JP7151262B2 - Heat pump device and refrigerant flow rate calculation method - Google Patents

Heat pump device and refrigerant flow rate calculation method Download PDF

Info

Publication number
JP7151262B2
JP7151262B2 JP2018151848A JP2018151848A JP7151262B2 JP 7151262 B2 JP7151262 B2 JP 7151262B2 JP 2018151848 A JP2018151848 A JP 2018151848A JP 2018151848 A JP2018151848 A JP 2018151848A JP 7151262 B2 JP7151262 B2 JP 7151262B2
Authority
JP
Japan
Prior art keywords
pressure
phase
pressure gas
refrigerant
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151848A
Other languages
Japanese (ja)
Other versions
JP2020026920A (en
Inventor
時空 吉田
祐輔 大西
修平 柴田
賢哲 安嶋
正道 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018151848A priority Critical patent/JP7151262B2/en
Publication of JP2020026920A publication Critical patent/JP2020026920A/en
Application granted granted Critical
Publication of JP7151262B2 publication Critical patent/JP7151262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、冷媒循環回路における蒸発器において外部熱源によって冷媒を蒸発させ、凝縮器において冷媒を凝縮させるとともに被加熱媒体を加熱するヒートポンプ装置、およびヒートポンプ装置において凝縮器を流れる冷媒の流量を演算する冷媒流量演算方法に関する。 The present invention is a heat pump device in which a refrigerant is evaporated by an external heat source in an evaporator in a refrigerant circulation circuit, the refrigerant is condensed in a condenser, and a medium to be heated is heated, and the flow rate of the refrigerant flowing through the condenser in the heat pump device is calculated. The present invention relates to a refrigerant flow rate calculation method.

ヒートポンプ装置では冷媒循環回路を形成し、回路中の蒸発器において外部熱源によって冷媒を蒸発させ、凝縮器において冷媒を凝縮させるとともに被加熱媒体を加熱する。ヒートポンプ装置では圧縮機および膨張弁をそれぞれ2段構成にした2段圧縮2段膨張サイクルのものがある。2段圧縮2段膨張サイクルでは、圧縮を2段階にすることで圧縮機単段当たりの圧縮比が低減でき、また、低段側の冷媒流量を必要最小限とすることで低段側の圧縮動力を最小化することができるため、単段サイクルに比べて効率化することができる(特許文献1参照)。 The heat pump device forms a refrigerant circulation circuit, evaporates the refrigerant with an external heat source in the evaporator in the circuit, condenses the refrigerant in the condenser, and heats the medium to be heated. Some heat pump devices have a two-stage compression and two-stage expansion cycle in which a compressor and an expansion valve are each configured in two stages. In the two-stage compression and two-stage expansion cycle, the compression ratio per single stage of the compressor can be reduced by using two stages of compression, and the low-stage compression can be reduced by minimizing the refrigerant flow rate on the low-stage side. Since power can be minimized, efficiency can be improved compared to a single-stage cycle (see Patent Document 1).

特開2014-119157号公報JP 2014-119157 A

ところで、ヒートポンプ装置において凝縮器によって被加熱媒体の加熱をする際に、その出力制御を行うためには凝縮器を流れる冷媒の流量を検出する必要がある。そのために従来は管路の途中に流量計を設けていた。流量計は高価であることから、廉価かつ簡易な手段で冷媒流量を求めることが望まれている。 By the way, when the medium to be heated is heated by the condenser in the heat pump device, it is necessary to detect the flow rate of the refrigerant flowing through the condenser in order to control the output. For this reason, conventionally, a flow meter was provided in the middle of the pipeline. Since the flow meter is expensive, it is desired to obtain the refrigerant flow rate by an inexpensive and simple means.

本発明は、上記の課題に鑑みてなされたものであって、流量計を用いずに冷媒流量を求めることができるヒートポンプ装置および冷媒流量演算方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat pump device and a method for calculating a refrigerant flow rate that can determine the refrigerant flow rate without using a flow meter.

