side heat medium from falling below the heat absorption lower limit temperature TWmin in the waste heat heating mode at the time of frost formation.
  • the opening degree of the heating expansion valve 14a in the outside air heating mode, is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12.
  • the opening degree of the endothermic expansion valve 14c is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12.
  • the opening degree of the heating expansion valve 14a is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12, and based on the superheating degree SHC of the refrigerant flowing out from the chiller 19.
  • the opening degree of the heat absorption expansion valve 14c is controlled.
  • the opening degree of the heating expansion valve 14a and the opening degree of the heat absorption expansion valve 14c are appropriately controlled, and the outdoor heat exchanger 16 and the chiller are used.
  • the refrigerant pressure at 19 (in other words, the refrigerant temperature) can be appropriately controlled.
  • the opening degree of the heat absorption expansion valve 14c is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12, and the evaporated refrigerant flowing out from the outdoor heat exchanger 16 is controlled.
  • the opening degree of the heating expansion valve 14a may be controlled based on the degree of superheat SHC.
  • the opening degree of the endothermic expansion valve 14c is controlled so that the temperature Ts of the refrigerant sucked into the compressor 11 does not exceed the outside air temperature Tam.
  • the frequency of switching between the outside air waste heat heating mode and the waste heat heating mode can be reduced, so that the fluctuation of the blowing temperature due to the mode switching can be reduced.
  • the opening degree of the endothermic expansion valve 14c is controlled so as to prevent the temperature TWL2 of the low temperature side heat medium from becoming the endothermic lower limit temperature TWmin or less.
  • the frequency of switching between the outside air waste heat heating mode and the outside air heating mode can be reduced, so that the fluctuation of the blowing temperature due to the mode switching can be reduced.
  • the refrigerating cycle device 10 of the first embodiment is an accumulator cycle including an accumulator 21, but the refrigerating cycle device 10 of the present embodiment is a receiver cycle including a receiver 25 instead of the accumulator 21 as shown in FIG. Is.
  • the inlet side of the three-way valve 15e is arranged at the discharge port of the compressor 11.
  • the three-way valve 15e is an electric three-way flow rate adjusting valve having one inlet and two outlets and capable of continuously adjusting the passage area ratio of the two outlets.
  • the three-way valve 15e is controlled by a control signal output from the control device 60.
  • the inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to one of the outlets of the three-way valve 15e.
  • the first connection port side of the seventh joint 13g is connected to the other outlet of the three-way valve 15e via the first cooling passage 22c.
  • connection port side of the outdoor heat exchanger 16 is connected to the second connection port of the 7th joint 13g.
  • the first inflow port side of the fourth joint 13d is connected to the third connection port of the seventh joint 13g via the heating passage 22b.
  • a heating on-off valve 15b is arranged at a portion of the heating passage 22b between the 7th joint 13g and the 4th joint 13d.
  • One inflow port side of the eighth joint 13h is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12.
  • a fourth check valve 17d is arranged in the refrigerant passage connecting the outlet side of the refrigerant passage of the water refrigerant heat exchanger 12 and the one inlet side of the eighth joint 13h.
  • the fourth check valve 17d allows the refrigerant to flow from the water-refrigerant heat exchanger 12 side to the eighth joint 13h side, and prohibits the refrigerant from flowing from the eighth joint 13h side to the water-refrigerant heat exchanger 12 side. do.
  • the refrigerant inlet side of the receiver 25 is connected to the outlet of the 8th joint 13h.
  • the receiver 25 is a liquid storage unit having a gas-liquid separation function. That is, the receiver 25 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Then, the receiver 25 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
  • the inlet side of the first joint 13a is connected to the refrigerant outlet of the receiver 25.
  • the inlet side of the heating expansion valve 14a is connected to one of the outlets of the first joint 13a.
  • the first connection port side of the ninth joint 13i is connected to the outlet of the heating expansion valve 14a.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the second connection port of the ninth joint 13i.
  • the other inlet side of the eighth joint 13h is connected to the third connection port of the ninth joint 13i via the second cooling passage 22d.
  • a fifth check valve 17e is arranged in the second cooling passage 22d.
  • the fifth check valve 17e allows the refrigerant to flow from the ninth joint 13i side to the eighth joint 13h side, and prohibits the refrigerant from flowing from the eighth joint 13h side to the ninth joint 13i side.
  • the inlet side of the fifth joint 13e is connected to the other outlet of the first joint 13a via the bypass passage 22a.
  • the fifth joint 13e is a three-way joint similar to the first joint 13a.
  • the inlet side of the cooling expansion valve 14b is connected to one of the outlets of the fifth joint 13e.
  • the inlet side of the endothermic expansion valve 14c is connected to the other outlet of the fifth joint 13e.
  • the dehumidifying on-off valve 15a of the first embodiment is not arranged in the bypass passage 22a.
  • the refrigerating cycle device 10 is provided with first, third to fifth refrigerant temperature sensors 64a, 64c to 64e, and second to fifth refrigerant pressure sensors 65e.
  • the detection signal of these sensor groups is input to the control device 60.
  • the third refrigerant pressure sensor 65c is a third refrigerant pressure detecting unit that detects the pressure P3 of the refrigerant discharged from the compressor 11.
  • the fourth refrigerant pressure sensor 65d is a fourth refrigerant pressure detecting unit that detects the pressure P4 of the refrigerant flowing out from the outdoor heat exchanger 16.
  • the fifth refrigerant pressure sensor 65e is a fifth refrigerant pressure detecting unit that detects the pressure P5 of the refrigerant flowing out of the indoor evaporator 18.
  • the operation of the vehicle air conditioner of the present embodiment having the above configuration will be described.
  • the refrigeration cycle device 10 of the present embodiment there are five operation modes: cooling mode, outside air heating mode, outside air waste heat heating mode, waste heat heating mode, and waste heat heating mode at the time of frost formation. It is possible to perform air-conditioning operation in. The conditions for switching these operation modes are the same as those in the first embodiment.
  • control device 60 executes the control flow of each operation mode.
  • Cooling mode In the control flow of the cooling mode, the rotation speed of the compressor 11 and the opening degree SW of the air mix door 34 are determined as in the cooling mode of the first embodiment. In the control flow of the cooling mode, the endothermic expansion valve 14c is fully closed.
  • the throttle opening of the expansion valve 14b for cooling is based on the deviation between the target superheat degree SHEO and the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18, and the indoor evaporator is operated by a feedback control method.
  • the superheat degree SH of the outlet side refrigerant of 18 is determined to approach the target superheat degree SHEO.
  • the target superheat degree SHEO As the target superheat degree SHEO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
  • the degree of superheat SHE of the outlet-side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 detected by the fourth refrigerant temperature sensor 64d and the pressure P5 detected by the fifth refrigerant pressure sensor 65e.
  • the control device 60 closes the heating on-off valve 15b, and the three-way valve 15e closes the outlet on the water refrigerant heat exchanger 12 side. Close and open the outlet on the 22c side of the first cooling passage. Further, the control device 60 puts the heating expansion valve 14a in a fully closed state, the cooling expansion valve 14b in a throttle state that exerts a refrigerant depressurizing action, and the endothermic expansion valve 14c in a fully closed state.
  • the refrigerating cycle device 10 in the cooling mode can cool the vehicle interior in the same manner as in the cooling mode of the first embodiment.
  • the throttle opening of the heating expansion valve 14a is overheated by the feedback control method based on the deviation between the target superheat degree SHO1 and the superheat degree SH1 of the outlet side refrigerant of the outdoor heat exchanger 16.
  • Degree SH1 is determined to approach the target superheat degree SHO1.
  • the target superheat degree SHO1 As the target superheat degree SHO1, a predetermined constant (5 ° C. in this embodiment) can be adopted.
  • the degree of superheat SH1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P4 detected by the fourth refrigerant pressure sensor 65d.
  • the control device 60 In the control flow of the outside air heating mode, in order to switch the refrigerating cycle device 10 to the refrigerant circuit of the outside air heating mode, the control device 60 opens the heating on-off valve 15b, and the three-way valve 15e is the flow on the water refrigerant heat exchanger 12 side. The outlet is opened and the outlet on the side of the first cooling passage 22c is closed. Further, the control device 60 puts the heating expansion valve 14a in a throttled state that exerts a refrigerant depressurizing action, and puts the cooling expansion valve 14b and the endothermic expansion valve 14c in a fully closed state.
  • the refrigerating cycle device 10 in the outside air heating mode heat is absorbed from the outside air by the outdoor heat exchanger 16 and the high temperature side heat medium is used by the water refrigerant heat exchanger 12 as in the outside air heating mode of the first embodiment. It can be heated to heat the interior of the vehicle.
  • the throttle opening of the endothermic expansion valve 14c is determined as in the outside air waste heat heating mode of the first embodiment.
  • the control device 60 In the control flow of the outside air waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the outside air waste heat heating mode, the control device 60 opens the heating on-off valve 15b, and the three-way valve 15e is the water refrigerant heat exchanger. The outlet on the 12 side is opened and the outlet on the first cooling passage 22c side is closed. Further, the control device 60 puts the heating expansion valve 14a in a throttle state that exerts a refrigerant decompression effect, the cooling expansion valve 14b in a fully closed state, and the endothermic expansion valve 14c in a throttle state that exerts a refrigerant decompression action. ..
  • the compressor 11, the water refrigerant heat exchanger 12, the receiver 25, the expansion valve 14a for heating, the outdoor heat exchanger 16, and the suction port of the compressor 11 are circulated in this order.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the receiver 25, the heat absorption expansion valve 14c, the chiller 19, and the suction port of the compressor 11 is configured.
  • the refrigerating cycle device 10 in the outside air waste heat heating mode heat is absorbed from the outside air by the outdoor heat exchanger 16 and the low temperature side heat medium is used by the chiller 19 as in the outside air waste heat heating mode of the first embodiment. It is possible to heat the interior of the vehicle by absorbing heat from the waste heat device 80 and heating the heat medium on the high temperature side with the water refrigerant heat exchanger 12.
  • Waste heat heating mode In the control flow of the waste heat heating mode, the rotation speed of the compressor 11 and the opening SW of the air mix door 34 are determined as in the waste heat heating mode of the first embodiment. ..
  • the throttle opening of the endothermic expansion valve 14c is based on the deviation between the target superheat degree SHCO and the superheat degree SHC of the outlet side refrigerant of the chiller 19, and the superheat degree SHC is used by the feedback control method. Is determined to approach the target superheat degree SHCO. As the target superheat degree SHCO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
  • the control device 60 closes the heating on-off valve 15b, and the three-way valve 15e is on the water refrigerant heat exchanger 12 side.
  • the outlet on the 22c side of the first cooling passage 22c is closed by opening the outlet.
  • the control device 60 puts the heating expansion valve 14a and the cooling expansion valve 14b in a fully closed state, and puts the endothermic expansion valve 14c in a throttle state that exerts a refrigerant depressurizing action.
  • the refrigerant is supplied in the order of the compressor 11, the water refrigerant heat exchanger 12, the receiver 25, the bypass passage 22a, the heat absorption expansion valve 14c, the chiller 19, and the suction port of the compressor 11.
  • a circulating steam compression refrigeration cycle is constructed.
  • the refrigerating cycle device 10 in the waste heat heating mode heat is absorbed from the waste heat device 80 via the low temperature side heat medium by the chiller 19 and heat exchange is performed in the water refrigerant, as in the waste heat heating mode of the first embodiment.
  • the air inside the vehicle can be heated by heating the air with the vessel 12.
  • the rotation speed of the compressor 11 is determined as in the frosted waste heat heating mode of the first embodiment.
  • the refrigerating cycle device 10 is switched to the same refrigerant circuit as the waste heat heating mode of the present embodiment.
  • the chiller 19 absorbs heat from the low temperature side heat medium. It is possible to heat the interior of the vehicle while maintaining the state in which it can be done as much as possible.
  • the opening degree of the heating expansion valve 14a in the outside air heating mode, is controlled based on the superheat degree SH1 of the refrigerant flowing out from the outdoor heat exchanger 16.
  • the opening degree of the endothermic expansion valve 14c is controlled based on the superheat degree SHC of the refrigerant flowing out from the chiller 19.
  • the opening degree of the heating expansion valve 14a is controlled based on the superheat degree SH1 of the refrigerant flowing out from the outdoor heat exchanger 16, and for heat absorption based on the superheat degree SH1 of the refrigerant flowing out from the chiller 19.
  • the opening degree of the expansion valve 14c is controlled.
  • the opening degree of the heating expansion valve 14a and the opening degree of the heat absorption expansion valve 14c are appropriately controlled, and the outdoor heat exchanger 16 and the chiller are used.
  • the refrigerant pressure at 19 (in other words, the refrigerant temperature) can be appropriately controlled.
  • the refrigeration cycle device 10 capable of switching to a plurality of operation modes has been described, but the switching of the operation mode of the refrigeration cycle device 10 is not limited to this. At least, it suffices if the operation mode targeted for oil return control can be executed.
  • the components of the refrigeration cycle device are not limited to those disclosed in the above-described embodiment.
  • a plurality of cycle components may be integrated so that the above-mentioned effects can be exhibited.
  • the cooling expansion valve 14b and the endothermic expansion valve 14c those in which an electric expansion valve having no fully closed function and an on-off valve are directly connected may be adopted.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
  • Carbon dioxide may be adopted as the refrigerant to form a supercritical refrigeration cycle in which the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
  • the configuration of the heating unit is not limited to that disclosed in the above-described embodiment.
  • a radiator may be added to the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 described in the first embodiment to dissipate excess heat to the outside air.
  • engine an internal combustion engine
  • engine cooling water may be circulated in the high temperature side heat medium circuit 40.
  • the configuration of the endothermic unit is not limited to that disclosed in the above-described embodiment.
  • a thermosiphon may be adopted in which the chiller 19 of the low temperature side heat medium circuit 50 described in the first embodiment is used as a condensing unit and the waste heat device 80 functions as an evaporation unit. According to this, the low temperature side heat medium pump 51 can be abolished.
  • the thermosiphon has an evaporating part for evaporating the refrigerant and a condensing part for condensing the refrigerant, and is configured by connecting the evaporating part and the condensing part in a closed loop shape (that is, in a ring shape). Then, the temperature difference between the temperature of the refrigerant in the evaporating part and the temperature of the refrigerant in the condensing part causes a difference in specific gravity in the refrigerant in the circuit, and the action of gravity naturally circulates the refrigerant to transport heat together with the refrigerant. It is a circuit.
  • heat is absorbed from the waste heat device 80 to the refrigerant via the low temperature side heat medium, but heat may be absorbed from the waste heat device 80 to the refrigerant via air, or waste heat may be absorbed. Heat may be absorbed directly from the device 80 to the refrigerant.
  • the refrigeration cycle device 10 according to the present disclosure is applied to the vehicle air conditioner 1, but the application of the refrigeration cycle device 10 is not limited to this.
  • it may be applied to an air conditioner or the like that performs indoor air conditioning.

Abstract

This refrigeration cycle device is provided with: a refrigerant circuit switching unit (15a, 15b) that performs switching between a refrigerant circuit of a waste-heat heating mode for not absorbing heat from outside air at an outdoor heat exchanger (16) but absorbing heat from a heat-absorption-target object (80) at a heat absorption unit (19, 50) and a refrigerant circuit of an outside-air-waste-heat heating mode for absorbing heat from the outside at the outdoor heat exchanger (16) and absorbing heat from the heat-absorption-target object (80) at the heat absorption unit (19, 50); and a control unit (60) that controls the refrigerant circuit switching unit (15a, 15b) to switch to the waste-heat heating mode when an outside air/refrigerant temperature difference which is a temperature difference obtained by subtracting the temperature (Ts) of a refrigerant sucked into a compressor (11) from an outside air temperature (Tam) is equal to or lower than a lower limit temperature difference (α2) and the temperature (TWL 2) of the heat-absorption-target object (80) is equal to or higher than a heat absorbable temperature (TW 1) in the outside-air-waste-heat heating mode.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年8月5日に出願された日本特許出願2020-133010号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-13310 filed on August 5, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、複数の熱源から吸熱して暖房を行う冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device that absorbs heat from a plurality of heat sources to perform heating.
 従来、特許文献1に記載されている車両用空気調和装置は、室外熱交換器と非温調対象から吸熱して車室内を暖房する。この従来技術では、外気からの吸熱のみならず、非温調対象の廃熱を利用して暖房を行うことによって、暖房の効率や性能が向上されている。 Conventionally, the vehicle air conditioner described in Patent Document 1 heats the vehicle interior by absorbing heat from an outdoor heat exchanger and a non-temperature control target. In this conventional technique, not only the heat absorption from the outside air but also the waste heat of the non-temperature control target is used for heating, thereby improving the efficiency and performance of the heating.
特開2020-26196号公報Japanese Unexamined Patent Publication No. 2020-26196
 しかしながら、上記従来技術では、廃熱吸熱によって冷凍サイクルの低圧が上昇するので、廃熱量が多い場合には室外熱交換器での冷媒温度が外気温度よりも高くなることが起こり得る。室外熱交換器での冷媒温度が外気温度よりも高くなると室外熱交換器で冷媒から外気に放熱してしまうので暖房の効率や性能が悪化してしまう。 However, in the above-mentioned conventional technique, since the low pressure of the refrigeration cycle rises due to waste heat endothermic, when the amount of waste heat is large, the refrigerant temperature in the outdoor heat exchanger may be higher than the outside air temperature. When the refrigerant temperature in the outdoor heat exchanger becomes higher than the outside air temperature, the outdoor heat exchanger dissipates heat from the refrigerant to the outside air, which deteriorates the efficiency and performance of heating.
 本開示は、上記点に鑑み、複数の熱源から吸熱して暖房を行う冷凍サイクル装置において、暖房の効率を向上させることを目的とする。 In view of the above points, the present disclosure aims to improve the efficiency of heating in a refrigeration cycle apparatus that absorbs heat from a plurality of heat sources to perform heating.
 本開示の一態様による冷凍サイクル装置は、圧縮機と、加熱部と、暖房用膨張弁と、室外熱交換器と、冷房用膨張弁と、室内蒸発器と、吸熱用膨張弁と、吸熱部と、冷媒回路切替部と、制御部とを備える。 The refrigerating cycle apparatus according to one aspect of the present disclosure includes a compressor, a heating unit, an expansion valve for heating, an outdoor heat exchanger, an expansion valve for cooling, an indoor evaporator, an expansion valve for heat absorption, and an endothermic unit. , A refrigerant circuit switching unit, and a control unit.
