WO2022014309A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2022014309A1
WO2022014309A1 PCT/JP2021/024291 JP2021024291W WO2022014309A1 WO 2022014309 A1 WO2022014309 A1 WO 2022014309A1 JP 2021024291 W JP2021024291 W JP 2021024291W WO 2022014309 A1 WO2022014309 A1 WO 2022014309A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
air
heating
battery
Prior art date
Application number
PCT/JP2021/024291
Other languages
French (fr)
Japanese (ja)
Inventor
康介 白鳥
誠司 伊藤
聡 鈴木
隆 山中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021089520A external-priority patent/JP2022019560A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022014309A1 publication Critical patent/WO2022014309A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to a refrigeration cycle device having a function of cooling an object to be cooled.
  • a cooler through which a low-temperature refrigerant flows is brought into contact with a plurality of batteries to absorb heat from the batteries to the refrigerant.
  • a plurality of refrigerant channels are formed in the cooler in order to suppress the dryout of the refrigerant. Dryout means that the refrigerant completely evaporates in the cooler, and a region where only the vapor phase refrigerant exists is generated.
  • the refrigerant When the refrigerant flow rate on the cooler side is throttled, the refrigerant may dry out in the cooler and the battery temperature may fluctuate depending on the temperature difference between the battery and the refrigerant. This is because the amount of heat transferred from the battery to the refrigerant is proportional to the temperature difference between the battery and the refrigerant.
  • the thermal resistance of the cooler is increased, it is possible to suppress the occurrence of dryout when the flow rate of the refrigerant on the cooler side is throttled, but the maximum cooling capacity of the cooler is reduced. Therefore, if the heat exchange load of the evaporator is not high and the heat exchange load of the cooler is high, the battery cannot be sufficiently cooled.
  • the present disclosure aims to suppress the dryout of the refrigerant in the cooler while ensuring the cooling capacity of the cooling unit that cools the object to be cooled.
  • the refrigerating cycle device includes a compressor, a heat radiating unit, an air conditioning evaporation unit, a cooling unit, and an adjusting unit.
  • the compressor compresses and discharges the refrigerant.
  • the heat radiating unit dissipates the refrigerant discharged from the compressor.
  • the air-conditioning evaporation unit exchanges heat between the refrigerant and air to evaporate the refrigerant and cool the air.
  • the cooling unit is arranged in parallel with the air-conditioning evaporation unit in the flow of the refrigerant, and cools the object to be cooled by evaporating the refrigerant with the heat of the object to be cooled.
  • the adjusting unit adjusts the endothermic area, which is the area of the cooling unit where the refrigerant flows and the heat of the object to be cooled is absorbed by the refrigerant.
  • the endothermic area of the cooling unit is adjusted, the amount of heat transfer between the refrigerant and the object to be cooled in the cooling unit can be adjusted. Therefore, it is possible to suppress the dryout of the refrigerant in the cooling unit while ensuring the cooling capacity of the cooling unit.
  • FIG. 1 It is an overall block diagram of the vehicle air conditioner of 1st Embodiment. It is a schematic diagram which shows the cooling heat exchange part of the air-conditioning apparatus for a vehicle of 1st Embodiment, and shows the refrigerant flow state when the number of refrigerant flow paths is three. It is a schematic diagram which shows the cooling heat exchange part of the air-conditioning apparatus for a vehicle of 1st Embodiment, and shows the refrigerant flow state when the number of refrigerant flow paths is one.
  • the refrigeration cycle device 10 is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains a driving force for traveling from an electric motor.
  • the vehicle air conditioner 1 is an air conditioner with a battery temperature adjusting function.
  • the vehicle air conditioner 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned, and adjusts the temperature of the battery 80.
  • the battery 80 is a secondary battery that stores electric power supplied to an in-vehicle device such as an electric motor.
  • the battery 80 of this embodiment is a lithium ion battery.
  • the battery 80 is a so-called assembled battery formed by stacking a plurality of battery cells 81 and electrically connecting the battery cells 81 in series or in parallel.
  • the output of this type of battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery needs to be maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the battery can be fully utilized. ..
  • the battery 80 can be cooled by the cold heat generated by the refrigeration cycle device 10.
  • the objects to be cooled in the refrigeration cycle device 10 of the present embodiment are air and a battery 80.
  • the vehicle air conditioner 1 includes a refrigerating cycle device 10, an indoor air conditioner unit 30, a high temperature side heat medium circuit 40, and the like.
  • the refrigerating cycle device 10 cools the air blown into the vehicle interior and heats the high temperature side heat medium circulating in the high temperature side heat medium circuit 40 in order to air-condition the vehicle interior.
  • the refrigerating cycle device 10 can switch the refrigerant circuit for various operation modes in order to perform air conditioning in the vehicle interior. For example, the refrigerant circuit in the cooling mode, the refrigerant circuit in the dehumidifying / heating mode, the refrigerant circuit in the heating mode, and the like can be switched.
  • the refrigerating cycle device 10 can switch between an operation mode in which the battery 80 is cooled and an operation mode in which the battery 80 is not cooled in each operation mode for air conditioning.
  • the refrigeration cycle apparatus 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant, and the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant, which is a steam compression type subcritical. It constitutes a refrigeration cycle.
  • Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it.
  • the compressor 11 is arranged in front of the vehicle interior and is arranged in the drive unit chamber in which the electric motor and the like are housed.
  • the compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the cycle control device 60 shown in FIG.
  • the inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11.
  • the water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the high-pressure refrigerant discharged from the compressor 11 and a water passage for circulating the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40.
  • the water refrigerant heat exchanger 12 is a heat exchanger for heating that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the water passage.
  • the inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12.
  • a three-way joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the refrigeration cycle device 10 includes second to sixth three-way joints 13b to 13f.
  • the basic configuration of the second to sixth three-way joints 13b to 13f is the same as that of the first three-way joint 13a.
  • the inlet side of the heating expansion valve 14a is connected to one of the outlets of the first three-way joint 13a.
  • One inflow port side of the second three-way joint 13b is connected to the other outflow port of the first three-way joint 13a via a bypass passage 22a.
  • a dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
  • the dehumidifying on-off valve 15a is a solenoid valve that opens and closes a refrigerant passage connecting the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b.
  • the refrigeration cycle device 10 includes a heating on-off valve 15b.
  • the basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b are refrigerant circuit switching units that switch the refrigerant circuit of the cycle.
  • the dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the cycle control device 60.
  • the heating expansion valve 14a reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 at least in the operation mode of heating the vehicle interior, and reduces the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side. It is a decompression unit for heating to be adjusted.
  • the heating expansion valve 14a is an electric variable throttle mechanism including a valve body configured to change the throttle opening degree and an electric actuator for changing the throttle opening degree.
  • the refrigeration cycle device 10 includes a cooling expansion valve 14b and first to third cooling expansion valves 14c to 14e.
  • the basic configuration of the cooling expansion valve 14b and the cooling expansion valve 14c is the same as that of the heating expansion valve 14a.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e are simple refrigerants with almost no flow rate adjusting action and refrigerant depressurizing action by fully opening the valve opening. It has a fully open function that functions as a passage and a fully closed function that closes the refrigerant passage by fully closing the valve opening.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e can switch the refrigerant circuit in each operation mode.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e function as a refrigerant circuit switching unit.
  • the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e are controlled by a control signal (control pulse) output from the cycle control device 60.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a.
  • the outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by a cooling fan (not shown).
  • the outdoor heat exchanger 16 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind can be applied to the outdoor heat exchanger 16.
  • the inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16.
  • One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a heating passage 22b.
  • a heating on-off valve 15b for opening and closing the refrigerant passage is arranged in the heating passage 22b.
  • the other inlet side of the second three-way joint 13b is connected to the other outlet of the third three-way joint 13c.
  • a check valve 17 is arranged in the refrigerant passage connecting the other outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b. The check valve 17 allows the refrigerant to flow from the third three-way joint 13c side to the second three-way joint 13b side, and prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
  • the inflow port side of the fifth three-way joint 13e is connected to the outflow port of the second three-way joint 13b.
  • the inlet side of the cooling expansion valve 14b is connected to one of the outlets of the fifth three-way joint 13e.
  • the cooling expansion valve 14b is an air-conditioning decompression unit that depressurizes the refrigerant flowing out from the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the vehicle interior.
  • the refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b.
  • the indoor evaporator 18 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the indoor evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the air blown from the blower 32 to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exert a heat absorbing action to absorb air. It is an air-conditioning evaporative unit that cools.
  • One inflow port side of the sixth three-way joint 13f is connected to the refrigerant outlet of the indoor evaporator 18.
  • the other outlet of the fifth three-way joint 13e is connected to the inlet side of the first four-way joint 13g having four inflow outlets communicating with each other.
  • a four-sided joint one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
  • the inlet side of the first cooling expansion valve 14c is connected to the first outlet of the first four-way joint 13g.
  • the inlet side of the second cooling expansion valve 14d is connected to the second outlet of the first four-way joint 13g.
  • the inlet side of the third cooling expansion valve 14e is connected to the third outlet of the first four-way joint 13g.
  • the first to third cooling expansion valves 14c to 14e reduce the pressure of the refrigerant flowing out from the outdoor heat exchanger 16 and adjust the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the battery 80. It is a decompression unit for batteries.
  • the inlet side of the first refrigerant passage 19a of the battery cooler 19 is connected to the outlet of the first cooling expansion valve 14c.
  • the inlet side of the second refrigerant passage 19b of the battery cooler 19 is connected to the outlet of the second cooling expansion valve 14d.
  • the inlet side of the third refrigerant passage 19c of the battery cooler 19 is connected to the outlet of the third cooling expansion valve 14e.
  • the battery cooler 19 is a so-called direct cooling type cooler that cools the battery 80 by evaporating the refrigerant flowing through the refrigerant passage to exert an endothermic action.
  • the battery cooler 19 is a cooling unit that cools the battery 80. In the present embodiment, the battery cooler 19 cools the battery 80 from the bottom surface side.
  • the battery cooler 19 has a first refrigerant flow path 19a, a second refrigerant flow path 19b, and a third refrigerant flow path 19c connected in parallel with each other so that the entire area of the battery 80 can be cooled evenly. ..
  • FIG. 2 and 3 are schematic views of the battery cooler 19 as viewed from above and below.
  • a thick solid line shows a state in which all of the first to third cooling expansion valves 14c to 14e are opened and the refrigerant is flowing through all of the first to third refrigerant flow paths 19a to 19c. There is.
  • the first inflow port side of the second four-way joint 13h is connected to the outlet of the first refrigerant flow path 19a of the battery cooler 19.
  • the basic configuration of the second four-way joint 13h is the same as that of the first four-way joint 13g.
  • the first cooling expansion valve 14a is open, but the second to third cooling expansion valves 14d to 14e are closed, the refrigerant flows into the first refrigerant flow path 19a, and the second to third
  • the state in which the refrigerant does not flow in all of the refrigerant flow paths 19b to 19c is shown by a thick solid line and a thick broken line.
  • the first inflow port side of the second four-way joint 13h is connected to the outlet of the first refrigerant flow path 19a of the battery cooler 19.
  • the basic configuration of the second four-way joint 13h is the same as that of the first four-way joint 13g.
  • the second inflow port side of the second four-sided joint 13h is connected to the outlet of the second refrigerant flow path 19b of the battery cooler 19.
  • the third inflow port side of the second four-sided joint 13h is connected to the outlet of the third refrigerant flow path 19c of the battery cooler 19.
  • the other inlet side of the sixth three-way joint 13f is connected to the outlet of the second four-way joint 13h.
  • the inlet side of the evaporation pressure adjusting valve 20 is connected to the outlet of the 6th three-way joint 13f.
  • the evaporation pressure adjusting valve 20 maintains the refrigerant evaporation pressure in the indoor evaporator 18 at a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 18.
  • the evaporation pressure adjusting valve 20 is a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
  • the evaporation pressure adjusting valve 20 maintains the refrigerant evaporation temperature in the indoor evaporator 18 at a frost formation suppression temperature (1 ° C. in the present embodiment) that can suppress frost formation in the indoor evaporator 18. ..
  • the evaporation pressure adjusting valve 20 is arranged on the downstream side of the refrigerant flow with respect to the sixth three-way joint 13f, which is a confluence portion. Therefore, the evaporation pressure adjusting valve 20 maintains the refrigerant evaporation temperature in the battery cooler 19 at a temperature equal to or higher than the frost formation suppression temperature.
  • the other inflow port side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 20.
  • the inlet side of the accumulator 21 is connected to the outlet of the fourth three-way joint 13d.
  • the accumulator 21 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed into the inside and stores the excess liquid-phase refrigerant in the cycle.
  • the suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
  • the accumulator 21 is formed with an oil return hole for returning the refrigerating machine oil mixed in the separated liquid phase refrigerant to the compressor 11.
  • the refrigerating machine oil in the accumulator 21 is returned to the compressor 11 together with a small amount of liquid phase refrigerant.
  • the fifth three-way joint 13e of the present embodiment is a branch portion for branching the flow of the refrigerant flowing out from the outdoor heat exchanger 16.
  • the sixth three-way joint 13f is a confluence portion that merges the flow of the refrigerant flowing out of the indoor evaporator 18 and the flow of the refrigerant flowing out of the battery cooler 19 and causes them to flow out to the suction side of the compressor 11.
  • the indoor evaporator 18 and the battery cooler 19 are connected in parallel to each other with respect to the refrigerant flow.
  • the bypass passage 22a guides the refrigerant flowing out of the refrigerant passage of the water refrigerant heat exchanger 12 to the upstream side of the branch portion.
  • the heating passage 22b guides the refrigerant flowing out of the outdoor heat exchanger 16 to the suction port side of the compressor 11.
  • the high temperature side heat medium circuit 40 is a heat medium circulation circuit that circulates the high temperature side heat medium.
  • a solution containing ethylene glycol, dimethylpolysiloxane, a nanofluid, or the like, an antifreeze solution, or the like can be adopted.
  • a water passage of the water refrigerant heat exchanger 12, a high temperature side heat medium pump 41, a heater core 42, and the like are arranged.
  • the high temperature side heat medium pump 41 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water refrigerant heat exchanger 12.
  • the high temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the cycle control device 60.
  • the heat medium inlet side of the heater core 42 is connected to the outlet of the water passage of the water refrigerant heat exchanger 12.
  • the heater core 42 is a heat exchanger that heats the air by exchanging heat between the high temperature side heat medium heated by the water refrigerant heat exchanger 12 and the air that has passed through the indoor evaporator 18.
  • the heater core 42 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30.
  • the suction port side of the high temperature side heat medium pump 41 is connected to the heat medium outlet of the heater core 42.
  • the high temperature side heat medium pump 41 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 42 to dissipate heat of the high temperature side heat medium in the heater core 42 to the air (that is, that is). , The amount of heat of air in the heater core 42) can be adjusted.
  • Each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 is a heating unit that heats air using the refrigerant discharged from the compressor 11 as a heat source.
  • the indoor air conditioning unit 30 is for blowing air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior.
  • the indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 30 accommodates a blower 32, an indoor evaporator 18, a heater core 42, etc. in an air passage formed in an air conditioning case 31 forming an outer shell.
  • the air conditioning case 31 forms an air passage for air blown into the vehicle interior.
  • the air conditioning case 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case 31.
  • the inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the air conditioning case 31.
  • the inside / outside air switching device 33 continuously adjusts the opening areas of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the introduction air volume of the inside air and the outside air. Change the introduction ratio with the introduction air volume.
  • the inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door.
  • the electric actuator for the inside / outside air switching door is controlled by a control signal output from the cycle control device 60.
  • a blower 32 is arranged on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior.
  • the blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor.
  • the rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the cycle control device 60.
  • the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the air flow.
  • the indoor evaporator 18 is arranged on the upstream side of the air flow with respect to the heater core 42.
  • the air conditioning case 31 is provided with a cold air bypass passage 35 that allows air after passing through the indoor evaporator 18 to bypass the heater core 42.
  • An air mix door 34 is arranged on the downstream side of the air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the air flow of the heater core 42.
  • the air mix door 34 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air volume of the air passing through the heater core 42 side and the air volume of the air passing through the cold air bypass passage 35 among the air after passing through the indoor evaporator 18. ..
  • the air mix door 34 is driven by an electric actuator for the air mix door. The electric actuator is controlled by a control signal output from the cycle control device 60.
  • a mixing space is arranged on the downstream side of the air flow of the heater core 42 and the cold air bypass passage 35 in the air conditioning case 31.
  • the mixing space is a space in which the air heated by the heater core 42 and the unheated air passing through the cold air bypass passage 35 are mixed.
  • an opening hole for blowing out the air mixed in the mixing space (that is, the air conditioning air) into the vehicle interior, which is the air conditioning target space, is arranged.
  • the opening holes As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided.
  • the face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the vehicle interior.
  • the foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant.
  • the defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
  • These face opening holes, foot opening holes, and defroster opening holes are the face outlets, foot outlets, and defroster outlets (none of which are shown) provided in the vehicle interior via ducts forming air passages, respectively. )It is connected to the.
  • the temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. As a result, the temperature of the air (air-conditioned air) blown from each outlet into the vehicle interior is adjusted.
  • Face doors, foot doors, and defroster doors are arranged on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively.
  • the face door adjusts the opening area of the face opening hole.
  • the foot door adjusts the opening area of the foot opening hole.
  • the defroster door adjusts the opening area of the defroster opening hole.
  • These face doors, foot doors, and defroster doors constitute an outlet mode switching device that switches the outlet mode.
  • These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other.
  • the operation of the electric actuator is controlled by a control signal output from the cycle control device 60.
  • the face mode is an outlet mode in which the face outlet is fully opened and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an outlet mode in which both the face outlet and the foot outlet are opened to blow air toward the upper body and feet of the passengers in the passenger compartment.
  • the foot mode is an outlet mode in which the foot outlet is fully opened and the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
  • the occupant can also switch to the defroster mode by manually operating the blowout mode changeover switch provided on the operation panel 70.
  • the defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the front window glass.
  • the cycle control device 60 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits. Then, various operations and processes are performed based on the control program stored in the ROM, and the operation of various controlled devices 11, 14a to 14e, 15a, 15b, 32, 41, 53, etc. connected to the output side is controlled. do.
  • the inside temperature sensor 61, the outside temperature sensor 62, the solar radiation sensor 63, the first to fifth refrigerant temperature sensors 64a to 64e, and the evaporator temperature sensor 64f, cooling inlet temperature sensor 64g, first and second refrigerant pressure sensors 65a and 65b, high temperature side heat medium temperature sensor 66, air conditioning air temperature sensor 68, battery control device 69 and the like are connected. Then, the detection signals of these sensor groups are input to the cycle control device 60.
  • the internal air temperature sensor 61 is an internal air temperature detection unit that detects the internal air temperature Tr (that is, the vehicle interior temperature).
  • the outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature Tam (that is, the outside air temperature of the vehicle interior).
  • the solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts applied to the vehicle interior.
  • the first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the refrigerant discharged from the compressor 11.
  • the second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12.
  • the third refrigerant temperature sensor 64c is a third refrigerant temperature detection unit that detects the temperature T3 of the refrigerant flowing out of the outdoor heat exchanger 16.
  • the fourth refrigerant temperature sensor 64d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out from the indoor evaporator 18.
  • the fifth refrigerant temperature sensor 64e is a fifth refrigerant temperature detection unit that detects the temperature T5 of the refrigerant flowing out from the refrigerant passage of the battery cooler 19.
  • the evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the evaporator temperature Tefien, which is the refrigerant evaporation temperature in the indoor evaporator 18.
  • the evaporator temperature sensor 64f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
  • the cooling inlet temperature sensor 64g is a cooling heat exchange unit inlet temperature detecting unit that detects the temperature of the refrigerant flowing into the refrigerant passage of the battery cooler 19.
  • the first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12.
  • the second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the refrigerant passage of the battery cooler 19.
  • the high temperature side heat medium temperature sensor 66 is a high temperature side heat medium temperature detection unit that detects the high temperature side heat medium temperature TWH, which is the temperature of the high temperature side heat medium flowing out from the water passage of the water refrigerant heat exchanger 12.
  • the air-conditioned air temperature sensor 68 is an air-conditioned air temperature detection unit that detects the air temperature TAV blown from the mixed space to the vehicle interior.
  • the battery control device 69 is a battery control unit that controls the input / output of the battery 80.
  • a detection signal from the battery temperature sensor 69a is input to the battery control device 69.
  • the battery temperature sensor 69a is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80).
  • the battery temperature sensor 69a of the present embodiment has a plurality of temperature sensors and detects the temperature of a plurality of points of the battery 80. Therefore, the cycle control device 60 can also detect the temperature difference of each part of the battery 80.
  • the battery temperature TB the average value of the detection values of a plurality of temperature sensors is adopted.
  • Information about the battery 80 such as the battery temperature TB is input from the battery control device 69 to the cycle control device 60.
  • An operation panel 70 arranged near the instrument panel at the front of the vehicle interior is connected to the input side of the cycle control device 60, and operation signals from various operation switches provided on the operation panel 70 are input.
  • Various operation switches provided on the operation panel 70 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and a blowout mode changeover switch.
  • the auto switch is an operation switch for setting or canceling the automatic control operation of the vehicle air conditioner.
  • the air conditioner switch is an operation switch for requesting that the indoor evaporator 18 cools the air.
  • the air volume setting switch is an operation switch for manually setting the air volume of the blower 32.
  • the temperature setting switch is an operation switch for setting the target temperature Tset in the vehicle interior.
  • the blowout mode changeover switch is an operation switch for manually setting the blowout mode.
  • the cycle control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side.
  • the configuration (hardware and software) that controls the operation of each of the control target devices in the cycle control device 60 is a control unit that controls the operation of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) is the compressor control unit 60a.
  • the configuration for controlling the operation of the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e is the expansion valve control unit 60b.
  • the configuration that controls the operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is the refrigerant circuit switching control unit 60c.
  • the configuration for controlling the pumping capacity of the high temperature side heat medium of the high temperature side heat medium pump 41 is the high temperature side heat medium pump control unit 60d.
  • the vehicle air conditioner 1 of the present embodiment air-conditions the interior of the vehicle and adjusts the temperature of the battery 80.
  • the refrigerant circuit can be switched to operate in the following 11 types of operation modes.
  • Cooling mode is an operation mode in which the inside of the vehicle is cooled by cooling the air and blowing it into the vehicle interior without cooling the battery 80.
  • the series dehumidification / heating mode is an operation mode in which the inside of the vehicle is dehumidified and heated by reheating the cooled and dehumidified air and blowing it into the vehicle interior without cooling the battery 80. Is.
  • Parallel dehumidifying / heating mode In the parallel dehumidifying / heating mode, the cooled and dehumidified air is reheated with a higher heating capacity than the series dehumidifying / heating mode and blown out into the vehicle interior without cooling the battery 80. This is an operation mode in which dehumidifying and heating the interior of the vehicle is performed.
  • the heating mode is an operation mode in which the interior of the vehicle is heated by heating the air and blowing it into the vehicle interior without cooling the battery 80.
  • Cooling cooling mode is an operation mode in which the battery 80 is cooled and the air is cooled and blown into the vehicle interior to cool the vehicle interior.
  • In-series dehumidifying / heating / cooling mode In the in-series dehumidifying / heating / cooling mode, the battery 80 is cooled, and the cooled and dehumidified air is reheated and blown out into the vehicle interior to perform dehumidifying / heating in the vehicle interior. The mode.
  • Parallel dehumidifying / heating / cooling mode In the parallel dehumidifying / heating / cooling mode, the battery 80 is cooled and the cooled and dehumidified air is reheated with a higher heating capacity than the series dehumidifying / heating / cooling mode to enter the vehicle interior. This is an operation mode in which dehumidifying and heating the interior of the vehicle is performed by blowing out.
  • Heating / cooling mode is an operation mode in which the battery 80 is cooled and the interior of the vehicle is heated by heating the air and blowing it into the vehicle interior.
  • Heating series cooling mode is an operation mode in which the battery 80 is cooled and the interior of the vehicle is heated by heating the air with a heating capacity higher than that of the heating / cooling mode and blowing it into the vehicle interior. Is.
  • Heating parallel cooling mode In the heating parallel cooling mode, the battery 80 is cooled, and the air is heated with a higher heating capacity than the heating series cooling mode and blown out into the vehicle interior to heat the vehicle interior. The mode.
  • Cooling mode An operation mode in which the battery 80 is cooled without air-conditioning the interior of the vehicle.
  • the control program is executed when the auto switch of the operation panel 70 is turned on (ON) by the operation of the occupant and the automatic control in the vehicle interior is set.
  • the control program will be described with reference to FIGS. 5 to 7.
  • Each control step shown in the flowcharts of FIGS. 5 to 7 is a function realization unit included in the cycle control device 60.
  • step S10 of FIG. 5 the detection signal of the sensor group described above and the operation signal of the operation panel 70 are read.
  • the target blowout temperature TAO which is the target temperature of the air blown into the vehicle interior, is determined based on the detection signal and the operation signal read in step S10. Therefore, step S20 is a target blowout temperature determination unit.
  • the target blowout temperature TAO is calculated by the following mathematical formula F1.
  • TAO Kset x Tset-Kr x Tr-Kam x Tam-Ks x Ts + C ...
  • Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor 61. Tam is the outside temperature of the vehicle interior detected by the outside air sensor 62. Ts is the amount of solar radiation detected by the solar radiation sensor 63.
  • Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
  • step S30 it is determined whether or not the air conditioner switch is turned on.
  • the fact that the air conditioner switch is turned on means that the occupant is requesting cooling or dehumidification of the passenger compartment. In other words, turning on the air conditioner switch means that it is required to cool the air with the indoor evaporator 18.
  • step S30 If it is determined in step S30 that the air conditioner switch is turned on, the process proceeds to step S40. If it is determined in step S30 that the air conditioner switch is not turned on, the process proceeds to step S160.
  • step S40 it is determined whether or not the outside air temperature Tam is equal to or higher than the predetermined standard non-standard air temperature KA (0 ° C. in this embodiment).
  • the non-standard air temperature KA is set so that cooling the air with the indoor evaporator 18 is effective for cooling or dehumidifying the air-conditioned space.
  • the evaporation pressure adjusting valve 20 sets the refrigerant evaporation temperature in the indoor evaporator 18 to the frost formation suppression temperature (1 ° C. in the present embodiment). ) More than that. Therefore, the indoor evaporator 18 cannot cool the air to a temperature lower than the frost formation suppression temperature.
  • the non-standard air temperature KA is set to a value lower than the frost formation suppression temperature, and when the outside air temperature Tam is lower than the standard non-standard air temperature KA, the air is not cooled by the indoor evaporator 18.
  • step S40 If it is determined in step S40 that the outside air temperature Tam is equal to or higher than the standard non-standard air temperature KA, the process proceeds to step S50. If it is determined in step S40 that the outside air temperature Tam is not equal to or higher than the standard non-standard air temperature KA, the process proceeds to step S160.
  • step S50 it is determined whether or not the target blowing temperature TAO is equal to or lower than the cooling reference temperature ⁇ 1.
  • the cooling reference temperature ⁇ 1 is determined by the cycle control device 60.
  • step S50 If it is determined in step S50 that the target blowing temperature TAO is equal to or lower than the cooling reference temperature ⁇ 1, the process proceeds to step S60. If it is determined in step S50 that the target blowing temperature TAO is not equal to or lower than the cooling reference temperature ⁇ 1, the process proceeds to step S90.
  • step S60 it is determined whether or not the battery 80 needs to be cooled. Specifically, in the present embodiment, the battery 80 is cooled when the battery temperature TB detected by the battery temperature sensor 69a is equal to or higher than the predetermined reference cooling temperature KTB (35 ° C. in the present embodiment). Is determined to be necessary. Further, when the battery temperature TB is lower than the reference cooling temperature KTB, it is determined that the battery 80 does not need to be cooled.
  • step S60 If it is determined in step S60 that the battery 80 needs to be cooled, the process proceeds to step S70, and (5) cooling cooling mode is selected as the operation mode. If it is determined in step S60 that the battery 80 does not need to be cooled, the process proceeds to step S80, and (1) cooling mode is selected as the operation mode.
  • step S90 it is determined whether or not the target blowout temperature TAO is equal to or lower than the dehumidification reference temperature ⁇ 1.