上述した課題を解決し、目的を達成するために、本発明にかかるヒートポンプ装置は、低圧冷媒を外部熱源で蒸発させる蒸発器と、蒸発した低圧冷媒を圧縮して中間圧冷媒にする低段圧縮機と、中間圧冷媒を圧縮して高圧冷媒にする高段圧縮機と、高圧冷媒を凝縮させ被加熱媒体を加熱する凝縮器と、凝縮した高圧冷媒を減圧膨張して中間圧にする高段膨張機構と、前記高段膨張機構から導入された中間圧冷媒を気液分離する気液分離器と、前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間の中圧気相流路に導入する中間配管と、前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にし、前記蒸発器に導入する低段膨張機構と、前記高段圧縮機の吐出口における冷媒の高圧気相圧力を検出する高圧気相圧力検出手段と、前記高段圧縮機の吐出口における冷媒の高圧気相温度を検出する高圧気相温度検出手段と、前記中間配管または前記中圧気相流路における冷媒の中圧気相圧力を検出する中圧気相圧力検出手段と、前記高段圧縮機の回転数を検出する回転数検出手段と、前記高段圧縮機の断熱効率、体積効率および押しのけ量を示す特性データを記憶する記憶部と、前記高圧気相圧力、前記高圧気相温度、前記中圧気相圧力および前記断熱効率に基づいて、前記中圧気相流路の中圧気相密度を算出する中圧気相密度算出部と、前記中圧気相密度、前記回転数、前記押しのけ量および前記体積効率に基づいて、前記冷媒流量を算出する冷媒流量算出部と、を有することを特徴とする。 In order to solve the above-described problems and achieve the object, the heat pump device according to the present invention includes an evaporator that evaporates a low-pressure refrigerant with an external heat source, and a low-stage compressor that compresses the evaporated low-pressure refrigerant into an intermediate-pressure refrigerant. a high-stage compressor that compresses intermediate-pressure refrigerant into high-pressure refrigerant, a condenser that condenses the high-pressure refrigerant and heats the medium to be heated, and a high-stage compressor that decompresses and expands the condensed high-pressure refrigerant to intermediate pressure. an expansion mechanism, a gas-liquid separator for separating the intermediate pressure refrigerant introduced from the high-stage expansion mechanism into gas and liquid, and an intermediate-pressure refrigerant introduced from the gas phase side outlet of the gas-liquid separator to the low-stage compressor. An intermediate pipe introduced into the intermediate pressure gas phase flow path between the discharge port of and the suction port of the high-stage compressor, and the intermediate pressure refrigerant introduced from the liquid phase side outlet of the gas-liquid separator is decompressed and expanded. A low-stage expansion mechanism that reduces the pressure and introduces it into the evaporator, a high-pressure gas-phase pressure detection means that detects the high-pressure gas-phase pressure of the refrigerant at the discharge port of the high-stage compressor, and a High pressure gas phase temperature detecting means for detecting the high pressure gas phase temperature of the refrigerant, medium pressure gas phase pressure detecting means for detecting the medium pressure gas phase pressure of the refrigerant in the intermediate pipe or the medium pressure gas phase flow path, and the high stage compressor a rotational speed detection means for detecting the rotational speed of the high-stage compressor; a storage unit for storing characteristic data indicating the adiabatic efficiency, volumetric efficiency and displacement of the high-stage compressor; a medium-pressure gas-phase density calculator for calculating a medium-pressure gas-phase density of the medium-pressure gas-phase flow path based on the medium-pressure gas-phase pressure and the adiabatic efficiency; and a refrigerant flow rate calculator that calculates the refrigerant flow rate based on the efficiency.

前記低段圧縮機と前記高段圧縮機は一体型多段圧縮機であってもよい。 The low stage compressor and the high stage compressor may be an integrated multi-stage compressor.