 圧縮機は、冷媒を圧縮して吐出する。加熱部は、圧縮機から吐出された吐出冷媒を熱源として、空調対象空間へ送風される空気を加熱する。 The compressor compresses and discharges the refrigerant. The heating unit heats the air blown to the air-conditioned space using the discharged refrigerant discharged from the compressor as a heat source.
 暖房用膨張弁は、加熱部から流出した冷媒を減圧させる。室外熱交換器は、暖房用膨張弁から流出した冷媒と外気とを熱交換させる。 The expansion valve for heating decompresses the refrigerant flowing out from the heating part. The outdoor heat exchanger exchanges heat between the refrigerant flowing out from the heating expansion valve and the outside air.
 冷房用膨張弁は、室外熱交換器から流出した冷媒を減圧させる。室内蒸発器は、冷房用膨張弁から流出した冷媒を蒸発させて、加熱部にて加熱される前の空気を冷却する。 The cooling expansion valve reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger. The indoor evaporator evaporates the refrigerant flowing out from the cooling expansion valve to cool the air before being heated by the heating unit.
 吸熱用膨張弁は、室外熱交換器から流出した冷媒を減圧させる。吸熱部は、吸熱用膨張弁から流出した冷媒を蒸発させて、吸熱対象物から吸熱する。 The endothermic expansion valve reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger. The endothermic unit evaporates the refrigerant flowing out from the endothermic expansion valve and absorbs heat from the endothermic object.
 冷媒回路切替部は、室外熱交換器で外気から吸熱せず吸熱部で吸熱対象物から吸熱する廃熱暖房モードの冷媒回路と、室外熱交換器で外気から吸熱するとともに吸熱部で吸熱対象物から吸熱する外気廃熱暖房モードの冷媒回路とに切り替える。 The refrigerant circuit switching unit is a waste heat heating mode refrigerant circuit that does not absorb heat from the outside air with the outdoor heat exchanger but absorbs heat from the endothermic object with the heat absorbing part, and the outdoor heat exchanger absorbs heat from the outside air and the endothermic object with the heat absorbing part. Switch to the outside air waste heat heating mode endothermic circuit that absorbs heat from.
 制御部は、外気廃熱暖房モードにおいて、外気温度Tamから、圧縮機に吸入される冷媒の温度を減じた温度差である外気冷媒温度差が下限温度差以下であり、且つ吸熱対象物の温度が吸熱可能温度以上である場合、廃熱暖房モードに切り替えるように冷媒回路切替部を制御する。 In the outside air waste heat heating mode, the control unit has the outside air refrigerant temperature difference, which is the temperature difference obtained by subtracting the temperature of the refrigerant sucked into the compressor from the outside air temperature Tam, not more than the lower limit temperature difference, and the temperature of the heat absorbing object. If is equal to or higher than the heat absorption temperature, the refrigerant circuit switching unit is controlled so as to switch to the waste heat heating mode.
 これによると、廃熱吸熱によって冷凍サイクルの低圧が上昇しても、廃熱暖房モードに切り替えることで室外熱交換器で冷媒から外気に放熱することを抑制できるので、暖房の効率や性能の悪化を抑制できる。 According to this, even if the low pressure of the refrigeration cycle rises due to waste heat endothermic, by switching to the waste heat heating mode, it is possible to suppress heat dissipation from the refrigerant from the refrigerant by the outdoor heat exchanger, so the efficiency and performance of heating deteriorates. Can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な既述により、より明確となる。
第1実施形態の車両用空調装置の全体構成図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態の制御プログラムにおける運転モードの切替条件を示す説明図である。 第1実施形態の外気廃熱暖房モードにおける冷媒の状態の変化を示すモリエル線図である。 比較例の外気廃熱暖房モードにおける冷媒の状態の変化を示すモリエル線図である。 第2実施形態の車両用空調装置の全体構成図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the detailed description below with reference to the accompanying drawings.
It is an overall block diagram of the vehicle air conditioner of 1st Embodiment. It is a block diagram which shows the electric control part of the air-conditioning apparatus for a vehicle of 1st Embodiment. It is explanatory drawing which shows the switching condition of the operation mode in the control program of 1st Embodiment. It is a Moriel diagram which shows the change of the state of the refrigerant in the outside air waste heat heating mode of 1st Embodiment. It is a Moriel diagram which shows the change of the state of the refrigerant in the outside air waste heat heating mode of a comparative example. It is an overall block diagram of the air conditioner for vehicles of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combinations of the parts that clearly indicate that they can be combined in each embodiment, but also the parts of the embodiments that are not explicitly combined can be partially combined if there is no particular problem in the combination. It is possible.
 (第1実施形態)
 図1~図5を用いて、第1実施形態を説明する。本実施形態の冷凍サイクル装置10は、電気自動車に搭載された車両用空調装置1に適用されている。電気自動車は、電動モータから走行用の駆動力を得る車両である。車両用空調装置1は、空調対象空間である車室内の空調を行う。
(First Embodiment)
The first embodiment will be described with reference to FIGS. 1 to 5. The refrigeration cycle device 10 of the present embodiment is applied to a vehicle air conditioner 1 mounted on an electric vehicle. An electric vehicle is a vehicle that obtains driving force for traveling from an electric motor. The vehicle air conditioner 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned.
 車両用空調装置1は、図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30、高温側熱媒体回路40、低温側熱媒体回路50等を備えている。 As shown in the overall configuration diagram of FIG. 1, the vehicle air conditioner 1 includes a refrigerating cycle device 10, an indoor air conditioner unit 30, a high temperature side heat medium circuit 40, a low temperature side heat medium circuit 50, and the like.
 冷凍サイクル装置10は、車室内の空調を行うために、車室内へ送風される空気を冷却し、高温側熱媒体回路40を循環する高温側熱媒体を加熱する。冷凍サイクル装置10は、廃熱機器80から吸熱するために、低温側熱媒体回路50を循環する低温側熱媒体を冷却する。 The refrigerating cycle device 10 cools the air blown into the vehicle interior and heats the high temperature side heat medium circulating in the high temperature side heat medium circuit 40 in order to air-condition the vehicle interior. The refrigeration cycle device 10 cools the low temperature side heat medium circulating in the low temperature side heat medium circuit 50 in order to absorb heat from the waste heat device 80.
 冷凍サイクル装置10は、車室内の空調を行うために、様々な運転モード用の冷媒回路を切替可能である。例えば、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、暖房モードの冷媒回路等を切替可能である。 The refrigerating cycle device 10 can switch the refrigerant circuit for various operation modes in order to perform air conditioning in the vehicle interior. For example, the refrigerant circuit in the cooling mode, the refrigerant circuit in the dehumidifying / heating mode, the refrigerant circuit in the heating mode, and the like can be switched.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用しており、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant, and the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant, which is a steam compression type subcritical. It constitutes a refrigeration cycle. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方に配置されて電動モータ等が収容される駆動装置室内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、図2に示す制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 Among the constituent devices of the refrigerating cycle device 10, the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in front of the vehicle interior and is arranged in the drive unit chamber in which the electric motor and the like are housed. The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the control device 60 shown in FIG.
 図1に示すように、圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路と、高温側熱媒体回路40を循環する高温側熱媒体を流通させる水通路とを有している。水冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と、水通路を流通する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する加熱用の熱交換器である。 As shown in FIG. 1, the inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11. The water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the high-pressure refrigerant discharged from the compressor 11 and a water passage for circulating the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40. The water refrigerant heat exchanger 12 is a heat exchanger for heating that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the water passage.
 水冷媒熱交換器12の冷媒通路の出口には、互いに連通する3つの流入出口を有する第1継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 冷凍サイクル装置10は、第2~第4継手13b~13dを備えている。第3継手13cは、第1継手13aと同様の三方継手である。第2継手13bおよび第4継手13dは、互いに連通する4つの流入出口を有する四方継手である。 The refrigeration cycle device 10 includes second to fourth joints 13b to 13d. The third joint 13c is a three-way joint similar to the first joint 13a. The second joint 13b and the fourth joint 13d are four-sided joints having four inflow ports communicating with each other.
 第1継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1継手13aの他方の流出口には、バイパス通路22aを介して、第2継手13bの一方の流入口側が接続されている。バイパス通路22aには、除湿用開閉弁15aが配置されている。 The inlet side of the heating expansion valve 14a is connected to one of the outlets of the first joint 13a. One inlet side of the second joint 13b is connected to the other outlet of the first joint 13a via a bypass passage 22a. A dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
 除湿用開閉弁15aは、バイパス通路22aを開閉する電磁弁である。冷凍サイクル装置10は、暖房用開閉弁15bを備えている。暖房用開閉弁15bの基本的構成は、除湿用開閉弁15aと同様である。 The dehumidifying on-off valve 15a is a solenoid valve that opens and closes the bypass passage 22a. The refrigeration cycle device 10 includes a heating on-off valve 15b. The basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
 除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。除湿用開閉弁15aおよび暖房用開閉弁15bは、サイクルの冷媒回路を切り替える冷媒回路切替部である。除湿用開閉弁15aおよび暖房用開閉弁15bは、制御装置60から出力される制御電圧によって制御される。 The dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. The dehumidifying on-off valve 15a and the heating on-off valve 15b are refrigerant circuit switching units that switch the refrigerant circuit of the cycle. The dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the control device 60.
 暖房用膨張弁14aは、少なくとも車室内の暖房を行う運転モード時に、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用減圧部である。暖房用膨張弁14aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータ(換言すれば電気的機構)とを有して構成される電気式の可変絞り機構(換言すれば、電気式膨張弁)である。 The heating expansion valve 14a reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 at least in the operation mode of heating the vehicle interior, and reduces the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side. It is a decompression unit for heating to be adjusted. The heating expansion valve 14a is an electric type having a valve body configured to change the throttle opening degree and an electric actuator (in other words, an electric mechanism) for changing the opening degree of the valve body. Variable throttle mechanism (in other words, an electric expansion valve).
 冷凍サイクル装置10は、冷房用膨張弁14bおよび吸熱用膨張弁14cを備えている。冷房用膨張弁14bおよび吸熱用膨張弁14cの基本的構成は、暖房用膨張弁14aと同様である。 The refrigeration cycle device 10 includes a cooling expansion valve 14b and an endothermic expansion valve 14c. The basic configuration of the cooling expansion valve 14b and the endothermic expansion valve 14c is the same as that of the heating expansion valve 14a.
 暖房用膨張弁14a、冷房用膨張弁14bおよび吸熱用膨張弁14cは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 The expansion valve 14a for heating, the expansion valve 14b for cooling, and the expansion valve 14c for endothermic function have a fully open function that functions as a mere refrigerant passage without exerting a flow rate adjusting action and a refrigerant depressurizing action by fully opening the valve opening. It also has a fully closed function that closes the refrigerant passage by fully closing the valve opening.
 この全開機能および全閉機能によって、暖房用膨張弁14a、冷房用膨張弁14bおよび吸熱用膨張弁14cは、各運転モードの冷媒回路を切り替えることができる。暖房用膨張弁14a、冷房用膨張弁14bおよび吸熱用膨張弁14cは、冷媒回路切替部として機能する。暖房用膨張弁14a、冷房用膨張弁14bおよび吸熱用膨張弁14cは、制御装置60から出力される制御信号(制御パルス)によって制御される。 With this fully open function and fully closed function, the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c can switch the refrigerant circuit in each operation mode. The heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c function as a refrigerant circuit switching unit. The heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c are controlled by a control signal (control pulse) output from the control device 60.
 暖房用膨張弁14aの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14aから流出した冷媒と図示しない冷却ファンにより送風された外気とを熱交換させる熱交換器である。室外熱交換器16は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器16に走行風を当てることができる。 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a. The outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by a cooling fan (not shown). The outdoor heat exchanger 16 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind can be applied to the outdoor heat exchanger 16.
 室外熱交換器16の冷媒出口には、第3継手13cの流入口側が接続されている。第3継手13cの一方の流出口には、暖房用通路22bを介して、第4継手13dの第1の流入口側が接続されている。暖房用通路22bには、この冷媒通路を開閉する暖房用開閉弁15bが配置されている。暖房用通路22bには、第1逆止弁17aが配置されている。第1逆止弁17aは、第3継手13c側から第4継手13d側へ冷媒が流れることを許容し、第4継手13d側から第3継手13c側へ冷媒が流れることを禁止する。 The inlet side of the third joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16. The first inlet side of the fourth joint 13d is connected to one outlet of the third joint 13c via the heating passage 22b. A heating on-off valve 15b for opening and closing the refrigerant passage is arranged in the heating passage 22b. A first check valve 17a is arranged in the heating passage 22b. The first check valve 17a allows the refrigerant to flow from the third joint 13c side to the fourth joint 13d side, and prohibits the refrigerant from flowing from the fourth joint 13d side to the third joint 13c side.
 第3継手13cの他方の流出口には、第2継手13bの他方の流入口側が接続されている。第3継手13cの他方の流出口側と第2継手13bの他方の流入口側とを接続する冷媒通路には、第2逆止弁17bが配置されている。第2逆止弁17bは、第3継手13c側から第2継手13b側へ冷媒が流れることを許容し、第2継手13b側から第3継手13c側へ冷媒が流れることを禁止する。 The other inlet side of the second joint 13b is connected to the other outlet of the third joint 13c. A second check valve 17b is arranged in a refrigerant passage connecting the other outlet side of the third joint 13c and the other inlet side of the second joint 13b. The second check valve 17b allows the refrigerant to flow from the third joint 13c side to the second joint 13b side, and prohibits the refrigerant from flowing from the second joint 13b side to the third joint 13c side.
 第2継手13bの一方の流出口には、冷房用膨張弁14bの入口側が接続されている。第2継手13bの他方の流出口には、吸熱用膨張弁14cの入口側が接続されている。 The inlet side of the cooling expansion valve 14b is connected to one of the outlets of the second joint 13b. The inlet side of the endothermic expansion valve 14c is connected to the other outlet of the second joint 13b.
 冷房用膨張弁14bは、少なくとも車室内の冷房を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する空調用減圧部である。 The cooling expansion valve 14b is an air-conditioning decompression unit that depressurizes the refrigerant flowing out from the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the vehicle interior.
 冷房用膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁14bにて減圧された低圧冷媒と送風機32から送風された空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって空気を冷却する空調用蒸発部である。室内蒸発器18は第1蒸発部である。室内蒸発器18の冷媒出口には、第4継手13dの第2の流入口側が接続されている。 The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b. The indoor evaporator 18 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30. The indoor evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the air blown from the blower 32 to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exert a heat absorbing action to absorb air. It is an air conditioning evaporative unit that cools. The indoor evaporator 18 is the first evaporation unit. The second inflow port side of the fourth joint 13d is connected to the refrigerant outlet of the indoor evaporator 18.
 室内蒸発器18の冷媒出口側と第4継手13dの第2の流入口側とを接続する冷媒通路には、第3逆止弁17cが配置されている。第3逆止弁17cは、室内蒸発器18側から第4継手13d側へ冷媒が流れることを許容し、第4継手13d側から室内蒸発器18側へ冷媒が流れることを禁止する。 A third check valve 17c is arranged in the refrigerant passage connecting the refrigerant outlet side of the indoor evaporator 18 and the second inlet side of the fourth joint 13d. The third check valve 17c allows the refrigerant to flow from the indoor evaporator 18 side to the fourth joint 13d side, and prohibits the refrigerant from flowing from the fourth joint 13d side to the indoor evaporator 18 side.
 吸熱用膨張弁14cは、廃熱機器80から吸熱を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する吸熱用減圧部である。 The endothermic expansion valve 14c is an endothermic decompression unit that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side in the operation mode in which heat is absorbed from the waste heat device 80. ..
 吸熱用膨張弁14cの出口には、チラー19の冷媒通路の入口側が接続されている。チラー19は、吸熱用膨張弁14cにて減圧された低圧冷媒を流通させる冷媒通路と、低温側熱媒体回路50を循環する低温側熱媒体を流通させる水通路とを有している。チラー19は、冷媒通路を流通する低圧冷媒と、水通路を流通する低温側熱媒体とを熱交換させて、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発部である。チラー19の冷媒通路の出口には、第4継手13dの第3の流入口側が接続されている。室内蒸発器18およびチラー19は、冷媒流れに対して互いに並列的に接続されている。 The inlet side of the refrigerant passage of the chiller 19 is connected to the outlet of the endothermic expansion valve 14c. The chiller 19 has a refrigerant passage for circulating a low-pressure refrigerant decompressed by the heat absorption expansion valve 14c, and a water passage for circulating a low-temperature side heat medium circulating in the low-temperature side heat medium circuit 50. The chiller 19 is an evaporation unit that exchanges heat between the low-pressure refrigerant flowing through the refrigerant passage and the low-temperature side heat medium flowing through the water passage to evaporate the low-pressure refrigerant and exert a heat absorbing action. The third inflow port side of the fourth joint 13d is connected to the outlet of the refrigerant passage of the chiller 19. The indoor evaporator 18 and the chiller 19 are connected in parallel to each other with respect to the refrigerant flow.
 第4継手13dの流出口には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を貯える気液分離部である。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The inlet side of the accumulator 21 is connected to the outlet of the fourth joint 13d. The accumulator 21 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed into the inside and stores the excess liquid-phase refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
 アキュムレータ21には、分離された液相冷媒中に混在する冷凍機油を圧縮機11に戻すオイル戻し穴が形成されている。アキュムレータ21内の冷凍機油は、少量の液相冷媒とともに圧縮機11へ戻される。 The accumulator 21 is formed with an oil return hole for returning the refrigerating machine oil mixed in the separated liquid phase refrigerant to the compressor 11. The refrigerating machine oil in the accumulator 21 is returned to the compressor 11 together with a small amount of liquid phase refrigerant.
 高温側熱媒体回路40は、高温側熱媒体を循環させる熱媒体循環回路である。高温側熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。高温側熱媒体回路40には、水冷媒熱交換器12の水通路、高温側熱媒体ポンプ41、ヒータコア42、電気ヒータ43等が配置されている。 The high temperature side heat medium circuit 40 is a heat medium circulation circuit that circulates the high temperature side heat medium. As the high temperature side heat medium, a solution containing ethylene glycol, dimethylpolysiloxane, a nanofluid, or the like, an antifreeze solution, or the like can be adopted. In the high temperature side heat medium circuit 40, a water passage of the water refrigerant heat exchanger 12, a high temperature side heat medium pump 41, a heater core 42, an electric heater 43, and the like are arranged.