  • the dehumidifying reference temperature ⁇ 1 is determined by the cycle control device 60.
  • the dehumidifying reference temperature ⁇ 1 is determined to be higher than the cooling reference temperature ⁇ 1.
  • step S90 If it is determined in step S90 that the target blowout temperature TAO is equal to or lower than the dehumidification reference temperature ⁇ 1, the process proceeds to step S100. If it is determined in step S90 that the target blowing temperature TAO is not equal to or lower than the dehumidifying reference temperature ⁇ 1, the process proceeds to step S130.
  • step S100 it is determined whether or not the battery 80 needs to be cooled, as in step S60.
  • step S100 If it is determined in step S100 that the battery 80 needs to be cooled, the process proceeds to step S110, and (6) series dehumidifying / heating / cooling mode is selected as the operation mode of the refrigerating cycle device 10. If it is determined in step S100 that the battery 80 does not need to be cooled, the process proceeds to step S120, and (2) series dehumidification / heating mode is selected as the operation mode.
  • step S130 it is determined whether or not the battery 80 needs to be cooled, as in step S60.
  • step S130 If it is determined in step S130 that the battery 80 needs to be cooled, the process proceeds to step S140, and (7) parallel dehumidification / heating / cooling mode is selected as the operation mode of the refrigeration cycle device 10. If it is determined in step S100 that the battery 80 does not need to be cooled, the process proceeds to step S150, and (3) parallel dehumidification / heating mode is selected as the operation mode.
  • step S160 it is a case where it is determined that it is not effective to cool the air with the indoor evaporator 18.
  • step S160 as shown in FIG. 6, it is determined whether or not the target blowing temperature TAO is equal to or higher than the heating reference temperature ⁇ .
  • the heating reference temperature ⁇ is determined by the cycle control device 60.
  • the heating reference temperature ⁇ is set so that heating the air with the heater core 42 is effective for heating the air-conditioned space.
  • step S160 If it is determined in step S160 that the target outlet temperature TAO is equal to or higher than the heating reference temperature ⁇ , it means that it is necessary to heat the air with the heater core 42, and the process proceeds to step S170. If it is determined in step S160 that the target outlet temperature TAO is not equal to or higher than the heating reference temperature ⁇ , it is not necessary to heat the air with the heater core 42, and the process proceeds to step S240.
  • step S170 it is determined whether or not the battery 80 needs to be cooled, as in step S60.
  • step S170 If it is determined in step S170 that the battery 80 needs to be cooled, the process proceeds to step S180. If it is determined in step S170 that cooling of the battery 80 is not necessary, the process proceeds to step S230, and (4) heating mode is selected as the operation mode.
  • step S170 if it is determined in step S170 that the battery 80 needs to be cooled and the process proceeds to step S180, it is necessary to both heat the vehicle interior and cool the battery 80. Therefore, in the refrigeration cycle device 10, the amount of heat dissipated by the refrigerant to the heat medium on the high temperature side in the water-refrigerant heat exchanger 12 and the amount of heat absorbed by the refrigerant from the battery 80 in the battery cooler 19 are appropriately adjusted. There is a need to.
  • step S180 it is determined whether or not the target blowing temperature TAO is equal to or lower than the low temperature side cooling reference temperature ⁇ 2.
  • the low temperature side cooling reference temperature ⁇ 2 is determined by the cycle control device 60.
  • the cooling reference temperature ⁇ 2 on the low temperature side is determined to be higher than the cooling reference temperature ⁇ 1 and lower than the dehumidifying reference temperature ⁇ 1.
  • step S180 If it is determined in step S180 that the target outlet temperature TAO is the low temperature side cooling reference temperature ⁇ 2 or less, the process proceeds to step S190, and (8) heating / cooling mode is selected as the operation mode. If it is determined in step S180 that the target blowing temperature TAO is not equal to or lower than the low temperature side cooling reference temperature ⁇ 2, the process proceeds to step S200.
  • step S200 it is determined whether or not the target blowout temperature TAO is equal to or lower than the high temperature side cooling reference temperature ⁇ 2.
  • the high temperature side cooling reference temperature ⁇ 2 is determined by the cycle control device 60.
  • the high temperature side cooling reference temperature ⁇ 2 is determined to be higher than the dehumidifying reference temperature ⁇ 1.
  • step S200 If it is determined in step S200 that the target outlet temperature TAO is equal to or lower than the high temperature side cooling reference temperature ⁇ 2, the process proceeds to step S210, and (9) heating series cooling mode is selected as the operation mode. If it is determined in step S200 that the target outlet temperature TAO is not equal to or lower than the high temperature side cooling reference temperature ⁇ 2, the process proceeds to step S220, and (10) heating parallel cooling mode is selected as the operation mode.
  • step S240 it is determined whether or not the battery 80 needs to be cooled, as in step S60.
  • step S240 If it is determined in step S240 that the battery 80 needs to be cooled, the process proceeds to step S250, and (11) cooling mode is selected as the operation mode. If it is determined in step S200 that the battery 80 does not need to be cooled, the process proceeds to step S260, the ventilation mode is selected as the operation mode, and the process returns to step S10.
  • the blower mode is an operation mode in which the compressor 11 is stopped and the blower 32 is operated according to the setting signal set by the air volume setting switch. If it is determined in step S240 that the battery 80 does not need to be cooled, it is not necessary to operate the refrigerating cycle device 10 for air conditioning in the vehicle interior and cooling of the battery.
  • control program of this embodiment the operation mode of the refrigerating cycle device 10 is switched as described above. Further, the control program controls not only the operation of each component of the refrigeration cycle device 10, but also the operation of the high temperature side heat medium pump 41 of the high temperature side heat medium circuit 40 constituting the heating unit.
  • the cycle control device 60 operates the high temperature side heat medium pump 41 so as to exhibit the reference pumping capacity for each predetermined operation mode regardless of the operation mode of the refrigeration cycle device 10 described above. Control.
  • the heated high temperature side heat medium is pressure-fed to the heater core 42.
  • the high temperature side heat medium flowing into the heater core 42 exchanges heat with air. This heats the air.
  • the high temperature side heat medium flowing out of the heater core 42 is sucked into the high temperature side heat medium pump 41 and pumped to the water refrigerant heat exchanger 12.
  • the cycle control device 60 executes the control flow of each operation mode.
  • the target evaporator temperature TEO is determined in the first step.
  • the target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map stored in the cycle control device 60. In the control map of the present embodiment, it is determined that the target evaporator temperature TEO increases as the target blowout temperature TAO increases.
  • the amount of increase / decrease ⁇ IVO in the rotation speed of the compressor 11 is determined.
  • the increase / decrease amount ⁇ IVO is set so that the evaporator temperature Tefin approaches the target evaporator temperature TEO by the feedback control method based on the deviation between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f. It is determined.
  • the target supercooling degree SCO1 of the refrigerant flowing out from the outdoor heat exchanger 16 is determined.
  • the target supercooling degree SCO1 is determined with reference to the control map, for example, based on the outside air temperature Tam.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the amount of increase / decrease ⁇ EVC in the throttle opening of the cooling expansion valve 14b is determined.
  • the increase / decrease amount ⁇ EVC is the supercooling degree of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16.
  • SC1 is determined to approach the target supercooling degree SCO1.
  • the degree of supercooling SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P1 detected by the first refrigerant pressure sensor 65a.
  • the opening SW of the air mix door 34 is calculated using the following formula F2.
  • SW ⁇ TAO + (Tefin + C2) ⁇ / ⁇ TWH + (Tefin + C2) ⁇ ...
  • TWH is the high temperature side heat medium temperature detected by the high temperature side heat medium temperature sensor 66.
  • C2 is a constant for control.
  • the heating expansion valve 14a is set to the fully open state
  • the cooling expansion valve 14b is set to the throttle state that exerts the refrigerant depressurizing action
  • the cooling expansion valve is set.
  • the 14c is fully closed
  • the dehumidifying on-off valve 15a is closed
  • the heating on-off valve 15b is closed.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, the indoor evaporator 18,
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11 for cooling.
  • a steam compression type refrigeration cycle is configured in which the expansion valve 14b functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the indoor evaporator 18 functions as an evaporator.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
  • the vehicle air conditioner 1 in the cooling mode a part of the air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and approaches the target blowout temperature TAO.
  • TAO target blowout temperature
  • the target high temperature side heat medium temperature TWHO is determined so that the air can be heated by the heater core 42.
  • the target high temperature side heat medium temperature TWHO is determined with reference to the control map based on the target blowout temperature TAO and the efficiency of the heater core 42. In the control map of the present embodiment, it is determined that the target high temperature side heat medium temperature TWHO increases as the target blowout temperature TAO increases.
  • the opening pattern KPN1 is a parameter for determining a combination of the throttle opening of the heating expansion valve 14a and the throttle opening of the cooling expansion valve 14b.
  • the opening pattern KPN1 increases as the target outlet temperature TAO rises. Then, as the opening degree pattern KPN1 becomes larger, the throttle opening degree of the heating expansion valve 14a becomes smaller, and the throttle opening degree of the cooling expansion valve 14b becomes larger.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the target blowing temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the series dehumidifying / heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
  • the heating expansion valve 14a is in the throttled state
  • the cooling expansion valve 14b is in the throttled state
  • the cooling expansion valve 14c is fully closed.
  • the dehumidifying on-off valve 15a is closed
  • the heating on-off valve 15b is closed.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, and the indoor evaporator.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of 18, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and
  • a steam compression type refrigeration cycle is configured in which the expansion valve 14b for cooling functions as a pressure reducing unit and the indoor evaporator 18 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). ..
  • a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the series dehumidifying / heating mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out.
  • the target high temperature side heat medium temperature of the high temperature side heat medium is the same as in the series dehumidifying and heating mode so that the air can be heated by the heater core 42. TWHO is determined.
  • the amount of increase / decrease ⁇ IVO in the rotation speed of the compressor 11 is determined.
  • the increase / decrease amount ⁇ IVO is based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH, and the high temperature side heat medium temperature TWH is the target high temperature side heat medium temperature by the feedback control method. Determined to approach TWHO.
  • the target superheat degree SHEO of the refrigerant on the outlet side of the indoor evaporator 18 is determined.
  • a predetermined constant 5 ° C. in this embodiment
  • the amount of change ⁇ KPN1 of the opening pattern KPN1 is determined.
  • the superheat degree SH is determined to approach the target superheat degree SHEO by the feedback control method based on the deviation between the target superheat degree SHEO and the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18. ..
  • the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 and the evaporator temperature Tefin detected by the fourth refrigerant temperature sensor 64d.
  • the throttle opening of the heating expansion valve 14a decreases, and the throttle opening of the cooling expansion valve 14b increases. Therefore, when the opening pattern KPN1 becomes large, the flow rate of the refrigerant flowing into the indoor evaporator 18 increases, and the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 decreases.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the target outlet temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100% as in the series dehumidifying / heating mode. Therefore, in the parallel dehumidifying / heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
  • the heating expansion valve 14a is in the throttled state
  • the cooling expansion valve 14b is in the throttled state
  • the cooling expansion valve 14c is fully closed.
  • the dehumidifying on-off valve 15a is opened
  • the heating on-off valve 15b is opened.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in that order. Circulates, and the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11.
  • a compression refrigeration cycle is constructed.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used.
  • the outdoor heat exchanger 16 functions as a decompression unit, and the heating expansion valve 14a and the cooling expansion valve 14b connected in parallel to the outdoor heat exchanger 16 function as a decompression unit.
  • a refrigeration cycle is configured in which the indoor evaporator 18 functions as an evaporator.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the parallel dehumidifying / heating mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out.
  • the target high temperature side heat medium temperature TWHO of the high temperature side heat medium is determined as in the parallel dehumidification heating mode.
  • the increase / decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined as in the parallel dehumidification / heating mode.
  • the target supercooling degree SCO2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is determined.
  • the target supercooling degree SCO2 is determined with reference to the control map based on the suction temperature of the air flowing into the indoor evaporator 18 or the outside air temperature Tam.
  • the target supercooling degree SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the amount of increase / decrease ⁇ EVH in the throttle opening of the heating expansion valve 14a is determined.
  • the increase / decrease amount ⁇ EVH is the refrigerant passage of the water refrigerant heat exchanger 12 by the feedback control method based on the deviation between the target supercooling degree SCO2 and the overcooling degree SC2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12.
  • the degree of supercooling SC2 of the refrigerant flowing out from is determined to approach the target degree of supercooling SCO2.
  • the degree of supercooling SC2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a. To.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the target outlet temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the heating mode, the opening degree of the air mix door 34 is determined so that substantially the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
  • the heating expansion valve 14a is set to the throttled state
  • the cooling expansion valve 14b is set to the fully closed state
  • the cooling expansion valve 14c is fully closed.
  • the dehumidifying on-off valve 15a is closed and the heating on-off valve 15b is opened.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11.
  • a steam compression type refrigeration cycle is configured.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is a decompression unit.
  • a refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as an evaporator.
  • the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
  • Cooling cooling mode In the first step of the control flow of the cooling cooling mode, the target evaporator temperature TEO, the increase / decrease amount of the number of revolutions of the compressor 11 ⁇ IVO, the target supercooling degree SCO1, and the expansion for cooling are the same as in the cooling mode.
  • the amount of increase / decrease in the throttle opening of the valve 14b ⁇ EVC and the opening SW of the air mix door 34 are determined.
  • the target superheat degree SHEO of the refrigerant on the outlet side of the indoor evaporator 18 is determined.
  • a predetermined constant 5 ° C. in this embodiment
  • the amount of increase / decrease ⁇ EVB in the throttle opening of the cooling expansion valve 14c is determined.
  • the increase / decrease amount ⁇ EVB is based on the deviation between the target superheat degree SHEO and the superheat degree SH of the outlet side refrigerant of the indoor evaporator 18, and the superheat degree of the outlet side refrigerant of the indoor evaporator 18 is determined by a feedback control method.
  • the SHE is determined to approach the target superheat degree SHEO.
  • the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 and the evaporator temperature Tefin detected by the fourth refrigerant temperature sensor 64d.
  • the increase / decrease amount ⁇ EVB of the throttle opening of the cooling expansion valve 14c is set to a positive value.
  • the throttle opening of the cooling expansion valve 14c becomes large, so that the flow rate of the refrigerant flowing into the battery cooler 19 increases and the flow rate of the refrigerant flowing into the indoor evaporator 18 decreases.
  • the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 becomes large and approaches the target superheat degree SHEO.
  • the increase / decrease amount ⁇ EVB of the throttle opening of the cooling expansion valve 14c is set to a negative value.
  • the throttle opening of the cooling expansion valve 14c becomes smaller, so that the flow rate of the refrigerant flowing into the battery cooler 19 decreases and the flow rate of the refrigerant flowing into the indoor evaporator 18 increases.
  • the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 becomes small and approaches the target superheat degree SHEO.
  • the heating expansion valve 14a is set to the fully open state
  • the cooling expansion valve 14b is set to the throttle state
  • the cooling expansion valve 14c is set to the throttle state.
  • the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, and the indoor evaporator 18 Refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, the compressor 11, and the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the expansion valve 14c, the battery cooler 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as radiators to dissipate the refrigerant discharged from the compressor 11, and the cooling expansion valve 14b is the decompression unit.
  • the indoor evaporator 18 functions as an evaporator
  • the cooling expansion valve 14b and the cooling expansion valve 14c connected in parallel to the indoor evaporator 18 function as a pressure reducing unit, and the battery cooler.
  • a refrigeration cycle is configured in which 19 functions as an evaporator.
  • the blown air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
  • the vehicle air conditioner 1 in the cooling / cooling mode a part of the blown air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and the target blowing temperature TAO.
  • the interior of the vehicle can be cooled by blowing out the blown air whose temperature has been adjusted so as to approach the interior of the vehicle.
  • the battery 80 can be cooled by the battery cooler 19.
  • In-series dehumidifying / heating / cooling mode In the first step of the control flow of the in-series dehumidifying / heating / cooling mode, the target evaporator temperature TEO, the amount of increase / decrease in the number of revolutions of the compressor 11 ⁇ IVO, and the target high-pressure side are the same as in the series dehumidifying / heating mode.
  • the heat medium temperature TWHO, the amount of change ⁇ KPN1 of the opening pattern KPN1, and the opening SW of the air mix door 34 are determined.
  • the target superheat degree SHEO and the increase / decrease amount ⁇ EVB of the throttle opening of the cooling expansion valve 14c are determined.
  • the heating expansion valve 14a is in the throttled state
  • the cooling expansion valve 14b is in the throttled state
  • the cooling expansion valve 14c is throttled.
  • the dehumidifying on-off valve 15a is closed
  • the heating on-off valve 15b is closed.
  • control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, the indoor evaporator 18, and the evaporation pressure.
  • the refrigerant circulates in the order of the regulating valve 20, the accumulator 21, the compressor 11, and the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling expansion valve.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of 14c, the battery cooler 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator), and the indoor evaporator 18 and the battery cooler 19 function as an evaporator.
  • a compression refrigeration cycle is constructed.
  • the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used. It functions as a decompression unit, and further, the cooling expansion valve 14b functions as a decompression unit, the indoor evaporator 18 functions as an evaporator, and is connected in parallel to the cooling expansion valve 14b and the indoor evaporator 18.
  • a refrigerating cycle is configured in which the cooling expansion valve 14c functions as a pressure reducing unit and the battery cooler 19 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). ..
  • a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Further, the low-voltage side heat medium can be cooled by the battery cooler 19.
  • the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out.
  • the heating capacity of the air in the heater core 42 can be improved as in the series dehumidifying and heating mode.
  • the battery 80 can be cooled by the battery cooler 19.
  • Parallel dehumidifying / heating / cooling mode In the first step of the control flow of the parallel dehumidifying / heating / cooling mode, as in the parallel dehumidifying / heating mode, the target high-temperature side heat medium temperature TWHO, the amount of increase / decrease in the number of revolutions of the compressor 11 ⁇ IVO, and the target.
  • the degree of superheat SHEO, the amount of change ⁇ KPN1 of the opening pattern KPN1, and the opening SW of the air mix door 34 are determined.
  • the target superheat degree SHEO and the increase / decrease amount ⁇ EVB of the throttle opening of the cooling expansion valve 14c are determined.
  • the heating expansion valve 14a is in the throttled state
  • the cooling expansion valve 14b is in the throttled state
  • the cooling expansion valve 14c is throttled.
  • the dehumidifying on-off valve 15a is opened
  • the heating on-off valve 15b is opened.
  • control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in this order.
  • the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11.
  • a steam compression type in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14c, the battery cooler 19, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11.
  • Refrigeration cycle is configured.
  • the water-refrigerator heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a Functions as a decompression unit
  • the outdoor heat exchanger 16 functions as an evaporator
  • the cooling expansion valve 14a connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a decompression unit.
  • the indoor evaporator 18 functions as an evaporator
  • the cooling expansion valve 14c connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a pressure reducing unit, and the battery cooler.
  • a refrigeration cycle is configured in which 19 functions as an evaporator.
  • the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Further, the low-voltage side heat medium can be cooled by the battery cooler 19.
  • the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be performed.
  • the air can be reheated with a heating capacity higher than that in the series dehumidifying / heating / cooling mode.
  • the battery 80 can be cooled by the battery cooler 19.
  • Heating / cooling mode In the first step of the control flow of the heating / cooling mode, the increase / decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined. In the heating / cooling mode, the increase / decrease amount ⁇ IVO is determined so that the battery temperature TB approaches the target battery temperature by the feedback control method based on the deviation between the target battery temperature and the battery temperature TB.
  • the target supercooling degree SCO1 of the refrigerant flowing out from the outdoor heat exchanger 16 is determined.
  • the target supercooling degree SCO1 of the heating / cooling mode is determined with reference to the control map based on the outside air temperature Tam.
  • the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
  • the amount of increase / decrease ⁇ EVB in the throttle opening of the cooling expansion valve 14c is determined.
  • the increase / decrease amount ⁇ EVB is the supercooling degree of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16.
  • SC1 is determined to approach the target supercooling degree SCO1.
  • the supercooling degree SC1 is calculated in the same manner as in the cooling mode.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, and the cooling expansion valve 14c is throttled. Then, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 in the refrigerating cycle device 10 in the heating / cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, and the battery cooler 19 ,
  • the evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 form a steam compression type refrigeration cycle in which the refrigerant circulates in this order.
  • the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) to dissipate the refrigerant discharged from the compressor 11 for cooling.
  • a steam compression type refrigeration cycle is configured in which the expansion valve 14c functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the battery cooler 19 functions as an evaporator.
  • the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
  • the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
  • Heating series cooling mode In the first step of the control flow of the heating series cooling mode, the increase / decrease amount ⁇ IVO of the rotation speed of the compressor 11 is determined as in the heating / cooling mode. In the next step, the target high temperature side heat medium temperature TWHO of the high temperature side heat medium is determined as in the series dehumidification heating mode.
  • the throttle opening of the heating expansion valve 14a and the throttle opening of the cooling expansion valve 14c are determined. Specifically, in the heating series cooling mode, as the target outlet temperature TAO rises, the throttle opening of the heating expansion valve 14a is reduced and the throttle opening of the cooling expansion valve 14c is increased.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the heating expansion valve 14a is set to the throttled state
  • the cooling expansion valve 14b is set to the fully closed state
  • the cooling expansion valve 14c is throttled.
  • the dehumidifying on-off valve 15a is closed
  • the heating on-off valve 15b is closed.
  • the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, and the battery cooler.
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and
  • a steam compression type refrigeration cycle is configured in which the cooling expansion valve 14c functions as a pressure reducing unit and the battery cooler 19 functions as an evaporator.
  • a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). ..
  • a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
  • the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
  • the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
  • the target high temperature side heat medium temperature of the high temperature side heat medium is the same as in the series dehumidifying heating mode so that the air can be heated by the heater core 42. TWHO is decided.
  • the amount of increase / decrease ⁇ IVO in the rotation speed of the compressor 11 is determined.
  • the increase / decrease amount ⁇ IVO is the high temperature side heat medium temperature by the feedback control method based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH, as in the series dehumidification heating mode.
  • the TWH is determined to approach the target high temperature side heat medium temperature TWHO.
  • the target superheat degree SHCO of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19 is determined.
  • a predetermined constant 5 ° C. in this embodiment
  • the amount of change ⁇ KPN2 of the opening pattern KPN2 is determined.
  • the superheat degree SHCO is adjusted to approach the target superheat degree SHCO by the feedback control method based on the deviation between the target superheat degree SHCO and the superheat degree SHCO of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19. It is determined.
  • the throttle opening of the heating expansion valve 14a decreases, and the throttle opening of the cooling expansion valve 14c increases. Therefore, when the opening pattern KPN2 increases, the flow rate of the refrigerant flowing into the refrigerant passage of the battery cooler 19 increases, and the degree of superheat SHC of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19 decreases.
  • the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
  • the heating expansion valve 14a is set to the throttled state
  • the cooling expansion valve 14b is set to the fully closed state
  • the cooling expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened.
  • control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the refrigerant in the order of the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11. Circulates, and the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14c, the battery cooler 19, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11.
  • a compression refrigeration cycle is constructed.
  • the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used.
  • the outdoor heat exchanger 16 functions as a decompression unit, and the heating expansion valve 14a and the cooling expansion valve 14c connected in parallel to the outdoor heat exchanger 16 function as a decompression unit.
  • a refrigeration cycle is configured in which the battery cooler 19 functions as an evaporator.
  • the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
  • the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
  • Cooling mode In the first step of the control flow of the cooling mode, as in the heating cooling mode, the increase / decrease amount ⁇ IVO of the rotation speed of the compressor 11, the target supercooling degree SCO1, and the throttle opening of the cooling expansion valve 14c The amount of increase / decrease ⁇ EVB and the opening SW of the air mix door 34 are determined.
  • the target outlet temperature TAO is lower than the heating reference temperature ⁇ , so that the opening SW of the air mix door 34 approaches 0%. Therefore, in the cooling mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the cold air bypass passage 35.
  • the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, and the cooling expansion valve 14c is throttled. , The dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
  • the compressor 11 the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, the battery cooler 19,
  • a steam compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
  • the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the cooling expansion valve 14c serves as a decompression unit.
  • a steam-compressed refrigeration cycle is configured that functions and the battery cooler 19 functions as an evaporator.
  • the battery 80 can be cooled by the battery cooler 19.
  • the cycle control device 60 in the operation mode for cooling the battery 80, has the number of refrigerant flow paths through which the refrigerant flows with respect to the three refrigerant flow paths of the battery cooler 19. Nr (hereinafter referred to as the number of refrigerant flow paths Nr) is controlled.
  • the cooling amount Qc of the battery 80 by the battery cooler 19 is adjusted. That is, the cooling amount (in other words, the heat transfer amount) of the battery 80 by the battery cooler 19 is expressed by the following mathematical formula F3.
  • Qc Kt ⁇ Fc ⁇ ⁇ T ... (F3)
  • Qc is the cooling amount of the battery 80.
  • Kt thermal resistance.
  • Fc is the contact area with the flowing refrigerant.
  • ⁇ T is the temperature difference between the refrigerant and the battery 80.
  • the contact area Fc of the fluidized refrigerant in the battery cooler 19 increases as the number of refrigerant channels Nr increases.
  • the larger the contact area Fc the larger the cooling amount Qc of the battery 80. Therefore, by controlling the number of refrigerant channels Nr, the cooling amount Qc of the battery 80 by the battery cooler 19 is adjusted.
  • cooling cooling mode (5) cooling cooling mode, (6) series dehumidifying heating cooling mode, (7) parallel dehumidifying heating cooling mode, (8) heating cooling mode, (9) heating series cooling mode, (10) heating parallel In the cooling mode and (11) cooling mode, the control flow shown in FIG. 7 is executed.
  • step S300 it is determined whether or not the operating mode being executed is the operating mode in which the air is cooled by the indoor evaporator 18. Specifically, when the air conditioner switch is turned on, it is determined that the operation mode is for cooling the air with the indoor evaporator 18. If it is determined that the operation mode being executed in step S300 is the operation mode in which the air is cooled by the indoor evaporator 18, the process proceeds to step S310. If it is determined that the operation mode being executed in step S300 is not the operation mode in which the air is cooled by the indoor evaporator 18, the process proceeds to step S320.
  • step S310 the air conditioning effect determination is performed. Specifically, based on the deviation ⁇ TE between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f, the number of first temporary refrigerant channels Nr1 is determined by using the control map of FIG. It is determined.
  • the first temporary refrigerant flow path number Nr1 is the first candidate value of the refrigerant flow path number Nr.
  • the deviation ⁇ TE is larger, the cooling capacity required for air conditioning is larger and the cooling capacity on the battery 80 side needs to be suppressed, so that the number of first temporary refrigerant channels Nr1 is reduced.
  • the deviation ⁇ TE is smaller, the cooling capacity required for air conditioning is smaller and the cooling capacity on the battery 80 side can be increased, so that the number of first temporary refrigerant channels Nr1 is increased.
  • step S320 the battery calorific value is determined. Specifically, based on the calorific value Qb of the battery 80, the number of second temporary refrigerant flow paths Nr2 of the battery cooler 19 is determined by using the control map of FIG.
  • the second temporary refrigerant flow path number Nr2 is a second candidate value of the refrigerant flow path number Nr.
  • the calorific value Qb of the battery 80 is larger, the cooling capacity required for the battery 80 is larger and it is necessary to suppress the cooling capacity on the air conditioning side, so that the number of second temporary refrigerant channels Nr2 is reduced.
  • the calorific value Qb of the battery 80 is smaller, the cooling capacity required for the battery 80 is smaller and the cooling capacity on the air conditioning side can be increased. Therefore, the number of second temporary refrigerant channels Nr2 is larger. Will be done.
  • step S330 the battery temperature is determined. Specifically, based on the battery temperature TB, the number of third temporary refrigerant flow paths Nr3 of the battery cooler 19 is determined using the control map of FIG. The higher the battery temperature TB, the larger the cooling capacity required for the battery 80, and it is necessary to suppress the cooling capacity on the air conditioning side. Therefore, the number of third temporary refrigerant channels Nr3 is reduced. On the other hand, as the battery temperature TB is lower, the cooling capacity required for the battery 80 is smaller and the cooling capacity on the air conditioning side can be increased, so that the number of third temporary refrigerant channels Nr3 is increased.
  • the number of refrigerant flow paths Nr is determined based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3.