前記高圧気相圧力および前記高圧気相温度に基づいて、前記高段圧縮機の吐出口における高圧気相エンタルピを算出する高圧気相エンタルピ算出部と、前記高圧気相エンタルピおよび前記断熱効率に基づいて、前記中圧気相流路の中圧気相温度を算出する中圧気相温度算出部と、を有し、前記中圧気相密度算出部は、前記中圧気相温度および前記中圧気相圧力に基づいて、前記中圧気相密度を算出してもよい。 a high-pressure gas-phase enthalpy calculator for calculating a high-pressure gas-phase enthalpy at a discharge port of the high-stage compressor based on the high-pressure gas-phase pressure and the high-pressure gas-phase temperature; and a medium pressure gas phase temperature calculation unit for calculating the medium pressure gas phase temperature of the medium pressure gas phase flow path, wherein the medium pressure gas phase density calculation unit calculates the medium pressure gas phase temperature and the medium pressure gas phase pressure based on the medium pressure gas phase temperature and the medium pressure gas phase pressure. may be used to calculate the intermediate pressure gas phase density.

前記高圧気相圧力および前記高圧気相温度に基づいて、前記高段圧縮機の吐出口における高圧気相エンタルピを算出する高圧気相エンタルピ算出部を有し、前記中圧気相密度算出部は、前記中圧気相密度に相当する仮定中圧気相密度を仮定し、前記高圧気相エンタルピおよび前記仮定中圧気相密度に基づいて、前記断熱効率に相当する仮定断熱効率を算出し、前記断熱効率と前記仮定断熱効率との差に基づいて前記仮定中圧気相密度を再仮定することによりループ計算を行い、前記差が閾値以下となったときに前記仮定中圧気相密度を前記中圧気相密度としてもよい。 a high-pressure gas-phase enthalpy calculation unit for calculating a high-pressure gas-phase enthalpy at a discharge port of the high-stage compressor based on the high-pressure gas-phase pressure and the high-pressure gas-phase temperature; Assuming an assumed intermediate pressure gas phase density corresponding to the intermediate pressure gas phase density, calculating an assumed adiabatic efficiency corresponding to the adiabatic efficiency based on the high pressure gas phase enthalpy and the assumed intermediate pressure gas phase density, and calculating the adiabatic efficiency and A loop calculation is performed by re-assuming the assumed intermediate pressure gas phase density based on the difference from the assumed adiabatic efficiency, and when the difference becomes equal to or less than a threshold value, the assumed intermediate pressure gas phase density is set as the intermediate pressure gas phase density. good too.

また、本発明にかかる冷媒流量演算方法は、低圧冷媒を外部熱源で蒸発させる蒸発器と、蒸発した低圧冷媒を圧縮して中間圧冷媒にする低段圧縮機と、中間圧冷媒を圧縮して高圧冷媒にする高段圧縮機と、高圧冷媒を凝縮させ被加熱媒体を加熱する凝縮器と、凝縮した高圧冷媒を減圧膨張して中間圧にする高段膨張機構と、前記高段膨張機構から導入された中間圧冷媒を気液分離する気液分離器と、前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間の中圧気相流路に導入する中間配管と、前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にし、前記蒸発器に導入する低段膨張機構と、を有するヒートポンプ装置における前記凝縮器を流れる冷媒流量を求める冷媒流量演算方法において、前記高段圧縮機の吐出口における冷媒の高圧気相圧力、前記高段圧縮機の吐出口における冷媒の高圧気相温度、前記中圧気相流路または前記中間配管における冷媒の中圧気相圧力および前記高段圧縮機の断熱効率に基づいて、前記中圧気相流路の中圧気相密度を算出する中圧気相密度算出ステップと、前記中圧気相密度、前記高段圧縮機の回転数、前記高段圧縮機の押しのけ量および前記高段圧縮機の体積効率に基づいて、前記冷媒流量を算出する冷媒流量算出ステップと、を有することを特徴とする。 Further, a refrigerant flow rate calculation method according to the present invention includes an evaporator that evaporates a low-pressure refrigerant with an external heat source, a low-stage compressor that compresses the evaporated low-pressure refrigerant to an intermediate-pressure refrigerant, and a low-stage compressor that compresses the intermediate-pressure refrigerant. a high-stage compressor that converts the high-pressure refrigerant into a high-pressure refrigerant, a condenser that condenses the high-pressure refrigerant and heats the medium to be heated, a high-stage expansion mechanism that decompresses and expands the condensed high-pressure refrigerant to an intermediate pressure, and the high-stage expansion mechanism. A gas-liquid separator that separates gas and liquid from the introduced intermediate-pressure refrigerant, and the intermediate-pressure refrigerant introduced from the gas-phase side outlet of the gas-liquid separator is separated from the discharge port of the low-stage compressor and the high-stage compressor. An intermediate pipe introduced into the intermediate pressure gas phase flow path between the suction port, and an intermediate pressure refrigerant introduced from the liquid phase side outlet of the gas-liquid separator is decompressed and expanded to a low pressure and introduced into the evaporator. A refrigerant flow rate calculation method for determining the flow rate of refrigerant flowing through the condenser in a heat pump device having a stage expansion mechanism, wherein the high-pressure vapor phase pressure of the refrigerant at the discharge port of the high-stage compressor, A medium-pressure gas phase density of the medium-pressure gas-phase channel is calculated based on the high-pressure gas-phase temperature of the refrigerant, the medium-pressure gas-phase pressure of the refrigerant in the medium-pressure gas-phase channel or the intermediate pipe, and the adiabatic efficiency of the high-stage compressor. and calculating the refrigerant flow rate based on the intermediate pressure gas phase density, the rotation speed of the high-stage compressor, the displacement amount of the high-stage compressor, and the volumetric efficiency of the high-stage compressor. and a refrigerant flow rate calculation step.