 高温側熱媒体ポンプ41は、高温側熱媒体を水冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。高温側熱媒体ポンプ41は、制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。 The high temperature side heat medium pump 41 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water refrigerant heat exchanger 12. The high temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the control device 60.
 水冷媒熱交換器12の水通路の出口には、ヒータコア42の熱媒体入口側が接続されている。ヒータコア42は、水冷媒熱交換器12にて加熱された高温側熱媒体と室内蒸発器18を通過した空気とを熱交換させて、空気を加熱する熱交換器である。ヒータコア42は、室内空調ユニット30の空調ケース31内に配置されている。ヒータコア42の熱媒体出口には、高温側熱媒体ポンプ41の吸入口側が接続されている。 The heat medium inlet side of the heater core 42 is connected to the outlet of the water passage of the water refrigerant heat exchanger 12. The heater core 42 is a heat exchanger that heats the air by exchanging heat between the high temperature side heat medium heated by the water refrigerant heat exchanger 12 and the air that has passed through the indoor evaporator 18. The heater core 42 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30. The suction port side of the high temperature side heat medium pump 41 is connected to the heat medium outlet of the heater core 42.
 従って、高温側熱媒体回路40では、高温側熱媒体ポンプ41が、ヒータコア42へ流入する高温側熱媒体の流量を調整することによって、ヒータコア42における高温側熱媒体の空気への放熱量(すなわち、ヒータコア42における空気の加熱量)を調整することができる。 Therefore, in the high temperature side heat medium circuit 40, the high temperature side heat medium pump 41 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 42 to dissipate heat of the high temperature side heat medium in the heater core 42 to the air (that is, that is). , The amount of heat of air in the heater core 42) can be adjusted.
 水冷媒熱交換器12、高温側熱媒体回路40およびヒータコア42は、圧縮機11から吐出された冷媒を熱源として、空気を加熱する加熱部である。 The water-refrigerant heat exchanger 12, the high-temperature side heat medium circuit 40, and the heater core 42 are heating units that heat air using the refrigerant discharged from the compressor 11 as a heat source.
 電気ヒータ43は、例えば、PTC素子(即ち、正特性サーミスタ)を有するPTCヒータである。電気ヒータ43は、制御装置60から出力される制御電圧によって、高温側熱媒体を加熱するための熱量を任意に調整することができる。 The electric heater 43 is, for example, a PTC heater having a PTC element (that is, a positive characteristic thermistor). The electric heater 43 can arbitrarily adjust the amount of heat for heating the high temperature side heat medium by the control voltage output from the control device 60.
 低温側熱媒体回路50は、低温側熱媒体を循環させる熱媒体循環回路である。低温側熱媒体としては、高温側熱媒体と同様の流体を採用することができる。低温側熱媒体回路50には、チラー19の水通路、低温側熱媒体ポンプ51、廃熱機器80等が配置されている。 The low temperature side heat medium circuit 50 is a heat medium circulation circuit that circulates the low temperature side heat medium. As the low temperature side heat medium, the same fluid as the high temperature side heat medium can be adopted. In the low temperature side heat medium circuit 50, a water passage of a chiller 19, a low temperature side heat medium pump 51, a waste heat device 80, and the like are arranged.
 低温側熱媒体ポンプ51は、低温側熱媒体をチラー19の水通路の入口側へ圧送する水ポンプである。低温側熱媒体ポンプ51の基本的構成は、高温側熱媒体ポンプ41と同様である。 The low temperature side heat medium pump 51 is a water pump that pumps the low temperature side heat medium to the inlet side of the water passage of the chiller 19. The basic configuration of the low temperature side heat medium pump 51 is the same as that of the high temperature side heat medium pump 41.
 低温側熱媒体ポンプ51の吐出口には、廃熱機器80の入口側が接続されている。廃熱機器80には、低温側熱媒体が流れる熱媒体流路が設けられている。廃熱機器80は、作動に伴って廃熱が生じる車載機器である。廃熱機器80は、例えば、インバータ、モータージェネレータ、パワーコントロールユニット等の、車両の走行に伴って廃熱が生じる機器である。廃熱機器80は、電動モータ等の車載機器へ供給される電力を蓄える二次電池であってもよい。廃熱機器80の熱媒体出口には、チラー19の水通路の入口側が接続されている。チラー19の水通路の出口には、低温側熱媒体ポンプ51の吸入口側が接続されている。 The inlet side of the waste heat device 80 is connected to the discharge port of the low temperature side heat medium pump 51. The waste heat device 80 is provided with a heat medium flow path through which the low temperature side heat medium flows. The waste heat device 80 is an in-vehicle device that generates waste heat as it operates. The waste heat device 80 is, for example, an inverter, a motor generator, a power control unit, or the like, which generates waste heat as the vehicle travels. The waste heat device 80 may be a secondary battery for storing electric power supplied to an in-vehicle device such as an electric motor. The inlet side of the water passage of the chiller 19 is connected to the heat medium outlet of the waste heat apparatus 80. The suction port side of the low temperature side heat medium pump 51 is connected to the outlet of the water passage of the chiller 19.
 低温側熱媒体回路50には、低温側熱媒体の有する熱を外気に放熱させる低温側ラジエータが配置されていてもよい。 The low temperature side heat medium circuit 50 may be provided with a low temperature side radiator that dissipates heat from the low temperature side heat medium to the outside air.
 低温側熱媒体回路50では、低温側熱媒体ポンプ51が、廃熱機器80へ流入する低温側熱媒体の流量を調整することによって、低温側熱媒体が廃熱機器80から奪う吸熱量を調整することができる。 In the low temperature side heat medium circuit 50, the low temperature side heat medium pump 51 adjusts the flow rate of the low temperature side heat medium flowing into the waste heat device 80 to adjust the amount of heat absorbed by the low temperature side heat medium from the waste heat device 80. can do.
 チラー19および低温側熱媒体回路50は、吸熱用膨張弁14cから流出した冷媒を蒸発させて、廃熱機器80から吸熱する吸熱部である。廃熱機器80および低温側熱媒体は、チラー19を流れる冷媒によって吸熱される吸熱対象物である。 The chiller 19 and the low temperature side heat medium circuit 50 are endothermic portions that evaporate the refrigerant flowing out from the endothermic expansion valve 14c and absorb heat from the waste heat apparatus 80. The waste heat device 80 and the low temperature side heat medium are endothermic objects that are endothermic by the refrigerant flowing through the chiller 19.
 室内空調ユニット30は、冷凍サイクル装置10によって温度調整された空気を車室内へ吹き出す。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 The indoor air conditioning unit 30 blows out air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior. The indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the front of the vehicle interior.
 室内空調ユニット30は、図1に示すように、その外殻を形成する空調ケース31内に形成された空気通路内に送風機32、室内蒸発器18、ヒータコア42等を収容している。 As shown in FIG. 1, the indoor air conditioning unit 30 houses a blower 32, an indoor evaporator 18, a heater core 42, and the like in an air passage formed in an air conditioning case 31 forming an outer shell thereof.
 空調ケース31は、車室内に送風される空気の空気通路を形成している。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The air conditioning case 31 forms an air passage for air to be blown into the vehicle interior. The air-conditioning case 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース31の空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(すなわち車室内空気)と外気(すなわち車室外空気)とを切替導入する。 An inside / outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case 31. The inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the air conditioning case 31.
 内外気切替装置33は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。内外気切替ドア用の電動アクチュエータは、制御装置60から出力される制御信号によって制御される。 The inside / outside air switching device 33 continuously adjusts the opening areas of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the introduction air volume of the inside air and the outside air. Change the introduction ratio with the introduction air volume. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The electric actuator for the inside / outside air switching door is controlled by a control signal output from the control device 60.
 内外気切替装置33の空気流れ下流側には、送風機32が配置されている。送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 32 is arranged on the downstream side of the air flow of the inside / outside air switching device 33. The blower 32 blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior. The blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the control device 60.
 送風機32の空気流れ下流側には、室内蒸発器18、ヒータコア42が、空気流れに対して、この順に配置されている。室内蒸発器18は、ヒータコア42よりも、空気流れ上流側に配置されている。 On the downstream side of the air flow of the blower 32, the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the air flow. The indoor evaporator 18 is arranged on the upstream side of the air flow with respect to the heater core 42.
 空調ケース31内には、室内蒸発器18通過後の空気を、ヒータコア42を迂回して流す冷風バイパス通路35が設けられている。空調ケース31内の室内蒸発器18の空気流れ下流側、かつヒータコア42の空気流れ上流側には、エアミックスドア34が配置されている。 The air conditioning case 31 is provided with a cold air bypass passage 35 that allows air after passing through the indoor evaporator 18 to bypass the heater core 42. An air mix door 34 is arranged on the downstream side of the air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the air flow of the heater core 42.
 エアミックスドア34は、室内蒸発器18通過後の空気のうち、ヒータコア42側を通過する空気の風量と冷風バイパス通路35を通過させる空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。この電動アクチュエータは、制御装置60から出力される制御信号によって制御される。 The air mix door 34 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air volume of the air passing through the heater core 42 side and the air volume of the air passing through the cold air bypass passage 35 among the air after passing through the indoor evaporator 18. .. The air mix door 34 is driven by an electric actuator for the air mix door. This electric actuator is controlled by a control signal output from the control device 60.
 空調ケース31内のヒータコア42および冷風バイパス通路35の空気流れ下流側には、混合空間が配置されている。混合空間は、ヒータコア42にて加熱された空気と冷風バイパス通路35を通過して加熱されていない空気とを混合させる空間である。 A mixing space is arranged on the downstream side of the air flow of the heater core 42 and the cold air bypass passage 35 in the air conditioning case 31. The mixing space is a space in which the air heated by the heater core 42 and the unheated air passing through the cold air bypass passage 35 are mixed.
 空調ケース31の空気流れ下流部には、混合空間にて混合された空気(すなわち、空調風)を、空調対象空間である車室内へ吹き出すための開口穴が配置されている。 In the downstream portion of the air flow of the air conditioning case 31, an opening hole for blowing out the air mixed in the mixing space (that is, the air conditioning air) into the vehicle interior, which is the air conditioning target space, is arranged.
 この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As this opening hole, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided. The face opening hole is an opening hole for blowing air-conditioned air toward the upper body of the occupant in the vehicle interior. The foot opening hole is an opening hole for blowing air-conditioned air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening holes, foot opening holes, and defroster opening holes are the face outlets, foot outlets, and defroster outlets (none of which are shown) provided in the vehicle interior via ducts forming air passages, respectively. )It is connected to the.
 エアミックスドア34が、ヒータコア42を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される空気(空調風)の温度が調整される。 The temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. As a result, the temperature of the air (air-conditioned air) blown from each outlet into the vehicle interior is adjusted.
 フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドアは、フェイス開口穴の開口面積を調整する。フットドアは、フット開口穴の開口面積を調整する。デフロスタドアは、デフロスタ開口穴の開口面積を調整する。 Face doors, foot doors, and defroster doors (none of which are shown) are arranged on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively. The face door adjusts the opening area of the face opening hole. The foot door adjusts the opening area of the foot opening hole. The defroster door adjusts the opening area of the defroster opening hole.
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置を構成している。これらのドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータも、制御装置60から出力される制御信号によって、その作動が制御される。 These face doors, foot doors, and defroster doors constitute an outlet mode switching device that switches the outlet mode. These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of this electric actuator is also controlled by a control signal output from the control device 60.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode that can be switched by the outlet mode switching device include face mode, bi-level mode, and foot mode.
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開とするとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is an outlet mode in which the face outlet is fully opened and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment. The bi-level mode is an outlet mode in which both the face outlet and the foot outlet are opened to blow air toward the upper body and feet of the passengers in the passenger compartment. The foot mode is an outlet mode in which the foot outlet is fully opened and the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
 乗員が、図2に示す操作パネル70に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ吹出口を全開としてデフロスタ吹出口からフロント窓ガラス内面に空気を吹き出す吹出口モードである。 The occupant can also switch to the defroster mode by manually operating the blowout mode changeover switch provided on the operation panel 70 shown in FIG. The defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the front window glass.
 次に、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、14a~14c、15a~15b、32、41、51等の作動を制御する。 Next, the outline of the electric control unit of this embodiment will be described. The control device 60 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits thereof. Then, various operations and processes are performed based on the control program stored in the ROM, and various controlled devices 11, 14a to 14c, 15a to 15b, 32, 41, 51 and the like connected to the output side are operated. To control.
 制御装置60の入力側には、図2のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、第1~第5冷媒温度センサ64a~64e、蒸発器温度センサ64f、第1冷媒圧力センサ65a、第2冷媒圧力センサ65b、高温側熱媒体温度センサ66a、第1低温側熱媒体温度センサ67a、第2低温側熱媒体温度センサ67b等が接続されている。そして、制御装置60には、これらのセンサ群の検出信号が入力される。 On the input side of the control device 60, as shown in the block diagram of FIG. 2, the inside temperature sensor 61, the outside temperature sensor 62, the solar radiation sensor 63, the first to fifth refrigerant temperature sensors 64a to 64e, and the evaporator temperature sensor 64f , A first refrigerant pressure sensor 65a, a second refrigerant pressure sensor 65b, a high temperature side heat medium temperature sensor 66a, a first low temperature side heat medium temperature sensor 67a, a second low temperature side heat medium temperature sensor 67b, and the like are connected. Then, the detection signals of these sensor groups are input to the control device 60.
 内気温センサ61は、内気温Tr(すなわち車室内温度)を検出する内気温検出部である。外気温センサ62は、外気温Tam(すなわち車室外温度)を検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Asを検出する日射量検出部である。 The internal air temperature sensor 61 is an internal air temperature detection unit that detects the internal air temperature Tr (that is, the vehicle interior temperature). The outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature Tam (that is, the outside air temperature of the vehicle interior). The solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount As irradiated to the vehicle interior.
 第1冷媒温度センサ64aは、圧縮機11から吐出された冷媒の温度T1を検出する吐出冷媒温度検出部である。第2冷媒温度センサ64bは、水冷媒熱交換器12の冷媒通路から流出した冷媒の温度T2を検出する第2冷媒温度検出部である。第3冷媒温度センサ64cは、室外熱交換器16から流出した冷媒の温度T3を検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the refrigerant discharged from the compressor 11. The second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12. The third refrigerant temperature sensor 64c is a third refrigerant temperature detection unit that detects the temperature T3 of the refrigerant flowing out of the outdoor heat exchanger 16.
 第4冷媒温度センサ64dは、室内蒸発器18から流出した冷媒の温度T4を検出する第4冷媒温度検出部である。第5冷媒温度センサ64eは、チラー19の冷媒通路から流出した冷媒の温度T5を検出する第5冷媒温度検出部である。 The fourth refrigerant temperature sensor 64d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out from the indoor evaporator 18. The fifth refrigerant temperature sensor 64e is a fifth refrigerant temperature detection unit that detects the temperature T5 of the refrigerant flowing out from the refrigerant passage of the chiller 19.
 蒸発器温度センサ64fは、室内蒸発器18における冷媒蒸発温度である蒸発器温度Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fは、室内蒸発器18の熱交換フィン温度を検出している。 The evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the evaporator temperature Tefien, which is the refrigerant evaporation temperature in the indoor evaporator 18. The evaporator temperature sensor 64f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
 第1冷媒圧力センサ65aは、水冷媒熱交換器12の冷媒通路から流出した冷媒の圧力P1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ65bは、チラー19の冷媒通路から流出した冷媒の圧力P2を検出する第2冷媒圧力検出部である。 The first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12. The second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the refrigerant passage of the chiller 19.
 高温側熱媒体温度センサ66aは、水冷媒熱交換器12の水通路から流出した高温側熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。 The high temperature side heat medium temperature sensor 66a is a high temperature side heat medium temperature detection unit that detects the high temperature side heat medium temperature TWH, which is the temperature of the high temperature side heat medium flowing out from the water passage of the water refrigerant heat exchanger 12.
 第1低温側熱媒体温度センサ67aは、チラー19の水通路から流出した低温側熱媒体の温度である第1低温側熱媒体温度TWL1を検出する第1低温側熱媒体温度検出部である。第2低温側熱媒体温度センサ67bは、廃熱機器80から流出した低温側熱媒体の温度である第2低温側熱媒体温度TWL2を検出する第2低温側熱媒体温度検出部である。 The first low temperature side heat medium temperature sensor 67a is a first low temperature side heat medium temperature detection unit that detects the first low temperature side heat medium temperature TWL1, which is the temperature of the low temperature side heat medium flowing out from the water passage of the chiller 19. The second low temperature side heat medium temperature sensor 67b is a second low temperature side heat medium temperature detection unit that detects the second low temperature side heat medium temperature TWL2 which is the temperature of the low temperature side heat medium flowing out from the waste heat apparatus 80.
 図2に示すように、制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル70が接続され、この操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。 As shown in FIG. 2, an operation panel 70 arranged near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device 60, and operation signals from various operation switches provided on the operation panel 70 are connected. Is entered.
 操作パネル70に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、室内蒸発器18で空気の冷却を行うことを要求するエアコンスイッチ、送風機32の風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ、吹出モードをマニュアル設定する吹出モード切替スイッチ等がある。 Specific examples of the various operation switches provided on the operation panel 70 include an auto switch that sets or cancels the automatic control operation of the vehicle air conditioner, an air conditioner switch that requires the indoor evaporator 18 to cool the air, and the like. There are an air volume setting switch for manually setting the air volume of the blower 32, a temperature setting switch for setting the target temperature Tset in the vehicle interior, a blow mode changeover switch for manually setting the blow mode, and the like.
 なお、本実施形態の制御装置60には、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されている。制御装置60のうちそれぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)は、それぞれの制御対象機器の作動を制御する制御部である。 The control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side of the control device 60. The configuration (hardware and software) that controls the operation of each of the control target devices in the control device 60 is a control unit that controls the operation of each control target device.
 例えば、制御装置60のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部60aである。また、暖房用膨張弁14a、冷房用膨張弁14bおよび吸熱用膨張弁14cの作動を制御する構成は、膨張弁制御部60bである。除湿用開閉弁15aおよび暖房用開閉弁15bの作動を制御する構成は、冷媒回路切替制御部60cである。 For example, in the control device 60, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) is the compressor control unit 60a. Further, the configuration for controlling the operation of the heating expansion valve 14a, the cooling expansion valve 14b, and the endothermic expansion valve 14c is the expansion valve control unit 60b. The configuration that controls the operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is the refrigerant circuit switching control unit 60c.