  • the maximum value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 is determined as the refrigerant flow path number Nr.
  • the average value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 may be determined as the number of refrigerant flow paths Nr.
  • step S350 a control signal or a control voltage is output to the first to third cooling expansion valves 14c to 14e so that the number of refrigerant flow paths Nr determined in step S340 can be obtained, and the process returns to step S10. ..
  • the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
  • the number of refrigerant flow paths Nr can be controlled according to the influence of air conditioning, the amount of heat generated, and the battery temperature.
  • the vehicle air conditioner 1 can uniformly and appropriately cool the battery 80 without causing dryout.
  • the dryout is a phenomenon in which only the battery 80 on the upstream side of the refrigerant is cooled and the battery 80 on the downstream side of the refrigerant is not cooled.
  • the number of refrigerant channels Nr is reduced in a scene where the air conditioning load is high such as cooldown and in a scene where the vehicle interior is preferentially cooled, so that the indoor evaporator Even if the amount of cooling heat is preferentially supplied to 18 and the amount of cooling heat supplied to the battery cooler 19 is reduced, the battery 80 can be uniformly cooled without causing dryout.
  • the number of refrigerant channels Nr is increased, so that the amount of cooling of the battery 80 is increased. It becomes possible.
  • the cycle control device 60 and the first to third cooling expansion valves 14c to 14e are adjusting units for adjusting the endothermic area of the battery cooler 19. According to this, since the endothermic area of the battery cooler 19 is adjusted, the amount of heat transfer between the refrigerant and the battery 80 in the battery cooler 19 can be adjusted. Therefore, it is possible to suppress the dryout of the refrigerant in the battery cooler 19 while ensuring the cooling capacity of the battery cooler 19.
  • the cycle control device 60 switches whether or not to block the flow of the refrigerant with respect to the second to third refrigerant channels 19b to 19c among the first to third refrigerant channels 19a to 19c.
  • the second to third cooling expansion valves 14d to 14e are controlled. As a result, the endothermic area of the battery cooler 19 can be adjusted with a simple configuration.
  • the cycle control device 60 has the first to third cooling expansion valves 14c to reduce the number of refrigerant flow paths Nr of the battery cooler 19 as the heat exchange load ⁇ TE of the indoor evaporator 18 increases. Control 14e.
  • the heat absorption area of the battery cooler 19 is reduced to reduce the heat absorption area of the battery cooler 19 from the battery 80 to the refrigerant. Since the amount of heat transfer can be kept small, dryout in the battery cooler 19 can be suppressed.
  • the cycle control device 60 controls the first to third cooling expansion valves 14c to 14e so as to increase the number of refrigerant flow paths Nr of the battery cooler 19 as the calorific value Qb of the battery 80 increases. do.
  • the cycle control device 60 controls the first to third cooling expansion valves 14c to 14e so as to increase the number of refrigerant flow paths Nr of the battery cooler 19 as the temperature TB of the battery 80 increases. ..
  • the higher the temperature TB of the battery 80 the larger the heat absorbing area of the battery cooler 19, and the larger the amount of heat transferred from the battery 80 to the refrigerant in the battery cooler 19, so that the battery cooler 19 can be cooled. You can secure the ability.
  • the first to third cooling expansion valves 14c to 14e are arranged on the upstream sides of the first to third refrigerant flow paths 19a to 19c, respectively.
  • the refrigerant can be appropriately evaporated in each of the first to third refrigerant flow paths 19a to 19c.
  • the first cooling expansion valve 14c does not block the flow of the refrigerant with respect to the first refrigerant flow path 19a.
  • the first cooling expansion valve 14c is an electric expansion valve.
  • the refrigerant can be appropriately evaporated in the first refrigerant flow path 19a in which the refrigerant always flows, so that the battery cooler 19 can evaporate the refrigerant as appropriately as possible.
  • the number of refrigerant flow paths Nr is determined based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3.
  • the maximum value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 may be determined as the refrigerant flow path number Nr, or the first temporary refrigerant flow path number Nr1.
  • the average value of the second temporary refrigerant flow path number Nr2 and the third temporary refrigerant flow path number Nr3 is converted into an integer and determined as the refrigerant flow path number Nr.
  • step S340 of the present embodiment the refrigerant is used using the control maps shown in FIGS. 11 to 12 based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3.
  • the number of flow paths Nr is determined.
  • 11 to 12 are examples of control maps, and the numerical values set in FIGS. 11 to 12 can be changed as appropriate.
  • the number of fourth temporary refrigerant flow paths Nr4 is determined by the combination of the number of first temporary refrigerant flow paths Nr1 and the number of second temporary refrigerant flow paths Nr2.
  • the numerical values in FIG. 11 are set so that the number Nr1 of the first temporary refrigerant channels is mainly prioritized over the number Nr2 of the second temporary refrigerant channels. That is, the numerical values in FIG. 11 are set so that the result of the air conditioning influence determination is mainly prioritized over the result of the battery calorific value determination.
  • the number of refrigerant flow paths Nr is determined by the combination of the number of fourth temporary refrigerant flow paths Nr4 and the number of third temporary refrigerant flow paths Nr3.
  • the numerical value in FIG. 11 is set so that the larger value of the fourth temporary refrigerant flow path number Nr4 and the third temporary refrigerant flow path number Nr3 is determined as the refrigerant flow path number Nr.
  • the number of refrigerant flow paths Nr can be controlled according to the influence of air conditioning, the amount of heat generated, and the battery temperature, so that the battery 80 can be uniformly distributed without causing dryout. Can be cooled properly.
  • all of the first to third cooling expansion valves 14c to 14e have a fully closed function, but the first cooling expansion valve 14c does not have a fully closed function.
  • the refrigerant may be constantly flowing in the refrigerant flow path 19a.
  • the first cooling expansion valve 14c is an electric expansion valve so that the flow rate of the refrigerant flowing in the first refrigerant flow path 19a can be arbitrarily adjusted.
  • the refrigerating cycle device 10 is a so-called accumulator cycle including an accumulator 21, but the refrigerating cycle device 10 may be a receiver cycle. That is, the refrigeration cycle device 10 may include a receiver for storing the liquid phase refrigerant flowing out of the water refrigerant heat exchanger 12.
  • the battery cooler 19 cools the battery 80 from the bottom surface side, but the battery 80 may be cooled from the side surface side or the top surface side.
  • the refrigeration cycle device 10 capable of switching to a plurality of operation modes has been described, but the switching of the operation mode of the refrigeration cycle device 10 is not limited to this.
  • the high temperature side cooling reference temperature ⁇ 2 is determined to be higher than the dehumidifying reference temperature ⁇ 1
  • the high temperature side cooling reference temperature ⁇ 2 and the dehumidifying reference temperature ⁇ 1 are equivalent. May be.
  • the low temperature side cooling reference temperature ⁇ 2 is determined to be higher than the cooling reference temperature ⁇ 1
  • the low temperature side cooling reference temperature ⁇ 2 and the cooling reference temperature ⁇ 1 may be equivalent.
  • blower mode described in step S260 may be a stop mode for stopping not only the compressor 11 but also the blower 32.
  • the components of the refrigeration cycle device are not limited to those disclosed in the above-described embodiment.
  • a plurality of cycle components may be integrated so that the above-mentioned effects can be exhibited.
  • a four-way joint structure in which the second three-way joint 13b and the fifth three-way joint 13e are integrated may be adopted.
  • the cooling expansion valve 14b and the cooling expansion valve 14c those in which the electric expansion valve having no fully closed function and the on-off valve are directly connected may be adopted.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted.
  • carbon dioxide may be adopted as the refrigerant to form a supercritical refrigeration cycle in which the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
  • the configuration of the heating unit is not limited to that disclosed in the above-described embodiment.
  • a three-way valve and a high-temperature side radiator may be added to the high-temperature side heat medium circuit 40 described in the first embodiment to dissipate excess heat to the outside air.
  • engine cooling water may be circulated in the high temperature side heat medium circuit 40.
  • the cooling target to be cooled by the battery cooling unit is the battery 80
  • the cooling target is not limited to this.
  • An inverter that converts direct current and alternating current
  • a charger that charges the battery 80
  • a motor generator that outputs driving force for driving by supplying electric power and generates regenerative electric power during deceleration. It may be an electric device that generates heat during operation as in the case of.
  • the refrigeration cycle device 10 is applied to the vehicle air conditioner 1, but the application of the refrigeration cycle device 10 is not limited to this.
  • it may be applied to an air conditioner having a battery cooling function that air-conditions a room while appropriately adjusting the temperature of a stationary battery.
  • the cycle control device 60 opens and closes the first to third cooling expansion valves 14c to 14e to increase or decrease the number of refrigerant flow paths Nr of the battery cooler 19, thereby increasing or decreasing the heat absorption area of the battery cooler 19.
  • the heat absorption area of the battery cooler 19 is increased or decreased by increasing or decreasing the opening degree of the expansion valves 14c to 14e for the first to third cooling to increase or decrease the flow rate of the refrigerant with respect to the refrigerant flow path of the battery cooler 19. May be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The present invention is provided with: a compressor (11) that compresses and discharges a refrigerant; heat dissipation parts (12, 16) that dissipate heat of the refrigerant discharged from the compressor; an air-conditioning evaporation part (18) that evaporates the refrigerant by exchanging heat between the refrigerant and air and that cools the air; a cooling part (19) that is disposed parallel with the air-conditioning evaporation part in a flow of the refrigerant and that cools an object to be cooled (80) by evaporating the refrigerant with heat of the object to be cooled; and adjustment parts (14c, 14d, 14e, 60) for adjusting a heat absorption area which is an area of the cooling part where a portion for causing the refrigerant to absorb heat of the object to be cooled through flow of the refrigerant.

Description

冷凍サイクル装置Refrigeration cycle device 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年7月16日に出願された日本特許出願2020-121924号、および2021年5月27日に出願された日本特許出願2021-89520号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-121924 filed on July 16, 2020, and Japanese Patent Application No. 2021-89520 filed on May 27, 2021, which are described herein. To be used.
 本開示は、冷却対象物を冷却する機能を有する冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device having a function of cooling an object to be cooled.
 従来、特許文献1に記載された冷凍サイクル装置では、低温冷媒が流れる冷却器を複数の電池に接触させて電池から冷媒に吸熱させるようになっている。この従来技術では、冷媒のドライアウトを抑制するために、冷却器内に複数の冷媒流路が形成されている。ドライアウトとは、冷却器内で冷媒が完全に蒸発し、気相冷媒のみが存在する領域が発生することを言う。 Conventionally, in the refrigerating cycle device described in Patent Document 1, a cooler through which a low-temperature refrigerant flows is brought into contact with a plurality of batteries to absorb heat from the batteries to the refrigerant. In this prior art, a plurality of refrigerant channels are formed in the cooler in order to suppress the dryout of the refrigerant. Dryout means that the refrigerant completely evaporates in the cooler, and a region where only the vapor phase refrigerant exists is generated.
特開2018-127087号公報Japanese Unexamined Patent Publication No. 2018-127087
 冷却器が蒸発器と並列に接続されている冷凍サイクル装置においては、蒸発器の熱交換負荷が高い場合、蒸発器側に必要な冷媒流量を確保するために冷却器側の冷媒流量を絞る必要がある。 In a refrigerating cycle device in which the cooler is connected in parallel with the evaporator, if the heat exchange load of the evaporator is high, it is necessary to throttle the refrigerant flow rate on the cooler side in order to secure the required refrigerant flow rate on the evaporator side. There is.
 冷却器側の冷媒流量を絞った場合、電池と冷媒との温度差によっては冷却器内で冷媒がドライアウトして電池温度がばらつくおそれがある。電池から冷媒に移動する熱量は、電池と冷媒との温度差に比例するためである。 When the refrigerant flow rate on the cooler side is throttled, the refrigerant may dry out in the cooler and the battery temperature may fluctuate depending on the temperature difference between the battery and the refrigerant. This is because the amount of heat transferred from the battery to the refrigerant is proportional to the temperature difference between the battery and the refrigerant.
 この対策として、冷却器の熱抵抗を大きくすれば、冷却器側の冷媒流量を絞ったときにドライアウトが生じることを抑制できるが、冷却器での最大冷却能力が低下してしまう。そのため、蒸発器の熱交換負荷が高くなく冷却器の熱交換負荷が高い場合、電池を十分に冷却できなくなってしまう。 As a countermeasure, if the thermal resistance of the cooler is increased, it is possible to suppress the occurrence of dryout when the flow rate of the refrigerant on the cooler side is throttled, but the maximum cooling capacity of the cooler is reduced. Therefore, if the heat exchange load of the evaporator is not high and the heat exchange load of the cooler is high, the battery cannot be sufficiently cooled.
 本開示は、上記点に鑑みて、冷却対象物を冷却する冷却部の冷却能力を確保しつつ冷却器内での冷媒のドライアウトを抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress the dryout of the refrigerant in the cooler while ensuring the cooling capacity of the cooling unit that cools the object to be cooled.
 本開示の一態様による冷凍サイクル装置は、圧縮機と、放熱部と、空調用蒸発部と、冷却部と、調整部とを備える。圧縮機は、冷媒を圧縮して吐出する。放熱部は、圧縮機から吐出された冷媒を放熱させる。空調用蒸発部は、冷媒と空気とを熱交換させて冷媒を蒸発させるとともに空気を冷却する。冷却部は、冷媒の流れにおいて空調用蒸発部と並列に配置され、冷媒を冷却対象物の熱で蒸発させることによって冷却対象物を冷却する。調整部は、冷却部のうち冷媒が流れて冷却対象物の熱を冷媒に吸熱させる部分の面積である吸熱面積を調整する。 The refrigerating cycle device according to one aspect of the present disclosure includes a compressor, a heat radiating unit, an air conditioning evaporation unit, a cooling unit, and an adjusting unit. The compressor compresses and discharges the refrigerant. The heat radiating unit dissipates the refrigerant discharged from the compressor. The air-conditioning evaporation unit exchanges heat between the refrigerant and air to evaporate the refrigerant and cool the air. The cooling unit is arranged in parallel with the air-conditioning evaporation unit in the flow of the refrigerant, and cools the object to be cooled by evaporating the refrigerant with the heat of the object to be cooled. The adjusting unit adjusts the endothermic area, which is the area of the cooling unit where the refrigerant flows and the heat of the object to be cooled is absorbed by the refrigerant.
 これによると、冷却部の吸熱面積を調整するので、冷却部における冷媒と冷却対象物との間の熱移動量を調整することができる。そのため、冷却部の冷却能力を確保しつつ冷却部内での冷媒のドライアウトを抑制できる。 According to this, since the endothermic area of the cooling unit is adjusted, the amount of heat transfer between the refrigerant and the object to be cooled in the cooling unit can be adjusted. Therefore, it is possible to suppress the dryout of the refrigerant in the cooling unit while ensuring the cooling capacity of the cooling unit.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な既述により、より明確となる。
第1実施形態の車両用空調装置の全体構成図である。 第1実施形態の車両用空調装置の冷却用熱交換部を示す模式図であり、冷媒流路本数が3本のときの冷媒流れ状態を示している。 第1実施形態の車両用空調装置の冷却用熱交換部を示す模式図であり、冷媒流路本数が1本のときの冷媒流れ状態を示している。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態の制御プログラムの制御処理の一部を示すフローチャートである。 第1実施形態の制御プログラムの制御処理の別の一部を示すフローチャートである。 第1実施形態の制御プログラムの制御処理の別の一部を示すフローチャートである。 第1実施形態の冷却用熱交換部の冷媒流路を切り替えるための制御特性図である。 第1実施形態の冷却用熱交換部の冷媒流路を切り替えるための別の制御特性図である。 第1実施形態の冷却用熱交換部の冷媒流路を切り替えるための別の制御特性図である。 第2実施形態の冷却用熱交換部の冷媒流路を切り替えるために用いられる図表である。 第2実施形態の冷却用熱交換部の冷媒流路を切り替えるために用いられる別の図表である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the detailed description below with reference to the accompanying drawings.
It is an overall block diagram of the vehicle air conditioner of 1st Embodiment. It is a schematic diagram which shows the cooling heat exchange part of the air-conditioning apparatus for a vehicle of 1st Embodiment, and shows the refrigerant flow state when the number of refrigerant flow paths is three. It is a schematic diagram which shows the cooling heat exchange part of the air-conditioning apparatus for a vehicle of 1st Embodiment, and shows the refrigerant flow state when the number of refrigerant flow paths is one. It is a block diagram which shows the electric control part of the air-conditioning apparatus for a vehicle of 1st Embodiment. It is a flowchart which shows a part of the control process of the control program of 1st Embodiment. It is a flowchart which shows another part of the control process of the control program of 1st Embodiment. It is a flowchart which shows another part of the control process of the control program of 1st Embodiment. It is a control characteristic diagram for switching the refrigerant flow path of the cooling heat exchange part of 1st Embodiment. It is another control characteristic diagram for switching the refrigerant flow path of the cooling heat exchange part of 1st Embodiment. It is another control characteristic diagram for switching the refrigerant flow path of the cooling heat exchange part of 1st Embodiment. It is a figure used for switching a refrigerant flow path of the cooling heat exchange part of 2nd Embodiment. It is another chart used for switching the refrigerant flow path of the cooling heat exchange part of 2nd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合わせることも可能である。 Hereinafter, a plurality of forms for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, the same reference numerals may be given to the parts corresponding to the matters described in the preceding embodiments, and duplicate explanations may be omitted. When only a part of the configuration is described in each embodiment, other embodiments described above can be applied to the other parts of the configuration. Not only the combinations of the parts that clearly indicate that they can be combined in each embodiment, but also the parts of the embodiments that are not explicitly combined can be partially combined if there is no particular problem in the combination. It is possible.
 (第1実施形態)
 図1~図8を用いて、本開示の第1実施形態を説明する。本実施形態では、本開示に係る冷凍サイクル装置10を、電動モータから走行用の駆動力を得る電気自動車に搭載された車両用空調装置1に適用している。車両用空調装置1は、電池温度調整機能付きの空調装置である。車両用空調装置1は、空調対象空間である車室内の空調を行うとともに、電池80の温度を調整する。
(First Embodiment)
The first embodiment of the present disclosure will be described with reference to FIGS. 1 to 8. In the present embodiment, the refrigeration cycle device 10 according to the present disclosure is applied to a vehicle air conditioner 1 mounted on an electric vehicle that obtains a driving force for traveling from an electric motor. The vehicle air conditioner 1 is an air conditioner with a battery temperature adjusting function. The vehicle air conditioner 1 air-conditions the interior of the vehicle, which is the space to be air-conditioned, and adjusts the temperature of the battery 80.
 電池80は、電動モータ等の車載機器へ供給される電力を蓄える二次電池である。本実施形態の電池80は、リチウムイオン電池である。電池80は、複数の電池セル81を積層配置し、これらの電池セル81を電気的に直列あるいは並列に接続することによって形成された、いわゆる組電池である。 The battery 80 is a secondary battery that stores electric power supplied to an in-vehicle device such as an electric motor. The battery 80 of this embodiment is a lithium ion battery. The battery 80 is a so-called assembled battery formed by stacking a plurality of battery cells 81 and electrically connecting the battery cells 81 in series or in parallel.
 この種の電池は、低温になると出力が低下しやすく、高温になると劣化が進行しやすい。このため、電池の温度は、電池の充放電容量を充分に活用することができる適切な温度範囲内(本実施形態では、15℃以上、かつ、55℃以下)に維持されている必要がある。 The output of this type of battery tends to decrease at low temperatures, and deterioration tends to progress at high temperatures. Therefore, the temperature of the battery needs to be maintained within an appropriate temperature range (in this embodiment, 15 ° C. or higher and 55 ° C. or lower) in which the charge / discharge capacity of the battery can be fully utilized. ..
 そこで、車両用空調装置1では、冷凍サイクル装置10によって生成された冷熱によって電池80を冷却することができるようになっている。本実施形態の冷凍サイクル装置10における冷却対象物は、空気および電池80である。 Therefore, in the vehicle air conditioner 1, the battery 80 can be cooled by the cold heat generated by the refrigeration cycle device 10. The objects to be cooled in the refrigeration cycle device 10 of the present embodiment are air and a battery 80.
 車両用空調装置1は、図1の全体構成図に示すように、冷凍サイクル装置10、室内空調ユニット30、高温側熱媒体回路40等を備えている。 As shown in the overall configuration diagram of FIG. 1, the vehicle air conditioner 1 includes a refrigerating cycle device 10, an indoor air conditioner unit 30, a high temperature side heat medium circuit 40, and the like.
 冷凍サイクル装置10は、車室内の空調を行うために、車室内へ送風される空気を冷却し、高温側熱媒体回路40を循環する高温側熱媒体を加熱する。 The refrigerating cycle device 10 cools the air blown into the vehicle interior and heats the high temperature side heat medium circulating in the high temperature side heat medium circuit 40 in order to air-condition the vehicle interior.
 冷凍サイクル装置10は、車室内の空調を行うために、様々な運転モード用の冷媒回路を切替可能である。例えば、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、暖房モードの冷媒回路等を切替可能である。冷凍サイクル装置10は、空調用の各運転モードにおいて、電池80を冷却する運転モードと電池80の冷却を行わない運転モードとを切替可能である。 The refrigerating cycle device 10 can switch the refrigerant circuit for various operation modes in order to perform air conditioning in the vehicle interior. For example, the refrigerant circuit in the cooling mode, the refrigerant circuit in the dehumidifying / heating mode, the refrigerant circuit in the heating mode, and the like can be switched. The refrigerating cycle device 10 can switch between an operation mode in which the battery 80 is cooled and an operation mode in which the battery 80 is not cooled in each operation mode for air conditioning.
 冷凍サイクル装置10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用しており、圧縮機11から吐出された吐出冷媒の圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。冷媒には圧縮機11を潤滑するための冷凍機油が混入されている。冷凍機油の一部は、冷媒とともにサイクルを循環している。 The refrigeration cycle apparatus 10 employs an HFO-based refrigerant (specifically, R1234yf) as the refrigerant, and the pressure of the discharged refrigerant discharged from the compressor 11 does not exceed the critical pressure of the refrigerant, which is a steam compression type subcritical. It constitutes a refrigeration cycle. Refrigerant oil for lubricating the compressor 11 is mixed in the refrigerant. Some of the refrigerating machine oil circulates in the cycle together with the refrigerant.
 冷凍サイクル装置10の構成機器のうち、圧縮機11は、冷凍サイクル装置10において冷媒を吸入し、圧縮して吐出する。圧縮機11は、車室の前方に配置されて電動モータ等が収容される駆動装置室内に配置されている。圧縮機11は、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機である。圧縮機11は、図4に示すサイクル制御装置60から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。 Among the constituent devices of the refrigerating cycle device 10, the compressor 11 sucks the refrigerant in the refrigerating cycle device 10, compresses it, and discharges it. The compressor 11 is arranged in front of the vehicle interior and is arranged in the drive unit chamber in which the electric motor and the like are housed. The compressor 11 is an electric compressor that rotationally drives a fixed-capacity compression mechanism having a fixed discharge capacity by an electric motor. The number of revolutions (that is, the refrigerant discharge capacity) of the compressor 11 is controlled by the control signal output from the cycle control device 60 shown in FIG.
 図1に示すように、圧縮機11の吐出口には、水冷媒熱交換器12の冷媒通路の入口側が接続されている。水冷媒熱交換器12は、圧縮機11から吐出された高圧冷媒を流通させる冷媒通路と、高温側熱媒体回路40を循環する高温側熱媒体を流通させる水通路とを有している。水冷媒熱交換器12は、冷媒通路を流通する高圧冷媒と、水通路を流通する高温側熱媒体とを熱交換させて、高温側熱媒体を加熱する加熱用の熱交換器である。 As shown in FIG. 1, the inlet side of the refrigerant passage of the water refrigerant heat exchanger 12 is connected to the discharge port of the compressor 11. The water-refrigerant heat exchanger 12 has a refrigerant passage for circulating the high-pressure refrigerant discharged from the compressor 11 and a water passage for circulating the high-temperature side heat medium circulating in the high-temperature side heat medium circuit 40. The water refrigerant heat exchanger 12 is a heat exchanger for heating that heats the high temperature side heat medium by exchanging heat between the high pressure refrigerant flowing through the refrigerant passage and the high temperature side heat medium flowing through the water passage.
 水冷媒熱交換器12の冷媒通路の出口には、互いに連通する3つの流入出口を有する第1三方継手13aの流入口側が接続されている。このような三方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The inlet side of the first three-way joint 13a having three inflow outlets communicating with each other is connected to the outlet of the refrigerant passage of the water refrigerant heat exchanger 12. As such a three-way joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 冷凍サイクル装置10は、第2~第6三方継手13b~13fを備えている。第2~第6三方継手13b~13fの基本的構成は、第1三方継手13aと同様である。 The refrigeration cycle device 10 includes second to sixth three-way joints 13b to 13f. The basic configuration of the second to sixth three-way joints 13b to 13f is the same as that of the first three-way joint 13a.
 第1三方継手13aの一方の流出口には、暖房用膨張弁14aの入口側が接続されている。第1三方継手13aの他方の流出口には、バイパス通路22aを介して、第2三方継手13bの一方の流入口側が接続されている。バイパス通路22aには、除湿用開閉弁15aが配置されている。 The inlet side of the heating expansion valve 14a is connected to one of the outlets of the first three-way joint 13a. One inflow port side of the second three-way joint 13b is connected to the other outflow port of the first three-way joint 13a via a bypass passage 22a. A dehumidifying on-off valve 15a is arranged in the bypass passage 22a.
 除湿用開閉弁15aは、第1三方継手13aの他方の流出口側と第2三方継手13bの一方の流入口側とを接続する冷媒通路を開閉する電磁弁である。冷凍サイクル装置10は、暖房用開閉弁15bを備えている。暖房用開閉弁15bの基本的構成は、除湿用開閉弁15aと同様である。 The dehumidifying on-off valve 15a is a solenoid valve that opens and closes a refrigerant passage connecting the other outlet side of the first three-way joint 13a and one inlet side of the second three-way joint 13b. The refrigeration cycle device 10 includes a heating on-off valve 15b. The basic configuration of the heating on-off valve 15b is the same as that of the dehumidifying on-off valve 15a.
 除湿用開閉弁15aおよび暖房用開閉弁15bは、冷媒通路を開閉することで、各運転モードの冷媒回路を切り替えることができる。除湿用開閉弁15aおよび暖房用開閉弁15bは、サイクルの冷媒回路を切り替える冷媒回路切替部である。除湿用開閉弁15aおよび暖房用開閉弁15bは、サイクル制御装置60から出力される制御電圧によって制御される。 The dehumidifying on-off valve 15a and the heating on-off valve 15b can switch the refrigerant circuit of each operation mode by opening and closing the refrigerant passage. The dehumidifying on-off valve 15a and the heating on-off valve 15b are refrigerant circuit switching units that switch the refrigerant circuit of the cycle. The dehumidifying on-off valve 15a and the heating on-off valve 15b are controlled by a control voltage output from the cycle control device 60.
 暖房用膨張弁14aは、少なくとも車室内の暖房を行う運転モード時に、水冷媒熱交換器12の冷媒通路から流出した高圧冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量(質量流量)を調整する暖房用減圧部である。暖房用膨張弁14aは、絞り開度を変更可能に構成された弁体と、弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。 The heating expansion valve 14a reduces the pressure of the high-pressure refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 at least in the operation mode of heating the vehicle interior, and reduces the flow rate (mass flow rate) of the refrigerant flowing out to the downstream side. It is a decompression unit for heating to be adjusted. The heating expansion valve 14a is an electric variable throttle mechanism including a valve body configured to change the throttle opening degree and an electric actuator for changing the throttle opening degree.
 冷凍サイクル装置10は、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eを備えている。冷房用膨張弁14bおよび冷却用膨張弁14cの基本的構成は、暖房用膨張弁14aと同様である。 The refrigeration cycle device 10 includes a cooling expansion valve 14b and first to third cooling expansion valves 14c to 14e. The basic configuration of the cooling expansion valve 14b and the cooling expansion valve 14c is the same as that of the heating expansion valve 14a.
 暖房用膨張弁14a、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。 The heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e are simple refrigerants with almost no flow rate adjusting action and refrigerant depressurizing action by fully opening the valve opening. It has a fully open function that functions as a passage and a fully closed function that closes the refrigerant passage by fully closing the valve opening.