本発明にかかるヒートポンプ装置および冷媒流量演算方法では、高圧気相圧力、高圧気相温度、中圧気相圧力および高段圧縮機の断熱効率に基づいて、中圧気相流路の中圧気相密度を算出し、さらに該中圧気相密度を用いて冷媒流量を算出する。これにより流量計を用いずに冷媒流量を求めることができる。 In the heat pump device and refrigerant flow rate calculation method according to the present invention, the intermediate pressure gas phase density in the intermediate pressure gas phase flow path is calculated based on the high pressure gas phase pressure, the high pressure gas phase temperature, the intermediate pressure gas phase pressure, and the adiabatic efficiency of the high-stage compressor. Then, the intermediate pressure gas phase density is used to calculate the refrigerant flow rate. This makes it possible to obtain the refrigerant flow rate without using a flow meter.

図1は、実施の形態にかかるヒートポンプ装置を示すブロック図である。FIG. 1 is a block diagram of a heat pump device according to an embodiment. 図2は、ヒートポンプ装置のp-h線図である。FIG. 2 is a ph diagram of the heat pump device. 図3は、制御部のブロック図である。FIG. 3 is a block diagram of the controller. 図4は、ヒートポンプ装置の制御手順を示すフローチャートである。FIG. 4 is a flow chart showing the control procedure of the heat pump device. 図5は、ヒートポンプ装置の制御手順の変形例を示すフローチャートである。FIG. 5 is a flow chart showing a modification of the control procedure of the heat pump device.

以下に、本発明にかかるヒートポンプ装置および冷媒流量演算方法の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。 EMBODIMENT OF THE INVENTION Below, embodiment of the heat pump apparatus concerning this invention and a refrigerant|coolant flow rate calculation method is described in detail based on drawing. In addition, this invention is not limited by this embodiment.

図1は、本発明の実施形態であるヒートポンプ装置10を示すブロック図である。ヒートポンプ装置10は、冷媒循環回路である回路部12と、該回路部12を制御する制御部14と、回路部12と制御部14との間に設けられたインバータ13とを有する。 FIG. 1 is a block diagram showing a heat pump device 10 that is an embodiment of the invention. The heat pump device 10 has a circuit portion 12 that is a refrigerant circulation circuit, a control portion 14 that controls the circuit portion 12 , and an inverter 13 provided between the circuit portion 12 and the control portion 14 .