 高温側熱媒体ポンプ41の高温側熱媒体の圧送能力を制御する構成は、高温側熱媒体ポンプ制御部60dである。低温側熱媒体ポンプ51の低温側熱媒体の圧送能力を制御する構成は、低温側熱媒体ポンプ制御部60eである。 The configuration for controlling the pumping capacity of the high temperature side heat medium of the high temperature side heat medium pump 41 is the high temperature side heat medium pump control unit 60d. The configuration for controlling the pumping capacity of the low temperature side heat medium of the low temperature side heat medium pump 51 is the low temperature side heat medium pump control unit 60e.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の冷凍サイクル装置10では、冷媒回路を切り替えて、以下の5種類の運転モードでの空調運転を行うことができる。 Next, the operation of the present embodiment in the above configuration will be described. In the refrigerating cycle device 10 of the present embodiment, the refrigerant circuit can be switched to perform air conditioning operation in the following five operation modes.
 (1)冷房モード:冷房モードは、空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。 (1) Cooling mode: The cooling mode is an operation mode in which the interior of the vehicle is cooled by cooling the air and blowing it into the interior of the vehicle.
 (2)外気暖房モード:外気暖房モードは、外気から吸熱した熱を利用して空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (2) Outside air heating mode: The outside air heating mode is an operation mode in which the inside of the vehicle is heated by heating the air using the heat absorbed from the outside air and blowing it into the vehicle interior.
 (3)外気廃熱暖房モード:外気廃熱暖房モードは、外気から吸熱した熱と廃熱機器80から吸熱した廃熱とを利用して空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (3) Outside air waste heat heating mode: In the outside air waste heat heating mode, the air is heated by using the heat absorbed from the outside air and the waste heat absorbed from the waste heat device 80 and blown into the vehicle interior. This is an operation mode for heating.
 (4)廃熱暖房モード:廃熱暖房モードは、廃熱機器80から吸熱した廃熱を利用して空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (4) Waste heat heating mode: The waste heat heating mode is an operation mode in which the inside of the vehicle is heated by heating the air using the waste heat absorbed from the waste heat device 80 and blowing it into the vehicle interior.
 (5)着霜時廃熱暖房モード:着霜時廃熱暖房モードは、室外熱交換器16が着霜して使えないときに廃熱機器80から吸熱した廃熱を利用して空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (5) Waste heat heating mode during frost formation: In the waste heat heating mode during frost formation, the air is heated by using the waste heat absorbed from the waste heat device 80 when the outdoor heat exchanger 16 is frosted and cannot be used. This is an operation mode in which the interior of the vehicle is heated by blowing it into the interior of the vehicle.
 これらの運転モードの切り替えは、制御プログラムが実行されることによって行われる。制御プログラムは、車両のイグニッションスイッチが投入(ON)された際に実行される。 Switching between these operation modes is performed by executing the control program. The control program is executed when the ignition switch of the vehicle is turned on (ON).
 操作パネル70に設けられたエアコンスイッチが投入(ON)されており、且つ目標吹出温度TAOが冷房基準温度Tcl以下である場合、冷房モードが選択される。目標吹出温度TAOは、以下数式F1を用いて算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C…(F1)
 なお、Tsetは温度設定スイッチによって設定された車室内設定温度である。Trは内気温センサ61によって検出された車室内温度である。Tamは外気温センサ62によって検出された車室外温度である。Asは日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
When the air conditioner switch provided on the operation panel 70 is turned on (ON) and the target blowing temperature TAO is equal to or lower than the cooling reference temperature Tcl, the cooling mode is selected. The target blowout temperature TAO is calculated using the following formula F1.
TAO = Kset x Tset-Kr x Tr-Kam x Tam-Ks x As + C ... (F1)
In addition, Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the internal air temperature sensor 61. Tam is the outside temperature of the vehicle interior detected by the outside air temperature sensor 62. As is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 外気温度Tamが暖房基準温度Tht未満である場合、またはエアコンスイッチが投入されていない(OFF)場合、外気暖房モード、外気廃熱暖房モード、廃熱暖房モードのいずれか1つの運転モードが選択される。 When the outside air temperature Tam is less than the heating reference temperature Tht, or when the air conditioner switch is not turned on (OFF), one of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode is selected. To.
 外気暖房モード、外気廃熱暖房モード、廃熱暖房モードのいずれか1つの運転モードが選択されると、図3に示すように、吸入冷媒温度Ts、外気温Tamおよび第2低温側熱媒体温度TWL2に基づいて、外気暖房モード、外気廃熱暖房モード、廃熱暖房モードが切り替えられる。図3に示すように、外気暖房モード、外気廃熱暖房モード、廃熱暖房モードにおいて室外熱交換器16に着霜が生じた場合、着霜時廃熱暖房モードに切り替える。 When any one of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode is selected, as shown in FIG. 3, the intake refrigerant temperature Ts, the outside temperature Tam, and the second low temperature side heat medium temperature are selected. Based on TWL2, the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode are switched. As shown in FIG. 3, when frost is formed on the outdoor heat exchanger 16 in the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode, the mode is switched to the waste heat heating mode at the time of frost formation.
 吸入冷媒温度Tsは、圧縮機11に吸入される冷媒の温度である。本実施形態では、吸入冷媒温度Tsとして、第2冷媒圧力センサ65bが検出した冷媒の圧力P2(すなわち、チラー19の冷媒通路から流出した冷媒の圧力)から算出した冷媒飽和温度が用いられている。吸入冷媒温度Tsとして、第3冷媒温度センサ64cが検出した冷媒の温度T3(すなわち、室外熱交換器16から流出した冷媒の温度)、および第5冷媒温度センサ64eが検出した冷媒の温度T5(すなわち、チラー19の冷媒通路から流出した冷媒の温度)のうち、低い方の温度が用いられてもよい。第2低温側熱媒体温度TWL2は、廃熱機器80から流出した低温側熱媒体の温度である。 The suction refrigerant temperature Ts is the temperature of the refrigerant sucked into the compressor 11. In the present embodiment, as the suction refrigerant temperature Ts, the refrigerant saturation temperature calculated from the refrigerant pressure P2 (that is, the pressure of the refrigerant flowing out from the refrigerant passage of the chiller 19) detected by the second refrigerant pressure sensor 65b is used. .. As the intake refrigerant temperature Ts, the temperature T3 of the refrigerant detected by the third refrigerant temperature sensor 64c (that is, the temperature of the refrigerant flowing out from the outdoor heat exchanger 16) and the temperature T5 of the refrigerant detected by the fifth refrigerant temperature sensor 64e (that is, the temperature of the refrigerant flowing out from the outdoor heat exchanger 16). That is, the lower temperature of the temperature of the refrigerant flowing out from the refrigerant passage of the chiller 19) may be used. The second low temperature side heat medium temperature TWL2 is the temperature of the low temperature side heat medium flowing out from the waste heat apparatus 80.
 以下、外気暖房モード、外気廃熱暖房モード、廃熱暖房モード、着霜時廃熱暖房モードの切替条件を図3に基づいて説明する。 Hereinafter, the switching conditions of the outside air heating mode, the outside air waste heat heating mode, the waste heat heating mode, and the waste heat heating mode at the time of frost formation will be described with reference to FIG.
 外気暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差(外気冷媒温度差)が吸熱可能温度差α1以上になっている状態が第1継続時間t1以上継続しており、且つ第2低温側熱媒体温度TWL2が、吸熱可能温度TW1に第1所定温度差β1を加えた値以上である場合、外気廃熱暖房モードに移行する。 In the outside air heating mode, the state in which the temperature difference (outside air refrigerant temperature difference) obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat-absorbable temperature difference α1 continues for the first duration t1 or more, and is the first. 2 When the low temperature side heat medium temperature TWL2 is equal to or higher than the value obtained by adding the first predetermined temperature difference β1 to the heat absorption possible temperature TW1, the mode shifts to the outside air waste heat heating mode.
 吸熱可能温度差α1は0~10℃程度(例えば5℃)である。第1継続時間t1は0~60秒程度(例えば30秒)である。吸熱可能温度差α1および第1継続時間t1の値は、室外熱交換器16で外気から確実に吸熱可能な温度差および時間として実験的に得られた値である。 The endothermic temperature difference α1 is about 0 to 10 ° C (for example, 5 ° C). The first duration t1 is about 0 to 60 seconds (for example, 30 seconds). The values of the endothermic temperature difference α1 and the first duration t1 are the values experimentally obtained as the endothermic temperature difference and time that can be reliably absorbed from the outside air by the outdoor heat exchanger 16.
 第1所定温度差β1は0~5℃程度である。第1所定温度差β1の値は、チラー19で低温側熱媒体から確実に吸熱可能な温度差として実験的に得られた値である。 The first predetermined temperature difference β1 is about 0 to 5 ° C. The value of the first predetermined temperature difference β1 is a value experimentally obtained as a temperature difference capable of reliably absorbing heat from the low temperature side heat medium in the chiller 19.
 吸熱可能温度TW1は、外気温Tamに第2所定温度差β2を加えた値、および吸熱下限温度TWminに第3所定温度差β3を加えた値のうち大きい方の値である。すなわち、吸熱可能温度TW1は、以下数式F2を用いて決定される。
TW1=MAX[Tam+β2,TWmin+β3]…(F2)
 第2所定温度差β2は0~10℃程度(例えば5℃)である。第3所定温度差β3は0~10℃程度(例えば5℃)である。第2所定温度差β2および第3所定温度差β3の値は、低温側熱媒体を暖房の熱源として利用可能な温度差として実験的に得られた値である。
The endothermic temperature TW1 is the larger of the value obtained by adding the second predetermined temperature difference β2 to the outside air temperature Tam and the value obtained by adding the third predetermined temperature difference β3 to the endothermic lower limit temperature TWmin. That is, the endothermic temperature TW1 is determined using the following mathematical formula F2.
TW1 = MAX [Tam + β2, TWmin + β3] ... (F2)
The second predetermined temperature difference β2 is about 0 to 10 ° C (for example, 5 ° C). The third predetermined temperature difference β3 is about 0 to 10 ° C (for example, 5 ° C). The values of the second predetermined temperature difference β2 and the third predetermined temperature difference β3 are the values experimentally obtained as the temperature difference in which the low temperature side heat medium can be used as the heat source for heating.
 吸熱下限温度TWminは、廃熱機器80の結露を防止する観点、および機器特性から設定される温度であり、基本的に外気温度以上の温度が設定される。 The endothermic lower limit temperature TWmin is a temperature set from the viewpoint of preventing dew condensation on the waste heat device 80 and from the device characteristics, and is basically set to a temperature equal to or higher than the outside air temperature.
 外気廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が下限温度差α2以下になっている状態が第2継続時間t2以上継続しており、且つ第2低温側熱媒体温度TWL2が吸熱可能温度TW1以上である場合、廃熱暖房モードに移行する。 In the outside air waste heat heating mode, the state in which the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference α2 or less continues for the second duration t2 or more, and the second low temperature side heat medium. When the temperature TWL2 is equal to or higher than the heat absorbing temperature TW1, the mode shifts to the waste heat heating mode.
 下限温度差α2は0~4℃程度(例えば2℃)である。第2継続時間t2は0~60秒程度(例えば30秒)である。下限温度差α2および第2継続時間t2は、室外熱交換器16で外気からの吸熱が困難となる温度差および時間として実験的に得られた値である。 The lower limit temperature difference α2 is about 0 to 4 ° C (for example, 2 ° C). The second duration t2 is about 0 to 60 seconds (for example, 30 seconds). The lower limit temperature difference α2 and the second duration t2 are values experimentally obtained as the temperature difference and time at which it becomes difficult for the outdoor heat exchanger 16 to absorb heat from the outside air.
 下限温度差α2は、吸熱可能温度差α1よりも小さい値に設定されている。これにより、外気廃熱暖房モードから廃熱暖房モードへの移行を極力抑制して、暖房の効率や性能を極力向上できる。 The lower limit temperature difference α2 is set to a value smaller than the endothermic temperature difference α1. As a result, the transition from the outside air waste heat heating mode to the waste heat heating mode can be suppressed as much as possible, and the efficiency and performance of heating can be improved as much as possible.
 廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が吸熱可能温度差α1以上になっている状態が第1継続時間t1以上継続している場合、外気廃熱暖房モードに移行する。 In the waste heat heating mode, when the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the endothermic temperature difference α1 or more for the first duration t1 or more, the outside air waste heat heating mode is set. Transition.
 廃熱暖房モードにおいて、第2低温側熱媒体温度TWL2が吸熱下限温度TWmin以下である場合、外気暖房モードに移行する。 In the waste heat heating mode, when the second low temperature side heat medium temperature TWL2 is equal to or less than the endothermic lower limit temperature TWmin, the mode shifts to the outside air heating mode.
 外気廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が下限温度差α2以下になっている状態が第2継続時間t2以上継続しており、且つ第2低温側熱媒体温度TWL2が吸熱可能温度TW1未満である場合、外気暖房モードに移行する。 外気廃熱暖房モードにおいて、第2低温側熱媒体温度TWL2が吸熱下限温度TWmin以下である場合も外気暖房モードに移行する。 In the outside air waste heat heating mode, the state in which the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference α2 or less continues for the second duration t2 or more, and the second low temperature side heat medium. When the temperature TWL2 is lower than the heat absorbing temperature TW1, the mode shifts to the outside air heating mode. In the outside air waste heat heating mode, even when the second low temperature side heat medium temperature TWL2 is equal to or less than the endothermic lower limit temperature TWmin, the mode shifts to the outside air heating mode.
 外気暖房モード、外気廃熱暖房モード、廃熱暖房モードのいずれかにおいて、室外熱交換器16に着霜が生じた場合、着霜時廃熱暖房モードに移行する。例えば、吸入冷媒温度Tsが外気温Tamよりも所定値以上低い状態が所定時間以上継続した場合、室外熱交換器16に着霜が生じたと判定される。 If frost occurs on the outdoor heat exchanger 16 in any of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode, the mode shifts to the waste heat heating mode at the time of frost formation. For example, when the intake refrigerant temperature Ts is lower than the outside air temperature Tam by a predetermined value or more for a predetermined time or longer, it is determined that frost has formed on the outdoor heat exchanger 16.
 着霜時廃熱暖房モードにおいて、室外熱交換器16に着霜が生じていない場合、外気暖房モード、外気廃熱暖房モード、廃熱暖房モードのいずれかに移行する。例えば、着霜時廃熱暖房モードに移行する直前に実行されていた運転モードに移行する。例えば、吸入冷媒温度Tsが着霜温度(例えば0℃)以上の状態が所定時間以上継続した場合、室外熱交換器16に着霜が生じていないと判定される。 In the waste heat heating mode at the time of frost formation, if the outdoor heat exchanger 16 is not frosted, the mode shifts to one of the outside air heating mode, the outside air waste heat heating mode, and the waste heat heating mode. For example, it shifts to the operation mode that was executed immediately before shifting to the waste heat heating mode at the time of frost formation. For example, when the suction refrigerant temperature Ts continues to be at or above the frosting temperature (for example, 0 ° C.) for a predetermined time or longer, it is determined that frosting has not occurred in the outdoor heat exchanger 16.
 以下に、各運転モードにおける車両用空調装置1の作動について説明する。各運転モードでは、制御装置60が、各運転モードの制御フローを実行する。 The operation of the vehicle air conditioner 1 in each operation mode will be described below. In each operation mode, the control device 60 executes the control flow of each operation mode.
 (1)冷房モード
 冷房モードの制御フローでは、圧縮機11の回転数が、目標蒸発器温度TEOと蒸発器温度センサ64fによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法により、蒸発器温度Tefinが目標蒸発器温度TEOに近づくように決定される。
(1) Cooling mode In the control flow of the cooling mode, the rotation speed of the compressor 11 is based on the deviation between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f, by a feedback control method. , The evaporator temperature Tefin is determined to approach the target evaporator temperature TEO.
 目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。 The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map stored in the control device 60. In the control map of the present embodiment, it is determined that the target evaporator temperature TEO increases as the target blowout temperature TAO increases.
 冷房モードの制御フローでは、冷房用膨張弁14bの絞り開度が、目標過冷却度SCO1と室外熱交換器16の出口側冷媒の過冷却度SC1との偏差に基づいて、フィードバック制御手法により、室外熱交換器16の出口側冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように決定される。 In the control flow of the cooling mode, the throttle opening of the cooling expansion valve 14b is based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method. The supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is determined to approach the target supercooling degree SCO1.
 目標過冷却度SCO1は、例えば、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。 The target supercooling degree SCO1 is determined with reference to the control map, for example, based on the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 室外熱交換器16の出口側冷媒の過冷却度SC1は、第3冷媒温度センサ64cによって検出された温度T3および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。 The degree of supercooling SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P1 detected by the first refrigerant pressure sensor 65a.
 冷房モードの制御フローでは、以下数式F3を用いてエアミックスドア34の開度SWが算定される。
SW={TAO-(Tefin+C2)}/{TWH-(Tefin+C2)}…(F3)
 なお、TWHは、高温側熱媒体温度センサ66aによって検出された高温側熱媒体温度である。C2は制御用の定数である。
In the control flow of the cooling mode, the opening SW of the air mix door 34 is calculated using the following mathematical formula F3.
SW = {TAO- (Tefin + C2)} / {TWH- (Tefin + C2)} ... (F3)
The TWH is the high temperature side heat medium temperature detected by the high temperature side heat medium temperature sensor 66a. C2 is a constant for control.
 冷房モードの制御フローでは、冷凍サイクル装置10を冷房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを冷媒減圧作用を発揮する絞り状態とし、吸熱用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。 In the control flow of the cooling mode, in order to switch the refrigerating cycle device 10 to the refrigerant circuit of the cooling mode, the expansion valve 14a for heating is set to the fully open state, the expansion valve 14b for cooling is set to the throttle state to exert the refrigerant depressurizing action, and endothermic. The expansion valve 14c is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed.
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、第2逆止弁17b、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the second check valve 17b, the cooling expansion valve 14b, and the indoor evaporator A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 18, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、冷房モードの冷凍サイクル装置10では、水冷媒熱交換器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷房用膨張弁14bが冷媒を減圧させる減圧部として機能し、室内蒸発器18が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the cooling mode, the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11 for cooling. A steam compression type refrigeration cycle is configured in which the expansion valve 14b functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the indoor evaporator 18 functions as an evaporator.