 全開機能および全閉機能によって、暖房用膨張弁14a、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eは、各運転モードの冷媒回路を切り替えることができる。暖房用膨張弁14a、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eは、冷媒回路切替部として機能する。暖房用膨張弁14a、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eは、サイクル制御装置60から出力される制御信号(制御パルス)によって制御される。 With the fully open function and the fully closed function, the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e can switch the refrigerant circuit in each operation mode. The heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e function as a refrigerant circuit switching unit. The heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e are controlled by a control signal (control pulse) output from the cycle control device 60.
 暖房用膨張弁14aの出口には、室外熱交換器16の冷媒入口側が接続されている。室外熱交換器16は、暖房用膨張弁14aから流出した冷媒と図示しない冷却ファンにより送風された外気とを熱交換させる熱交換器である。室外熱交換器16は、駆動装置室内の前方側に配置されている。このため、車両走行時には、室外熱交換器16に走行風を当てることができる。 The refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet of the heating expansion valve 14a. The outdoor heat exchanger 16 is a heat exchanger that exchanges heat between the refrigerant flowing out from the heating expansion valve 14a and the outside air blown by a cooling fan (not shown). The outdoor heat exchanger 16 is arranged on the front side in the drive unit room. Therefore, when the vehicle is running, the running wind can be applied to the outdoor heat exchanger 16.
 室外熱交換器16の冷媒出口には、第3三方継手13cの流入口側が接続されている。第3三方継手13cの一方の流出口には、暖房用通路22bを介して、第4三方継手13dの一方の流入口側が接続されている。暖房用通路22bには、冷媒通路を開閉する暖房用開閉弁15bが配置されている。 The inlet side of the third three-way joint 13c is connected to the refrigerant outlet of the outdoor heat exchanger 16. One inflow port side of the fourth three-way joint 13d is connected to one outflow port of the third three-way joint 13c via a heating passage 22b. A heating on-off valve 15b for opening and closing the refrigerant passage is arranged in the heating passage 22b.
 第3三方継手13cの他方の流出口には、第2三方継手13bの他方の流入口側が接続されている。第3三方継手13cの他方の流出口側と第2三方継手13bの他方の流入口側とを接続する冷媒通路には、逆止弁17が配置されている。逆止弁17は、第3三方継手13c側から第2三方継手13b側へ冷媒が流れることを許容し、第2三方継手13b側から第3三方継手13c側へ冷媒が流れることを禁止する。 The other inlet side of the second three-way joint 13b is connected to the other outlet of the third three-way joint 13c. A check valve 17 is arranged in the refrigerant passage connecting the other outlet side of the third three-way joint 13c and the other inlet side of the second three-way joint 13b. The check valve 17 allows the refrigerant to flow from the third three-way joint 13c side to the second three-way joint 13b side, and prohibits the refrigerant from flowing from the second three-way joint 13b side to the third three-way joint 13c side.
 第2三方継手13bの流出口には、第5三方継手13eの流入口側が接続されている。第5三方継手13eの一方の流出口には、冷房用膨張弁14bの入口側が接続されている。 The inflow port side of the fifth three-way joint 13e is connected to the outflow port of the second three-way joint 13b. The inlet side of the cooling expansion valve 14b is connected to one of the outlets of the fifth three-way joint 13e.
 冷房用膨張弁14bは、少なくとも車室内の冷房を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する空調用減圧部である。 The cooling expansion valve 14b is an air-conditioning decompression unit that depressurizes the refrigerant flowing out from the outdoor heat exchanger 16 and adjusts the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the vehicle interior.
 冷房用膨張弁14bの出口には、室内蒸発器18の冷媒入口側が接続されている。室内蒸発器18は、室内空調ユニット30の空調ケース31内に配置されている。室内蒸発器18は、冷房用膨張弁14bにて減圧された低圧冷媒と送風機32から送風された空気とを熱交換させて低圧冷媒を蒸発させ、低圧冷媒に吸熱作用を発揮させることによって空気を冷却する空調用蒸発部である。室内蒸発器18の冷媒出口には、第6三方継手13fの一方の流入口側が接続されている。 The refrigerant inlet side of the indoor evaporator 18 is connected to the outlet of the cooling expansion valve 14b. The indoor evaporator 18 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30. The indoor evaporator 18 exchanges heat between the low-pressure refrigerant decompressed by the cooling expansion valve 14b and the air blown from the blower 32 to evaporate the low-pressure refrigerant, and causes the low-pressure refrigerant to exert a heat absorbing action to absorb air. It is an air-conditioning evaporative unit that cools. One inflow port side of the sixth three-way joint 13f is connected to the refrigerant outlet of the indoor evaporator 18.
 第5三方継手13eの他方の流出口には、互いに連通する4つの流入出口を有する第1四方継手13gの流入口側が接続されている。このような四方継手としては、複数の配管を接合して形成されたものや、金属ブロックや樹脂ブロックに複数の冷媒通路を設けることによって形成されたものを採用することができる。 The other outlet of the fifth three-way joint 13e is connected to the inlet side of the first four-way joint 13g having four inflow outlets communicating with each other. As such a four-sided joint, one formed by joining a plurality of pipes or one formed by providing a plurality of refrigerant passages in a metal block or a resin block can be adopted.
 第1四方継手13gの第1の流出口には、第1冷却用膨張弁14cの入口側が接続されている。第1四方継手13gの第2の流出口には、第2冷却用膨張弁14dの入口側が接続されている。第1四方継手13gの第3の流出口には、第3冷却用膨張弁14eの入口側が接続されている。 The inlet side of the first cooling expansion valve 14c is connected to the first outlet of the first four-way joint 13g. The inlet side of the second cooling expansion valve 14d is connected to the second outlet of the first four-way joint 13g. The inlet side of the third cooling expansion valve 14e is connected to the third outlet of the first four-way joint 13g.
 第1~第3冷却用膨張弁14c~14eは、少なくとも電池80の冷却を行う運転モード時に、室外熱交換器16から流出した冷媒を減圧させるとともに、下流側へ流出させる冷媒の流量を調整する電池用減圧部である。 The first to third cooling expansion valves 14c to 14e reduce the pressure of the refrigerant flowing out from the outdoor heat exchanger 16 and adjust the flow rate of the refrigerant flowing out to the downstream side at least in the operation mode for cooling the battery 80. It is a decompression unit for batteries.
 図2~図3に示すように、第1冷却用膨張弁14cの出口には、電池冷却器19の第1冷媒通路19aの入口側が接続されている。第2冷却用膨張弁14dの出口には、電池冷却器19の第2冷媒通路19bの入口側が接続されている。第3冷却用膨張弁14eの出口には、電池冷却器19の第3冷媒通路19cの入口側が接続されている。 As shown in FIGS. 2 to 3, the inlet side of the first refrigerant passage 19a of the battery cooler 19 is connected to the outlet of the first cooling expansion valve 14c. The inlet side of the second refrigerant passage 19b of the battery cooler 19 is connected to the outlet of the second cooling expansion valve 14d. The inlet side of the third refrigerant passage 19c of the battery cooler 19 is connected to the outlet of the third cooling expansion valve 14e.
 電池冷却器19は、冷媒通路を流通する冷媒を蒸発させて吸熱作用を発揮させることによって電池80を冷却する、いわゆる直冷式の冷却器である。電池冷却器19は、電池80を冷却する冷却部である。本実施形態では、電池冷却器19は、電池80を底面側から冷却する。 The battery cooler 19 is a so-called direct cooling type cooler that cools the battery 80 by evaporating the refrigerant flowing through the refrigerant passage to exert an endothermic action. The battery cooler 19 is a cooling unit that cools the battery 80. In the present embodiment, the battery cooler 19 cools the battery 80 from the bottom surface side.
 電池冷却器19では、電池80の全域を均等に冷却できるように、互いに並列的に接続された第1冷媒流路19a、第2冷媒流路19bおよび第3冷媒流路19cを有している。 The battery cooler 19 has a first refrigerant flow path 19a, a second refrigerant flow path 19b, and a third refrigerant flow path 19c connected in parallel with each other so that the entire area of the battery 80 can be cooled evenly. ..
 図2および図3は、電池冷却器19を上下方向から見た模式図である。図2は、第1~第3冷却用膨張弁14c~14eのいずれもが開かれて、第1~第3冷媒流路19a~19cの全てに冷媒が流れている状態を太実線で示している。 2 and 3 are schematic views of the battery cooler 19 as viewed from above and below. In FIG. 2, a thick solid line shows a state in which all of the first to third cooling expansion valves 14c to 14e are opened and the refrigerant is flowing through all of the first to third refrigerant flow paths 19a to 19c. There is.
 電池冷却器19の第1冷媒流路19aの出口には、第2四方継手13hの第1の流入口側が接続されている。第2四方継手13hの基本的構成は、第1四方継手13gと同様である。 The first inflow port side of the second four-way joint 13h is connected to the outlet of the first refrigerant flow path 19a of the battery cooler 19. The basic configuration of the second four-way joint 13h is the same as that of the first four-way joint 13g.
 図3は、第1冷却用膨張弁14aが開かれているが第2~第3冷却用膨張弁14d~14eが閉じられて、第1冷媒流路19aに冷媒が流れ、第2~第3冷媒流路19b~19cの全てに冷媒が流れていない状態を太実線および太破線で示している。 In FIG. 3, the first cooling expansion valve 14a is open, but the second to third cooling expansion valves 14d to 14e are closed, the refrigerant flows into the first refrigerant flow path 19a, and the second to third The state in which the refrigerant does not flow in all of the refrigerant flow paths 19b to 19c is shown by a thick solid line and a thick broken line.
 電池冷却器19の第1冷媒流路19aの出口には、第2四方継手13hの第1の流入口側が接続されている。第2四方継手13hの基本的構成は、第1四方継手13gと同様である。 The first inflow port side of the second four-way joint 13h is connected to the outlet of the first refrigerant flow path 19a of the battery cooler 19. The basic configuration of the second four-way joint 13h is the same as that of the first four-way joint 13g.
 電池冷却器19の第2冷媒流路19bの出口には、第2四方継手13hの第2の流入口側が接続されている。電池冷却器19の第3冷媒流路19cの出口には、第2四方継手13hの第3の流入口側が接続されている。図1に示すように、第2四方継手13hの流出口には、第6三方継手13fの他方の流入口側が接続されている。 The second inflow port side of the second four-sided joint 13h is connected to the outlet of the second refrigerant flow path 19b of the battery cooler 19. The third inflow port side of the second four-sided joint 13h is connected to the outlet of the third refrigerant flow path 19c of the battery cooler 19. As shown in FIG. 1, the other inlet side of the sixth three-way joint 13f is connected to the outlet of the second four-way joint 13h.
 第6三方継手13fの流出口には、蒸発圧力調整弁20の入口側が接続されている。蒸発圧力調整弁20は、室内蒸発器18の着霜を抑制するために、室内蒸発器18における冷媒蒸発圧力を、予め定めた基準圧力以上に維持する。蒸発圧力調整弁20は、室内蒸発器18の出口側冷媒の圧力の上昇に伴って、弁開度を増加させる機械式の可変絞り機構である。 The inlet side of the evaporation pressure adjusting valve 20 is connected to the outlet of the 6th three-way joint 13f. The evaporation pressure adjusting valve 20 maintains the refrigerant evaporation pressure in the indoor evaporator 18 at a predetermined reference pressure or higher in order to suppress frost formation in the indoor evaporator 18. The evaporation pressure adjusting valve 20 is a mechanical variable throttle mechanism that increases the valve opening degree as the pressure of the refrigerant on the outlet side of the indoor evaporator 18 increases.
 これにより、蒸発圧力調整弁20は、室内蒸発器18における冷媒蒸発温度を、室内蒸発器18の着霜を抑制可能な着霜抑制温度(本実施形態では、1℃)以上に維持している。蒸発圧力調整弁20は、合流部である第6三方継手13fよりも冷媒流れ下流側に配置されている。このため、蒸発圧力調整弁20は、電池冷却器19における冷媒蒸発温度についても、着霜抑制温度以上に維持している。 As a result, the evaporation pressure adjusting valve 20 maintains the refrigerant evaporation temperature in the indoor evaporator 18 at a frost formation suppression temperature (1 ° C. in the present embodiment) that can suppress frost formation in the indoor evaporator 18. .. The evaporation pressure adjusting valve 20 is arranged on the downstream side of the refrigerant flow with respect to the sixth three-way joint 13f, which is a confluence portion. Therefore, the evaporation pressure adjusting valve 20 maintains the refrigerant evaporation temperature in the battery cooler 19 at a temperature equal to or higher than the frost formation suppression temperature.
 蒸発圧力調整弁20の出口には、第4三方継手13dの他方の流入口側が接続されている。第4三方継手13dの流出口には、アキュムレータ21の入口側が接続されている。アキュムレータ21は、内部に流入した冷媒の気液を分離して、サイクル内の余剰液相冷媒を蓄える気液分離部である。アキュムレータ21の気相冷媒出口には、圧縮機11の吸入口側が接続されている。 The other inflow port side of the fourth three-way joint 13d is connected to the outlet of the evaporation pressure adjusting valve 20. The inlet side of the accumulator 21 is connected to the outlet of the fourth three-way joint 13d. The accumulator 21 is a gas-liquid separation unit that separates the gas-liquid of the refrigerant that has flowed into the inside and stores the excess liquid-phase refrigerant in the cycle. The suction port side of the compressor 11 is connected to the gas phase refrigerant outlet of the accumulator 21.
 アキュムレータ21には、分離された液相冷媒中に混在する冷凍機油を圧縮機11に戻すオイル戻し穴が形成されている。アキュムレータ21内の冷凍機油は、少量の液相冷媒とともに圧縮機11へ戻される。 The accumulator 21 is formed with an oil return hole for returning the refrigerating machine oil mixed in the separated liquid phase refrigerant to the compressor 11. The refrigerating machine oil in the accumulator 21 is returned to the compressor 11 together with a small amount of liquid phase refrigerant.
 本実施形態の第5三方継手13eは、室外熱交換器16から流出した冷媒の流れを分岐する分岐部である。第6三方継手13fは、室内蒸発器18から流出した冷媒の流れと電池冷却器19から流出した冷媒の流れとを合流させて、圧縮機11の吸入側へ流出させる合流部である。 The fifth three-way joint 13e of the present embodiment is a branch portion for branching the flow of the refrigerant flowing out from the outdoor heat exchanger 16. The sixth three-way joint 13f is a confluence portion that merges the flow of the refrigerant flowing out of the indoor evaporator 18 and the flow of the refrigerant flowing out of the battery cooler 19 and causes them to flow out to the suction side of the compressor 11.
 室内蒸発器18および電池冷却器19は、冷媒流れに対して互いに並列的に接続されている。バイパス通路22aは、水冷媒熱交換器12の冷媒通路から流出した冷媒を、分岐部の上流側へ導いている。暖房用通路22bは、室外熱交換器16から流出した冷媒を、圧縮機11の吸入口側へ導いている。 The indoor evaporator 18 and the battery cooler 19 are connected in parallel to each other with respect to the refrigerant flow. The bypass passage 22a guides the refrigerant flowing out of the refrigerant passage of the water refrigerant heat exchanger 12 to the upstream side of the branch portion. The heating passage 22b guides the refrigerant flowing out of the outdoor heat exchanger 16 to the suction port side of the compressor 11.
 高温側熱媒体回路40は、高温側熱媒体を循環させる熱媒体循環回路である。高温側熱媒体としては、エチレングリコール、ジメチルポリシロキサン、あるいはナノ流体等を含む溶液、不凍液等を採用することができる。高温側熱媒体回路40には、水冷媒熱交換器12の水通路、高温側熱媒体ポンプ41、ヒータコア42等が配置されている。 The high temperature side heat medium circuit 40 is a heat medium circulation circuit that circulates the high temperature side heat medium. As the high temperature side heat medium, a solution containing ethylene glycol, dimethylpolysiloxane, a nanofluid, or the like, an antifreeze solution, or the like can be adopted. In the high temperature side heat medium circuit 40, a water passage of the water refrigerant heat exchanger 12, a high temperature side heat medium pump 41, a heater core 42, and the like are arranged.
 高温側熱媒体ポンプ41は、高温側熱媒体を水冷媒熱交換器12の水通路の入口側へ圧送する水ポンプである。高温側熱媒体ポンプ41は、サイクル制御装置60から出力される制御電圧によって、回転数(すなわち、圧送能力)が制御される電動ポンプである。 The high temperature side heat medium pump 41 is a water pump that pumps the high temperature side heat medium to the inlet side of the water passage of the water refrigerant heat exchanger 12. The high temperature side heat medium pump 41 is an electric pump whose rotation speed (that is, pumping capacity) is controlled by a control voltage output from the cycle control device 60.
 水冷媒熱交換器12の水通路の出口には、ヒータコア42の熱媒体入口側が接続されている。ヒータコア42は、水冷媒熱交換器12にて加熱された高温側熱媒体と室内蒸発器18を通過した空気とを熱交換させて、空気を加熱する熱交換器である。ヒータコア42は、室内空調ユニット30の空調ケース31内に配置されている。ヒータコア42の熱媒体出口には、高温側熱媒体ポンプ41の吸入口側が接続されている。 The heat medium inlet side of the heater core 42 is connected to the outlet of the water passage of the water refrigerant heat exchanger 12. The heater core 42 is a heat exchanger that heats the air by exchanging heat between the high temperature side heat medium heated by the water refrigerant heat exchanger 12 and the air that has passed through the indoor evaporator 18. The heater core 42 is arranged in the air conditioning case 31 of the indoor air conditioning unit 30. The suction port side of the high temperature side heat medium pump 41 is connected to the heat medium outlet of the heater core 42.
 従って、高温側熱媒体回路40では、高温側熱媒体ポンプ41が、ヒータコア42へ流入する高温側熱媒体の流量を調整することによって、ヒータコア42における高温側熱媒体の空気への放熱量(すなわち、ヒータコア42における空気の加熱量)を調整することができる。 Therefore, in the high temperature side heat medium circuit 40, the high temperature side heat medium pump 41 adjusts the flow rate of the high temperature side heat medium flowing into the heater core 42 to dissipate heat of the high temperature side heat medium in the heater core 42 to the air (that is, that is). , The amount of heat of air in the heater core 42) can be adjusted.
 水冷媒熱交換器12および高温側熱媒体回路40の各構成機器は、圧縮機11から吐出された冷媒を熱源として、空気を加熱する加熱部である。 Each component of the water-refrigerant heat exchanger 12 and the high-temperature side heat medium circuit 40 is a heating unit that heats air using the refrigerant discharged from the compressor 11 as a heat source.
 室内空調ユニット30は、冷凍サイクル装置10によって温度調整された空気を車室内へ吹き出すためのものである。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。 The indoor air conditioning unit 30 is for blowing air whose temperature has been adjusted by the refrigeration cycle device 10 into the vehicle interior. The indoor air conditioning unit 30 is arranged inside the instrument panel (instrument panel) at the front of the vehicle interior.
 室内空調ユニット30は、外殻を形成する空調ケース31内に形成された空気通路内に送風機32、室内蒸発器18、ヒータコア42等を収容したものである。 The indoor air conditioning unit 30 accommodates a blower 32, an indoor evaporator 18, a heater core 42, etc. in an air passage formed in an air conditioning case 31 forming an outer shell.
 空調ケース31は、車室内に送風される空気の空気通路を形成している。空調ケース31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。 The air conditioning case 31 forms an air passage for air blown into the vehicle interior. The air conditioning case 31 is made of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
 空調ケース31の空気流れ最上流側には、内外気切替装置33が配置されている。内外気切替装置33は、空調ケース31内へ内気(すなわち車室内空気)と外気(すなわち車室外空気)とを切替導入する。 An inside / outside air switching device 33 is arranged on the most upstream side of the air flow of the air conditioning case 31. The inside / outside air switching device 33 switches and introduces the inside air (that is, the vehicle interior air) and the outside air (that is, the vehicle interior outside air) into the air conditioning case 31.
 内外気切替装置33は、空調ケース31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動される。内外気切替ドア用の電動アクチュエータは、サイクル制御装置60から出力される制御信号によって制御される。 The inside / outside air switching device 33 continuously adjusts the opening areas of the inside air introduction port for introducing the inside air into the air conditioning case 31 and the outside air introduction port for introducing the outside air by the inside / outside air switching door, and the introduction air volume of the inside air and the outside air. Change the introduction ratio with the introduction air volume. The inside / outside air switching door is driven by an electric actuator for the inside / outside air switching door. The electric actuator for the inside / outside air switching door is controlled by a control signal output from the cycle control device 60.
 内外気切替装置33の空気流れ下流側には、送風機32が配置されている。送風機32は、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する。送風機32は、遠心多翼ファンを電動モータにて駆動する電動送風機である。送風機32は、サイクル制御装置60から出力される制御電圧によって、回転数(すなわち、送風能力)が制御される。 A blower 32 is arranged on the downstream side of the air flow of the inside / outside air switching device 33. The blower 32 blows the air sucked through the inside / outside air switching device 33 toward the vehicle interior. The blower 32 is an electric blower that drives a centrifugal multi-blade fan with an electric motor. The rotation speed (that is, the blowing capacity) of the blower 32 is controlled by the control voltage output from the cycle control device 60.
 送風機32の空気流れ下流側には、室内蒸発器18、ヒータコア42が、空気流れに対して、この順に配置されている。室内蒸発器18は、ヒータコア42よりも、空気流れ上流側に配置されている。 On the downstream side of the air flow of the blower 32, the indoor evaporator 18 and the heater core 42 are arranged in this order with respect to the air flow. The indoor evaporator 18 is arranged on the upstream side of the air flow with respect to the heater core 42.
 空調ケース31内には、室内蒸発器18通過後の空気を、ヒータコア42を迂回して流す冷風バイパス通路35が設けられている。空調ケース31内の室内蒸発器18の空気流れ下流側、かつヒータコア42の空気流れ上流側には、エアミックスドア34が配置されている。 The air conditioning case 31 is provided with a cold air bypass passage 35 that allows air after passing through the indoor evaporator 18 to bypass the heater core 42. An air mix door 34 is arranged on the downstream side of the air flow of the indoor evaporator 18 in the air conditioning case 31 and on the upstream side of the air flow of the heater core 42.
 エアミックスドア34は、室内蒸発器18通過後の空気のうち、ヒータコア42側を通過する空気の風量と冷風バイパス通路35を通過させる空気の風量との風量割合を調整する風量割合調整部である。エアミックスドア34は、エアミックスドア用の電動アクチュエータによって駆動される。電動アクチュエータは、サイクル制御装置60から出力される制御信号によって制御される。 The air mix door 34 is an air volume ratio adjusting unit that adjusts the air volume ratio between the air volume of the air passing through the heater core 42 side and the air volume of the air passing through the cold air bypass passage 35 among the air after passing through the indoor evaporator 18. .. The air mix door 34 is driven by an electric actuator for the air mix door. The electric actuator is controlled by a control signal output from the cycle control device 60.
 空調ケース31内のヒータコア42および冷風バイパス通路35の空気流れ下流側には、混合空間が配置されている。混合空間は、ヒータコア42にて加熱された空気と冷風バイパス通路35を通過して加熱されていない空気とを混合させる空間である。 A mixing space is arranged on the downstream side of the air flow of the heater core 42 and the cold air bypass passage 35 in the air conditioning case 31. The mixing space is a space in which the air heated by the heater core 42 and the unheated air passing through the cold air bypass passage 35 are mixed.
 空調ケース31の空気流れ下流部には、混合空間にて混合された空気(すなわち、空調風)を、空調対象空間である車室内へ吹き出すための開口穴が配置されている。 In the downstream portion of the air flow of the air conditioning case 31, an opening hole for blowing out the air mixed in the mixing space (that is, the air conditioning air) into the vehicle interior, which is the air conditioning target space, is arranged.
 開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。 As the opening holes, a face opening hole, a foot opening hole, and a defroster opening hole (none of which are shown) are provided. The face opening hole is an opening hole for blowing air-conditioning air toward the upper body of the occupant in the vehicle interior. The foot opening hole is an opening hole for blowing air-conditioning air toward the feet of the occupant. The defroster opening hole is an opening hole for blowing air conditioning air toward the inner side surface of the front window glass of the vehicle.
 これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。 These face opening holes, foot opening holes, and defroster opening holes are the face outlets, foot outlets, and defroster outlets (none of which are shown) provided in the vehicle interior via ducts forming air passages, respectively. )It is connected to the.
 エアミックスドア34が、ヒータコア42を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される空気(空調風)の温度が調整される。 The temperature of the conditioned air mixed in the mixing space is adjusted by adjusting the air volume ratio between the air volume passing through the heater core 42 and the air volume passing through the cold air bypass passage 35 by the air mix door 34. As a result, the temperature of the air (air-conditioned air) blown from each outlet into the vehicle interior is adjusted.
 フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイスドア、フットドア、およびデフロスタドア(いずれも図示せず)が配置されている。フェイスドアは、フェイス開口穴の開口面積を調整する。フットドアは、フット開口穴の開口面積を調整する。デフロスタドアは、デフロスタ開口穴の開口面積を調整する。 Face doors, foot doors, and defroster doors (none of which are shown) are arranged on the upstream side of the air flow of the face opening hole, the foot opening hole, and the defroster opening hole, respectively. The face door adjusts the opening area of the face opening hole. The foot door adjusts the opening area of the foot opening hole. The defroster door adjusts the opening area of the defroster opening hole.
 これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替装置を構成する。これらのドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。電動アクチュエータの作動は、サイクル制御装置60から出力される制御信号によって制御される。 These face doors, foot doors, and defroster doors constitute an outlet mode switching device that switches the outlet mode. These doors are connected to an electric actuator for driving the outlet mode door via a link mechanism or the like, and are rotated in conjunction with each other. The operation of the electric actuator is controlled by a control signal output from the cycle control device 60.
 吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。 Specific examples of the outlet mode that can be switched by the outlet mode switching device include face mode, bi-level mode, and foot mode.
 フェイスモードは、フェイス吹出口を全開としてフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開とするとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。 The face mode is an outlet mode in which the face outlet is fully opened and air is blown out from the face outlet toward the upper body of the passenger in the passenger compartment. The bi-level mode is an outlet mode in which both the face outlet and the foot outlet are opened to blow air toward the upper body and feet of the passengers in the passenger compartment. The foot mode is an outlet mode in which the foot outlet is fully opened and the defroster outlet is opened by a small opening, and air is mainly blown out from the foot outlet.
 乗員が操作パネル70に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタモードに切り替えることもできる。デフロスタモードは、デフロスタ吹出口を全開としてデフロスタ吹出口からフロント窓ガラス内面に空気を吹き出す吹出口モードである。 The occupant can also switch to the defroster mode by manually operating the blowout mode changeover switch provided on the operation panel 70. The defroster mode is an outlet mode in which the defroster outlet is fully opened and air is blown from the defroster outlet to the inner surface of the front window glass.
 次に、本実施形態の電気制御部の概要について説明する。サイクル制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータと周辺回路から構成されている。そして、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a~14e、15a、15b、32、41、53等の作動を制御する。 Next, the outline of the electric control unit of this embodiment will be described. The cycle control device 60 includes a well-known microcomputer including a CPU, ROM, RAM, and the like, and peripheral circuits. Then, various operations and processes are performed based on the control program stored in the ROM, and the operation of various controlled devices 11, 14a to 14e, 15a, 15b, 32, 41, 53, etc. connected to the output side is controlled. do.
 サイクル制御装置60の入力側には、図4のブロック図に示すように、内気温センサ61、外気温センサ62、日射センサ63、第1~第5冷媒温度センサ64a~64e、蒸発器温度センサ64f、冷却入口温度センサ64g、第1、第2冷媒圧力センサ65a、65b、高温側熱媒体温度センサ66、空調風温度センサ68、電池制御装置69等が接続されている。そして、サイクル制御装置60には、これらのセンサ群の検出信号が入力される。 On the input side of the cycle control device 60, as shown in the block diagram of FIG. 4, the inside temperature sensor 61, the outside temperature sensor 62, the solar radiation sensor 63, the first to fifth refrigerant temperature sensors 64a to 64e, and the evaporator temperature sensor 64f, cooling inlet temperature sensor 64g, first and second refrigerant pressure sensors 65a and 65b, high temperature side heat medium temperature sensor 66, air conditioning air temperature sensor 68, battery control device 69 and the like are connected. Then, the detection signals of these sensor groups are input to the cycle control device 60.