回路部12は冷媒の循環する順に、蒸発器16と、圧縮機18と、凝縮器20と、高段膨張弁(高段膨張機構)22と、気液分離器24と、低段膨張弁(低段膨張機構)26とを有する。なお、図1の回路部12は基本的な構成を示しており、回路中にさらに別の要素が設けられていてもよい。蒸発器16と圧縮機18とは流路28aで接続され、圧縮機18と凝縮器20とは流路28cで接続され、凝縮器20と高段膨張弁22とは流路28dで接続され、高段膨張弁22と気液分離器24とは流路28eで接続され、気液分離器24の液相出口と低段膨張弁26とは流路28fで接続され、低段膨張弁26と蒸発器16とは流路28gで接続されている。 The circuit unit 12 includes an evaporator 16, a compressor 18, a condenser 20, a high-stage expansion valve (high-stage expansion mechanism) 22, a gas-liquid separator 24, and a low-stage expansion valve ( low-stage expansion mechanism) 26. Note that the circuit section 12 in FIG. 1 shows a basic configuration, and other elements may be provided in the circuit. The evaporator 16 and the compressor 18 are connected by a flow path 28a, the compressor 18 and the condenser 20 are connected by a flow path 28c, the condenser 20 and the high-stage expansion valve 22 are connected by a flow path 28d, The high-stage expansion valve 22 and the gas-liquid separator 24 are connected by a flow path 28e, and the liquid phase outlet of the gas-liquid separator 24 and the low-stage expansion valve 26 are connected by a flow path 28f. It is connected to the evaporator 16 via a flow path 28g.

以下の説明では冷媒の状態を中圧液相、中圧気相、高圧気相、高圧液相と表すが、これらはそれぞれの流路における代表的な状態を示す便宜的な呼称であり、例えば運転開始直後には各相が多少混在することもあり得る。 In the following description, the states of the refrigerant are referred to as medium-pressure liquid phase, medium-pressure gas phase, high-pressure gas phase, and high-pressure liquid phase. Immediately after the start, each phase may be mixed to some extent.

蒸発器16は低圧冷媒を外部熱源で蒸発させて低圧気相冷媒とする。外部熱源は例えば他のシステムから供給される排温水である。 The evaporator 16 evaporates the low-pressure refrigerant with an external heat source to produce a low-pressure vapor-phase refrigerant. An external heat source is, for example, waste water supplied from another system.

圧縮機18は低段圧縮機18aと高段圧縮機18bが一体となった2段圧縮型(つまり、多段圧縮機)であり、低段圧縮機18aの吐出口と高段圧縮機18bの吸入口との間の中圧気相流路28bは圧縮機18の筺体内部に設けられている。圧縮機18は例えば1軸型スクロール圧縮機である。低段圧縮機18aは低圧気相冷媒を圧縮して中圧気相冷媒とする。高段圧縮機18bは中圧気相冷媒を圧縮して高圧気相冷媒とする。凝縮器20は高圧気相冷媒を凝縮させて高圧液相冷媒とするとともに被加熱媒体を加熱する。被加熱媒体は、例えば図示しないポンプから供給される水であり、凝縮器20によって水蒸気となって利用される。 The compressor 18 is a two-stage compression type (that is, a multi-stage compressor) in which a low-stage compressor 18a and a high-stage compressor 18b are integrated. A medium-pressure gas-phase flow path 28 b between the outlet is provided inside the housing of the compressor 18 . The compressor 18 is, for example, a single shaft scroll compressor. The low-stage compressor 18a compresses the low-pressure vapor-phase refrigerant into medium-pressure vapor-phase refrigerant. The high-stage compressor 18b compresses the medium-pressure gaseous-phase refrigerant into a high-pressure gaseous-phase refrigerant. The condenser 20 condenses the high-pressure vapor-phase refrigerant into a high-pressure liquid-phase refrigerant and heats the medium to be heated. The medium to be heated is, for example, water supplied from a pump (not shown), which is converted into steam by the condenser 20 and utilized.