 これによれば、室内蒸発器18にて、空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
 従って、冷房モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された空気の一部をヒータコア42にて再加熱し、目標吹出温度TAOに近づくように温度調整された空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the vehicle air conditioner 1 in the cooling mode, a part of the air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and approaches the target blowout temperature TAO. By blowing out the air whose temperature has been adjusted so as to be blown into the vehicle interior, the vehicle interior can be cooled.
 (2)外気暖房モード
 外気暖房モードの制御フローでは、圧縮機11の回転数が、目標高温側熱媒体温度TWHOと高温側熱媒体温度TWHとの偏差に基づいて、フィードバック制御手法により、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように決定される。
(2) Outside air heating mode In the control flow of the outside air heating mode, the rotation speed of the compressor 11 is on the high temperature side by the feedback control method based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH. The heat medium temperature TWH is determined to approach the target high temperature side heat medium temperature TWHO.
 目標高温側熱媒体温度TWHOは、目標吹出温度TAOおよびヒータコア42の効率に基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標高温側熱媒体温度TWHOが上昇するように決定される。 The target high temperature side heat medium temperature TWHO is determined with reference to the control map based on the target blowout temperature TAO and the efficiency of the heater core 42. In the control map of the present embodiment, it is determined that the target high temperature side heat medium temperature TWHO increases as the target blowout temperature TAO increases.
 外気暖房モードの制御フローでは、暖房用膨張弁14aの絞り開度が、目標過冷却度SCO2と水冷媒熱交換器12の出口側冷媒の過冷却度SC2との偏差に基づいて、フィードバック制御手法により、過冷却度SC2が目標過冷却度SCO2に近づくように決定される。 In the control flow of the outside air heating mode, the throttle opening of the heating expansion valve 14a is a feedback control method based on the deviation between the target supercooling degree SCO2 and the supercooling degree SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12. Therefore, the supercooling degree SC2 is determined to approach the target supercooling degree SCO2.
 目標過冷却度SCO2は、例えば、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。水冷媒熱交換器12の出口側冷媒の過冷却度SC2は、第2冷媒温度センサ64bによって検出された温度T2および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。 The target supercooling degree SCO2 is determined with reference to the control map, for example, based on the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value. The degree of supercooling SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
 外気暖房モードの制御フローでは、吸熱用膨張弁14cを全閉状態とし、エアミックスドア34の開度SWを冷房モードと同様に算定する。外気暖房モードでは目標吹出温度TAOが高くなるので、エアミックスドア34の開度SWが100%に近づく。このため、外気暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量がヒータコア42を通過するように、エアミックスドア34の開度が決定される。 In the control flow of the outside air heating mode, the endothermic expansion valve 14c is fully closed, and the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode. In the outside air heating mode, the target outlet temperature TAO becomes high, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the outside air heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
 外気暖房モードの制御フローでは、冷凍サイクル装置10を外気暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、吸熱用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。 In the control flow of the outside air heating mode, in order to switch the refrigerating cycle device 10 to the refrigerant circuit of the outside air heating mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and the endothermic expansion valve 14c is set. Is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is opened.
 従って、外気暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigeration cycle device 10 in the outside air heating mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are used in this order. A circulating steam compression refrigeration cycle is constructed.
 つまり、外気暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigeration cycle device 10 in the outside air heating mode, the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a decompresses. A refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as an evaporator, which functions as a unit.
 これによれば、室外熱交換器16にて外気から吸熱し、水冷媒熱交換器12にて高温側熱媒体を加熱することができる。従って、外気暖房モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 According to this, heat can be absorbed from the outside air by the outdoor heat exchanger 16 and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the outside air heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
 (3)外気廃熱暖房モード
 外気廃熱暖房モードの制御フローでは、外気暖房モードと同様に、圧縮機11の回転数と暖房用膨張弁14aの絞り開度とエアミックスドア34の開度SWとが決定される。
(3) Outside air waste heat heating mode In the control flow of the outside air waste heat heating mode, the rotation speed of the compressor 11, the throttle opening of the heating expansion valve 14a, and the opening SW of the air mix door 34 are the same as in the outside air heating mode. Is decided.
 外気廃熱暖房モードの制御フローでは、吸熱用膨張弁14cの絞り開度が、目標過熱度SHCOとチラー19の出口側冷媒の過熱度SHCとの偏差に基づいて、フィードバック制御手法により、過熱度SHCが目標過熱度SHCOに近づくように決定される。目標過熱度SHCOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。 In the control flow of the outside air waste heat heating mode, the throttle opening of the endothermic expansion valve 14c is based on the deviation between the target superheat degree SHCO and the superheat degree SHC of the outlet side refrigerant of the chiller 19, and the degree of superheat is determined by the feedback control method. The SHC is determined to approach the target superheat degree SHCO. As the target superheat degree SHCO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
 チラー19の出口側冷媒の過熱度SHCは、第5冷媒温度センサ64eによって検出された温度T5および第2冷媒圧力センサ65bによって検出された圧力P2に基づいて算出される。 The degree of superheat SHC of the outlet side refrigerant of the chiller 19 is calculated based on the temperature T5 detected by the fifth refrigerant temperature sensor 64e and the pressure P2 detected by the second refrigerant pressure sensor 65b.
 さらに、外気廃熱暖房モードでは、吸熱用膨張弁14cの絞り開度が、目標低温側熱媒体温度TWLOと第2低温側熱媒体温度TWL2との偏差に基づいて、フィードバック制御手法により、第2低温側熱媒体温度TWL2が目標低温側熱媒体温度TWLOを下回らないように決定される。具体的には、第2低温側熱媒体温度TWL2が目標低温側熱媒体温度TWLOを下回りそうになると、吸熱用膨張弁14cの絞り開度を小さくしてチラー19での冷媒流量を減少させることによって、チラー19での低温側熱媒体からの吸熱量を減少させて第2低温側熱媒体温度TWL2の低下を抑制する。 Further, in the outside air waste heat heating mode, the throttle opening of the heat absorption expansion valve 14c is the second by the feedback control method based on the deviation between the target low temperature side heat medium temperature TWLO and the second low temperature side heat medium temperature TWL2. The low temperature side heat medium temperature TWL2 is determined so as not to fall below the target low temperature side heat medium temperature TWLO. Specifically, when the second low temperature side heat medium temperature TWL2 is about to fall below the target low temperature side heat medium temperature TWLO, the throttle opening of the heat absorption expansion valve 14c is reduced to reduce the flow rate of the refrigerant in the chiller 19. Thereby, the amount of heat absorbed from the low temperature side heat medium in the chiller 19 is reduced to suppress the decrease in the second low temperature side heat medium temperature TWL2.
 さらに、外気廃熱暖房モードの制御フローでは、吸熱用膨張弁14cの絞り開度が、外気温Tamと吸入冷媒温度Tsとの偏差に基づいて、フィードバック制御手法により、吸入冷媒温度Tsが外気温Tamを超えないように決定される。具体的には、吸入冷媒温度Tsが外気温Tamを超えそうになると、吸熱用膨張弁14cの絞り開度を小さくしてチラー19での冷媒流量を減少させることによって、チラー19での低温側熱媒体からの吸熱量を減少させて吸入冷媒温度Tsの上昇を抑制する。 Further, in the control flow of the outside air waste heat heating mode, the suction refrigerant temperature Ts is set to the outside air temperature by the feedback control method based on the deviation between the outside air temperature Tam and the intake refrigerant temperature Ts in the throttle opening of the endothermic expansion valve 14c. It is decided not to exceed Tam. Specifically, when the suction refrigerant temperature Ts is about to exceed the outside temperature Tam, the throttle opening of the heat absorption expansion valve 14c is reduced to reduce the refrigerant flow rate in the chiller 19, thereby reducing the low temperature side in the chiller 19. The amount of heat absorbed from the heat medium is reduced to suppress an increase in the intake refrigerant temperature Ts.
 外気廃熱暖房モードの制御フローでは、冷凍サイクル装置10を外気廃熱暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、吸熱用膨張弁14cを絞り状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。 In the control flow of the outside air waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the outside air waste heat heating mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and heat absorption is performed. The expansion valve 14c is set to the throttled state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened.
 従って、外気廃熱暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、バイパス通路22a、吸熱用膨張弁14c、チラー19、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigeration cycle device 10 in the outside air waste heat heating mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in this order. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the heat absorption expansion valve 14c, the chiller 19, the accumulator 21, and the compressor 11 is configured. Will be done.
 つまり、外気廃熱暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aおよび吸熱用膨張弁14cが減圧部として機能し、室外熱交換器16およびチラー19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigeration cycle device 10 in the outside air waste heat heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a A refrigeration cycle is configured in which the heat absorption expansion valve 14c functions as a pressure reducing unit, and the outdoor heat exchanger 16 and the chiller 19 function as an evaporator.
 これによれば、室外熱交換器16にて外気から吸熱するとともにチラー19にて低温側熱媒体を介して廃熱機器80から吸熱し、水冷媒熱交換器12にて高温側熱媒体を加熱することができる。従って、外気廃熱暖房モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 According to this, the outdoor heat exchanger 16 absorbs heat from the outside air, the chiller 19 absorbs heat from the waste heat device 80 via the low temperature side heat medium, and the water refrigerant heat exchanger 12 heats the high temperature side heat medium. can do. Therefore, in the vehicle air conditioner 1 in the outside air waste heat heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
 (4)廃熱暖房モード
 廃熱暖房モードの制御フローでは、外気暖房モードと同様に、圧縮機11の回転数とエアミックスドア34の開度SWとが決定される。廃熱暖房モードの制御フローでは、暖房用膨張弁14aを全閉状態とする。
(4) Waste heat heating mode In the control flow of the waste heat heating mode, the rotation speed of the compressor 11 and the opening SW of the air mix door 34 are determined as in the outside air heating mode. In the control flow of the waste heat heating mode, the heating expansion valve 14a is fully closed.
 廃熱暖房モードの制御フローでは、吸熱用膨張弁14cの絞り開度が、目標過冷却度SCO2と水冷媒熱交換器12の出口側冷媒の過冷却度SC2との偏差に基づいて、フィードバック制御手法により、過冷却度SC2が目標過冷却度SCO2に近づくように決定される。 In the control flow of the waste heat heating mode, the throttle opening of the heat absorption expansion valve 14c is feedback controlled based on the deviation between the target supercooling degree SCO2 and the supercooling degree SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12. The method determines that the supercooling degree SC2 approaches the target supercooling degree SCO2.
 目標過冷却度SCO2は、例えば、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。水冷媒熱交換器12の出口側冷媒の過冷却度SC2は、第2冷媒温度センサ64bによって検出された温度T2および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。 The target supercooling degree SCO2 is determined with reference to the control map, for example, based on the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value. The degree of supercooling SC2 of the outlet side refrigerant of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a.
 廃熱暖房モードの制御フローでは、冷凍サイクル装置10を廃熱暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aおよび冷房用膨張弁14bを全閉状態とし、吸熱用膨張弁14cを絞り状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを閉じる。 In the control flow of the waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the waste heat heating mode, the heating expansion valve 14a and the cooling expansion valve 14b are fully closed, and the endothermic expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is closed.
 従って、廃熱暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、バイパス通路22a、吸熱用膨張弁14c、チラー19、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigeration cycle device 10 in the waste heat heating mode, the steam in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the heat absorption expansion valve 14c, the chiller 19, the accumulator 21, and the compressor 11. A compression refrigeration cycle is constructed.
 つまり、廃熱暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、吸熱用膨張弁14cが減圧部として機能し、チラー19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigeration cycle device 10 in the waste heat heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a heat dissipation unit) that dissipates heat from the refrigerant discharged from the compressor 11, and the endothermic expansion valve 14c is used. A refrigeration cycle is configured in which the chiller 19 functions as a decompressor and an evaporator.
 これによれば、チラー19にて低温側熱媒体を介して廃熱機器80から吸熱し、水冷媒熱交換器12にて高温側熱媒体を加熱することができる。従って、廃熱暖房モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 According to this, the chiller 19 can absorb heat from the waste heat device 80 via the low temperature side heat medium, and the water refrigerant heat exchanger 12 can heat the high temperature side heat medium. Therefore, in the vehicle air conditioner 1 in the waste heat heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
 (5)着霜時廃熱暖房モード
 着霜時廃熱暖房モードの制御フローでは、廃熱暖房モードと同様に吸熱用膨張弁14cの絞り開度とエアミックスドア34の開度SWとが決定される。着霜時廃熱暖房モードの制御フローでは、廃熱暖房モードと同様に暖房用膨張弁14aを全閉状態とする。
(5) Waste heat heating mode during frost formation In the control flow of the waste heat heating mode during frost formation, the throttle opening of the endothermic expansion valve 14c and the opening SW of the air mix door 34 are determined as in the waste heat heating mode. Will be done. In the control flow of the waste heat heating mode at the time of frost formation, the heating expansion valve 14a is fully closed as in the waste heat heating mode.
 着霜時廃熱暖房モードの制御フローでは、圧縮機11の回転数が、基本的には廃熱暖房モードと同様に決定される。ただし、着霜時廃熱暖房モードの制御フローでは、第2低温側熱媒体温度TWL2が吸熱下限温度TWminを下回らないように、圧縮機11の回転数が決定される。具体的には、第2低温側熱媒体温度TWL2が吸熱下限温度TWminを下回りそうな場合、圧縮機11の回転数を低下させる。第2低温側熱媒体温度TWL2が吸熱下限温度TWminを下回ってしまうと、チラー19で吸熱ができなくなって圧縮機11が停止して暖房ができなくなってしまうからである。 In the control flow of the waste heat heating mode at the time of frost formation, the rotation speed of the compressor 11 is basically determined in the same manner as in the waste heat heating mode. However, in the control flow of the waste heat heating mode at the time of frost formation, the rotation speed of the compressor 11 is determined so that the second low temperature side heat medium temperature TWL2 does not fall below the endothermic lower limit temperature TWmin. Specifically, when the second low temperature side heat medium temperature TWL2 is likely to fall below the endothermic lower limit temperature TWmin, the rotation speed of the compressor 11 is lowered. This is because if the second low temperature side heat medium temperature TWL2 falls below the endothermic lower limit temperature TWmin, the chiller 19 cannot absorb heat, the compressor 11 stops, and heating cannot be performed.
 着霜時廃熱暖房モードの制御フローでは、冷凍サイクル装置10を、廃熱暖房モードと同様の冷媒回路に切り替える。 In the control flow of the waste heat heating mode at the time of frost, the refrigeration cycle device 10 is switched to the same refrigerant circuit as the waste heat heating mode.
 これによれば、室外熱交換器16に着霜が生じて外気から吸熱できない場合に、チラー19にて低温側熱媒体から吸熱できる状態を極力維持しながら車室内の暖房を行うことができる。 According to this, when the outdoor heat exchanger 16 is frosted and cannot absorb heat from the outside air, the interior of the vehicle can be heated while maintaining the state where the chiller 19 can absorb heat from the low temperature side heat medium as much as possible.
 (2)~(5)の各暖房モードにおいて、冷房用膨張弁14bを絞り状態とすることで除湿暖房を行うこともできる。 In each of the heating modes (2) to (5), dehumidifying and heating can be performed by setting the cooling expansion valve 14b to the throttled state.
 以上の如く、本実施形態の冷凍サイクル装置10では、各種運転モードを切り替えることができる。これにより、車両用空調装置1では、車室内の快適な空調を実現することができる。 As described above, in the refrigerating cycle device 10 of the present embodiment, various operation modes can be switched. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior.
 図4は、本実施形態の外気廃熱暖房モードにおける冷媒の状態の変化を示すモリエル線図である。図4に示すように、外気廃熱暖房モードにおいて、室外熱交換器16での冷媒温度が外気温度よりも低く、チラー19での冷媒温度が廃熱温度(すなわち低温側熱媒体の温度)よりも低い場合、外気から吸熱するとともに廃熱機器80の廃熱も吸熱して暖房を行うことができるので、暖房の効率や性能を向上できる。 FIG. 4 is a Moriel diagram showing a change in the state of the refrigerant in the outside air waste heat heating mode of the present embodiment. As shown in FIG. 4, in the outside air waste heat heating mode, the refrigerant temperature in the outdoor heat exchanger 16 is lower than the outside air temperature, and the refrigerant temperature in the chiller 19 is higher than the waste heat temperature (that is, the temperature of the low temperature side heat medium). If it is low, the heat can be absorbed from the outside air and the waste heat of the waste heat apparatus 80 can be absorbed for heating, so that the efficiency and performance of heating can be improved.
 図5は、比較例の外気廃熱暖房モードにおける冷媒の状態の変化を示すモリエル線図である。この比較例は、外気廃熱暖房モードにおいて廃熱機器80の廃熱を吸熱することによって冷凍サイクルの低圧が上昇し、室外熱交換器16での冷媒温度が外気温度よりも高くなった状態を示している。このように室外熱交換器16での冷媒温度が外気温度よりも高くなると室外熱交換器16で冷媒から外気に放熱してしまうので暖房の効率や性能が悪化してしまう。 FIG. 5 is a Moriel diagram showing a change in the state of the refrigerant in the outside air waste heat heating mode of the comparative example. In this comparative example, the low pressure of the refrigeration cycle rises by absorbing the waste heat of the waste heat device 80 in the outside air waste heat heating mode, and the refrigerant temperature in the outdoor heat exchanger 16 becomes higher than the outside air temperature. Shows. As described above, when the refrigerant temperature in the outdoor heat exchanger 16 becomes higher than the outside air temperature, the outdoor heat exchanger 16 dissipates heat from the refrigerant to the outside air, resulting in deterioration of heating efficiency and performance.
 この点に鑑みて、本実施形態では、外気廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が下限温度差α2以下であり、且つ低温側熱媒体の温度TWL2が吸熱可能温度TW1以上である場合、廃熱暖房モードに切り替える。 In view of this point, in the present embodiment, in the outside air waste heat heating mode, the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is the lower limit temperature difference α2 or less, and the temperature TWL2 of the low temperature side heat medium absorbs heat. If the possible temperature is TW1 or higher, the mode is switched to the waste heat heating mode.
 これによると、廃熱吸熱によって冷凍サイクルの低圧が上昇しても、廃熱暖房モードに切り替えることで室外熱交換器16で冷媒から外気に放熱することを抑制できるので、暖房の効率や性能の悪化を抑制できる。 According to this, even if the low pressure of the refrigeration cycle rises due to waste heat endothermic, it is possible to suppress heat dissipation from the refrigerant by the outdoor heat exchanger 16 by switching to the waste heat heating mode, so that the efficiency and performance of heating can be improved. Deterioration can be suppressed.