 内気温センサ61は、内気温Tr(すなわち車室内温度)を検出する内気温検出部である。外気温センサ62は、外気温Tam(すなわち車室外温度)を検出する外気温検出部である。日射センサ63は、車室内へ照射される日射量Tsを検出する日射量検出部である。 The internal air temperature sensor 61 is an internal air temperature detection unit that detects the internal air temperature Tr (that is, the vehicle interior temperature). The outside air temperature sensor 62 is an outside air temperature detection unit that detects the outside air temperature Tam (that is, the outside air temperature of the vehicle interior). The solar radiation sensor 63 is a solar radiation amount detection unit that detects the solar radiation amount Ts applied to the vehicle interior.
 第1冷媒温度センサ64aは、圧縮機11から吐出された冷媒の温度T1を検出する吐出冷媒温度検出部である。第2冷媒温度センサ64bは、水冷媒熱交換器12の冷媒通路から流出した冷媒の温度T2を検出する第2冷媒温度検出部である。第3冷媒温度センサ64cは、室外熱交換器16から流出した冷媒の温度T3を検出する第3冷媒温度検出部である。 The first refrigerant temperature sensor 64a is a discharge refrigerant temperature detection unit that detects the temperature T1 of the refrigerant discharged from the compressor 11. The second refrigerant temperature sensor 64b is a second refrigerant temperature detecting unit that detects the temperature T2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12. The third refrigerant temperature sensor 64c is a third refrigerant temperature detection unit that detects the temperature T3 of the refrigerant flowing out of the outdoor heat exchanger 16.
 第4冷媒温度センサ64dは、室内蒸発器18から流出した冷媒の温度T4を検出する第4冷媒温度検出部である。第5冷媒温度センサ64eは、電池冷却器19の冷媒通路から流出した冷媒の温度T5を検出する第5冷媒温度検出部である。 The fourth refrigerant temperature sensor 64d is a fourth refrigerant temperature detection unit that detects the temperature T4 of the refrigerant flowing out from the indoor evaporator 18. The fifth refrigerant temperature sensor 64e is a fifth refrigerant temperature detection unit that detects the temperature T5 of the refrigerant flowing out from the refrigerant passage of the battery cooler 19.
 蒸発器温度センサ64fは、室内蒸発器18における冷媒蒸発温度である蒸発器温度Tefinを検出する蒸発器温度検出部である。本実施形態の蒸発器温度センサ64fは、室内蒸発器18の熱交換フィン温度を検出している。 The evaporator temperature sensor 64f is an evaporator temperature detection unit that detects the evaporator temperature Tefien, which is the refrigerant evaporation temperature in the indoor evaporator 18. The evaporator temperature sensor 64f of the present embodiment detects the heat exchange fin temperature of the indoor evaporator 18.
 冷却入口温度センサ64gは、電池冷却器19の冷媒通路へ流入する冷媒の温度を検出する冷却用熱交換部入口温度検出部である。 The cooling inlet temperature sensor 64g is a cooling heat exchange unit inlet temperature detecting unit that detects the temperature of the refrigerant flowing into the refrigerant passage of the battery cooler 19.
 第1冷媒圧力センサ65aは、水冷媒熱交換器12の冷媒通路から流出した冷媒の圧力P1を検出する第1冷媒圧力検出部である。第2冷媒圧力センサ65bは、電池冷却器19の冷媒通路から流出した冷媒の圧力P2を検出する第2冷媒圧力検出部である。 The first refrigerant pressure sensor 65a is a first refrigerant pressure detecting unit that detects the pressure P1 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12. The second refrigerant pressure sensor 65b is a second refrigerant pressure detecting unit that detects the pressure P2 of the refrigerant flowing out from the refrigerant passage of the battery cooler 19.
 高温側熱媒体温度センサ66は、水冷媒熱交換器12の水通路から流出した高温側熱媒体の温度である高温側熱媒体温度TWHを検出する高温側熱媒体温度検出部である。 The high temperature side heat medium temperature sensor 66 is a high temperature side heat medium temperature detection unit that detects the high temperature side heat medium temperature TWH, which is the temperature of the high temperature side heat medium flowing out from the water passage of the water refrigerant heat exchanger 12.
 空調風温度センサ68は、混合空間から車室内へ送風される空気温度TAVを検出する空調風温度検出部である。 The air-conditioned air temperature sensor 68 is an air-conditioned air temperature detection unit that detects the air temperature TAV blown from the mixed space to the vehicle interior.
 電池制御装置69は、電池80の入出力を制御する電池制御部である。電池制御装置69には、電池温度センサ69aからの検出信号が入力される。 The battery control device 69 is a battery control unit that controls the input / output of the battery 80. A detection signal from the battery temperature sensor 69a is input to the battery control device 69.
 電池温度センサ69aは、電池温度TB(すなわち、電池80の温度)を検出する電池温度検出部である。本実施形態の電池温度センサ69aは、複数の温度センサを有し、電池80の複数の箇所の温度を検出している。このため、サイクル制御装置60では、電池80の各部の温度差を検出することもできる。電池温度TBとしては、複数の温度センサの検出値の平均値を採用している。 The battery temperature sensor 69a is a battery temperature detection unit that detects the battery temperature TB (that is, the temperature of the battery 80). The battery temperature sensor 69a of the present embodiment has a plurality of temperature sensors and detects the temperature of a plurality of points of the battery 80. Therefore, the cycle control device 60 can also detect the temperature difference of each part of the battery 80. As the battery temperature TB, the average value of the detection values of a plurality of temperature sensors is adopted.
 サイクル制御装置60には、電池制御装置69から電池温度TB等の電池80に関する情報が入力される。 Information about the battery 80 such as the battery temperature TB is input from the battery control device 69 to the cycle control device 60.
 サイクル制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル70が接続され、操作パネル70に設けられた各種操作スイッチからの操作信号が入力される。 An operation panel 70 arranged near the instrument panel at the front of the vehicle interior is connected to the input side of the cycle control device 60, and operation signals from various operation switches provided on the operation panel 70 are input.
 操作パネル70に設けられた各種操作スイッチとしては、オートスイッチ、エアコンスイッチ、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。 Various operation switches provided on the operation panel 70 include an auto switch, an air conditioner switch, an air volume setting switch, a temperature setting switch, and a blowout mode changeover switch.
 オートスイッチは、車両用空調装置の自動制御運転を設定あるいは解除するための操作スイッチである。エアコンスイッチは、室内蒸発器18で空気の冷却を行うことを要求するための操作スイッチである。風量設定スイッチは、送風機32の風量をマニュアル設定するための操作スイッチである。温度設定スイッチは、車室内の目標温度Tsetを設定するための操作スイッチである。吹出モード切替スイッチは、吹出モードをマニュアル設定するための操作スイッチである。 The auto switch is an operation switch for setting or canceling the automatic control operation of the vehicle air conditioner. The air conditioner switch is an operation switch for requesting that the indoor evaporator 18 cools the air. The air volume setting switch is an operation switch for manually setting the air volume of the blower 32. The temperature setting switch is an operation switch for setting the target temperature Tset in the vehicle interior. The blowout mode changeover switch is an operation switch for manually setting the blowout mode.
 本実施形態のサイクル制御装置60は、出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものである。サイクル制御装置60のうちそれぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)は、それぞれの制御対象機器の作動を制御する制御部である。 The cycle control device 60 of the present embodiment is integrally configured with a control unit that controls various controlled devices connected to the output side. The configuration (hardware and software) that controls the operation of each of the control target devices in the cycle control device 60 is a control unit that controls the operation of each control target device.
 例えば、サイクル制御装置60のうち、圧縮機11の冷媒吐出能力(具体的には、圧縮機11の回転数)を制御する構成は、圧縮機制御部60aである。また、暖房用膨張弁14a、冷房用膨張弁14bおよび第1~第3冷却用膨張弁14c~14eの作動を制御する構成は、膨張弁制御部60bである。除湿用開閉弁15aおよび暖房用開閉弁15bの作動を制御する構成は、冷媒回路切替制御部60cである。 For example, in the cycle control device 60, the configuration for controlling the refrigerant discharge capacity of the compressor 11 (specifically, the rotation speed of the compressor 11) is the compressor control unit 60a. Further, the configuration for controlling the operation of the heating expansion valve 14a, the cooling expansion valve 14b, and the first to third cooling expansion valves 14c to 14e is the expansion valve control unit 60b. The configuration that controls the operation of the dehumidifying on-off valve 15a and the heating on-off valve 15b is the refrigerant circuit switching control unit 60c.
 さらに、高温側熱媒体ポンプ41の高温側熱媒体の圧送能力を制御する構成は、高温側熱媒体ポンプ制御部60dである。 Further, the configuration for controlling the pumping capacity of the high temperature side heat medium of the high temperature side heat medium pump 41 is the high temperature side heat medium pump control unit 60d.
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1は、車室内の空調を行うとともに、電池80の温度を調整する。冷凍サイクル装置10では、冷媒回路を切り替えて、以下の11種類の運転モードでの運転を行うことができる。 Next, the operation of the present embodiment in the above configuration will be described. The vehicle air conditioner 1 of the present embodiment air-conditions the interior of the vehicle and adjusts the temperature of the battery 80. In the refrigerating cycle device 10, the refrigerant circuit can be switched to operate in the following 11 types of operation modes.
 (1)冷房モード:冷房モードは、電池80の冷却を行うことなく、空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。 (1) Cooling mode: The cooling mode is an operation mode in which the inside of the vehicle is cooled by cooling the air and blowing it into the vehicle interior without cooling the battery 80.
 (2)直列除湿暖房モード:直列除湿暖房モードは、電池80の冷却を行うことなく、冷却されて除湿された空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 (2) Series dehumidification / heating mode: The series dehumidification / heating mode is an operation mode in which the inside of the vehicle is dehumidified and heated by reheating the cooled and dehumidified air and blowing it into the vehicle interior without cooling the battery 80. Is.
 (3)並列除湿暖房モード:並列除湿暖房モードは、電池80の冷却を行うことなく、冷却されて除湿された空気を直列除湿暖房モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 (3) Parallel dehumidifying / heating mode: In the parallel dehumidifying / heating mode, the cooled and dehumidified air is reheated with a higher heating capacity than the series dehumidifying / heating mode and blown out into the vehicle interior without cooling the battery 80. This is an operation mode in which dehumidifying and heating the interior of the vehicle is performed.
 (4)暖房モード:暖房モードは、電池80の冷却を行うことなく、空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (4) Heating mode: The heating mode is an operation mode in which the interior of the vehicle is heated by heating the air and blowing it into the vehicle interior without cooling the battery 80.
 (5)冷房冷却モード:冷房冷却モードは、電池80の冷却を行うとともに、空気を冷却して車室内へ吹き出すことによって車室内の冷房を行う運転モードである。 (5) Cooling cooling mode: The cooling cooling mode is an operation mode in which the battery 80 is cooled and the air is cooled and blown into the vehicle interior to cool the vehicle interior.
 (6)直列除湿暖房冷却モード:直列除湿暖房冷却モードは、電池80の冷却を行うとともに、冷却されて除湿された空気を再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 (6) In-series dehumidifying / heating / cooling mode: In the in-series dehumidifying / heating / cooling mode, the battery 80 is cooled, and the cooled and dehumidified air is reheated and blown out into the vehicle interior to perform dehumidifying / heating in the vehicle interior. The mode.
 (7)並列除湿暖房冷却モード:並列除湿暖房冷却モードは、電池80の冷却を行うとともに、冷却されて除湿された空気を直列除湿暖房冷却モードよりも高い加熱能力で再加熱して車室内へ吹き出すことによって車室内の除湿暖房を行う運転モードである。 (7) Parallel dehumidifying / heating / cooling mode: In the parallel dehumidifying / heating / cooling mode, the battery 80 is cooled and the cooled and dehumidified air is reheated with a higher heating capacity than the series dehumidifying / heating / cooling mode to enter the vehicle interior. This is an operation mode in which dehumidifying and heating the interior of the vehicle is performed by blowing out.
 (8)暖房冷却モード:暖房冷却モードは、電池80の冷却を行うとともに、空気を加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (8) Heating / cooling mode: The heating / cooling mode is an operation mode in which the battery 80 is cooled and the interior of the vehicle is heated by heating the air and blowing it into the vehicle interior.
 (9)暖房直列冷却モード:暖房直列冷却モードは、電池80の冷却を行うとともに、空気を暖房冷却モードよりも高い加熱能力で加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (9) Heating series cooling mode: The heating series cooling mode is an operation mode in which the battery 80 is cooled and the interior of the vehicle is heated by heating the air with a heating capacity higher than that of the heating / cooling mode and blowing it into the vehicle interior. Is.
 (10)暖房並列冷却モード:暖房並列冷却モードは、電池80の冷却を行うとともに、空気を暖房直列冷却モードよりも高い加熱能力で加熱して車室内へ吹き出すことによって車室内の暖房を行う運転モードである。 (10) Heating parallel cooling mode: In the heating parallel cooling mode, the battery 80 is cooled, and the air is heated with a higher heating capacity than the heating series cooling mode and blown out into the vehicle interior to heat the vehicle interior. The mode.
 (11)冷却モード:車室内の空調を行うことなく、電池80の冷却を行う運転モードである。 (11) Cooling mode: An operation mode in which the battery 80 is cooled without air-conditioning the interior of the vehicle.
 これらの運転モードの切り替えは、制御プログラムが実行されることによって行われる。制御プログラムは、乗員の操作によって操作パネル70のオートスイッチが投入(ON)されて、車室内の自動制御が設定された際に実行される。図5~図7を用いて、制御プログラムについて説明する。図5~図7のフローチャートに示す各制御ステップは、サイクル制御装置60が有する機能実現部である。 Switching between these operation modes is performed by executing the control program. The control program is executed when the auto switch of the operation panel 70 is turned on (ON) by the operation of the occupant and the automatic control in the vehicle interior is set. The control program will be described with reference to FIGS. 5 to 7. Each control step shown in the flowcharts of FIGS. 5 to 7 is a function realization unit included in the cycle control device 60.
 まず、図5のステップS10では、上述したセンサ群の検出信号、および操作パネル70の操作信号を読み込む。続くステップS20では、ステップS10にて読み込んだ検出信号および操作信号に基づいて、車室内へ送風される空気の目標温度である目標吹出温度TAOを決定する。従って、ステップS20は、目標吹出温度決定部である。 First, in step S10 of FIG. 5, the detection signal of the sensor group described above and the operation signal of the operation panel 70 are read. In the following step S20, the target blowout temperature TAO, which is the target temperature of the air blown into the vehicle interior, is determined based on the detection signal and the operation signal read in step S10. Therefore, step S20 is a target blowout temperature determination unit.
 具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C…(F1)
 数式F1において、Tsetは温度設定スイッチによって設定された車室内設定温度である。Trは内気センサ61によって検出された車室内温度である。Tamは外気センサ62によって検出された車室外温度である。Tsは日射センサ63によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
Specifically, the target blowout temperature TAO is calculated by the following mathematical formula F1.
TAO = Kset x Tset-Kr x Tr-Kam x Tam-Ks x Ts + C ... (F1)
In the formula F1, Tset is the vehicle interior set temperature set by the temperature setting switch. Tr is the vehicle interior temperature detected by the inside air sensor 61. Tam is the outside temperature of the vehicle interior detected by the outside air sensor 62. Ts is the amount of solar radiation detected by the solar radiation sensor 63. Kset, Kr, Kam, and Ks are control gains, and C is a correction constant.
 次に、ステップS30では、エアコンスイッチがON(投入)されているか否かが判定される。エアコンスイッチがONされていることは、乗員が車室内の冷房あるいは除湿を要求していることを意味している。換言すると、エアコンスイッチがONされていることは、室内蒸発器18にて空気を冷却することが要求されていることを意味している。 Next, in step S30, it is determined whether or not the air conditioner switch is turned on. The fact that the air conditioner switch is turned on means that the occupant is requesting cooling or dehumidification of the passenger compartment. In other words, turning on the air conditioner switch means that it is required to cool the air with the indoor evaporator 18.
 ステップS30にて、エアコンスイッチがONされていると判定された場合は、ステップS40へ進む。ステップS30にて、エアコンスイッチがONされていないと判定された場合は、ステップS160へ進む。 If it is determined in step S30 that the air conditioner switch is turned on, the process proceeds to step S40. If it is determined in step S30 that the air conditioner switch is not turned on, the process proceeds to step S160.
 ステップS40では、外気温Tamが予め定めた基準外気温KA(本実施形態では、0℃)以上であるか否かが判定される。基準外気温KAは、室内蒸発器18にて空気を冷却することが、空調対象空間の冷房あるいは除湿を行うために有効となるように設定されている。 In step S40, it is determined whether or not the outside air temperature Tam is equal to or higher than the predetermined standard non-standard air temperature KA (0 ° C. in this embodiment). The non-standard air temperature KA is set so that cooling the air with the indoor evaporator 18 is effective for cooling or dehumidifying the air-conditioned space.
 より詳細には、本実施形態では、室内蒸発器18の着霜を抑制するために、蒸発圧力調整弁20によって室内蒸発器18における冷媒蒸発温度を着霜抑制温度(本実施形態では、1℃)以上に維持している。このため、室内蒸発器18では、空気を着霜抑制温度より低い温度に冷却することができない。 More specifically, in the present embodiment, in order to suppress the frost formation of the indoor evaporator 18, the evaporation pressure adjusting valve 20 sets the refrigerant evaporation temperature in the indoor evaporator 18 to the frost formation suppression temperature (1 ° C. in the present embodiment). ) More than that. Therefore, the indoor evaporator 18 cannot cool the air to a temperature lower than the frost formation suppression temperature.
 つまり、室内蒸発器18へ流入する空気の温度が着霜抑制温度の温度よりも低くなっている際には、室内蒸発器18にて空気を冷却することは有効ではない。そこで、基準外気温KAを着霜抑制温度より低い値に設定し、外気温Tamが基準外気温KAより低くなっている際には、室内蒸発器18にて空気を冷却しないようにしている。 That is, when the temperature of the air flowing into the indoor evaporator 18 is lower than the temperature of the frost formation suppression temperature, it is not effective to cool the air with the indoor evaporator 18. Therefore, the non-standard air temperature KA is set to a value lower than the frost formation suppression temperature, and when the outside air temperature Tam is lower than the standard non-standard air temperature KA, the air is not cooled by the indoor evaporator 18.
 ステップS40にて、外気温Tamが基準外気温KA以上であると判定された場合は、ステップS50へ進む。ステップS40にて、外気温Tamが基準外気温KA以上ではないと判定された場合は、ステップS160へ進む。 If it is determined in step S40 that the outside air temperature Tam is equal to or higher than the standard non-standard air temperature KA, the process proceeds to step S50. If it is determined in step S40 that the outside air temperature Tam is not equal to or higher than the standard non-standard air temperature KA, the process proceeds to step S160.
 ステップS50では、目標吹出温度TAOが冷房用基準温度α1以下であるか否かが判定される。冷房用基準温度α1は、サイクル制御装置60によって決定される。 In step S50, it is determined whether or not the target blowing temperature TAO is equal to or lower than the cooling reference temperature α1. The cooling reference temperature α1 is determined by the cycle control device 60.
 ステップS50にて、目標吹出温度TAOが冷房用基準温度α1以下であると判定された場合は、ステップS60へ進む。ステップS50にて、目標吹出温度TAOが冷房用基準温度α1以下ではないと判定された場合は、ステップS90へ進む。 If it is determined in step S50 that the target blowing temperature TAO is equal to or lower than the cooling reference temperature α1, the process proceeds to step S60. If it is determined in step S50 that the target blowing temperature TAO is not equal to or lower than the cooling reference temperature α1, the process proceeds to step S90.
 ステップS60では、電池80の冷却が必要であるか否かが判定される。具体的には、本実施形態では、電池温度センサ69aによって検出された電池温度TBが予め定めた基準冷却温度KTB(本実施形態では、35℃)以上となっている際に、電池80の冷却が必要であると判定する。また、電池温度TBが基準冷却温度KTBより低くなっている際に、電池80の冷却は必要でないと判定する。 In step S60, it is determined whether or not the battery 80 needs to be cooled. Specifically, in the present embodiment, the battery 80 is cooled when the battery temperature TB detected by the battery temperature sensor 69a is equal to or higher than the predetermined reference cooling temperature KTB (35 ° C. in the present embodiment). Is determined to be necessary. Further, when the battery temperature TB is lower than the reference cooling temperature KTB, it is determined that the battery 80 does not need to be cooled.
 ステップS60にて、電池80の冷却が必要であると判定された場合は、ステップS70へ進み、運転モードとして(5)冷房冷却モードが選択される。ステップS60にて、電池80の冷却が必要でないと判定された場合は、ステップS80へ進み、運転モードとして(1)冷房モードが選択される。 If it is determined in step S60 that the battery 80 needs to be cooled, the process proceeds to step S70, and (5) cooling cooling mode is selected as the operation mode. If it is determined in step S60 that the battery 80 does not need to be cooled, the process proceeds to step S80, and (1) cooling mode is selected as the operation mode.
 ステップS90では、目標吹出温度TAOが除湿用基準温度β1以下であるか否かが判定される。除湿用基準温度β1は、サイクル制御装置60によって決定される。除湿用基準温度β1は、冷房用基準温度α1よりも高い値に決定される。 In step S90, it is determined whether or not the target blowout temperature TAO is equal to or lower than the dehumidification reference temperature β1. The dehumidifying reference temperature β1 is determined by the cycle control device 60. The dehumidifying reference temperature β1 is determined to be higher than the cooling reference temperature α1.
 ステップS90にて、目標吹出温度TAOが除湿用基準温度β1以下であると判定された場合は、ステップS100へ進む。ステップS90にて、目標吹出温度TAOが除湿用基準温度β1以下ではないと判定された場合は、ステップS130へ進む。 If it is determined in step S90 that the target blowout temperature TAO is equal to or lower than the dehumidification reference temperature β1, the process proceeds to step S100. If it is determined in step S90 that the target blowing temperature TAO is not equal to or lower than the dehumidifying reference temperature β1, the process proceeds to step S130.
 ステップS100では、ステップS60と同様に、電池80の冷却が必要であるか否かが判定される。 In step S100, it is determined whether or not the battery 80 needs to be cooled, as in step S60.
 ステップS100にて、電池80の冷却が必要であると判定された場合は、ステップS110へ進み、冷凍サイクル装置10の運転モードとして(6)直列除湿暖房冷却モードが選択される。ステップS100にて、電池80の冷却が必要でないと判定された場合は、ステップS120へ進み、運転モードとして(2)直列除湿暖房モードが選択される。 If it is determined in step S100 that the battery 80 needs to be cooled, the process proceeds to step S110, and (6) series dehumidifying / heating / cooling mode is selected as the operation mode of the refrigerating cycle device 10. If it is determined in step S100 that the battery 80 does not need to be cooled, the process proceeds to step S120, and (2) series dehumidification / heating mode is selected as the operation mode.
 ステップS130では、ステップS60と同様に、電池80の冷却が必要であるか否かが判定される。 In step S130, it is determined whether or not the battery 80 needs to be cooled, as in step S60.
 ステップS130にて、電池80の冷却が必要であると判定された場合は、ステップS140へ進み、冷凍サイクル装置10の運転モードとして(7)並列除湿暖房冷却モードが選択される。ステップS100にて、電池80の冷却が必要でないと判定された場合は、ステップS150へ進み、運転モードとして(3)並列除湿暖房モードが選択される。 If it is determined in step S130 that the battery 80 needs to be cooled, the process proceeds to step S140, and (7) parallel dehumidification / heating / cooling mode is selected as the operation mode of the refrigeration cycle device 10. If it is determined in step S100 that the battery 80 does not need to be cooled, the process proceeds to step S150, and (3) parallel dehumidification / heating mode is selected as the operation mode.
 続いて、ステップS30あるいはステップS40からステップS160へ進んだ場合について説明する。ステップS30あるいはステップS40からステップS160へ進んだ場合は、室内蒸発器18にて空気を冷却することが有効ではないと判定された場合である。ステップS160では、図6に示すように、目標吹出温度TAOが暖房用基準温度γ以上であるか否かが判定される。 Subsequently, a case where the process proceeds from step S30 or step S40 to step S160 will be described. When the process proceeds from step S30 or step S40 to step S160, it is a case where it is determined that it is not effective to cool the air with the indoor evaporator 18. In step S160, as shown in FIG. 6, it is determined whether or not the target blowing temperature TAO is equal to or higher than the heating reference temperature γ.
 暖房用基準温度γは、サイクル制御装置60によって決定される。暖房用基準温度γは、ヒータコア42にて空気を加熱することが、空調対象空間の暖房を行うために有効となるように設定されている。 The heating reference temperature γ is determined by the cycle control device 60. The heating reference temperature γ is set so that heating the air with the heater core 42 is effective for heating the air-conditioned space.
 ステップS160にて、目標吹出温度TAOが暖房用基準温度γ以上であると判定された場合は、ヒータコア42にて空気を加熱する必要がある場合であり、ステップS170へ進む。ステップS160にて、目標吹出温度TAOが暖房用基準温度γ以上ではないと判定された場合は、ヒータコア42にて空気を加熱する必要がない場合であり、ステップS240へ進む。 If it is determined in step S160 that the target outlet temperature TAO is equal to or higher than the heating reference temperature γ, it means that it is necessary to heat the air with the heater core 42, and the process proceeds to step S170. If it is determined in step S160 that the target outlet temperature TAO is not equal to or higher than the heating reference temperature γ, it is not necessary to heat the air with the heater core 42, and the process proceeds to step S240.
 ステップS170では、ステップS60と同様に、電池80の冷却が必要であるか否かが判定される。 In step S170, it is determined whether or not the battery 80 needs to be cooled, as in step S60.
 ステップS170にて、電池80の冷却が必要であると判定された場合は、ステップS180へ進む。ステップS170にて、電池80の冷却が必要でないと判定された場合は、ステップS230へ進み、運転モードとして(4)暖房モードが選択される。 If it is determined in step S170 that the battery 80 needs to be cooled, the process proceeds to step S180. If it is determined in step S170 that cooling of the battery 80 is not necessary, the process proceeds to step S230, and (4) heating mode is selected as the operation mode.
 ここで、ステップS170にて、電池80の冷却が必要であると判定されてステップS180へ進んだ場合は、車室内の暖房と電池80の冷却との双方を行う必要がある。このため、冷凍サイクル装置10では、水冷媒熱交換器12にて冷媒が高温側熱媒体へ放熱する放熱量と、電池冷却器19にて冷媒が電池80から吸熱する吸熱量とを適切に調整する必要がある。 Here, if it is determined in step S170 that the battery 80 needs to be cooled and the process proceeds to step S180, it is necessary to both heat the vehicle interior and cool the battery 80. Therefore, in the refrigeration cycle device 10, the amount of heat dissipated by the refrigerant to the heat medium on the high temperature side in the water-refrigerant heat exchanger 12 and the amount of heat absorbed by the refrigerant from the battery 80 in the battery cooler 19 are appropriately adjusted. There is a need to.
 そこで、本実施形態の冷凍サイクル装置10では、車室内の暖房と電池80の冷却との双方を行う必要がある場合には、図6のステップS180~S220に示すように、(8)暖房冷却モード、(9)暖房直列冷却モード、(10)暖房並列冷却モードの3つの運転モードを切り替える。 Therefore, in the refrigerating cycle device 10 of the present embodiment, when it is necessary to both heat the interior of the vehicle and cool the battery 80, as shown in steps S180 to S220 of FIG. 6, (8) heating and cooling The three operation modes of mode, (9) heating series cooling mode, and (10) heating parallel cooling mode are switched.
 まず、ステップS180では、目標吹出温度TAOが低温側冷却基準温度α2以下であるか否かが判定される。低温側冷却基準温度α2は、サイクル制御装置60によって決定される。低温側冷却基準温度α2は、冷房用基準温度α1よりも高く、かつ除湿用基準温度β1よりも低い値に決定される。 First, in step S180, it is determined whether or not the target blowing temperature TAO is equal to or lower than the low temperature side cooling reference temperature α2. The low temperature side cooling reference temperature α2 is determined by the cycle control device 60. The cooling reference temperature α2 on the low temperature side is determined to be higher than the cooling reference temperature α1 and lower than the dehumidifying reference temperature β1.