高段膨張弁22は高圧液相冷媒を減圧膨張させて中圧冷媒とする。気液分離器24は中圧冷媒を気液分離する。低段膨張弁26は気液分離器の液相側出口から導入された冷媒を減圧膨張させて低圧冷媒とし、蒸発器16に導入する。 The high-stage expansion valve 22 decompresses and expands the high-pressure liquid-phase refrigerant to produce an intermediate-pressure refrigerant. The gas-liquid separator 24 separates the intermediate pressure refrigerant into gas and liquid. The low-stage expansion valve 26 decompresses and expands the refrigerant introduced from the liquid phase side outlet of the gas-liquid separator to obtain a low-pressure refrigerant, which is introduced into the evaporator 16 .

回路部12はさらに、気液分離器24の気相側出口から導入された冷媒を中圧気相流路28bに導入して合流させる中間配管32を有する。回路部12は2段圧縮2段膨張サイクルを形成し、気液分離器24および中間配管32を境として図1における下半分が低段回路であり、上半分が高段回路である。 The circuit unit 12 further has an intermediate pipe 32 for introducing the refrigerant introduced from the gas-phase side outlet of the gas-liquid separator 24 into the medium-pressure gas-phase flow path 28b and joining the refrigerant. The circuit section 12 forms a two-stage compression and two-stage expansion cycle, with the gas-liquid separator 24 and the intermediate pipe 32 as boundaries in FIG.

また、回路部12は、高圧気相圧力計34と、高圧気相温度計36と、高圧液相圧力計38と、高圧液相温度計40と、中圧気相圧力計42とを有する。なお、図1においては圧力計、温度計の一部の信号線は複数を1本にまとめて図示している。また、電気信号線は破線で示している。 The circuit section 12 also has a high pressure gas phase pressure gauge 34 , a high pressure gas phase thermometer 36 , a high pressure liquid phase pressure gauge 38 , a high pressure liquid phase thermometer 40 and an intermediate pressure gas phase pressure gauge 42 . In FIG. 1, a plurality of signal lines of some pressure gauges and thermometers are collectively illustrated as one. Also, electric signal lines are indicated by dashed lines.

高圧気相圧力計34は高段圧縮機18bの吐出口における冷媒の高圧気相圧力Paを検出する。高圧気相温度計36は高段圧縮機18bの吐出口における冷媒の高圧気相温度Taを検出する。高圧気相圧力計34および高圧気相温度計36は流路28cのいずれの箇所に設けてもよいが、該流路28cの途中に何らかの機器が設けられている場合には、該機器と高段圧縮機18bとの間に設けるとよい。 A high-pressure gas-phase pressure gauge 34 detects a high-pressure gas-phase pressure Pa of the refrigerant at the discharge port of the high-stage compressor 18b. A high-pressure gas-phase thermometer 36 detects a high-pressure gas-phase temperature Ta of the refrigerant at the discharge port of the high-stage compressor 18b. The high-pressure gas-phase pressure gauge 34 and the high-pressure gas-phase thermometer 36 may be provided anywhere in the flow path 28c. It is good to provide between stage compressor 18b.

高圧液相圧力計38は凝縮器20の吐出口における冷媒の高圧液相圧力Pbを検出する。凝縮器20における圧力低下が小さい場合には高圧気相圧力計34または高圧液相圧力計38のいずれか一方を省略して、近似的にPb=Paとしてもよい。仮に高圧気相圧力計34を省略する場合には、高圧液相圧力計38が高圧気相圧力検出手段を兼ねる。高圧液相温度計40は凝縮器20の吐出口における冷媒の高圧液相温度Tbを検出する。中圧気相圧力計42は中圧気相圧力Psを検出する。この中圧気相圧力Psは中圧気相流路28bまたは中間配管32における冷媒の圧力であるが、このうち中圧気相流路28bは圧縮機18の筺体内部にあることから、中圧気相圧力計42は中間配管32に設けられている。なお、各圧力計は他の圧力検出手段で代用可能であり、同様に温度計は他の温度検出手段で代用可能であることはもちろんである。 A high pressure liquid phase pressure gauge 38 detects the high pressure liquid phase pressure Pb of the refrigerant at the discharge port of the condenser 20 . If the pressure drop in the condenser 20 is small, either one of the high-pressure gas-phase pressure gauge 34 or the high-pressure liquid-phase pressure gauge 38 may be omitted, and Pb=Pa may be approximated. If the high-pressure gas-phase pressure gauge 34 is omitted, the high-pressure liquid-phase pressure gauge 38 also serves as the high-pressure gas-phase pressure detection means. A high pressure liquid phase thermometer 40 detects the high pressure liquid phase temperature Tb of the refrigerant at the discharge port of the condenser 20 . The medium pressure gas phase pressure gauge 42 detects the medium pressure gas phase pressure Ps. This medium-pressure gas phase pressure Ps is the pressure of the refrigerant in the medium-pressure gas-phase flow path 28b or the intermediate pipe 32. Of these, the medium-pressure gas-phase flow path 28b is inside the housing of the compressor 18, so the medium-pressure gas-phase pressure Ps is 42 is provided on the intermediate pipe 32 . It goes without saying that each pressure gauge can be substituted with other pressure detection means, and similarly, the thermometer can be substituted with other temperature detection means.