 本実施形態では、外気暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が吸熱可能温度差α1以上であり、且つ低温側熱媒体の温度TWL2が吸熱可能温度TW1に第1所定温度差β1を加えた値以上である場合、外気廃熱暖房モードに切り替える。 In the present embodiment, in the outside air heating mode, the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat absorbing temperature difference α1, and the temperature TWL2 of the low temperature side heat medium is first predetermined to the heat absorbing temperature TW1. If the temperature difference is equal to or greater than the value obtained by adding β1, the mode is switched to the outside air waste heat heating mode.
 これにより、外気暖房モードにおいて廃熱機器80から吸熱可能である場合、外気廃熱暖房モードに切り替えて暖房の効率や性能を向上できる。 As a result, when heat can be absorbed from the waste heat device 80 in the outside air heating mode, the heating efficiency and performance can be improved by switching to the outside air waste heat heating mode.
 本実施形態では、廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が吸熱可能温度差α1以上である場合、外気廃熱暖房モードに切り替える。これにより、廃熱暖房モードにおいて外気から吸熱可能である場合、外気廃熱暖房モードに切り替えて暖房の効率や性能を向上できる。 In the present embodiment, in the waste heat heating mode, when the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside air temperature Tam is equal to or more than the heat absorbing possible temperature difference α1, the mode is switched to the outside air waste heat heating mode. As a result, when heat can be absorbed from the outside air in the waste heat heating mode, the heating efficiency and performance can be improved by switching to the outside air waste heat heating mode.
 本実施形態では、廃熱暖房モードにおいて、低温側熱媒体の温度TWL2が吸熱下限温度TWmin以下である場合、外気暖房モードに切り替える。これにより、廃熱機器80が過冷却されることを抑制しながら暖房運転を継続できる。 In the present embodiment, in the waste heat heating mode, when the temperature TWL2 of the low temperature side heat medium is equal to or less than the endothermic lower limit temperature TWmin, the mode is switched to the outside air heating mode. As a result, the heating operation can be continued while suppressing the supercooling of the waste heat device 80.
 本実施形態では、外気廃熱暖房モードにおいて、外気温Tamから吸入冷媒温度Tsを減じた温度差が下限温度差α2以下であり且つ低温側熱媒体の温度TWL2が吸熱可能温度差α1未満である場合、または低温側熱媒体の温度TWL2が吸熱下限温度TWmin以下である場合、外気暖房モードに切り替える。 In the present embodiment, in the outside air waste heat heating mode, the temperature difference obtained by subtracting the intake refrigerant temperature Ts from the outside temperature Tam is the lower limit temperature difference α2 or less, and the temperature TWL2 of the low temperature side heat medium is less than the heat absorbing temperature difference α1. In this case, or when the temperature TWL2 of the low temperature side heat medium is equal to or less than the heat absorption lower limit temperature TWmin, the mode is switched to the outside air heating mode.
 これによると、外気廃熱暖房モードにおいて外気から吸熱できず且つ廃熱機器80から吸熱できない場合、外気暖房モードに切り替えることで極力早期に外気から吸熱可能な状態にすることができる。外気廃熱暖房モードにおいて外気から吸熱できない場合や廃熱機器80から吸熱できない場合、外気暖房モードに切り替えて廃熱機器80が過冷却を抑制しながら暖房運転を継続できる。 According to this, if heat cannot be absorbed from the outside air in the outside air waste heat heating mode and heat cannot be absorbed from the waste heat device 80, the heat can be absorbed from the outside air as soon as possible by switching to the outside air heating mode. When the outside air waste heat heating mode cannot absorb heat from the outside air or the waste heat device 80 cannot absorb heat, the waste heat device 80 can switch to the outside air heating mode and continue the heating operation while suppressing supercooling.
 本実施形態では、着霜時廃熱暖房モードにおいて、低温側熱媒体の温度TWL2が吸熱下限温度TWminを下回ることを抑制するように圧縮機11の冷媒吐出能力を制御する。 In the present embodiment, the refrigerant discharge capacity of the compressor 11 is controlled so as to prevent the temperature TWL2 of the low temperature side heat medium from falling below the heat absorption lower limit temperature TWmin in the waste heat heating mode at the time of frost formation.
 これにより、着霜時廃熱暖房モードで廃熱吸熱できなくなって圧縮機11が停止してしまうことを抑制できるので、車室内へ吹き出される空気の温度の変動が大きくなることを抑制できる。 As a result, it is possible to prevent the compressor 11 from stopping due to the inability to absorb waste heat in the waste heat heating mode at the time of frost formation, so that it is possible to suppress a large fluctuation in the temperature of the air blown into the vehicle interior.
 本実施形態では、外気暖房モードでは、水冷媒熱交換器12から流出した冷媒の過冷却度SC2に基づいて暖房用膨張弁14aの開度を制御する。廃熱暖房モードでは、水冷媒熱交換器12から流出した冷媒の過冷却度SC2に基づいて吸熱用膨張弁14cの開度を制御する。外気廃熱暖房モードでは、水冷媒熱交換器12から流出した冷媒の過冷却度SC2に基づいて暖房用膨張弁14aの開度を制御し、チラー19から流出した冷媒の過熱度SHCに基づいて吸熱用膨張弁14cの開度を制御する。 In the present embodiment, in the outside air heating mode, the opening degree of the heating expansion valve 14a is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12. In the waste heat heating mode, the opening degree of the endothermic expansion valve 14c is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12. In the outside air waste heat heating mode, the opening degree of the heating expansion valve 14a is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12, and based on the superheating degree SHC of the refrigerant flowing out from the chiller 19. The opening degree of the heat absorption expansion valve 14c is controlled.
 これにより、外気暖房モード、廃熱暖房モードおよび外気廃熱暖房モードにおいて、暖房用膨張弁14aの開度および吸熱用膨張弁14cの開度を適切に制御して、室外熱交換器16およびチラー19での冷媒圧力(換言すれば冷媒温度)を適切に制御できる。 Thereby, in the outside air heating mode, the waste heat heating mode, and the outside air waste heat heating mode, the opening degree of the heating expansion valve 14a and the opening degree of the heat absorption expansion valve 14c are appropriately controlled, and the outdoor heat exchanger 16 and the chiller are used. The refrigerant pressure at 19 (in other words, the refrigerant temperature) can be appropriately controlled.
 外気廃熱暖房モードでは、水冷媒熱交換器12から流出した冷媒の過冷却度SC2に基づいて吸熱用膨張弁14cの開度を制御し、室外熱交換器16から流出した蒸発後の冷媒の過熱度SHCに基づいて暖房用膨張弁14aの開度を制御してもよい。 In the outside air waste heat heating mode, the opening degree of the heat absorption expansion valve 14c is controlled based on the supercooling degree SC2 of the refrigerant flowing out from the water refrigerant heat exchanger 12, and the evaporated refrigerant flowing out from the outdoor heat exchanger 16 is controlled. The opening degree of the heating expansion valve 14a may be controlled based on the degree of superheat SHC.
 本実施形態では、外気廃熱暖房モードでは、圧縮機11に吸入される冷媒の温度Tsが外気温度Tamを超えないように吸熱用膨張弁14cの開度を制御する。これにより、外気廃熱暖房モードと廃熱暖房モードとの間の切替の頻度を低減できるので、モード切替に伴う吹出温度の変動を低減できる。 In the present embodiment, in the outside air waste heat heating mode, the opening degree of the endothermic expansion valve 14c is controlled so that the temperature Ts of the refrigerant sucked into the compressor 11 does not exceed the outside air temperature Tam. As a result, the frequency of switching between the outside air waste heat heating mode and the waste heat heating mode can be reduced, so that the fluctuation of the blowing temperature due to the mode switching can be reduced.
 本実施形態では、外気廃熱暖房モードでは、低温側熱媒体の温度TWL2が吸熱下限温度TWmin以下になることを抑制するように吸熱用膨張弁14cの開度を制御する。これにより、外気廃熱暖房モードと外気暖房モードとの間の切り替えの頻度を低減できるので、モード切替に伴う吹出温度の変動を低減できる。 In the present embodiment, in the outside air waste heat heating mode, the opening degree of the endothermic expansion valve 14c is controlled so as to prevent the temperature TWL2 of the low temperature side heat medium from becoming the endothermic lower limit temperature TWmin or less. As a result, the frequency of switching between the outside air waste heat heating mode and the outside air heating mode can be reduced, so that the fluctuation of the blowing temperature due to the mode switching can be reduced.
 (第2実施形態)
 上記第1実施形態の冷凍サイクル装置10は、アキュムレータ21を備えるアキュムレータサイクルであるが、本実施形態の冷凍サイクル装置10は、図6に示すように、アキュムレータ21の代わりにレシーバ25を備えるレシーバサイクルである。
(Second Embodiment)
The refrigerating cycle device 10 of the first embodiment is an accumulator cycle including an accumulator 21, but the refrigerating cycle device 10 of the present embodiment is a receiver cycle including a receiver 25 instead of the accumulator 21 as shown in FIG. Is.
 圧縮機11の吐出口には、三方弁15eの流入口側が配置されている。三方弁15eは、1つの流入口と、2つの流出口とを有し、2つの流出口の通路面積比を連続的に調整可能な電気式の三方流量調整弁である。三方弁15eは、制御装置60から出力される制御信号によって制御される。 The inlet side of the three-way valve 15e is arranged at the discharge port of the compressor 11. The three-way valve 15e is an electric three-way flow rate adjusting valve having one inlet and two outlets and capable of continuously adjusting the passage area ratio of the two outlets. The three-way valve 15e is controlled by a control signal output from the control device 60.
 三方弁15eの一方の流出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。三方弁15eの他方の流出口には、第1冷房用通路22cを介して、第7継手13gの第1接続口側が接続されている。 The inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to one of the outlets of the three-way valve 15e. The first connection port side of the seventh joint 13g is connected to the other outlet of the three-way valve 15e via the first cooling passage 22c.
 第7継手13gの第2接続口には、室外熱交換器16の一方の接続口側が接続されている。第7継手13gの第3接続口には、暖房用通路22bを介して、第4継手13dの第1の流入口側が接続されている。暖房用通路22bのうち第7継手13gと第4継手13dとの間の部位には、暖房用開閉弁15bが配置されている。 One connection port side of the outdoor heat exchanger 16 is connected to the second connection port of the 7th joint 13g. The first inflow port side of the fourth joint 13d is connected to the third connection port of the seventh joint 13g via the heating passage 22b. A heating on-off valve 15b is arranged at a portion of the heating passage 22b between the 7th joint 13g and the 4th joint 13d.
 水冷媒熱交換器12の冷媒通路の出口には、第8継手13hの一方の流入口側が接続されている。水冷媒熱交換器12の冷媒通路の出口側と第8継手13hの一方の流入口側とを接続する冷媒通路には、第4逆止弁17dが配置されている。第4逆止弁17dは、水冷媒熱交換器12側から第8継手13h側へ冷媒が流れることを許容し、第8継手13h側から水冷媒熱交換器12側へ冷媒が流れることを禁止する。 One inflow port side of the eighth joint 13h is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12. A fourth check valve 17d is arranged in the refrigerant passage connecting the outlet side of the refrigerant passage of the water refrigerant heat exchanger 12 and the one inlet side of the eighth joint 13h. The fourth check valve 17d allows the refrigerant to flow from the water-refrigerant heat exchanger 12 side to the eighth joint 13h side, and prohibits the refrigerant from flowing from the eighth joint 13h side to the water-refrigerant heat exchanger 12 side. do.
 第8継手13hの流出口には、レシーバ25の冷媒入口側が接続されている。レシーバ25は、気液分離機能を有する貯液部である。すなわち、レシーバ25は、冷凍サイクル装置10において冷媒を凝縮させる凝縮器として機能する熱交換部から流出した冷媒の気液を分離する。そして、レシーバ25は、分離された液相冷媒の一部を下流側に流出させ、残余の液相冷媒をサイクル内の余剰冷媒として貯える。 The refrigerant inlet side of the receiver 25 is connected to the outlet of the 8th joint 13h. The receiver 25 is a liquid storage unit having a gas-liquid separation function. That is, the receiver 25 separates the gas and liquid of the refrigerant flowing out from the heat exchange unit that functions as a condenser that condenses the refrigerant in the refrigeration cycle device 10. Then, the receiver 25 causes a part of the separated liquid phase refrigerant to flow out to the downstream side, and stores the remaining liquid phase refrigerant as the surplus refrigerant in the cycle.
 レシーバ25の冷媒出口には、第1継手13aの流入口側が接続されている。第1継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。暖房用膨張弁14aの出口には、第9継手13iの第1接続口側が接続されている。第9継手13iの第2接続口には、室外熱交換器16の冷媒入口側が接続されている。第9継手13iの第3接続口には、第2冷房用通路22dを介して、第8継手13hの他方の流入口側が接続されている。 The inlet side of the first joint 13a is connected to the refrigerant outlet of the receiver 25. The inlet side of the heating expansion valve 14a is connected to one of the outlets of the first joint 13a. The first connection port side of the ninth joint 13i is connected to the outlet of the heating expansion valve 14a. The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the second connection port of the ninth joint 13i. The other inlet side of the eighth joint 13h is connected to the third connection port of the ninth joint 13i via the second cooling passage 22d.
 第2冷房用通路22dには、第5逆止弁17eが配置されている。第5逆止弁17eは、第9継手13i側から第8継手13h側へ冷媒が流れることを許容し、第8継手13h側から第9継手13i側へ冷媒が流れることを禁止する。 A fifth check valve 17e is arranged in the second cooling passage 22d. The fifth check valve 17e allows the refrigerant to flow from the ninth joint 13i side to the eighth joint 13h side, and prohibits the refrigerant from flowing from the eighth joint 13h side to the ninth joint 13i side.
 第1継手13aの他方の流出口には、バイパス通路22aを介して、第5継手13eの流入口側が接続されている。第5継手13eは、第1継手13aと同様の三方継手である。第5継手13eの一方の流出口には、冷房用膨張弁14bの入口側が接続されている。第5継手13eの他方の流出口には、吸熱用膨張弁14cの入口側が接続されている。 The inlet side of the fifth joint 13e is connected to the other outlet of the first joint 13a via the bypass passage 22a. The fifth joint 13e is a three-way joint similar to the first joint 13a. The inlet side of the cooling expansion valve 14b is connected to one of the outlets of the fifth joint 13e. The inlet side of the endothermic expansion valve 14c is connected to the other outlet of the fifth joint 13e.
 本実施形態では、バイパス通路22aには、上記第1実施形態の除湿用開閉弁15aが配置されていない。 In the present embodiment, the dehumidifying on-off valve 15a of the first embodiment is not arranged in the bypass passage 22a.
 冷凍サイクル装置10には、第1、第3~第5冷媒温度センサ64a、64c~64e、第2~第5冷媒圧力センサ65eが配置されている。これらのセンサ群の検出信号は制御装置60に入力される。 The refrigerating cycle device 10 is provided with first, third to fifth refrigerant temperature sensors 64a, 64c to 64e, and second to fifth refrigerant pressure sensors 65e. The detection signal of these sensor groups is input to the control device 60.
 第3冷媒圧力センサ65cは、圧縮機11から吐出された冷媒の圧力P3を検出する第3冷媒圧力検出部である。第4冷媒圧力センサ65dは、室外熱交換器16から流出した冷媒の圧力P4を検出する第4冷媒圧力検出部である。第5冷媒圧力センサ65eは、室内蒸発器18から流出した冷媒の圧力P5を検出する第5冷媒圧力検出部である。 The third refrigerant pressure sensor 65c is a third refrigerant pressure detecting unit that detects the pressure P3 of the refrigerant discharged from the compressor 11. The fourth refrigerant pressure sensor 65d is a fourth refrigerant pressure detecting unit that detects the pressure P4 of the refrigerant flowing out from the outdoor heat exchanger 16. The fifth refrigerant pressure sensor 65e is a fifth refrigerant pressure detecting unit that detects the pressure P5 of the refrigerant flowing out of the indoor evaporator 18.
 次に、上記構成の本実施形態の車両用空調装置の作動について説明する。本実施形態の冷凍サイクル装置10では、上記第1実施形態と同様に、冷房モード、外気暖房モード、外気廃熱暖房モード、廃熱暖房モード、着霜時廃熱暖房モードの5種類の運転モードでの空調運転を行うことができる。これらの運転モードの切り替え条件は、上記第1実施形態と同様である。 Next, the operation of the vehicle air conditioner of the present embodiment having the above configuration will be described. In the refrigeration cycle device 10 of the present embodiment, as in the first embodiment, there are five operation modes: cooling mode, outside air heating mode, outside air waste heat heating mode, waste heat heating mode, and waste heat heating mode at the time of frost formation. It is possible to perform air-conditioning operation in. The conditions for switching these operation modes are the same as those in the first embodiment.
 以下に、各運転モードにおける車両用空調装置1の作動について説明する。各運転モードでは、制御装置60が、各運転モードの制御フローを実行する。 The operation of the vehicle air conditioner 1 in each operation mode will be described below. In each operation mode, the control device 60 executes the control flow of each operation mode.
 (1)冷房モード
 冷房モードの制御フローでは、上記第1実施形態の冷房モードと同様に、圧縮機11の回転数とエアミックスドア34の開度SWとが決定される。冷房モードの制御フローでは、吸熱用膨張弁14cを全閉状態とする。
(1) Cooling mode In the control flow of the cooling mode, the rotation speed of the compressor 11 and the opening degree SW of the air mix door 34 are determined as in the cooling mode of the first embodiment. In the control flow of the cooling mode, the endothermic expansion valve 14c is fully closed.
 冷房モードの制御フローでは、冷房用膨張弁14bの絞り開度が、目標過熱度SHEOと室内蒸発器18の出口側冷媒の過熱度SHEとの偏差に基づいて、フィードバック制御手法により、室内蒸発器18の出口側冷媒の過熱度SHEが目標過熱度SHEOに近づくように決定される。 In the control flow of the cooling mode, the throttle opening of the expansion valve 14b for cooling is based on the deviation between the target superheat degree SHEO and the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18, and the indoor evaporator is operated by a feedback control method. The superheat degree SH of the outlet side refrigerant of 18 is determined to approach the target superheat degree SHEO.
 目標過熱度SHEOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。室内蒸発器18の出口側冷媒の過熱度SHEは、第4冷媒温度センサ64dによって検出された温度T4および第5冷媒圧力センサ65eによって検出された圧力P5に基づいて算出される。 As the target superheat degree SHEO, a predetermined constant (5 ° C. in this embodiment) can be adopted. The degree of superheat SHE of the outlet-side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 detected by the fourth refrigerant temperature sensor 64d and the pressure P5 detected by the fifth refrigerant pressure sensor 65e.