 ステップS180にて、目標吹出温度TAOが低温側冷却基準温度α2以下であると判定された場合は、ステップS190へ進み、運転モードとして(8)暖房冷却モードが選択される。ステップS180にて、目標吹出温度TAOが低温側冷却基準温度α2以下ではないと判定された場合は、ステップS200へ進む。 If it is determined in step S180 that the target outlet temperature TAO is the low temperature side cooling reference temperature α2 or less, the process proceeds to step S190, and (8) heating / cooling mode is selected as the operation mode. If it is determined in step S180 that the target blowing temperature TAO is not equal to or lower than the low temperature side cooling reference temperature α2, the process proceeds to step S200.
 ステップS200では、目標吹出温度TAOが高温側冷却基準温度β2以下であるか否かが判定される。高温側冷却基準温度β2は、サイクル制御装置60によって決定される。高温側冷却基準温度β2は、除湿用基準温度β1よりも高い値に決定される。 In step S200, it is determined whether or not the target blowout temperature TAO is equal to or lower than the high temperature side cooling reference temperature β2. The high temperature side cooling reference temperature β2 is determined by the cycle control device 60. The high temperature side cooling reference temperature β2 is determined to be higher than the dehumidifying reference temperature β1.
 ステップS200にて、目標吹出温度TAOが高温側冷却基準温度β2以下であると判定された場合は、ステップS210へ進み、運転モードとして(9)暖房直列冷却モードが選択される。ステップS200にて、目標吹出温度TAOが高温側冷却基準温度β2以下ではないと判定された場合は、ステップS220へ進み、運転モードとして(10)暖房並列冷却モードが選択される。 If it is determined in step S200 that the target outlet temperature TAO is equal to or lower than the high temperature side cooling reference temperature β2, the process proceeds to step S210, and (9) heating series cooling mode is selected as the operation mode. If it is determined in step S200 that the target outlet temperature TAO is not equal to or lower than the high temperature side cooling reference temperature β2, the process proceeds to step S220, and (10) heating parallel cooling mode is selected as the operation mode.
 続いて、ステップS160からステップS240へ進んだ場合について説明する。ステップS160からステップS240へ進んだ場合は、ヒータコア42にて空気を加熱する必要がない場合である。そこで、ステップS240では、ステップS60と同様に、電池80の冷却が必要であるか否かが判定される。 Next, a case where the process proceeds from step S160 to step S240 will be described. When the process proceeds from step S160 to step S240, it is not necessary to heat the air with the heater core 42. Therefore, in step S240, it is determined whether or not the battery 80 needs to be cooled, as in step S60.
 ステップS240にて、電池80の冷却が必要であると判定された場合は、ステップS250へ進み、運転モードとして(11)冷却モードが選択される。ステップS200にて、電池80の冷却が必要でないと判定された場合は、ステップS260へ進み、運転モードとして送風モードが選択されて、ステップS10へ戻る。 If it is determined in step S240 that the battery 80 needs to be cooled, the process proceeds to step S250, and (11) cooling mode is selected as the operation mode. If it is determined in step S200 that the battery 80 does not need to be cooled, the process proceeds to step S260, the ventilation mode is selected as the operation mode, and the process returns to step S10.
 送風モードは、圧縮機11を停止させて、風量設定スイッチによって設定された設定信号に応じて送風機32を作動させる運転モードである。なお、ステップS240にて、電池80の冷却が必要でないと判定された場合は、車室内の空調および電池の冷却のための冷凍サイクル装置10を作動させる必要がない場合である。 The blower mode is an operation mode in which the compressor 11 is stopped and the blower 32 is operated according to the setting signal set by the air volume setting switch. If it is determined in step S240 that the battery 80 does not need to be cooled, it is not necessary to operate the refrigerating cycle device 10 for air conditioning in the vehicle interior and cooling of the battery.
 本実施形態の制御プログラムでは、以上の如く、冷凍サイクル装置10の運転モードの切り替えを行う。さらに、制御プログラムでは、冷凍サイクル装置10の各構成機器の作動のみならず、加熱部を構成する高温側熱媒体回路40の高温側熱媒体ポンプ41の作動も制御している。 In the control program of this embodiment, the operation mode of the refrigerating cycle device 10 is switched as described above. Further, the control program controls not only the operation of each component of the refrigeration cycle device 10, but also the operation of the high temperature side heat medium pump 41 of the high temperature side heat medium circuit 40 constituting the heating unit.
 具体的には、サイクル制御装置60は、上述した冷凍サイクル装置10の運転モードによらず、予め定めた各運転モード毎の基準圧送能力を発揮するように、高温側熱媒体ポンプ41の作動を制御する。 Specifically, the cycle control device 60 operates the high temperature side heat medium pump 41 so as to exhibit the reference pumping capacity for each predetermined operation mode regardless of the operation mode of the refrigeration cycle device 10 described above. Control.
 従って、高温側熱媒体回路40では、水冷媒熱交換器12の水通路にて、高温側熱媒体が加熱されると、加熱された高温側熱媒体がヒータコア42へ圧送される。ヒータコア42へ流入した高温側熱媒体は、空気と熱交換する。これにより、空気が加熱される。ヒータコア42から流出した高温側熱媒体は、高温側熱媒体ポンプ41に吸入されて、水冷媒熱交換器12へ圧送される。 Therefore, in the high temperature side heat medium circuit 40, when the high temperature side heat medium is heated in the water passage of the water refrigerant heat exchanger 12, the heated high temperature side heat medium is pressure-fed to the heater core 42. The high temperature side heat medium flowing into the heater core 42 exchanges heat with air. This heats the air. The high temperature side heat medium flowing out of the heater core 42 is sucked into the high temperature side heat medium pump 41 and pumped to the water refrigerant heat exchanger 12.
 以下に、各運転モードにおける車両用空調装置1の詳細作動について説明する。各運転モードでは、サイクル制御装置60が、各運転モードの制御フローを実行する。 The detailed operation of the vehicle air conditioner 1 in each operation mode will be described below. In each operation mode, the cycle control device 60 executes the control flow of each operation mode.
 (1)冷房モード
 冷房モードの制御フローでは、最初のステップで目標蒸発器温度TEOを決定する。目標蒸発器温度TEOは、目標吹出温度TAOに基づいて、サイクル制御装置60に記憶された制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標蒸発器温度TEOが上昇するように決定される。
(1) Cooling mode In the control flow of the cooling mode, the target evaporator temperature TEO is determined in the first step. The target evaporator temperature TEO is determined based on the target blowout temperature TAO with reference to the control map stored in the cycle control device 60. In the control map of the present embodiment, it is determined that the target evaporator temperature TEO increases as the target blowout temperature TAO increases.
 次のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。増減量ΔIVOは、目標蒸発器温度TEOと蒸発器温度センサ64fによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法により、蒸発器温度Tefinが目標蒸発器温度TEOに近づくように決定される。 In the next step, the amount of increase / decrease ΔIVO in the rotation speed of the compressor 11 is determined. The increase / decrease amount ΔIVO is set so that the evaporator temperature Tefin approaches the target evaporator temperature TEO by the feedback control method based on the deviation between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f. It is determined.
 次のステップでは、室外熱交換器16から流出した冷媒の目標過冷却度SCO1を決定する。目標過冷却度SCO1は、例えば、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。 In the next step, the target supercooling degree SCO1 of the refrigerant flowing out from the outdoor heat exchanger 16 is determined. The target supercooling degree SCO1 is determined with reference to the control map, for example, based on the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 次のステップでは、冷房用膨張弁14bの絞り開度の増減量ΔEVCを決定する。増減量ΔEVCは、目標過冷却度SCO1と室外熱交換器16の出口側冷媒の過冷却度SC1との偏差に基づいて、フィードバック制御手法により、室外熱交換器16の出口側冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように決定される。 In the next step, the amount of increase / decrease ΔEVC in the throttle opening of the cooling expansion valve 14b is determined. The increase / decrease amount ΔEVC is the supercooling degree of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16. SC1 is determined to approach the target supercooling degree SCO1.
 室外熱交換器16の出口側冷媒の過冷却度SC1は、第3冷媒温度センサ64cによって検出された温度T3および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。 The degree of supercooling SC1 of the outlet side refrigerant of the outdoor heat exchanger 16 is calculated based on the temperature T3 detected by the third refrigerant temperature sensor 64c and the pressure P1 detected by the first refrigerant pressure sensor 65a.
 次のステップでは、以下数式F2を用いて、エアミックスドア34の開度SWを算定する。
SW={TAO+(Tefin+C2)}/{TWH+(Tefin+C2)}…(F2)
 数式F2において、TWHは、高温側熱媒体温度センサ66によって検出された高温側熱媒体温度である。C2は制御用の定数である。
In the next step, the opening SW of the air mix door 34 is calculated using the following formula F2.
SW = {TAO + (Tefin + C2)} / {TWH + (Tefin + C2)} ... (F2)
In the formula F2, TWH is the high temperature side heat medium temperature detected by the high temperature side heat medium temperature sensor 66. C2 is a constant for control.
 次のステップでは、冷凍サイクル装置10を冷房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを冷媒減圧作用を発揮する絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the cooling mode refrigerant circuit, the heating expansion valve 14a is set to the fully open state, the cooling expansion valve 14b is set to the throttle state that exerts the refrigerant depressurizing action, and the cooling expansion valve is set. The 14c is fully closed, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、冷房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, the indoor evaporator 18, A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、冷房モードの冷凍サイクル装置10では、水冷媒熱交換器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷房用膨張弁14bが冷媒を減圧させる減圧部として機能し、室内蒸発器18が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the cooling mode, the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11 for cooling. A steam compression type refrigeration cycle is configured in which the expansion valve 14b functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the indoor evaporator 18 functions as an evaporator.
 これによれば、室内蒸発器18にて、空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
 従って、冷房モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された空気の一部をヒータコア42にて再加熱し、目標吹出温度TAOに近づくように温度調整された空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。 Therefore, in the vehicle air conditioner 1 in the cooling mode, a part of the air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and approaches the target blowout temperature TAO. By blowing out the air whose temperature has been adjusted so as to be blown into the vehicle interior, the vehicle interior can be cooled.
 (2)直列除湿暖房モード
 直列除湿暖房モードの制御フローでは、最初のステップで、冷房モードと同様に、目標蒸発器温度TEOを決定する。次のステップでは、冷房モードと同様に、圧縮機11の回転数の増減量ΔIVOを決定する。
(2) Series dehumidification / heating mode In the control flow of the series dehumidification / heating mode, the target evaporator temperature TEO is determined in the first step as in the cooling mode. In the next step, as in the cooling mode, the amount of increase / decrease ΔIVO in the rotation speed of the compressor 11 is determined.
 次のステップでは、ヒータコア42にて空気を加熱できるように、高温側熱媒体の目標高温側熱媒体温度TWHOを決定する。目標高温側熱媒体温度TWHOは、目標吹出温度TAOおよびヒータコア42の効率に基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、目標吹出温度TAOの上昇に伴って、目標高温側熱媒体温度TWHOが上昇するように決定される。 In the next step, the target high temperature side heat medium temperature TWHO is determined so that the air can be heated by the heater core 42. The target high temperature side heat medium temperature TWHO is determined with reference to the control map based on the target blowout temperature TAO and the efficiency of the heater core 42. In the control map of the present embodiment, it is determined that the target high temperature side heat medium temperature TWHO increases as the target blowout temperature TAO increases.
 次のステップでは、開度パターンKPN1の変化量ΔKPN1を決定する。開度パターンKPN1は、暖房用膨張弁14aの絞り開度および冷房用膨張弁14bの絞り開度の組合せを決定するためのパラメータである。 In the next step, the amount of change ΔKPN1 of the opening pattern KPN1 is determined. The opening pattern KPN1 is a parameter for determining a combination of the throttle opening of the heating expansion valve 14a and the throttle opening of the cooling expansion valve 14b.
 具体的には、直列除湿暖房モードでは、目標吹出温度TAOが上昇するに伴って、開度パターンKPN1が大きくなる。そして、開度パターンKPN1が大きくなるに伴って、暖房用膨張弁14aの絞り開度が小さくなり、冷房用膨張弁14bの絞り開度が大きくなる。 Specifically, in the series dehumidification / heating mode, the opening pattern KPN1 increases as the target outlet temperature TAO rises. Then, as the opening degree pattern KPN1 becomes larger, the throttle opening degree of the heating expansion valve 14a becomes smaller, and the throttle opening degree of the cooling expansion valve 14b becomes larger.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、直列除湿暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、エアミックスドア34の開度SWが100%に近づく。このため、直列除湿暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量がヒータコア42を通過するように、エアミックスドア34の開度が決定される。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode. Here, in the series dehumidifying / heating mode, the target blowing temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the series dehumidifying / heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
 次のステップでは、冷凍サイクル装置10を直列除湿暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the series dehumidifying and heating mode, the heating expansion valve 14a is in the throttled state, the cooling expansion valve 14b is in the throttled state, and the cooling expansion valve 14c is fully closed. In this state, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、直列除湿暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the series dehumidifying / heating mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, and the indoor evaporator. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 18, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、直列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aおよび冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigeration cycle device 10 in the series dehumidifying / heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) for dissipating the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and A steam compression type refrigeration cycle is configured in which the expansion valve 14b for cooling functions as a pressure reducing unit and the indoor evaporator 18 functions as an evaporator.
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). .. When the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
 これによれば、室内蒸発器18にて、空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。従って、直列除湿暖房モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、ヒータコア42にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the series dehumidifying / heating mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out.
 (3)並列除湿暖房モード
 並列除湿暖房モードの制御フローの最初のステップでは、ヒータコア42にて空気を加熱できるように、直列除湿暖房モードと同様に、高温側熱媒体の目標高温側熱媒体温度TWHOが決定される。
(3) Parallel dehumidifying and heating mode In the first step of the control flow of the parallel dehumidifying and heating mode, the target high temperature side heat medium temperature of the high temperature side heat medium is the same as in the series dehumidifying and heating mode so that the air can be heated by the heater core 42. TWHO is determined.
 次のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。並列除湿暖房モードでは、増減量ΔIVOは、目標高温側熱媒体温度TWHOと高温側熱媒体温度TWHとの偏差に基づいて、フィードバック制御手法により、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように決定される。 In the next step, the amount of increase / decrease ΔIVO in the rotation speed of the compressor 11 is determined. In the parallel dehumidifying / heating mode, the increase / decrease amount ΔIVO is based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH, and the high temperature side heat medium temperature TWH is the target high temperature side heat medium temperature by the feedback control method. Determined to approach TWHO.
 次のステップでは、室内蒸発器18の出口側冷媒の目標過熱度SHEOを決定する。目標過熱度SHEOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。 In the next step, the target superheat degree SHEO of the refrigerant on the outlet side of the indoor evaporator 18 is determined. As the target superheat degree SHEO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
 次のステップでは、開度パターンKPN1の変化量ΔKPN1を決定する。並列除湿暖房モードでは、目標過熱度SHEOと室内蒸発器18の出口側冷媒の過熱度SHEとの偏差に基づいて、フィードバック制御手法により、過熱度SHEが目標過熱度SHEOに近づくように決定される。 In the next step, the amount of change ΔKPN1 of the opening pattern KPN1 is determined. In the parallel dehumidification / heating mode, the superheat degree SH is determined to approach the target superheat degree SHEO by the feedback control method based on the deviation between the target superheat degree SHEO and the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18. ..
 室内蒸発器18の出口側冷媒の過熱度SHEは、第4冷媒温度センサ64dによって検出された温度T4および蒸発器温度Tefinに基づいて算出される。 The superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 and the evaporator temperature Tefin detected by the fourth refrigerant temperature sensor 64d.
 また、並列除湿暖房モードでは、開度パターンKPN1が大きくなるに伴って、暖房用膨張弁14aの絞り開度が小さくなり、冷房用膨張弁14bの絞り開度が大きくなる。従って、開度パターンKPN1が大きくなると、室内蒸発器18へ流入する冷媒流量が増加し、室内蒸発器18の出口側冷媒の過熱度SHEが低下する。 Further, in the parallel dehumidifying / heating mode, as the opening pattern KPN1 increases, the throttle opening of the heating expansion valve 14a decreases, and the throttle opening of the cooling expansion valve 14b increases. Therefore, when the opening pattern KPN1 becomes large, the flow rate of the refrigerant flowing into the indoor evaporator 18 increases, and the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 decreases.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、並列除湿暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、直列除湿暖房モードと同様に、エアミックスドア34の開度SWが100%に近づく。このため、並列除湿暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量がヒータコア42を通過するように、エアミックスドア34の開度が決定される。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode. Here, in the parallel dehumidifying / heating mode, the target outlet temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100% as in the series dehumidifying / heating mode. Therefore, in the parallel dehumidifying / heating mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
 次のステップでは、冷凍サイクル装置10を並列除湿暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the parallel dehumidifying / heating mode, the heating expansion valve 14a is in the throttled state, the cooling expansion valve 14b is in the throttled state, and the cooling expansion valve 14c is fully closed. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、並列除湿暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the parallel dehumidifying / heating mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in that order. Circulates, and the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11. A compression refrigeration cycle is constructed.
 つまり、並列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigeration cycle device 10 in the parallel dehumidifying / heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used. The outdoor heat exchanger 16 functions as a decompression unit, and the heating expansion valve 14a and the cooling expansion valve 14b connected in parallel to the outdoor heat exchanger 16 function as a decompression unit. , A refrigeration cycle is configured in which the indoor evaporator 18 functions as an evaporator.
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。従って、並列除湿暖房モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、ヒータコア42にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the parallel dehumidifying / heating mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out.
 (4)暖房モード
 暖房モードの制御フローの最初のステップでは、並列除湿暖房モードと同様に、高温側熱媒体の目標高温側熱媒体温度TWHOが決定される。次のステップでは、並列除湿暖房モードと同様に、圧縮機11の回転数の増減量ΔIVOを決定する。
(4) Heating mode In the first step of the control flow of the heating mode, the target high temperature side heat medium temperature TWHO of the high temperature side heat medium is determined as in the parallel dehumidification heating mode. In the next step, the increase / decrease amount ΔIVO of the rotation speed of the compressor 11 is determined as in the parallel dehumidification / heating mode.
 次のステップでは、水冷媒熱交換器12の冷媒通路から流出した冷媒の目標過冷却度SCO2を決定する。目標過冷却度SCO2は、室内蒸発器18へ流入する空気の吸込温度あるいは外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO2を決定する。 In the next step, the target supercooling degree SCO2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is determined. The target supercooling degree SCO2 is determined with reference to the control map based on the suction temperature of the air flowing into the indoor evaporator 18 or the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO2 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 次のステップでは、暖房用膨張弁14aの絞り開度の増減量ΔEVHを決定する。増減量ΔEVHは、目標過冷却度SCO2と水冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC2との偏差に基づいて、フィードバック制御手法により、水冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC2が目標過冷却度SCO2に近づくように決定される。 In the next step, the amount of increase / decrease ΔEVH in the throttle opening of the heating expansion valve 14a is determined. The increase / decrease amount ΔEVH is the refrigerant passage of the water refrigerant heat exchanger 12 by the feedback control method based on the deviation between the target supercooling degree SCO2 and the overcooling degree SC2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12. The degree of supercooling SC2 of the refrigerant flowing out from is determined to approach the target degree of supercooling SCO2.
 水冷媒熱交換器12の冷媒通路から流出した冷媒の過冷却度SC2は、第2冷媒温度センサ64bによって検出された温度T2および第1冷媒圧力センサ65aによって検出された圧力P1に基づいて算出される。 The degree of supercooling SC2 of the refrigerant flowing out from the refrigerant passage of the water refrigerant heat exchanger 12 is calculated based on the temperature T2 detected by the second refrigerant temperature sensor 64b and the pressure P1 detected by the first refrigerant pressure sensor 65a. To.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。ここで、暖房モードでは、冷房モードよりも目標吹出温度TAOが高くなるので、エアミックスドア34の開度SWが100%に近づく。このため、暖房モードでは、室内蒸発器18通過後の空気のほぼ全流量がヒータコア42を通過するように、エアミックスドア34の開度が決定される。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode. Here, in the heating mode, the target outlet temperature TAO is higher than in the cooling mode, so that the opening SW of the air mix door 34 approaches 100%. Therefore, in the heating mode, the opening degree of the air mix door 34 is determined so that substantially the entire flow rate of the air after passing through the indoor evaporator 18 passes through the heater core 42.
 次のステップでは、冷凍サイクル装置10を暖房モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを全閉状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを開く。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the heating mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and the cooling expansion valve 14c is fully closed. Then, the dehumidifying on-off valve 15a is closed and the heating on-off valve 15b is opened. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、暖房モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the heating mode, the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11. A steam compression type refrigeration cycle is configured.
 つまり、暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is a decompression unit. A refrigeration cycle is configured in which the outdoor heat exchanger 16 functions as an evaporator.
 これによれば、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。従って、暖房モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。 According to this, the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Therefore, in the vehicle air conditioner 1 in the heating mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle.
 (5)冷房冷却モード
 冷房冷却モードの制御フローの最初のステップでは、冷房モードと同様に、目標蒸発器温度TEO、圧縮機11の回転数の増減量ΔIVO、目標過冷却度SCO1、冷房用膨張弁14bの絞り開度の増減量ΔEVC、エアミックスドア34の開度SWを決定する。
(5) Cooling cooling mode In the first step of the control flow of the cooling cooling mode, the target evaporator temperature TEO, the increase / decrease amount of the number of revolutions of the compressor 11 ΔIVO, the target supercooling degree SCO1, and the expansion for cooling are the same as in the cooling mode. The amount of increase / decrease in the throttle opening of the valve 14b ΔEVC and the opening SW of the air mix door 34 are determined.
 次のステップでは、室内蒸発器18の出口側冷媒の目標過熱度SHEOを決定する。目標過熱度SHEOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。 In the next step, the target superheat degree SHEO of the refrigerant on the outlet side of the indoor evaporator 18 is determined. As the target superheat degree SHEO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
 次のステップでは、冷却用膨張弁14cの絞り開度の増減量ΔEVBを決定する。冷房冷却モードでは、増減量ΔEVBは、目標過熱度SHEOと室内蒸発器18の出口側冷媒の過熱度SHEとの偏差に基づいて、フィードバック制御手法により、室内蒸発器18の出口側冷媒の過熱度SHEが目標過熱度SHEOに近づくように決定される。 In the next step, the amount of increase / decrease ΔEVB in the throttle opening of the cooling expansion valve 14c is determined. In the cooling cooling mode, the increase / decrease amount ΔEVB is based on the deviation between the target superheat degree SHEO and the superheat degree SH of the outlet side refrigerant of the indoor evaporator 18, and the superheat degree of the outlet side refrigerant of the indoor evaporator 18 is determined by a feedback control method. The SHE is determined to approach the target superheat degree SHEO.
 室内蒸発器18の出口側冷媒の過熱度SHEは、第4冷媒温度センサ64dによって検出された温度T4および蒸発器温度Tefinに基づいて算出される。 The superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18 is calculated based on the temperature T4 and the evaporator temperature Tefin detected by the fourth refrigerant temperature sensor 64d.
 目標過熱度SHEOが室内蒸発器18の出口側冷媒の過熱度SHEよりも大きい場合、冷却用膨張弁14cの絞り開度の増減量ΔEVBを正の値にする。これにより、冷却用膨張弁14cの絞り開度が大きくなるので、電池冷却器19へ流入する冷媒の流量が増加し室内蒸発器18へ流入する冷媒の流量が減少する。その結果、室内蒸発器18の出口側冷媒の過熱度SHEが大きくなって目標過熱度SHEOに近づく。 When the target superheat degree SHO is larger than the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18, the increase / decrease amount ΔEVB of the throttle opening of the cooling expansion valve 14c is set to a positive value. As a result, the throttle opening of the cooling expansion valve 14c becomes large, so that the flow rate of the refrigerant flowing into the battery cooler 19 increases and the flow rate of the refrigerant flowing into the indoor evaporator 18 decreases. As a result, the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 becomes large and approaches the target superheat degree SHEO.
 一方、目標過熱度SHEOが室内蒸発器18の出口側冷媒の過熱度SHEよりも小さい場合、冷却用膨張弁14cの絞り開度の増減量ΔEVBを負の値にする。これにより、冷却用膨張弁14cの絞り開度が小さくなるので、電池冷却器19へ流入する冷媒の流量が減少し室内蒸発器18へ流入する冷媒の流量が増加する。その結果、室内蒸発器18の出口側冷媒の過熱度SHEが小さくなって目標過熱度SHEOに近づく。 On the other hand, when the target superheat degree SHEO is smaller than the superheat degree SHE of the outlet side refrigerant of the indoor evaporator 18, the increase / decrease amount ΔEVB of the throttle opening of the cooling expansion valve 14c is set to a negative value. As a result, the throttle opening of the cooling expansion valve 14c becomes smaller, so that the flow rate of the refrigerant flowing into the battery cooler 19 decreases and the flow rate of the refrigerant flowing into the indoor evaporator 18 increases. As a result, the superheat degree SH of the refrigerant on the outlet side of the indoor evaporator 18 becomes small and approaches the target superheat degree SHEO.
 次のステップでは、冷凍サイクル装置10を冷房冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the cooling / cooling mode, the heating expansion valve 14a is set to the fully open state, the cooling expansion valve 14b is set to the throttle state, and the cooling expansion valve 14c is set to the throttle state. , The dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、冷房冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, and the indoor evaporator 18 Refrigerant circulates in the order of the evaporation pressure adjusting valve 20, the accumulator 21, the compressor 11, and the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the expansion valve 14c, the battery cooler 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、冷房冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器として機能し、冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能するとともに、冷房用膨張弁14bおよび室内蒸発器18に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the cooling cooling mode, the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as radiators to dissipate the refrigerant discharged from the compressor 11, and the cooling expansion valve 14b is the decompression unit. The indoor evaporator 18 functions as an evaporator, and the cooling expansion valve 14b and the cooling expansion valve 14c connected in parallel to the indoor evaporator 18 function as a pressure reducing unit, and the battery cooler. A refrigeration cycle is configured in which 19 functions as an evaporator.
 これによれば、室内蒸発器18にて送風空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。 According to this, the blown air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12.
 従って、冷房冷却モードの車両用空調装置1では、エアミックスドア34の開度調整によって、室内蒸発器18にて冷却された送風空気の一部をヒータコア42にて再加熱し、目標吹出温度TAOに近づくように温度調整された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the cooling / cooling mode, a part of the blown air cooled by the indoor evaporator 18 is reheated by the heater core 42 by adjusting the opening degree of the air mix door 34, and the target blowing temperature TAO. The interior of the vehicle can be cooled by blowing out the blown air whose temperature has been adjusted so as to approach the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
 (6)直列除湿暖房冷却モード
 直列除湿暖房冷却モードの制御フローの最初のステップでは、直列除湿暖房モードと同様に、目標蒸発器温度TEO、圧縮機11の回転数の増減量ΔIVO、目標高圧側熱媒体温度TWHO、開度パターンKPN1の変化量ΔKPN1、エアミックスドア34の開度SWを決定する。
(6) In-series dehumidifying / heating / cooling mode In the first step of the control flow of the in-series dehumidifying / heating / cooling mode, the target evaporator temperature TEO, the amount of increase / decrease in the number of revolutions of the compressor 11 ΔIVO, and the target high-pressure side are the same as in the series dehumidifying / heating mode. The heat medium temperature TWHO, the amount of change ΔKPN1 of the opening pattern KPN1, and the opening SW of the air mix door 34 are determined.
 次のステップでは、冷房冷却モードと同様に、目標過熱度SHEO、冷却用膨張弁14cの絞り開度の増減量ΔEVBを決定する。 In the next step, as in the cooling / cooling mode, the target superheat degree SHEO and the increase / decrease amount ΔEVB of the throttle opening of the cooling expansion valve 14c are determined.
 次のステップでは、冷凍サイクル装置10を直列除湿暖房冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the series dehumidifying / heating / cooling mode, the heating expansion valve 14a is in the throttled state, the cooling expansion valve 14b is in the throttled state, and the cooling expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed.
 さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 Further, a control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、直列除湿暖房冷却モードでは、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the series dehumidifying / heating / cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14b, the indoor evaporator 18, and the evaporation pressure. The refrigerant circulates in the order of the regulating valve 20, the accumulator 21, the compressor 11, and the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, and the cooling expansion valve. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 14c, the battery cooler 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、直列除湿暖房冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12が放熱器(換言すれば放熱部)として機能し、室内蒸発器18および電池冷却器19が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the series dehumidifying / heating / cooling mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator), and the indoor evaporator 18 and the battery cooler 19 function as an evaporator. A compression refrigeration cycle is constructed.