インバータ13は制御部14から供給される指令値としての回転数Nとなるように圧縮機18の回転数制御を行う。 The inverter 13 controls the rotation speed of the compressor 18 so that the rotation speed N is the command value supplied from the control unit 14 .

図2に基づいてヒートポンプ装置10の熱サイクルを示すp-h線図について説明する。図2において、図1における流路28a,28b,28c,28d,28e,28f,28gに相当する箇所を順に符号La,Lb,Lc,Ld,Le,Lf,Lgで示す。これらの符号La~Lgは図1における流路28a~28gについても併記している。 A ph diagram showing the thermal cycle of the heat pump device 10 will be described with reference to FIG. In FIG. 2, portions corresponding to the flow paths 28a, 28b, 28c, 28d, 28e, 28f and 28g in FIG. These symbols La to Lg also indicate the flow paths 28a to 28g in FIG.

蒸発器16ではLg点からLa点へ移り、飽和蒸気線を超えて過熱蒸気となる。低段圧縮機18aでは圧縮によりLa点からLb点を経由してLb点へ移る。比エンタルピhがLb点からLb点までわずかに下がるのは、中間配管32からの中圧気相冷媒が合流するためである。高段圧縮機18bでは圧縮によりLb点からLc点へ移り、圧力Pと比エンタルピhが増大する。なお、理想圧縮工程ではLb点からLci点に移ることになるが、Lb点からLc点までの傾斜はLb点からLci点までの傾斜に比べて小さくなっている。このLb点からLc点までの圧縮経路は、高段圧縮機18bの断熱効率ηadにより定まる。断熱効率ηadについては後述する。 In the evaporator 16, the steam moves from the Lg point to the La point, exceeds the saturated steam line, and becomes superheated steam. In the low-stage compressor 18a, compression moves from point La to point Lb via point Lb0 . The reason why the specific enthalpy h slightly drops from the Lb 0 point to the Lb point is that the medium-pressure gas-phase refrigerant from the intermediate pipe 32 joins. In the high-stage compressor 18b, compression shifts from the Lb point to the Lc point, and the pressure P and the specific enthalpy h increase. In the ideal compression process, the point Lb is shifted to the point Lci, but the slope from the Lb point to the Lc point is smaller than the slope from the Lb point to the Lci point. The compression path from the Lb point to the Lc point is determined by the adiabatic efficiency ηad of the high-stage compressor 18b. The adiabatic efficiency ηad will be described later.

凝縮器20では凝縮によりLc点からLd点に移り、飽和蒸気線を超え、さらに飽和液線を超えて過冷却状態となる。高段膨張弁22では膨張によりLd点からLe点に移り、再び飽和蒸気線を超えて気液混合状態となる。Le点は中圧気相圧力Psとなっている。気液分離器24では気相と液相に分離されて、気相は飽和蒸気線上へと移り、圧縮機18の中間気相経路28bと合流し、Lb点に移る。液相は飽和液線上へと移る。低段膨張弁26では膨張によりLf点からLg点に移る。 In the condenser 20, the condensation moves from the Lc point to the Ld point, exceeds the saturated vapor line, and further exceeds the saturated liquid line, resulting in a supercooled state. In the high-stage expansion valve 22, the gas moves from the Ld point to the Le point due to the expansion, and again exceeds the saturated steam line to enter a gas-liquid mixed state. The Le point is the intermediate gas phase pressure Ps. In the gas-liquid separator 24, the gas is separated into a gas phase and a liquid phase, and the gas phase moves onto the saturated vapor line, merges with the intermediate gas phase path 28b of the compressor 18, and moves to point Lb. The liquid phase moves above the saturated liquid line. The low-stage expansion valve 26 moves from the Lf point to the Lg point due to expansion.