 冷房モードの制御フローでは、冷凍サイクル装置10を冷房モードの冷媒回路に切り替えるために、制御装置60が、暖房用開閉弁15bを閉じ、三方弁15eが水冷媒熱交換器12側の流出口を閉じて第1冷房用通路22c側の流出口を開く。さらに、制御装置60は、暖房用膨張弁14aを全閉状態とし、冷房用膨張弁14bを冷媒減圧作用を発揮する絞り状態とし、吸熱用膨張弁14cを全閉状態とする。 In the cooling mode control flow, in order to switch the refrigerating cycle device 10 to the cooling mode refrigerant circuit, the control device 60 closes the heating on-off valve 15b, and the three-way valve 15e closes the outlet on the water refrigerant heat exchanger 12 side. Close and open the outlet on the 22c side of the first cooling passage. Further, the control device 60 puts the heating expansion valve 14a in a fully closed state, the cooling expansion valve 14b in a throttle state that exerts a refrigerant depressurizing action, and the endothermic expansion valve 14c in a fully closed state.
 これにより、冷房モードの冷凍サイクル装置10では、圧縮機11、第1冷房用通路22c、室外熱交換器16、第2冷房用通路22d、レシーバ25、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the refrigerating cycle device 10 in the cooling mode, the compressor 11, the first cooling passage 22c, the outdoor heat exchanger 16, the second cooling passage 22d, the receiver 25, the bypass passage 22a, the cooling expansion valve 14b, and the indoor. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporator 18 and the compressor 11 is configured.
 従って、冷房モードの冷凍サイクル装置10では、上記第1実施形態の冷房モードと同様に車室内の冷房を行うことができる。 Therefore, the refrigerating cycle device 10 in the cooling mode can cool the vehicle interior in the same manner as in the cooling mode of the first embodiment.
 (2)外気暖房モード
 外気暖房モードの制御フローでは、上記第1実施形態の外気暖房モードと同様に、圧縮機11の回転数とエアミックスドア34の開度SWとが決定される。
(2) Outside air heating mode In the control flow of the outside air heating mode, the rotation speed of the compressor 11 and the opening degree SW of the air mix door 34 are determined as in the outside air heating mode of the first embodiment.
 外気暖房モードの制御フローでは、暖房用膨張弁14aの絞り開度が、目標過熱度SHO1と室外熱交換器16の出口側冷媒の過熱度SH1との偏差に基づいて、フィードバック制御手法により、過熱度SH1が目標過熱度SHO1に近づくように決定される。 In the control flow of the outside air heating mode, the throttle opening of the heating expansion valve 14a is overheated by the feedback control method based on the deviation between the target superheat degree SHO1 and the superheat degree SH1 of the outlet side refrigerant of the outdoor heat exchanger 16. Degree SH1 is determined to approach the target superheat degree SHO1.
 目標過熱度SHO1としては、予め定めた定数(本実施形態では、5℃)を採用することができる。室外熱交換器16の出口側冷媒の過熱度SH1は、第3冷媒温度センサ64cによって検出された温度T3および第4冷媒圧力センサ65dによって検出された圧力P4に基づいて算出される。 As the target superheat degree SHO1, a predetermined constant (5 ° C. in this embodiment) can be adopted. The degree of superheat SH1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P4 detected by the fourth refrigerant pressure sensor 65d.
 外気暖房モードの制御フローでは、冷凍サイクル装置10を外気暖房モードの冷媒回路に切り替えるために、制御装置60が、暖房用開閉弁15bを開き、三方弁15eが水冷媒熱交換器12側の流出口を開いて第1冷房用通路22c側の流出口を閉じる。さらに、制御装置60は、暖房用膨張弁14aを冷媒減圧作用を発揮する絞り状態として、冷房用膨張弁14bおよび吸熱用膨張弁14cを全閉状態とする。 In the control flow of the outside air heating mode, in order to switch the refrigerating cycle device 10 to the refrigerant circuit of the outside air heating mode, the control device 60 opens the heating on-off valve 15b, and the three-way valve 15e is the flow on the water refrigerant heat exchanger 12 side. The outlet is opened and the outlet on the side of the first cooling passage 22c is closed. Further, the control device 60 puts the heating expansion valve 14a in a throttled state that exerts a refrigerant depressurizing action, and puts the cooling expansion valve 14b and the endothermic expansion valve 14c in a fully closed state.
 これにより、外気暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、レシーバ25、暖房用膨張弁14a、室外熱交換器16、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the refrigeration cycle device 10 in the outside air heating mode, steam compression in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the receiver 25, the heating expansion valve 14a, the outdoor heat exchanger 16, and the compressor 11. The formula refrigeration cycle is constructed.
 従って、外気暖房モードの冷凍サイクル装置10では、上記第1実施形態の外気暖房モードと同様に、室外熱交換器16にて外気から吸熱し、水冷媒熱交換器12にて高温側熱媒体を加熱して車室内の暖房を行うことができる。 Therefore, in the refrigerating cycle device 10 in the outside air heating mode, heat is absorbed from the outside air by the outdoor heat exchanger 16 and the high temperature side heat medium is used by the water refrigerant heat exchanger 12 as in the outside air heating mode of the first embodiment. It can be heated to heat the interior of the vehicle.
 (3)外気廃熱暖房モード
 外気廃熱暖房モードの制御フローでは、本実施形態の外気暖房モードと同様に、圧縮機11の回転数と暖房用膨張弁14aの絞り開度とエアミックスドア34の開度SWとが決定される。
(3) Outside air waste heat heating mode In the control flow of the outside air waste heat heating mode, the rotation speed of the compressor 11, the throttle opening of the heating expansion valve 14a, and the air mix door 34 are the same as in the outside air heating mode of the present embodiment. The opening degree SW is determined.
 外気廃熱暖房モードの制御フローでは、上記第1実施形態の外気廃熱暖房モードと同様に吸熱用膨張弁14cの絞り開度が決定される。 In the control flow of the outside air waste heat heating mode, the throttle opening of the endothermic expansion valve 14c is determined as in the outside air waste heat heating mode of the first embodiment.
 外気廃熱暖房モードの制御フローでは、冷凍サイクル装置10を外気廃熱暖房モードの冷媒回路に切り替えるために、制御装置60が、暖房用開閉弁15bを開き、三方弁15eが水冷媒熱交換器12側の流出口を開いて第1冷房用通路22c側の流出口を閉じる。さらに、制御装置60は、暖房用膨張弁14aを冷媒減圧作用を発揮する絞り状態として、冷房用膨張弁14bを全閉状態とし、吸熱用膨張弁14cを冷媒減圧作用を発揮する絞り状態とする。 In the control flow of the outside air waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the outside air waste heat heating mode, the control device 60 opens the heating on-off valve 15b, and the three-way valve 15e is the water refrigerant heat exchanger. The outlet on the 12 side is opened and the outlet on the first cooling passage 22c side is closed. Further, the control device 60 puts the heating expansion valve 14a in a throttle state that exerts a refrigerant decompression effect, the cooling expansion valve 14b in a fully closed state, and the endothermic expansion valve 14c in a throttle state that exerts a refrigerant decompression action. ..
 これにより、外気廃熱暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、レシーバ25、暖房用膨張弁14a、室外熱交換器16、圧縮機11の吸入口の順に循環するとともに、レシーバ25、吸熱用膨張弁14c、チラー19、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the refrigeration cycle device 10 in the outside air waste heat heating mode, the compressor 11, the water refrigerant heat exchanger 12, the receiver 25, the expansion valve 14a for heating, the outdoor heat exchanger 16, and the suction port of the compressor 11 are circulated in this order. At the same time, a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the receiver 25, the heat absorption expansion valve 14c, the chiller 19, and the suction port of the compressor 11 is configured.
 従って、外気廃熱暖房モードの冷凍サイクル装置10では、上記第1実施形態の外気廃熱暖房モードと同様に、室外熱交換器16にて外気から吸熱するとともにチラー19にて低温側熱媒体を介して廃熱機器80から吸熱し、水冷媒熱交換器12にて高温側熱媒体を加熱して車室内の暖房を行うことができる。 Therefore, in the refrigerating cycle device 10 in the outside air waste heat heating mode, heat is absorbed from the outside air by the outdoor heat exchanger 16 and the low temperature side heat medium is used by the chiller 19 as in the outside air waste heat heating mode of the first embodiment. It is possible to heat the interior of the vehicle by absorbing heat from the waste heat device 80 and heating the heat medium on the high temperature side with the water refrigerant heat exchanger 12.
 (4)廃熱暖房モード
 廃熱暖房モードの制御フローでは、上記第1実施形態の廃熱暖房モードと同様に、圧縮機11の回転数とエアミックスドア34の開度SWとが決定される。
(4) Waste heat heating mode In the control flow of the waste heat heating mode, the rotation speed of the compressor 11 and the opening SW of the air mix door 34 are determined as in the waste heat heating mode of the first embodiment. ..
 廃熱暖房モードの制御フローでは、吸熱用膨張弁14cの絞り開度が、目標過熱度SHCOとチラー19の出口側冷媒の過熱度SHCとの偏差に基づいて、フィードバック制御手法により、過熱度SHCが目標過熱度SHCOに近づくように決定される。目標過熱度SHCOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。 In the control flow of the waste heat heating mode, the throttle opening of the endothermic expansion valve 14c is based on the deviation between the target superheat degree SHCO and the superheat degree SHC of the outlet side refrigerant of the chiller 19, and the superheat degree SHC is used by the feedback control method. Is determined to approach the target superheat degree SHCO. As the target superheat degree SHCO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
 廃熱暖房モードの制御フローでは、冷凍サイクル装置10を廃熱暖房モードの冷媒回路に切り替えるために、制御装置60が、暖房用開閉弁15bを閉じ、三方弁15eが水冷媒熱交換器12側の流出口を開いて第1冷房用通路22c側の流出口を閉じる。さらに、制御装置60は、暖房用膨張弁14aおよび冷房用膨張弁14bを全閉状態とし、吸熱用膨張弁14cを冷媒減圧作用を発揮する絞り状態とする。 In the control flow of the waste heat heating mode, in order to switch the refrigeration cycle device 10 to the refrigerant circuit of the waste heat heating mode, the control device 60 closes the heating on-off valve 15b, and the three-way valve 15e is on the water refrigerant heat exchanger 12 side. The outlet on the 22c side of the first cooling passage 22c is closed by opening the outlet. Further, the control device 60 puts the heating expansion valve 14a and the cooling expansion valve 14b in a fully closed state, and puts the endothermic expansion valve 14c in a throttle state that exerts a refrigerant depressurizing action.
 これにより廃熱暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、レシーバ25、バイパス通路22a、吸熱用膨張弁14c、チラー19、圧縮機11の吸入口の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 As a result, in the refrigeration cycle device 10 in the waste heat heating mode, the refrigerant is supplied in the order of the compressor 11, the water refrigerant heat exchanger 12, the receiver 25, the bypass passage 22a, the heat absorption expansion valve 14c, the chiller 19, and the suction port of the compressor 11. A circulating steam compression refrigeration cycle is constructed.
 従って、廃熱暖房モードの冷凍サイクル装置10では、上記第1実施形態の廃熱暖房モードと同様に、チラー19にて低温側熱媒体を介して廃熱機器80から吸熱し、水冷媒熱交換器12にて空気を加熱して車室内の暖房を行うことができる。 Therefore, in the refrigerating cycle device 10 in the waste heat heating mode, heat is absorbed from the waste heat device 80 via the low temperature side heat medium by the chiller 19 and heat exchange is performed in the water refrigerant, as in the waste heat heating mode of the first embodiment. The air inside the vehicle can be heated by heating the air with the vessel 12.
 (5)着霜時廃熱暖房モード
 着霜時廃熱暖房モードの制御フローでは、本実施形態の廃熱暖房モードと同様に吸熱用膨張弁14cの絞り開度とエアミックスドア34の開度SWとが決定され、暖房用膨張弁14aを全閉状態とする。
(5) Waste heat heating mode during frost In the control flow of the waste heat heating mode during frost formation, the throttle opening of the endothermic expansion valve 14c and the opening of the air mix door 34 are the same as in the waste heat heating mode of the present embodiment. The SW is determined, and the heating expansion valve 14a is fully closed.
 着霜時廃熱暖房モードの制御フローでは、上記第1実施形態の着霜時廃熱暖房モードと同様に圧縮機11の回転数が決定される。 In the control flow of the frosted waste heat heating mode, the rotation speed of the compressor 11 is determined as in the frosted waste heat heating mode of the first embodiment.
 着霜時廃熱暖房モードの制御フローでは、冷凍サイクル装置10を、本実施形態の廃熱暖房モードと同様の冷媒回路に切り替える。 In the control flow of the waste heat heating mode at the time of frost formation, the refrigerating cycle device 10 is switched to the same refrigerant circuit as the waste heat heating mode of the present embodiment.
 これによれば、上記第1実施形態の着霜時廃熱暖房モードと同様に、室外熱交換器16に着霜が生じて外気から吸熱できない場合に、チラー19にて低温側熱媒体から吸熱できる状態を極力維持しながら車室内の暖房を行うことができる。 According to this, similar to the waste heat heating mode at the time of frost formation of the first embodiment, when the outdoor heat exchanger 16 is frosted and cannot absorb heat from the outside air, the chiller 19 absorbs heat from the low temperature side heat medium. It is possible to heat the interior of the vehicle while maintaining the state in which it can be done as much as possible.
 本実施形態のようなレシーバを使ったヒートポンプサイクルに対しても、上記第1実施形態と同様に適切な暖房モードに切り替えることができる。 Even for a heat pump cycle using a receiver as in the present embodiment, it is possible to switch to an appropriate heating mode as in the first embodiment.
 本実施形態では、外気暖房モードでは、室外熱交換器16から流出した冷媒の過熱度SH1に基づいて暖房用膨張弁14aの開度を制御する。廃熱暖房モードでは、チラー19から流出した冷媒の過熱度SHCに基づいて吸熱用膨張弁14cの開度を制御する。外気廃熱暖房モードでは、室外熱交換器16から流出した冷媒の過熱度SH1に基づいて暖房用膨張弁14aの開度を制御し、チラー19から流出した冷媒の過熱度SHCに基づいて吸熱用膨張弁14cの開度を制御する。 In the present embodiment, in the outside air heating mode, the opening degree of the heating expansion valve 14a is controlled based on the superheat degree SH1 of the refrigerant flowing out from the outdoor heat exchanger 16. In the waste heat heating mode, the opening degree of the endothermic expansion valve 14c is controlled based on the superheat degree SHC of the refrigerant flowing out from the chiller 19. In the outside air waste heat heating mode, the opening degree of the heating expansion valve 14a is controlled based on the superheat degree SH1 of the refrigerant flowing out from the outdoor heat exchanger 16, and for heat absorption based on the superheat degree SH1 of the refrigerant flowing out from the chiller 19. The opening degree of the expansion valve 14c is controlled.
 これにより、外気暖房モード、廃熱暖房モードおよび外気廃熱暖房モードにおいて、暖房用膨張弁14aの開度および吸熱用膨張弁14cの開度を適切に制御して、室外熱交換器16およびチラー19での冷媒圧力(換言すれば冷媒温度)を適切に制御できる。 Thereby, in the outside air heating mode, the waste heat heating mode, and the outside air waste heat heating mode, the opening degree of the heating expansion valve 14a and the opening degree of the heat absorption expansion valve 14c are appropriately controlled, and the outdoor heat exchanger 16 and the chiller are used. The refrigerant pressure at 19 (in other words, the refrigerant temperature) can be appropriately controlled.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、複数の運転モードに切り替え可能な冷凍サイクル装置10について説明したが、冷凍サイクル装置10の運転モードの切り替えはこれに限定されない。少なくともオイル戻し制御の対象となる運転モードを実行可能であればよい。 In the above-described embodiment, the refrigeration cycle device 10 capable of switching to a plurality of operation modes has been described, but the switching of the operation mode of the refrigeration cycle device 10 is not limited to this. At least, it suffices if the operation mode targeted for oil return control can be executed.
 冷凍サイクル装置の構成機器は、上述の実施形態に開示されたものに限定されない。上述した効果を発揮できるように、複数のサイクル構成機器を一体化等を行ってもよい。冷房用膨張弁14bおよび吸熱用膨張弁14cとして、全閉機能を有しない電気式膨張弁と開閉弁とを直接的に接続したものを採用してもよい。 The components of the refrigeration cycle device are not limited to those disclosed in the above-described embodiment. A plurality of cycle components may be integrated so that the above-mentioned effects can be exhibited. As the cooling expansion valve 14b and the endothermic expansion valve 14c, those in which an electric expansion valve having no fully closed function and an on-off valve are directly connected may be adopted.
 上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 In the above-described embodiment, an example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. A mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted. Carbon dioxide may be adopted as the refrigerant to form a supercritical refrigeration cycle in which the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
 加熱部の構成は、上述の実施形態に開示されたものに限定されない。例えば、第1実施形態で説明した高温側熱媒体回路40および低温側熱媒体回路50にラジエータを追加し、余剰の熱を外気に放熱させるようにしてもよい。ハイブリッド車両のように内燃機関(エンジン)を備える車両では、高温側熱媒体回路40にエンジン冷却水を循環させるようにしてもよい。 The configuration of the heating unit is not limited to that disclosed in the above-described embodiment. For example, a radiator may be added to the high temperature side heat medium circuit 40 and the low temperature side heat medium circuit 50 described in the first embodiment to dissipate excess heat to the outside air. In a vehicle equipped with an internal combustion engine (engine) such as a hybrid vehicle, engine cooling water may be circulated in the high temperature side heat medium circuit 40.
 吸熱部の構成は、上述の実施形態に開示されたものに限定されない。例えば、吸熱部として、第1実施形態で説明した低温側熱媒体回路50のチラー19を凝縮部とし、廃熱機器80を蒸発部として機能させるサーモサイフォンを採用してもよい。これによれば、低温側熱媒体ポンプ51を廃止することができる。 The configuration of the endothermic unit is not limited to that disclosed in the above-described embodiment. For example, as the endothermic unit, a thermosiphon may be adopted in which the chiller 19 of the low temperature side heat medium circuit 50 described in the first embodiment is used as a condensing unit and the waste heat device 80 functions as an evaporation unit. According to this, the low temperature side heat medium pump 51 can be abolished.