 つまり、直列除湿暖房モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、さらに、冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能するとともに、冷房用膨張弁14bおよび室内蒸発器18に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the series dehumidifying / heating mode, the water-refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used. It functions as a decompression unit, and further, the cooling expansion valve 14b functions as a decompression unit, the indoor evaporator 18 functions as an evaporator, and is connected in parallel to the cooling expansion valve 14b and the indoor evaporator 18. A refrigerating cycle is configured in which the cooling expansion valve 14c functions as a pressure reducing unit and the battery cooler 19 functions as an evaporator.
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). .. When the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。さらに、電池冷却器19にて低圧側熱媒体を冷却することができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Further, the low-voltage side heat medium can be cooled by the battery cooler 19.
 従って、直列除湿暖房冷却モードの冷凍サイクル装置10では、室内蒸発器18にて冷却されて除湿された空気を、ヒータコア42にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。この際、開度パターンKPN1を大きくすることにより、直列除湿暖房モードと同様に、ヒータコア42における空気の加熱能力を向上させることができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the refrigerating cycle device 10 in the series dehumidifying / heating / cooling mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be carried out. At this time, by increasing the opening degree pattern KPN1, the heating capacity of the air in the heater core 42 can be improved as in the series dehumidifying and heating mode. Further, the battery 80 can be cooled by the battery cooler 19.
 (7)並列除湿暖房冷却モード
 並列除湿暖房冷却モードの制御フローの最初のステップでは、並列除湿暖房モードと同様に、目標高温側熱媒体温度TWHO、圧縮機11の回転数の増減量ΔIVO、目標過熱度SHEO、開度パターンKPN1の変化量ΔKPN1、エアミックスドア34の開度SWを決定する。
(7) Parallel dehumidifying / heating / cooling mode In the first step of the control flow of the parallel dehumidifying / heating / cooling mode, as in the parallel dehumidifying / heating mode, the target high-temperature side heat medium temperature TWHO, the amount of increase / decrease in the number of revolutions of the compressor 11 ΔIVO, and the target. The degree of superheat SHEO, the amount of change ΔKPN1 of the opening pattern KPN1, and the opening SW of the air mix door 34 are determined.
 次のステップでは、冷房冷却モードと同様に、目標過熱度SHEO、冷却用膨張弁14cの絞り開度の増減量ΔEVBを決定する。 In the next step, as in the cooling / cooling mode, the target superheat degree SHEO and the increase / decrease amount ΔEVB of the throttle opening of the cooling expansion valve 14c are determined.
 次のステップでは、冷凍サイクル装置10を並列除湿暖房冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを絞り状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the parallel dehumidifying / heating / cooling mode, the heating expansion valve 14a is in the throttled state, the cooling expansion valve 14b is in the throttled state, and the cooling expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened.
 さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 Further, a control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、並列除湿暖房冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、バイパス通路22a、冷房用膨張弁14b、室内蒸発器18、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環し、さらに、圧縮機11、水冷媒熱交換器12、バイパス通路22a、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigeration cycle device 10 in the parallel dehumidifying / heating / cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11 are in this order. As the refrigerant circulates, the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14b, the indoor evaporator 18, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11. Further, a steam compression type in which the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14c, the battery cooler 19, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11. Refrigeration cycle is configured.
 つまり、並列除湿暖房冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷房用膨張弁14bが減圧部として機能し、室内蒸発器18が蒸発器として機能し、さらに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the parallel dehumidifying / heating / cooling mode, the water-refrigerator heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a Functions as a decompression unit, the outdoor heat exchanger 16 functions as an evaporator, and the cooling expansion valve 14a connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a decompression unit. The indoor evaporator 18 functions as an evaporator, and the cooling expansion valve 14c connected in parallel to the heating expansion valve 14a and the outdoor heat exchanger 16 functions as a pressure reducing unit, and the battery cooler. A refrigeration cycle is configured in which 19 functions as an evaporator.
 これによれば、室内蒸発器18にて空気を冷却することができるとともに、水冷媒熱交換器12にて、高温側熱媒体を加熱することができる。さらに、電池冷却器19にて低圧側熱媒体を冷却することができる。 According to this, the air can be cooled by the indoor evaporator 18, and the high temperature side heat medium can be heated by the water refrigerant heat exchanger 12. Further, the low-voltage side heat medium can be cooled by the battery cooler 19.
 従って、並列除湿暖房冷却モードの車両用空調装置1では、室内蒸発器18にて冷却されて除湿された空気を、ヒータコア42にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。この際、室外熱交換器16における冷媒蒸発温度を室内蒸発器18における冷媒蒸発温度よりも低下させることで、直列除湿暖房冷却モードよりも高い加熱能力で空気を再加熱することができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the parallel dehumidifying / heating / cooling mode, the air cooled by the indoor evaporator 18 and dehumidified is reheated by the heater core 42 and blown out into the vehicle interior to dehumidify and heat the vehicle interior. It can be performed. At this time, by lowering the refrigerant evaporation temperature in the outdoor heat exchanger 16 to be lower than the refrigerant evaporation temperature in the indoor evaporator 18, the air can be reheated with a heating capacity higher than that in the series dehumidifying / heating / cooling mode. Further, the battery 80 can be cooled by the battery cooler 19.
 (8)暖房冷却モード
 暖房冷却モードの制御フローの最初のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。暖房冷却モードでは、増減量ΔIVOは、目標電池温度と電池温度TBとの偏差に基づいて、フィードバック制御手法により、電池温度TBが目標電池温度に近づくように決定される。
(8) Heating / cooling mode In the first step of the control flow of the heating / cooling mode, the increase / decrease amount ΔIVO of the rotation speed of the compressor 11 is determined. In the heating / cooling mode, the increase / decrease amount ΔIVO is determined so that the battery temperature TB approaches the target battery temperature by the feedback control method based on the deviation between the target battery temperature and the battery temperature TB.
 次のステップでは、室外熱交換器16から流出した冷媒の目標過冷却度SCO1を決定する。暖房冷却モードの目標過冷却度SCO1は、外気温Tamに基づいて、制御マップを参照して決定される。本実施形態の制御マップでは、サイクルの成績係数(COP)が極大値に近づくように、目標過冷却度SCO1を決定する。 In the next step, the target supercooling degree SCO1 of the refrigerant flowing out from the outdoor heat exchanger 16 is determined. The target supercooling degree SCO1 of the heating / cooling mode is determined with reference to the control map based on the outside air temperature Tam. In the control map of the present embodiment, the target supercooling degree SCO1 is determined so that the coefficient of performance (COP) of the cycle approaches the maximum value.
 次のステップでは、冷却用膨張弁14cの絞り開度の増減量ΔEVBを決定する。増減量ΔEVBは、目標過冷却度SCO1と室外熱交換器16の出口側冷媒の過冷却度SC1との偏差に基づいて、フィードバック制御手法により、室外熱交換器16の出口側冷媒の過冷却度SC1が目標過冷却度SCO1に近づくように決定される。過冷却度SC1は、冷房モードと同様に算出される。 In the next step, the amount of increase / decrease ΔEVB in the throttle opening of the cooling expansion valve 14c is determined. The increase / decrease amount ΔEVB is the supercooling degree of the outlet side refrigerant of the outdoor heat exchanger 16 by the feedback control method based on the deviation between the target supercooling degree SCO1 and the supercooling degree SC1 of the outlet side refrigerant of the outdoor heat exchanger 16. SC1 is determined to approach the target supercooling degree SCO1. The supercooling degree SC1 is calculated in the same manner as in the cooling mode.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
 次のステップでは、冷凍サイクル装置10を暖房冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the heating / cooling mode, the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, and the cooling expansion valve 14c is throttled. Then, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、暖房冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the heating / cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, and the battery cooler 19 , The evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 form a steam compression type refrigeration cycle in which the refrigerant circulates in this order.
 つまり、暖房冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12および室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷却用膨張弁14cが冷媒を減圧させる減圧部として機能し、電池冷却器19が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the heating / cooling mode, the water refrigerant heat exchanger 12 and the outdoor heat exchanger 16 function as a radiator (in other words, a radiator) to dissipate the refrigerant discharged from the compressor 11 for cooling. A steam compression type refrigeration cycle is configured in which the expansion valve 14c functions as a pressure reducing unit for reducing the pressure of the refrigerant, and the battery cooler 19 functions as an evaporator.
 これによれば、水冷媒熱交換器12にて、高温側熱媒体を加熱することができるとともに、電池冷却器19にて電池80を冷却することができる。 According to this, the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
 従って、暖房冷却モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the heating / cooling mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
 (9)暖房直列冷却モード
 暖房直列冷却モードの制御フローの最初のステップでは、暖房冷却モードと同様に、圧縮機11の回転数の増減量ΔIVOを決定する。次のステップでは、直列除湿暖房モードと同様に、高温側熱媒体の目標高温側熱媒体温度TWHOを決定する。
(9) Heating series cooling mode In the first step of the control flow of the heating series cooling mode, the increase / decrease amount ΔIVO of the rotation speed of the compressor 11 is determined as in the heating / cooling mode. In the next step, the target high temperature side heat medium temperature TWHO of the high temperature side heat medium is determined as in the series dehumidification heating mode.
 次のステップでは、暖房用膨張弁14aの絞り開度および冷却用膨張弁14cの絞り開度を決定する。具体的には、暖房直列冷却モードでは、目標吹出温度TAOが上昇するに伴って、暖房用膨張弁14aの絞り開度を小さくし、冷却用膨張弁14cの絞り開度を大きくする。 In the next step, the throttle opening of the heating expansion valve 14a and the throttle opening of the cooling expansion valve 14c are determined. Specifically, in the heating series cooling mode, as the target outlet temperature TAO rises, the throttle opening of the heating expansion valve 14a is reduced and the throttle opening of the cooling expansion valve 14c is increased.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode.
 次のステップでは、冷凍サイクル装置10を暖房直列冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the heating series cooling mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and the cooling expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、暖房直列冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the heating series cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, and the battery cooler. A steam compression type refrigeration cycle in which the refrigerant circulates in the order of 19, the evaporation pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、暖房直列冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aおよび冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the heating series cooling mode, the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the heating expansion valve 14a and A steam compression type refrigeration cycle is configured in which the cooling expansion valve 14c functions as a pressure reducing unit and the battery cooler 19 functions as an evaporator.
 さらに、室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも高くなっている際には、室外熱交換器16が放熱器(換言すれば放熱部)として機能するサイクルが構成される。室外熱交換器16における冷媒の飽和温度が、外気温Tamよりも低くなっている際には、室外熱交換器16が蒸発器として機能するサイクルが構成される。 Further, when the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is higher than the outside air temperature Tam, a cycle is configured in which the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator). .. When the saturation temperature of the refrigerant in the outdoor heat exchanger 16 is lower than the outside air temperature Tam, a cycle in which the outdoor heat exchanger 16 functions as an evaporator is configured.
 これによれば、水冷媒熱交換器12にて、高温側熱媒体を加熱することができるとともに、電池冷却器19にて電池80を冷却することができる。 According to this, the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
 従って、暖房直列冷却モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the heating series cooling mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
 (10)暖房並列冷却モード
 暖房並列冷却モードの制御フローの最初のステップでは、ヒータコア42にて空気を加熱できるように、直列除湿暖房モードと同様に、高温側熱媒体の目標高温側熱媒体温度TWHOが決定される。
(10) Heating parallel cooling mode In the first step of the control flow of the heating parallel cooling mode, the target high temperature side heat medium temperature of the high temperature side heat medium is the same as in the series dehumidifying heating mode so that the air can be heated by the heater core 42. TWHO is decided.
 次のステップでは、圧縮機11の回転数の増減量ΔIVOを決定する。暖房並列冷却モードでは、増減量ΔIVOは、直列除湿暖房モードと同様に、目標高温側熱媒体温度TWHOと高温側熱媒体温度TWHとの偏差に基づいて、フィードバック制御手法により、高温側熱媒体温度TWHが目標高温側熱媒体温度TWHOに近づくように決定される。 In the next step, the amount of increase / decrease ΔIVO in the rotation speed of the compressor 11 is determined. In the heating parallel cooling mode, the increase / decrease amount ΔIVO is the high temperature side heat medium temperature by the feedback control method based on the deviation between the target high temperature side heat medium temperature TWHO and the high temperature side heat medium temperature TWH, as in the series dehumidification heating mode. The TWH is determined to approach the target high temperature side heat medium temperature TWHO.
 次のステップでは、電池冷却器19の冷媒通路の出口側冷媒の目標過熱度SHCOを決定する。目標過熱度SHCOとしては、予め定めた定数(本実施形態では、5℃)を採用することができる。 In the next step, the target superheat degree SHCO of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19 is determined. As the target superheat degree SHCO, a predetermined constant (5 ° C. in this embodiment) can be adopted.
 次のステップでは、開度パターンKPN2の変化量ΔKPN2を決定する。暖房並列冷却モードでは、目標過熱度SHCOと電池冷却器19の冷媒通路の出口側冷媒の過熱度SHCとの偏差に基づいて、フィードバック制御手法により、過熱度SHCが目標過熱度SHCOに近づくように決定される。 In the next step, the amount of change ΔKPN2 of the opening pattern KPN2 is determined. In the heating parallel cooling mode, the superheat degree SHCO is adjusted to approach the target superheat degree SHCO by the feedback control method based on the deviation between the target superheat degree SHCO and the superheat degree SHCO of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19. It is determined.
 また、暖房並列冷却モードでは、開度パターンKPN2が大きくなるに伴って、暖房用膨張弁14aの絞り開度が小さくなり、冷却用膨張弁14cの絞り開度が大きくなる。従って、開度パターンKPN2が増加すると大きくなると、電池冷却器19の冷媒通路へ流入する冷媒流量が増加し、電池冷却器19の冷媒通路の出口側冷媒の過熱度SHCが低下する。 Further, in the heating parallel cooling mode, as the opening pattern KPN2 increases, the throttle opening of the heating expansion valve 14a decreases, and the throttle opening of the cooling expansion valve 14c increases. Therefore, when the opening pattern KPN2 increases, the flow rate of the refrigerant flowing into the refrigerant passage of the battery cooler 19 increases, and the degree of superheat SHC of the refrigerant on the outlet side of the refrigerant passage of the battery cooler 19 decreases.
 次のステップでは、冷房モードと同様に、エアミックスドア34の開度SWを算定する。次のステップでは、冷凍サイクル装置10を暖房並列冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを絞り状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを開き、暖房用開閉弁15bを開く。 In the next step, the opening SW of the air mix door 34 is calculated in the same manner as in the cooling mode. In the next step, in order to switch the refrigerating cycle device 10 to the refrigerant circuit in the heating parallel cooling mode, the heating expansion valve 14a is set to the throttled state, the cooling expansion valve 14b is set to the fully closed state, and the cooling expansion valve 14c is throttled. In this state, the dehumidifying on-off valve 15a is opened, and the heating on-off valve 15b is opened.
 さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 Further, a control signal or a control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、暖房並列冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、暖房用通路22b、アキュムレータ21、圧縮機11の順に冷媒が循環するとともに、圧縮機11、水冷媒熱交換器12、バイパス通路22a、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the heating parallel cooling mode, the refrigerant is in the order of the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the heating passage 22b, the accumulator 21, and the compressor 11. Circulates, and the refrigerant circulates in the order of the compressor 11, the water refrigerant heat exchanger 12, the bypass passage 22a, the cooling expansion valve 14c, the battery cooler 19, the evaporation pressure adjusting valve 20, the accumulator 21, and the compressor 11. A compression refrigeration cycle is constructed.
 つまり、暖房並列冷却モードの冷凍サイクル装置10では、水冷媒熱交換器12が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、暖房用膨張弁14aが減圧部として機能し、室外熱交換器16が蒸発器として機能するとともに、暖房用膨張弁14aおよび室外熱交換器16に対して並列的に接続された冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the heating parallel cooling mode, the water refrigerant heat exchanger 12 functions as a radiator (in other words, a radiator) that dissipates heat from the refrigerant discharged from the compressor 11, and the heating expansion valve 14a is used. The outdoor heat exchanger 16 functions as a decompression unit, and the heating expansion valve 14a and the cooling expansion valve 14c connected in parallel to the outdoor heat exchanger 16 function as a decompression unit. , A refrigeration cycle is configured in which the battery cooler 19 functions as an evaporator.
 これによれば、水冷媒熱交換器12にて、高温側熱媒体を加熱することができるとともに、電池冷却器19にて電池80を冷却することができる。 According to this, the water refrigerant heat exchanger 12 can heat the high temperature side heat medium, and the battery cooler 19 can cool the battery 80.
 従って、暖房並列冷却モードの車両用空調装置1では、ヒータコア42にて加熱された空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。さらに、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the heating parallel cooling mode, the interior of the vehicle can be heated by blowing out the air heated by the heater core 42 into the interior of the vehicle. Further, the battery 80 can be cooled by the battery cooler 19.
 (11)冷却モード
 冷却モードの制御フローの最初のステップでは、暖房冷却モードと同様に、圧縮機11の回転数の増減量ΔIVO、目標過冷却度SCO1、冷却用膨張弁14cの絞り開度の増減量ΔEVB、エアミックスドア34の開度SWを決定する。
(11) Cooling mode In the first step of the control flow of the cooling mode, as in the heating cooling mode, the increase / decrease amount ΔIVO of the rotation speed of the compressor 11, the target supercooling degree SCO1, and the throttle opening of the cooling expansion valve 14c The amount of increase / decrease ΔEVB and the opening SW of the air mix door 34 are determined.
 ここで、冷却モードでは、目標吹出温度TAOが暖房用基準温度γより低くなるので、エアミックスドア34の開度SWが0%に近づく。このため、冷却モードでは、室内蒸発器18通過後の空気のほぼ全流量が冷風バイパス通路35を通過するように、エアミックスドア34の開度が決定される。 Here, in the cooling mode, the target outlet temperature TAO is lower than the heating reference temperature γ, so that the opening SW of the air mix door 34 approaches 0%. Therefore, in the cooling mode, the opening degree of the air mix door 34 is determined so that almost the entire flow rate of the air after passing through the indoor evaporator 18 passes through the cold air bypass passage 35.
 次のステップでは、冷凍サイクル装置10を冷却モードの冷媒回路に切り替えるために、暖房用膨張弁14aを全開状態とし、冷房用膨張弁14bを全閉状態とし、冷却用膨張弁14cを絞り状態とし、除湿用開閉弁15aを閉じ、暖房用開閉弁15bを閉じる。さらに、上述のステップで決定された制御状態が得られるように、各制御対象機器に対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In the next step, in order to switch the refrigerating cycle device 10 to the cooling mode refrigerant circuit, the heating expansion valve 14a is fully opened, the cooling expansion valve 14b is fully closed, and the cooling expansion valve 14c is throttled. , The dehumidifying on-off valve 15a is closed, and the heating on-off valve 15b is closed. Further, the control signal or the control voltage is output to each controlled device so that the control state determined in the above step can be obtained, and the process returns to step S10.
 従って、冷却モードの冷凍サイクル装置10では、圧縮機11、水冷媒熱交換器12、暖房用膨張弁14a、室外熱交換器16、逆止弁17、冷却用膨張弁14c、電池冷却器19、蒸発圧力調整弁20、アキュムレータ21、圧縮機11の順に冷媒が循環する蒸気圧縮式の冷凍サイクルが構成される。 Therefore, in the refrigerating cycle device 10 in the cooling mode, the compressor 11, the water refrigerant heat exchanger 12, the heating expansion valve 14a, the outdoor heat exchanger 16, the check valve 17, the cooling expansion valve 14c, the battery cooler 19, A steam compression type refrigeration cycle in which the refrigerant circulates in the order of the evaporative pressure regulating valve 20, the accumulator 21, and the compressor 11 is configured.
 つまり、冷却モードの冷凍サイクル装置10では、室外熱交換器16が圧縮機11から吐出された冷媒を放熱させる放熱器(換言すれば放熱部)として機能し、冷却用膨張弁14cが減圧部として機能し、電池冷却器19が蒸発器として機能する蒸気圧縮式の冷凍サイクルが構成される。 That is, in the refrigerating cycle device 10 in the cooling mode, the outdoor heat exchanger 16 functions as a radiator (in other words, a radiator) that dissipates the refrigerant discharged from the compressor 11, and the cooling expansion valve 14c serves as a decompression unit. A steam-compressed refrigeration cycle is configured that functions and the battery cooler 19 functions as an evaporator.
 従って、冷却モードの車両用空調装置1では、電池冷却器19にて電池80の冷却を行うことができる。 Therefore, in the vehicle air conditioner 1 in the cooling mode, the battery 80 can be cooled by the battery cooler 19.
 さらに、本実施形態の冷凍サイクル装置10では、電池80の冷却を行う運転モードにおいて、サイクル制御装置60が、電池冷却器19の3つの冷媒流路に対して、冷媒が流れる冷媒流路の本数Nr(以下、冷媒流路本数Nrと言う。)が制御される。 Further, in the refrigerating cycle device 10 of the present embodiment, in the operation mode for cooling the battery 80, the cycle control device 60 has the number of refrigerant flow paths through which the refrigerant flows with respect to the three refrigerant flow paths of the battery cooler 19. Nr (hereinafter referred to as the number of refrigerant flow paths Nr) is controlled.
 冷媒流路本数Nrが制御されることによって、電池冷却器19による電池80の冷却量Qcが調整される。すなわち、電池冷却器19による電池80の冷却量(換言すれば熱移動量)は、次の数式F3で表される。
Qc=Kt・Fc・ΔT…(F3)
 数式F3において、Qcは電池80の冷却量である。Ktは熱抵抗である。Fcは、流動している冷媒との接触面積である。ΔTは、冷媒と電池80の温度差である。
By controlling the number of refrigerant channels Nr, the cooling amount Qc of the battery 80 by the battery cooler 19 is adjusted. That is, the cooling amount (in other words, the heat transfer amount) of the battery 80 by the battery cooler 19 is expressed by the following mathematical formula F3.
Qc = Kt ・ Fc ・ ΔT ... (F3)
In the formula F3, Qc is the cooling amount of the battery 80. Kt is thermal resistance. Fc is the contact area with the flowing refrigerant. ΔT is the temperature difference between the refrigerant and the battery 80.
 電池冷却器19における流動冷媒の接触面積Fcは、冷媒流路本数Nrが多いほど大きくなる。接触面積Fcが大きいほど電池80の冷却量Qcは大きくなる。したがって、冷媒流路本数Nrが制御されることによって、電池冷却器19による電池80の冷却量Qcが調整される。 The contact area Fc of the fluidized refrigerant in the battery cooler 19 increases as the number of refrigerant channels Nr increases. The larger the contact area Fc, the larger the cooling amount Qc of the battery 80. Therefore, by controlling the number of refrigerant channels Nr, the cooling amount Qc of the battery 80 by the battery cooler 19 is adjusted.
 具体的には、(5)冷房冷却モード、(6)直列除湿暖房冷却モード、(7)並列除湿暖房冷却モード、(8)暖房冷却モード、(9)暖房直列冷却モード、(10)暖房並列冷却モード、(11)冷却モードのとき、図7に示す制御フローを実行する。 Specifically, (5) cooling cooling mode, (6) series dehumidifying heating cooling mode, (7) parallel dehumidifying heating cooling mode, (8) heating cooling mode, (9) heating series cooling mode, (10) heating parallel In the cooling mode and (11) cooling mode, the control flow shown in FIG. 7 is executed.
 まず、ステップS300では、実行中の運転モードが、室内蒸発器18で空気を冷却する運転モードであるか否かが判定される。具体的には、エアコンスイッチがONされている場合、室内蒸発器18で空気を冷却する運転モードであると判定される。ステップS300にて実行中の運転モードが、室内蒸発器18で空気を冷却する運転モードであると判定された場合、ステップS310へ進む。ステップS300にて実行中の運転モードが、室内蒸発器18で空気を冷却する運転モードでないと判定された場合、ステップS320へ進む。 First, in step S300, it is determined whether or not the operating mode being executed is the operating mode in which the air is cooled by the indoor evaporator 18. Specifically, when the air conditioner switch is turned on, it is determined that the operation mode is for cooling the air with the indoor evaporator 18. If it is determined that the operation mode being executed in step S300 is the operation mode in which the air is cooled by the indoor evaporator 18, the process proceeds to step S310. If it is determined that the operation mode being executed in step S300 is not the operation mode in which the air is cooled by the indoor evaporator 18, the process proceeds to step S320.
 ステップS310では、空調影響判定が行われる。具体的には、目標蒸発器温度TEOと蒸発器温度センサ64fによって検出された蒸発器温度Tefinとの偏差ΔTEに基づいて、図8の制御マップを用いて、第1仮冷媒流路本数Nr1が決定される。第1仮冷媒流路本数Nr1は、冷媒流路本数Nrの第1の候補値である。偏差ΔTEが大きいほど、空調のために必要な冷却能力が大きくて電池80側の冷却能力を抑える必要があることから、第1仮冷媒流路本数Nr1が少なくされる。一方、偏差ΔTEが小さいほど、空調のために必要な冷却能力が小さくて電池80側の冷却能力を増加させることが可能であることから、第1仮冷媒流路本数Nr1が多くされる。 In step S310, the air conditioning effect determination is performed. Specifically, based on the deviation ΔTE between the target evaporator temperature TEO and the evaporator temperature Tefin detected by the evaporator temperature sensor 64f, the number of first temporary refrigerant channels Nr1 is determined by using the control map of FIG. It is determined. The first temporary refrigerant flow path number Nr1 is the first candidate value of the refrigerant flow path number Nr. As the deviation ΔTE is larger, the cooling capacity required for air conditioning is larger and the cooling capacity on the battery 80 side needs to be suppressed, so that the number of first temporary refrigerant channels Nr1 is reduced. On the other hand, as the deviation ΔTE is smaller, the cooling capacity required for air conditioning is smaller and the cooling capacity on the battery 80 side can be increased, so that the number of first temporary refrigerant channels Nr1 is increased.
 ステップS320では、電池発熱量判定が行われる。具体的には、電池80の発熱量Qbに基づいて、図9の制御マップを用いて、電池冷却器19の第2仮冷媒流路本数Nr2を決定する。第2仮冷媒流路本数Nr2は、冷媒流路本数Nrの第2の候補値である。電池80の発熱量Qbが大きいほど、電池80のために必要な冷却能力が大きくて空調側の冷却能力を抑える必要があることから、第2仮冷媒流路本数Nr2が少なくされる。一方、電池80の発熱量Qbが小さいほど、電池80のために必要な冷却能力が小さくて空調側の冷却能力を増加させることが可能であることから、第2仮冷媒流路本数Nr2が多くされる。 In step S320, the battery calorific value is determined. Specifically, based on the calorific value Qb of the battery 80, the number of second temporary refrigerant flow paths Nr2 of the battery cooler 19 is determined by using the control map of FIG. The second temporary refrigerant flow path number Nr2 is a second candidate value of the refrigerant flow path number Nr. As the calorific value Qb of the battery 80 is larger, the cooling capacity required for the battery 80 is larger and it is necessary to suppress the cooling capacity on the air conditioning side, so that the number of second temporary refrigerant channels Nr2 is reduced. On the other hand, as the calorific value Qb of the battery 80 is smaller, the cooling capacity required for the battery 80 is smaller and the cooling capacity on the air conditioning side can be increased. Therefore, the number of second temporary refrigerant channels Nr2 is larger. Will be done.
 ステップS330では、電池温度判定が行われる。具体的には、電池温度TBに基づいて、図10の制御マップを用いて、電池冷却器19の第3仮冷媒流路本数Nr3を決定する。電池温度TBが高いほど電池80のために必要な冷却能力が大きくて空調側の冷却能力を抑える必要があることから、第3仮冷媒流路本数Nr3が少なくされる。一方、電池温度TBが低いほど、電池80のために必要な冷却能力が小さくて空調側の冷却能力を増加させることが可能であることから、第3仮冷媒流路本数Nr3が多くされる。 In step S330, the battery temperature is determined. Specifically, based on the battery temperature TB, the number of third temporary refrigerant flow paths Nr3 of the battery cooler 19 is determined using the control map of FIG. The higher the battery temperature TB, the larger the cooling capacity required for the battery 80, and it is necessary to suppress the cooling capacity on the air conditioning side. Therefore, the number of third temporary refrigerant channels Nr3 is reduced. On the other hand, as the battery temperature TB is lower, the cooling capacity required for the battery 80 is smaller and the cooling capacity on the air conditioning side can be increased, so that the number of third temporary refrigerant channels Nr3 is increased.