 サーモサイフォンは、冷媒を蒸発させる蒸発部と冷媒を凝縮させる凝縮部とを有し、蒸発部と凝縮部とを閉ループ状に(すなわち、環状に)接続することによって構成されている。そして、蒸発部における冷媒の温度と凝縮部における冷媒の温度との温度差によって回路内の冷媒に比重差を生じさせ、重力の作用によって冷媒を自然循環させて、冷媒とともに熱を輸送する熱輸送回路である。 The thermosiphon has an evaporating part for evaporating the refrigerant and a condensing part for condensing the refrigerant, and is configured by connecting the evaporating part and the condensing part in a closed loop shape (that is, in a ring shape). Then, the temperature difference between the temperature of the refrigerant in the evaporating part and the temperature of the refrigerant in the condensing part causes a difference in specific gravity in the refrigerant in the circuit, and the action of gravity naturally circulates the refrigerant to transport heat together with the refrigerant. It is a circuit.
 上述の実施形態では、廃熱機器80から冷媒へ低温側熱媒体を介して吸熱されるが、廃熱機器80から冷媒へ空気を介して吸熱されるようになっていてもよいし、廃熱機器80から冷媒へ直接吸熱されるようになっていてもよい。 In the above-described embodiment, heat is absorbed from the waste heat device 80 to the refrigerant via the low temperature side heat medium, but heat may be absorbed from the waste heat device 80 to the refrigerant via air, or waste heat may be absorbed. Heat may be absorbed directly from the device 80 to the refrigerant.
 上述の各実施形態では、本開示に係る冷凍サイクル装置10を車両用空調装置1に適用したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、室内の空調を行う空調装置等に適用してもよい。 In each of the above-described embodiments, the refrigeration cycle device 10 according to the present disclosure is applied to the vehicle air conditioner 1, but the application of the refrigeration cycle device 10 is not limited to this. For example, it may be applied to an air conditioner or the like that performs indoor air conditioning.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (10)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された吐出冷媒を熱源として、空調対象空間へ送風される空気を加熱する加熱部(12、40、42)と、
     前記加熱部から流出した冷媒を減圧させる暖房用膨張弁(14a)と、
     前記暖房用膨張弁から流出した冷媒と外気とを熱交換させる室外熱交換器(16)と、
     前記室外熱交換器から流出した冷媒を減圧させる冷房用膨張弁(14b)と、
     前記冷房用膨張弁から流出した冷媒を蒸発させて、前記加熱部にて加熱される前の前記空気を冷却する室内蒸発器(18)と、
     前記室外熱交換器から流出した冷媒を減圧させる吸熱用膨張弁(14c)と、
     前記吸熱用膨張弁から流出した冷媒を蒸発させて、吸熱対象物(80)から吸熱する吸熱部(19、50)と、
     前記室外熱交換器で外気から吸熱せず前記吸熱部で前記吸熱対象物から吸熱する廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱するとともに前記吸熱部で前記吸熱対象物から吸熱する外気廃熱暖房モードの冷媒回路とに切り替える冷媒回路切替部(15a、15b)と、
     前記外気廃熱暖房モードにおいて、外気温度(Tam)から、前記圧縮機に吸入される冷媒の温度(Ts)を減じた温度差である外気冷媒温度差が下限温度差(α2)以下であり、且つ前記吸熱対象物の温度(TWL2)が吸熱可能温度(TW1)以上である場合、前記廃熱暖房モードに切り替えるように前記冷媒回路切替部を制御する制御部(60)とを備える冷凍サイクル装置。
    A compressor (11) that compresses and discharges the refrigerant,
    A heating unit (12, 40, 42) that heats the air blown to the air-conditioned space using the discharged refrigerant discharged from the compressor as a heat source.
    A heating expansion valve (14a) for reducing the pressure of the refrigerant flowing out of the heating unit, and
    An outdoor heat exchanger (16) that exchanges heat between the refrigerant flowing out of the heating expansion valve and the outside air.
    A cooling expansion valve (14b) for reducing the pressure of the refrigerant flowing out of the outdoor heat exchanger, and
    An indoor evaporator (18) that evaporates the refrigerant flowing out of the cooling expansion valve to cool the air before being heated by the heating unit.
    An endothermic expansion valve (14c) that reduces the pressure of the refrigerant flowing out of the outdoor heat exchanger.
    An endothermic portion (19, 50) that evaporates the refrigerant flowing out of the endothermic expansion valve and absorbs heat from the endothermic object (80).
    A waste heat heating mode refrigerant circuit that does not absorb heat from the outside air with the outdoor heat exchanger but absorbs heat from the endothermic object at the endothermic section, and the endothermic object while absorbing heat from the outside air with the outdoor heat exchanger. The refrigerant circuit switching unit (15a, 15b) that switches to the outside air waste heat heating mode endothermic circuit that absorbs heat from
    In the outside air waste heat heating mode, the outside air refrigerant temperature difference, which is the temperature difference obtained by subtracting the temperature (Ts) of the refrigerant sucked into the compressor from the outside air temperature (Tam), is the lower limit temperature difference (α2) or less. Further, when the temperature (TWL2) of the heat-absorbing object is equal to or higher than the heat-absorbable temperature (TW1), the refrigerating cycle device includes a control unit (60) that controls the refrigerant circuit switching unit so as to switch to the waste heat heating mode. ..
  2.  前記冷媒回路切替部は、前記廃熱暖房モードの冷媒回路と、前記外気廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱して前記吸熱部で前記吸熱対象物から吸熱しない外気暖房モードの冷媒回路に切り替え、
     前記制御部は、前記外気暖房モードにおいて、前記外気冷媒温度差が吸熱可能温度差(α1)以上であり、且つ前記吸熱対象物の温度が前記吸熱可能温度以上である場合、前記外気廃熱暖房モードに切り替えるように前記冷媒回路切替部を制御する請求項1に記載の冷凍サイクル装置。
    The refrigerant circuit switching unit absorbs heat from the outside air by the waste heat heating mode refrigerant circuit, the outside air waste heat heating mode refrigerant circuit, and the outdoor heat exchanger, and does not absorb heat from the heat absorption object by the heat absorption unit. Switch to the refrigerant circuit in outside air heating mode,
    In the outside air heating mode, when the outside air refrigerant temperature difference is equal to or greater than the endothermic temperature difference (α1) and the temperature of the endothermic object is equal to or greater than the endothermic temperature, the outside air waste heat heating is performed. The refrigerating cycle device according to claim 1, wherein the refrigerant circuit switching unit is controlled so as to switch to the mode.
  3.  前記制御部は、前記廃熱暖房モードにおいて、前記外気冷媒温度差が吸熱可能温度差(α1)以上である場合、前記外気廃熱暖房モードに切り替えるように前記冷媒回路切替部を制御する請求項1または2に記載の冷凍サイクル装置。 The control unit controls the refrigerant circuit switching unit so as to switch to the outside air waste heat heating mode when the temperature difference of the outside air refrigerant is equal to or greater than the endothermic temperature difference (α1) in the waste heat heating mode. The refrigeration cycle apparatus according to 1 or 2.
  4.  前記冷媒回路切替部は、前記廃熱暖房モードの冷媒回路と、前記外気廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱して前記吸熱部で前記吸熱対象物から吸熱しない外気暖房モードの冷媒回路に切り替え、
     前記制御部は、前記廃熱暖房モードにおいて、前記吸熱対象物の温度が吸熱下限温度(TWmin)以下である場合、前記外気暖房モードに切り替えるように前記冷媒回路切替部を制御する請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。
    The refrigerant circuit switching unit absorbs heat from the outside air by the waste heat heating mode refrigerant circuit, the outside air waste heat heating mode refrigerant circuit, and the outdoor heat exchanger, and does not absorb heat from the heat absorption object by the heat absorption unit. Switch to the refrigerant circuit in outside air heating mode,
    The control unit controls the refrigerant circuit switching unit so as to switch to the outside air heating mode when the temperature of the endothermic object is equal to or lower than the endothermic lower limit temperature (TWmin) in the waste heat heating mode. The refrigeration cycle apparatus according to any one of 3.
  5.  前記冷媒回路切替部は、前記廃熱暖房モードの冷媒回路と、前記外気廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱して前記吸熱部で前記吸熱対象物から吸熱しない外気暖房モードの冷媒回路に切り替え、
     前記制御部は、前記外気廃熱暖房モードにおいて、前記外気冷媒温度差が下限温度差以下であり且つ前記吸熱対象物の温度が吸熱可能温度未満である場合、または前記吸熱対象物の温度が吸熱下限温度(TWmin)以下である場合、前記外気暖房モードに切り替えるように前記冷媒回路切替部を制御する請求項1ないし4のいずれか1つに記載の冷凍サイクル装置。
    The refrigerant circuit switching unit absorbs heat from the outside air by the waste heat heating mode refrigerant circuit, the outside air waste heat heating mode refrigerant circuit, and the outdoor heat exchanger, and does not absorb heat from the heat absorption object by the heat absorption unit. Switch to the refrigerant circuit in outside air heating mode,
    In the outside air waste heat heating mode, the control unit has a case where the outside air refrigerant temperature difference is equal to or less than the lower limit temperature difference and the temperature of the endothermic object is lower than the heat absorbing temperature, or the temperature of the endothermic object is heat absorbing. The refrigerating cycle apparatus according to any one of claims 1 to 4, wherein when the temperature is not less than the lower limit temperature (TWmin), the refrigerant circuit switching unit is controlled so as to switch to the outside air heating mode.
  6.  前記制御部は、前記室外熱交換器に着霜が生じた場合、前記廃熱暖房モードの冷媒回路に切り替えるように前記冷媒回路切替部を制御するとともに、前記吸熱対象物の温度が吸熱下限温度(TWmin)を下回ることを抑制するように前記圧縮機の冷媒吐出能力を制御する請求項1ないし5のいずれか1つに記載の冷凍サイクル装置。 The control unit controls the refrigerant circuit switching unit so as to switch to the refrigerant circuit in the waste heat heating mode when frost is formed on the outdoor heat exchanger, and the temperature of the endothermic object is the endothermic lower limit temperature. The refrigerating cycle apparatus according to any one of claims 1 to 5, wherein the refrigerant discharge capacity of the compressor is controlled so as to prevent the compressor from falling below (TWmin).
  7.  前記圧縮機に吸入される冷媒の気液を分離して液相の冷媒を貯える気液分離部(21)を備え、
     前記冷媒回路切替部は、前記廃熱暖房モードの冷媒回路と、前記外気廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱して前記吸熱部で前記吸熱対象物から吸熱しない外気暖房モードの冷媒回路に切り替え、
     前記制御部は、
     前記外気暖房モードでは、前記加熱部から流出した冷媒の過冷却度(SC2)に基づいて前記暖房用膨張弁の開度を制御し、
     前記廃熱暖房モードでは、前記加熱部から流出した冷媒の過冷却度(SC2)に基づいて前記吸熱用膨張弁の開度を制御し、
     前記外気廃熱暖房モードでは、前記加熱部から流出した冷媒の過冷却度(SC2)に基づいて前記暖房用膨張弁および前記吸熱用膨張弁のうち一方の膨張弁の開度を制御し、前記暖房用膨張弁および前記吸熱用膨張弁のうち他方の膨張弁で減圧された冷媒の蒸発後の過熱度(SHC)に基づいて前記他方の膨張弁の開度を制御する請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
    A gas-liquid separation unit (21) for separating the gas-liquid of the refrigerant sucked into the compressor and storing the liquid-phase refrigerant is provided.
    The refrigerant circuit switching unit absorbs heat from the outside air by the waste heat heating mode refrigerant circuit, the outside air waste heat heating mode refrigerant circuit, and the outdoor heat exchanger, and does not absorb heat from the heat absorption object by the heat absorption unit. Switch to the refrigerant circuit in outside air heating mode,
    The control unit
    In the outside air heating mode, the opening degree of the heating expansion valve is controlled based on the degree of supercooling (SC2) of the refrigerant flowing out from the heating unit.
    In the waste heat heating mode, the opening degree of the endothermic expansion valve is controlled based on the degree of supercooling (SC2) of the refrigerant flowing out from the heating unit.
    In the outside air waste heat heating mode, the opening degree of one of the heating expansion valve and the endothermic expansion valve is controlled based on the degree of supercooling (SC2) of the refrigerant flowing out from the heating unit. Claims 1 to 6 for controlling the opening degree of the other expansion valve based on the degree of superheat (SHC) after evaporation of the refrigerant decompressed by the other expansion valve of the heating expansion valve and the endothermic expansion valve. The refrigeration cycle apparatus according to any one.
  8.  前記加熱部から流出した冷媒の気液を分離して液相の冷媒を貯える気液分離部(25)を備え、
     前記冷媒回路切替部は、前記廃熱暖房モードの冷媒回路と、前記外気廃熱暖房モードの冷媒回路と、前記室外熱交換器で外気から吸熱して前記吸熱部で前記吸熱対象物から吸熱しない外気暖房モードの冷媒回路に切り替え、
     前記制御部は、
     前記外気暖房モードでは、前記室外熱交換器から流出した冷媒の過熱度(SH1)に基づいて前記暖房用膨張弁の開度を制御し、
     前記廃熱暖房モードでは、前記吸熱部から流出した冷媒の過熱度(SHC)に基づいて前記吸熱用膨張弁の開度を制御し、
     前記外気廃熱暖房モードでは、前記室外熱交換器から流出した冷媒の過熱度(SH1)に基づいて前記暖房用膨張弁の開度を制御し、前記吸熱部から流出した冷媒の過熱度(SHC)に基づいて前記吸熱用膨張弁の開度を制御する請求項1ないし6のいずれか1つに記載の冷凍サイクル装置。
    A gas-liquid separation unit (25) that separates the gas-liquid of the refrigerant flowing out from the heating unit and stores the refrigerant of the liquid phase is provided.
    The refrigerant circuit switching unit absorbs heat from the outside air by the waste heat heating mode refrigerant circuit, the outside air waste heat heating mode refrigerant circuit, and the outdoor heat exchanger, and does not absorb heat from the heat absorption object by the heat absorption unit. Switch to the refrigerant circuit in outside air heating mode,
    The control unit
    In the outside air heating mode, the opening degree of the heating expansion valve is controlled based on the degree of superheat (SH1) of the refrigerant flowing out from the outdoor heat exchanger.
    In the waste heat heating mode, the opening degree of the endothermic expansion valve is controlled based on the degree of superheat (SHC) of the refrigerant flowing out from the endothermic unit.
    In the outside air waste heat heating mode, the opening degree of the heating expansion valve is controlled based on the superheat degree (SH1) of the refrigerant flowing out from the outdoor heat exchanger, and the superheat degree (SHC) of the refrigerant flowing out from the endothermic unit is controlled. The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the opening degree of the endothermic expansion valve is controlled based on the above.
  9.  前記制御部は、前記外気廃熱暖房モードでは、前記圧縮機に吸入される冷媒の温度が前記外気温度を超えないように前記吸熱用膨張弁の開度を制御する請求項1ないし8のいずれか1つに記載の冷凍サイクル装置。 The control unit controls the opening degree of the endothermic expansion valve so that the temperature of the refrigerant sucked into the compressor does not exceed the outside air temperature in the outside air waste heat heating mode. The refrigeration cycle device according to one.
  10.  前記制御部は、前記外気廃熱暖房モードでは、前記吸熱対象物の温度が吸熱下限温度(TWmin)以下になることを抑制するように前記吸熱用膨張弁の開度を制御する請求項1ないし9のいずれか1つに記載の冷凍サイクル装置。 The control unit controls the opening degree of the endothermic expansion valve so as to prevent the temperature of the endothermic object from becoming equal to or lower than the endothermic lower limit temperature (TWmin) in the outside air waste heat heating mode. 9. The refrigeration cycle apparatus according to any one of 9.
PCT/JP2021/025950 2020-08-05 2021-07-09 Refrigeration cycle device WO2022030182A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021004134.7T DE112021004134T5 (en) 2020-08-05 2021-07-09 refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133010A JP7468237B2 (en) 2020-08-05 2020-08-05 Refrigeration Cycle Equipment
JP2020-133010 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030182A1 true WO2022030182A1 (en) 2022-02-10

Family

ID=80117974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025950 WO2022030182A1 (en) 2020-08-05 2021-07-09 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP7468237B2 (en)
DE (1) DE112021004134T5 (en)
WO (1) WO2022030182A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114447A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Vehicle heat system
JP2014088060A (en) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd Air conditioner for heat pump type vehicle and vehicle
JP2014223891A (en) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 Temperature regulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268976B2 (en) 2018-08-10 2023-05-08 サンデン株式会社 Vehicle air conditioner
JP6577685B1 (en) 2019-02-13 2019-09-18 佰龍機械廠股▲ふん▼有限公司 Yarn feeder for flat knitting machines with variable yarn feeding position

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114447A1 (en) * 2011-02-22 2012-08-30 株式会社日立製作所 Vehicle heat system
JP2014088060A (en) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd Air conditioner for heat pump type vehicle and vehicle
JP2014223891A (en) * 2013-05-17 2014-12-04 トヨタ自動車株式会社 Temperature regulator

Also Published As

Publication number Publication date
JP7468237B2 (en) 2024-04-16
DE112021004134T5 (en) 2023-05-17
JP2022029629A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US10889163B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
US11718156B2 (en) Refrigeration cycle device
WO2021075181A1 (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
CN109890636B (en) Refrigeration cycle device
CN113423596B (en) Refrigeration cycle device
CN110997369A (en) Refrigeration cycle device
JP2018091536A (en) Refrigeration cycle device
WO2020158423A1 (en) Refrigeration cycle device
WO2022004159A1 (en) Refrigeration cycle device
WO2013145537A1 (en) Air conditioner device for vehicle
JP2019217947A (en) Air conditioner
WO2022064880A1 (en) Refrigeration cycle device
WO2021095338A1 (en) Refrigeration cycle device
CN112638674A (en) Refrigeration cycle device
WO2022009713A1 (en) Refrigeration cycle device
WO2021157286A1 (en) Refrigeration cycle device
WO2022030182A1 (en) Refrigeration cycle device
JP2022019560A (en) Refrigeration cycle device
JP2021188790A (en) Refrigeration cycle device
WO2022070614A1 (en) Refrigeration cycle device
WO2023166951A1 (en) Refrigeration cycle device
WO2021215167A1 (en) Refrigeration cycle device
WO2022014309A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853737

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21853737

Country of ref document: EP

Kind code of ref document: A1