 ステップS340では、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3に基づいて冷媒流路本数Nrを決定する。例えば、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3の最大値を冷媒流路本数Nrとして決定する。例えば、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3の平均値を整数化した値を冷媒流路本数Nrとして決定してもよい。 In step S340, the number of refrigerant flow paths Nr is determined based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3. For example, the maximum value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 is determined as the refrigerant flow path number Nr. For example, the average value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 may be determined as the number of refrigerant flow paths Nr.
 ステップS350では、ステップS340で決定された冷媒流路本数Nrが得られるように、第1~第3冷却用膨張弁14c~14eに対して制御信号あるいは制御電圧を出力して、ステップS10へ戻る。 In step S350, a control signal or a control voltage is output to the first to third cooling expansion valves 14c to 14e so that the number of refrigerant flow paths Nr determined in step S340 can be obtained, and the process returns to step S10. ..
 以上の如く、本実施形態の冷凍サイクル装置10では、各種運転モードを切り替えることができる。これにより、車両用空調装置1では、電池80の温度を適切に調整しつつ、車室内の快適な空調を実現することができる。 As described above, in the refrigerating cycle device 10 of the present embodiment, various operation modes can be switched. As a result, the vehicle air conditioner 1 can realize comfortable air conditioning in the vehicle interior while appropriately adjusting the temperature of the battery 80.
 さらに、本実施形態の冷凍サイクル装置10では、空調影響、発熱量、電池温度に応じて冷媒流路本数Nrを制御することができる。これにより、車両用空調装置1では、ドライアウトが生じることなく電池80を均一かつ適切に冷却できる。ドライアウトとは、冷媒上流側の電池80のみが冷却され冷媒下流側の電池80が冷却されない現象のことである。 Further, in the refrigerating cycle device 10 of the present embodiment, the number of refrigerant flow paths Nr can be controlled according to the influence of air conditioning, the amount of heat generated, and the battery temperature. As a result, the vehicle air conditioner 1 can uniformly and appropriately cool the battery 80 without causing dryout. The dryout is a phenomenon in which only the battery 80 on the upstream side of the refrigerant is cooled and the battery 80 on the downstream side of the refrigerant is not cooled.
 具体的には、本実施形態の冷凍サイクル装置10では、クールダウンのように空調負荷が高いシーンで、車室内を優先的に冷却するシーンでは冷媒流路本数Nrが少なくされるので室内蒸発器18に冷熱量が優先的に供給されて電池冷却器19に供給される冷熱量が少なくなってもドライアウトが生じることなく電池80を均一に冷却することが可能となる。一方、空調負荷が減り、圧縮機11の回転数に余裕が出てくるシーンや、電池80に冷却要求が多くなるシーンでは冷媒流路本数Nrが多くされるので電池80の冷却量を増加させることが可能となる。 Specifically, in the refrigerating cycle device 10 of the present embodiment, the number of refrigerant channels Nr is reduced in a scene where the air conditioning load is high such as cooldown and in a scene where the vehicle interior is preferentially cooled, so that the indoor evaporator Even if the amount of cooling heat is preferentially supplied to 18 and the amount of cooling heat supplied to the battery cooler 19 is reduced, the battery 80 can be uniformly cooled without causing dryout. On the other hand, in a scene where the air conditioning load is reduced and the number of revolutions of the compressor 11 is increased, or when the battery 80 requires a large amount of cooling, the number of refrigerant channels Nr is increased, so that the amount of cooling of the battery 80 is increased. It becomes possible.
 本実施形態では、サイクル制御装置60および第1~第3冷却用膨張弁14c~14eは、電池冷却器19の吸熱面積を調整する調整部である。これによると、電池冷却器19の吸熱面積を調整するので、電池冷却器19における冷媒と電池80との間の熱移動量を調整することができる。そのため、電池冷却器19の冷却能力を確保しつつ電池冷却器19内での冷媒のドライアウトを抑制できる。 In the present embodiment, the cycle control device 60 and the first to third cooling expansion valves 14c to 14e are adjusting units for adjusting the endothermic area of the battery cooler 19. According to this, since the endothermic area of the battery cooler 19 is adjusted, the amount of heat transfer between the refrigerant and the battery 80 in the battery cooler 19 can be adjusted. Therefore, it is possible to suppress the dryout of the refrigerant in the battery cooler 19 while ensuring the cooling capacity of the battery cooler 19.
 本実施形態では、サイクル制御装置60は、第1~第3冷媒流路19a~19cのうち第2~第3冷媒流路19b~19cに対して冷媒の流通を遮断するか否かを切り替えるように第2~第3冷却用膨張弁14d~14eを制御する。これにより、電池冷却器19の吸熱面積を簡素な構成にて調整できる。 In the present embodiment, the cycle control device 60 switches whether or not to block the flow of the refrigerant with respect to the second to third refrigerant channels 19b to 19c among the first to third refrigerant channels 19a to 19c. The second to third cooling expansion valves 14d to 14e are controlled. As a result, the endothermic area of the battery cooler 19 can be adjusted with a simple configuration.
 本実施形態では、サイクル制御装置60は、室内蒸発器18の熱交換負荷ΔTEが高いほど、電池冷却器19の冷媒流路本数Nrを減少させるように第1~第3冷却用膨張弁14c~14eを制御する。これにより、空調のために必要な冷却能力が大きくて電池80側の冷却能力を抑える必要がある場合に、電池冷却器19の吸熱面積を小さくして電池冷却器19における電池80から冷媒への熱移動量を小さく抑えることができるので、電池冷却器19内でのドライアウトを抑制できる。 In the present embodiment, the cycle control device 60 has the first to third cooling expansion valves 14c to reduce the number of refrigerant flow paths Nr of the battery cooler 19 as the heat exchange load ΔTE of the indoor evaporator 18 increases. Control 14e. As a result, when the cooling capacity required for air conditioning is large and it is necessary to suppress the cooling capacity on the battery 80 side, the heat absorption area of the battery cooler 19 is reduced to reduce the heat absorption area of the battery cooler 19 from the battery 80 to the refrigerant. Since the amount of heat transfer can be kept small, dryout in the battery cooler 19 can be suppressed.
 本実施形態では、サイクル制御装置60は、電池80の発熱量Qbが多いほど、電池冷却器19の冷媒流路本数Nrを増加させるように第1~第3冷却用膨張弁14c~14eを制御する。これにより、電池80の発熱量Qbが多いほど電池冷却器19の吸熱面積を大きくして電池冷却器19における電池80から冷媒への熱移動量を大きくすることができるので、電池冷却器19の冷却能力を確保できる。 In the present embodiment, the cycle control device 60 controls the first to third cooling expansion valves 14c to 14e so as to increase the number of refrigerant flow paths Nr of the battery cooler 19 as the calorific value Qb of the battery 80 increases. do. As a result, the larger the calorific value Qb of the battery 80, the larger the heat absorption area of the battery cooler 19, and the larger the amount of heat transfer from the battery 80 to the refrigerant in the battery cooler 19, so that the battery cooler 19 can be increased. Cooling capacity can be secured.
 本実施形態では、サイクル制御装置60は、電池80の温度TBが高いほど、電池冷却器19の冷媒流路本数Nrを増加させるように第1~第3冷却用膨張弁14c~14eを制御する。これにより、電池80の温度TBが高いほど電池冷却器19の吸熱面積を大きくして電池冷却器19における電池80から冷媒への熱移動量を大きくすることができるので、電池冷却器19の冷却能力を確保できる。 In the present embodiment, the cycle control device 60 controls the first to third cooling expansion valves 14c to 14e so as to increase the number of refrigerant flow paths Nr of the battery cooler 19 as the temperature TB of the battery 80 increases. .. As a result, the higher the temperature TB of the battery 80, the larger the heat absorbing area of the battery cooler 19, and the larger the amount of heat transferred from the battery 80 to the refrigerant in the battery cooler 19, so that the battery cooler 19 can be cooled. You can secure the ability.
 本実施形態では、第1~第3冷媒流路19a~19cのそれぞれの上流側に、第1~第3冷却用膨張弁14c~14eが配置されている。これにより、第1~第3冷媒流路19a~19cのそれぞれで冷媒を適切に蒸発させることができる。 In the present embodiment, the first to third cooling expansion valves 14c to 14e are arranged on the upstream sides of the first to third refrigerant flow paths 19a to 19c, respectively. As a result, the refrigerant can be appropriately evaporated in each of the first to third refrigerant flow paths 19a to 19c.
 本実施形態では、第1冷却用膨張弁14cは第1冷媒流路19aに対して冷媒の流通を遮断しないようになっている。第1冷却用膨張弁14cは電気式膨張弁である。これにより、冷媒が常時流通する第1冷媒流路19aで冷媒を適切に蒸発させることができるので、電池冷却器19で冷媒を極力適切に蒸発させることができる。 In the present embodiment, the first cooling expansion valve 14c does not block the flow of the refrigerant with respect to the first refrigerant flow path 19a. The first cooling expansion valve 14c is an electric expansion valve. As a result, the refrigerant can be appropriately evaporated in the first refrigerant flow path 19a in which the refrigerant always flows, so that the battery cooler 19 can evaporate the refrigerant as appropriately as possible.
 (第2実施形態)
 上記実施形態のステップS340では、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3に基づいて冷媒流路本数Nrを決定する。例えば、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3の最大値を冷媒流路本数Nrとして決定したり、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3の平均値を整数化した値を冷媒流路本数Nrとして決定したりする。
(Second Embodiment)
In step S340 of the above embodiment, the number of refrigerant flow paths Nr is determined based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3. For example, the maximum value of the first temporary refrigerant flow path number Nr1, the second temporary refrigerant flow path number Nr2, and the third temporary refrigerant flow path number Nr3 may be determined as the refrigerant flow path number Nr, or the first temporary refrigerant flow path number Nr1. , The average value of the second temporary refrigerant flow path number Nr2 and the third temporary refrigerant flow path number Nr3 is converted into an integer and determined as the refrigerant flow path number Nr.
 本実施形態のステップS340では、第1仮冷媒流路本数Nr1、第2仮冷媒流路本数Nr2および第3仮冷媒流路本数Nr3に基づいて、図11~12に示す制御マップを用いて冷媒流路本数Nrを決定する。図11~12は制御マップの一例であり、図11~12中に設定されている数値は適宜変更が可能である。 In step S340 of the present embodiment, the refrigerant is used using the control maps shown in FIGS. 11 to 12 based on the number of first temporary refrigerant flow paths Nr1, the number of second temporary refrigerant flow paths Nr2, and the number of third temporary refrigerant flow paths Nr3. The number of flow paths Nr is determined. 11 to 12 are examples of control maps, and the numerical values set in FIGS. 11 to 12 can be changed as appropriate.
 具体的な冷媒流路本数Nrの決定手順を説明する。まず、図11に示すように、第1仮冷媒流路本数Nr1と第2仮冷媒流路本数Nr2との組み合わせにより第4仮冷媒流路本数Nr4を決定する。本例では、主として第1仮冷媒流路本数Nr1が第2仮冷媒流路本数Nr2よりも優先されるように図11中の数値が設定されている。すなわち、主として空調影響判定の結果が電池発熱量判定の結果よりも優先されるように図11中の数値が設定されている。 The specific procedure for determining the number of refrigerant channels Nr will be explained. First, as shown in FIG. 11, the number of fourth temporary refrigerant flow paths Nr4 is determined by the combination of the number of first temporary refrigerant flow paths Nr1 and the number of second temporary refrigerant flow paths Nr2. In this example, the numerical values in FIG. 11 are set so that the number Nr1 of the first temporary refrigerant channels is mainly prioritized over the number Nr2 of the second temporary refrigerant channels. That is, the numerical values in FIG. 11 are set so that the result of the air conditioning influence determination is mainly prioritized over the result of the battery calorific value determination.
 そして、図12に示すように、第4仮冷媒流路本数Nr4と第3仮冷媒流路本数Nr3との組み合わせにより冷媒流路本数Nrを決定する。本例では、第4仮冷媒流路本数Nr4および第3仮冷媒流路本数Nr3のうち大きい方の値が冷媒流路本数Nrとして決定されるように図11中の数値が設定されている。 Then, as shown in FIG. 12, the number of refrigerant flow paths Nr is determined by the combination of the number of fourth temporary refrigerant flow paths Nr4 and the number of third temporary refrigerant flow paths Nr3. In this example, the numerical value in FIG. 11 is set so that the larger value of the fourth temporary refrigerant flow path number Nr4 and the third temporary refrigerant flow path number Nr3 is determined as the refrigerant flow path number Nr.
 これにより、主として空調影響判定の結果が最も優先されるように冷媒流路本数Nrを決定することができる。 This makes it possible to determine the number of refrigerant flow paths Nr so that the result of the air conditioning effect determination is given the highest priority.
 本実施形態においても、上記第1実施形態と同様に、空調影響、発熱量、電池温度に応じて冷媒流路本数Nrを制御することができるので、ドライアウトが生じることなく電池80を均一かつ適切に冷却できる。 Also in this embodiment, as in the first embodiment, the number of refrigerant flow paths Nr can be controlled according to the influence of air conditioning, the amount of heat generated, and the battery temperature, so that the battery 80 can be uniformly distributed without causing dryout. Can be cooled properly.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、第1~第3冷却用膨張弁14c~14eのいずれもが全閉機能を有しているが、第1冷却用膨張弁14cは全閉機能を有しておらず第1冷媒流路19aに冷媒が常時流れるようになっていてもよい。この場合、第1冷却用膨張弁14cは電気式膨張弁になっていて第1冷媒流路19aに流れる冷媒の流量を任意に調整可能になっているのが好ましい。 In the above-described embodiment, all of the first to third cooling expansion valves 14c to 14e have a fully closed function, but the first cooling expansion valve 14c does not have a fully closed function. 1 The refrigerant may be constantly flowing in the refrigerant flow path 19a. In this case, it is preferable that the first cooling expansion valve 14c is an electric expansion valve so that the flow rate of the refrigerant flowing in the first refrigerant flow path 19a can be arbitrarily adjusted.
 上述の実施形態では、冷凍サイクル装置10は、アキュムレータ21を備える、いわゆるアキュムレータサイクルであるが、冷凍サイクル装置10はレシーバサイクルでもよい。すなわち、冷凍サイクル装置10は、水冷媒熱交換器12から流出した液相冷媒を蓄えるレシーバを備えていてもよい。 In the above-described embodiment, the refrigerating cycle device 10 is a so-called accumulator cycle including an accumulator 21, but the refrigerating cycle device 10 may be a receiver cycle. That is, the refrigeration cycle device 10 may include a receiver for storing the liquid phase refrigerant flowing out of the water refrigerant heat exchanger 12.
 上述の実施形態では、電池冷却器19は、電池80を底面側から冷却するが、電池80を側面側や上面側から冷却するようになっていてもよい。 In the above-described embodiment, the battery cooler 19 cools the battery 80 from the bottom surface side, but the battery 80 may be cooled from the side surface side or the top surface side.
 上述の実施形態では、複数の運転モードに切り替え可能な冷凍サイクル装置10について説明したが、冷凍サイクル装置10の運転モードの切り替えはこれに限定されない。 In the above-described embodiment, the refrigeration cycle device 10 capable of switching to a plurality of operation modes has been described, but the switching of the operation mode of the refrigeration cycle device 10 is not limited to this.
 また、上述の実施形態では、高温側冷却基準温度β2が除湿用基準温度β1よりも高い値に決定される例を説明したが、高温側冷却基準温度β2と除湿用基準温度β1が同等となっていてもよい。さらに、低温側冷却基準温度α2が冷房用基準温度α1よりも高い値に決定される例を説明したが、低温側冷却基準温度α2と冷房用基準温度α1が同等となっていてもよい。 Further, in the above embodiment, an example in which the high temperature side cooling reference temperature β2 is determined to be higher than the dehumidifying reference temperature β1 has been described, but the high temperature side cooling reference temperature β2 and the dehumidifying reference temperature β1 are equivalent. May be. Further, although an example in which the low temperature side cooling reference temperature α2 is determined to be higher than the cooling reference temperature α1 has been described, the low temperature side cooling reference temperature α2 and the cooling reference temperature α1 may be equivalent.
 また、各運転モードの詳細制御は、上述の実施形態に開示されたものに限定されない。例えば、ステップS260で説明した送風モードを、圧縮機11のみならず送風機32を停止させる停止モードとしてもよい。 Further, the detailed control of each operation mode is not limited to that disclosed in the above-described embodiment. For example, the blower mode described in step S260 may be a stop mode for stopping not only the compressor 11 but also the blower 32.
 冷凍サイクル装置の構成機器は、上述の実施形態に開示されたものに限定されない。上述した効果を発揮できるように、複数のサイクル構成機器を一体化等を行ってもよい。例えば、第2三方継手13bと第5三方継手13eとを一体化させた四方継手構造のものを採用してもよい。また、冷房用膨張弁14bおよび冷却用膨張弁14cとして、全閉機能を有しない電気式膨張弁と開閉弁とを直接的に接続したものを採用してもよい。 The components of the refrigeration cycle device are not limited to those disclosed in the above-described embodiment. A plurality of cycle components may be integrated so that the above-mentioned effects can be exhibited. For example, a four-way joint structure in which the second three-way joint 13b and the fifth three-way joint 13e are integrated may be adopted. Further, as the cooling expansion valve 14b and the cooling expansion valve 14c, those in which the electric expansion valve having no fully closed function and the on-off valve are directly connected may be adopted.
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。 Further, in the above-described embodiment, an example in which R1234yf is adopted as the refrigerant has been described, but the refrigerant is not limited to this. For example, R134a, R600a, R410A, R404A, R32, R407C, etc. may be adopted. Alternatively, a mixed refrigerant or the like in which a plurality of types of these refrigerants are mixed may be adopted. Further, carbon dioxide may be adopted as the refrigerant to form a supercritical refrigeration cycle in which the pressure of the refrigerant on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
 加熱部の構成は、上述の実施形態に開示されたものに限定されない。例えば、第1実施形態で説明した高温側熱媒体回路40に対して、三方弁および高温側ラジエータを追加し、余剰の熱を外気に放熱させるようにしてもよい。さらに、ハイブリッド車両のように内燃機関(エンジン)を備える車両では、高温側熱媒体回路40にエンジン冷却水を循環させるようにしてもよい。 The configuration of the heating unit is not limited to that disclosed in the above-described embodiment. For example, a three-way valve and a high-temperature side radiator may be added to the high-temperature side heat medium circuit 40 described in the first embodiment to dissipate excess heat to the outside air. Further, in a vehicle equipped with an internal combustion engine (engine) such as a hybrid vehicle, engine cooling water may be circulated in the high temperature side heat medium circuit 40.
 上述の実施形態では、電池冷却部にて冷却される冷却対象物が電池80である例を説明したが、冷却対象物はこれに限定されない。直流電流と交流電流とを変換するインバータ、電池80に電力を充電する充電器、電力を供給されることによって走行用の駆動力を出力するとともに、減速時等には回生電力を発生させるモータジェネレータのように作動時に発熱を伴う電気機器であってもよい。 In the above-described embodiment, the example in which the cooling target to be cooled by the battery cooling unit is the battery 80 has been described, but the cooling target is not limited to this. An inverter that converts direct current and alternating current, a charger that charges the battery 80, and a motor generator that outputs driving force for driving by supplying electric power and generates regenerative electric power during deceleration. It may be an electric device that generates heat during operation as in the case of.
 上述の各実施形態では、本開示に係る冷凍サイクル装置10を車両用空調装置1に適用したが、冷凍サイクル装置10の適用はこれに限定されない。例えば、据置型電池の温度を適切に調整しつつ、室内の空調を行う電池冷却機能付きの空調装置等に適用してもよい。 In each of the above-described embodiments, the refrigeration cycle device 10 according to the present disclosure is applied to the vehicle air conditioner 1, but the application of the refrigeration cycle device 10 is not limited to this. For example, it may be applied to an air conditioner having a battery cooling function that air-conditions a room while appropriately adjusting the temperature of a stationary battery.
 上述の実施形態では、サイクル制御装置60は、第1~第3冷却用膨張弁14c~14eを開閉して電池冷却器19の冷媒流路本数Nrを増減させることによって電池冷却器19の吸熱面積を調整するが、第1~第3冷却用膨張弁14c~14eの開度を増減させて電池冷却器19の冷媒流路に対して冷媒の流量を増減させることによって電池冷却器19の吸熱面積を調整してもよい。 In the above-described embodiment, the cycle control device 60 opens and closes the first to third cooling expansion valves 14c to 14e to increase or decrease the number of refrigerant flow paths Nr of the battery cooler 19, thereby increasing or decreasing the heat absorption area of the battery cooler 19. However, the heat absorption area of the battery cooler 19 is increased or decreased by increasing or decreasing the opening degree of the expansion valves 14c to 14e for the first to third cooling to increase or decrease the flow rate of the refrigerant with respect to the refrigerant flow path of the battery cooler 19. May be adjusted.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (7)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された前記冷媒を放熱させる放熱部(12、16)と、
     前記冷媒と空気とを熱交換させて前記冷媒を蒸発させるとともに前記空気を冷却する空調用蒸発部(18)と、
     前記冷媒の流れにおいて前記空調用蒸発部と並列に配置され、前記冷媒を冷却対象物(80)の熱で蒸発させることによって前記冷却対象物を冷却する冷却部(19)と、
     前記冷却部のうち前記冷媒が流れて前記冷却対象物の熱を前記冷媒に吸熱させる部分の面積である吸熱面積を調整する調整部(14c、14d、14e、60)とを備える冷凍サイクル装置。
    A compressor (11) that compresses and discharges the refrigerant,
    A heat radiating unit (12, 16) that dissipates heat from the refrigerant discharged from the compressor, and
    An air-conditioning evaporation unit (18) that exchanges heat between the refrigerant and air to evaporate the refrigerant and cool the air.
    A cooling unit (19) arranged in parallel with the air-conditioning evaporation unit in the flow of the refrigerant and cooling the cooling object by evaporating the refrigerant with the heat of the cooling object (80).
    A refrigerating cycle apparatus including an adjusting unit (14c, 14d, 14e, 60) for adjusting an endothermic area, which is an area of a portion of the cooling unit where the refrigerant flows and absorbs heat of the object to be cooled by the refrigerant.
  2.  前記冷却部は、前記冷媒が互いに並列に流れる複数本の冷媒流路(19a、19b、19c)を有しており、
     前記調整部は、前記複数本の冷媒流路のうち少なくとも一部の冷媒流路に対して前記冷媒の流量を減少させる又は前記冷媒の流通を遮断するか否かを切り替えることによって、前記吸熱面積を調整する請求項1に記載の冷凍サイクル装置。
    The cooling unit has a plurality of refrigerant flow paths (19a, 19b, 19c) through which the refrigerants flow in parallel with each other.
    The endothermic area is such that the adjusting unit reduces the flow rate of the refrigerant with respect to at least a part of the plurality of refrigerant channels or switches whether to block the flow of the refrigerant. The refrigeration cycle apparatus according to claim 1.
  3.  前記調整部は、前記空調用蒸発部の熱交換負荷(ΔTE)が高いほど、前記冷媒の流通を遮断する前記冷媒流路の本数を増加させる請求項2に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 2, wherein the adjusting unit increases the number of refrigerant flow paths that block the flow of the refrigerant as the heat exchange load (ΔTE) of the air-conditioning evaporation unit increases.
  4.  前記調整部は、前記冷却対象物の発熱量(Qb)が多いほど、前記冷媒の流通を遮断する前記冷媒流路の本数を減少させる請求項2または3に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 2 or 3, wherein the adjusting unit reduces the number of the refrigerant flow paths that block the flow of the refrigerant as the calorific value (Qb) of the object to be cooled increases.
  5.  前記調整部は、前記冷却対象物の温度(TB)が高いほど、前記冷媒の流通を遮断する前記冷媒流路の本数を減少させる請求項2ないし4のいずれか1つに記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 2 to 4, wherein the adjusting unit reduces the number of the refrigerant flow paths that block the flow of the refrigerant as the temperature (TB) of the object to be cooled is higher. ..
  6.  前記複数本の冷媒流路のそれぞれの上流側に配置され、前記冷媒を減圧させる複数個の膨張弁(14c、14d、14e)を備える請求項2ないし5のいずれか1つに記載の冷凍サイクル装置。 The refrigeration cycle according to any one of claims 2 to 5, which is arranged on the upstream side of each of the plurality of refrigerant flow paths and includes a plurality of expansion valves (14c, 14d, 14e) for reducing the pressure of the refrigerant. Device.
  7.  前記調整部は、前記複数本の冷媒流路のうち一部の冷媒流路(19b、19c)に対して前記冷媒の流通を遮断するか否かを切り替え、前記複数本の冷媒流路のうち残余の冷媒流路(19a)に対しては前記冷媒の流通を遮断しないようになっており、
     前記複数個の膨張弁のうち前記残余の冷媒流路に対応する膨張弁(14c)は、電気式の可変絞り機構を有している請求項6に記載の冷凍サイクル装置。
    The adjusting unit switches whether or not to block the flow of the refrigerant with respect to some of the refrigerant channels (19b, 19c) among the plurality of refrigerant channels, and among the plurality of refrigerant channels. The flow of the refrigerant is not blocked from the remaining refrigerant flow path (19a).
    The refrigeration cycle device according to claim 6, wherein the expansion valve (14c) corresponding to the residual refrigerant flow path among the plurality of expansion valves has an electric variable throttle mechanism.
PCT/JP2021/024291 2020-07-16 2021-06-28 Refrigeration cycle device WO2022014309A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-121924 2020-07-16
JP2020121924 2020-07-16
JP2021089520A JP2022019560A (en) 2020-07-16 2021-05-27 Refrigeration cycle device
JP2021-089520 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022014309A1 true WO2022014309A1 (en) 2022-01-20

Family

ID=79555278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024291 WO2022014309A1 (en) 2020-07-16 2021-06-28 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2022014309A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054202A (en) * 2010-09-03 2012-03-15 Hitachi Ltd Secondary battery module and vehicle
JP2014235897A (en) * 2013-06-03 2014-12-15 日産自動車株式会社 Battery temperature adjustment control device
CN107878223A (en) * 2017-10-16 2018-04-06 苏州高迈新能源有限公司 A kind of power battery cooling system for electronic vehicle and cooling means
JP2018185104A (en) * 2017-04-26 2018-11-22 株式会社デンソー Refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054202A (en) * 2010-09-03 2012-03-15 Hitachi Ltd Secondary battery module and vehicle
JP2014235897A (en) * 2013-06-03 2014-12-15 日産自動車株式会社 Battery temperature adjustment control device
JP2018185104A (en) * 2017-04-26 2018-11-22 株式会社デンソー Refrigeration cycle device
CN107878223A (en) * 2017-10-16 2018-04-06 苏州高迈新能源有限公司 A kind of power battery cooling system for electronic vehicle and cooling means

Similar Documents

Publication Publication Date Title
US11718156B2 (en) Refrigeration cycle device
WO2021075181A1 (en) Refrigeration cycle device
US11506404B2 (en) Refrigeration cycle device
JP7163799B2 (en) refrigeration cycle equipment
WO2022004159A1 (en) Refrigeration cycle device
JP7159712B2 (en) refrigeration cycle equipment
US20210101451A1 (en) Refrigeration cycle device
WO2022009713A1 (en) Refrigeration cycle device
WO2021095338A1 (en) Refrigeration cycle device
JP2022019560A (en) Refrigeration cycle device
WO2021157286A1 (en) Refrigeration cycle device
JP7487562B2 (en) Refrigeration Cycle Equipment
WO2022014309A1 (en) Refrigeration cycle device
WO2021215167A1 (en) Refrigeration cycle device
WO2021215072A1 (en) Refrigeration cycle device
WO2023053746A1 (en) Refrigeration cycle apparatus
JP7476779B2 (en) Vehicle air conditioning system
WO2022030182A1 (en) Refrigeration cycle device
JP2022091377A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842431

Country of ref document: EP

Kind code of ref document: A1