図3に示すように、制御部14は、記憶部44と、演算部46と、回転数制御部48とを有する。制御部14は必ずしも回路部12の近くに設置されている必要はなく、例えば通信回線を介して接続されていてもよい。記憶部44、演算部46および回転数制御部48は必ずしも一体的に設けられている必要はなく、例えば記憶部44はクラウド式であってもよい。 As shown in FIG. 3 , the control unit 14 has a storage unit 44 , a calculation unit 46 and a rotation speed control unit 48 . The control unit 14 does not necessarily need to be installed near the circuit unit 12, and may be connected via a communication line, for example. The storage unit 44, the calculation unit 46, and the rotation speed control unit 48 do not necessarily have to be integrally provided, and the storage unit 44 may be of a cloud type, for example.

記憶部44はプログラムやデータを記憶する部分であり、例えばハードディスクであって、特性データ50を記憶している。特性データ50は圧縮機18にかかる特性を示すデータであり、特に高段圧縮機18bについての断熱効率ηad、体積効率η、押しのけ容積Vを示すデータを記憶している。これらの断熱効率ηad、体積効率η、押しのけ容積Vは、直接的な数値として記憶されていてもよいし、1以上のパラメータから何らかの変換によって求められる間接的な記憶であってもよく、実質的に断熱効率ηad、体積効率η、押しのけ容積Vを示すデータであればよい。 The storage unit 44 is a portion that stores programs and data, and is, for example, a hard disk, and stores characteristic data 50 . The characteristic data 50 is data indicating the characteristics of the compressor 18, and particularly stores data indicating the adiabatic efficiency ηad , the volumetric efficiency ηv, and the displacement V of the high-stage compressor 18b. These adiabatic efficiency η ad , volumetric efficiency η V , and displacement volume V may be stored as direct numerical values, or may be indirectly stored by some conversion from one or more parameters, Any data that substantially indicates the adiabatic efficiency η ad , the volumetric efficiency η V , and the displacement V may be used.

断熱効率ηadは、高段圧縮機18bが冷媒を圧縮する際に理想的な場合の仕事と比べて、実際に要する仕事との比率である。体積効率ηは、高段圧縮機18bにおける吸入口から吐出口までの冷媒の漏れを考慮した効率である。押しのけ容積Vは、入力軸1回転当りに押し出される冷媒体積である。特性データ50には、さらに回路部12やその要素にかかる他の特性について記憶されていてもよい。 The adiabatic efficiency η ad is the ratio of the work actually required when the high stage compressor 18b compresses the refrigerant to the ideal work. The volumetric efficiency ηV is an efficiency that takes into account refrigerant leakage from the suction port to the discharge port of the high-stage compressor 18b. The displacement volume V is the refrigerant volume that is displaced per revolution of the input shaft. The characteristic data 50 may also store other characteristics of the circuit section 12 and its elements.

演算部46は、高圧気相エンタルピ算出部52と、中圧気相温度算出部54と、中圧気相密度算出部56と、冷媒流量算出部58と、熱出力算出部60とを有する。これらの各算出部は演算部46の中で明確に区別される必要はなく、例えば一部が重複していてもよいし、いずれかの算出部が他の算出部に含まれていてもよい。演算部46は、例えば、CPU(Central Processing Unit)等の処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)等のハードウェアにより実現してもよいし、ソフトウェア及びハードウェアを併用して実現してもよい。 The calculation unit 46 has a high pressure gas phase enthalpy calculation unit 52 , an intermediate pressure gas phase temperature calculation unit 54 , an intermediate pressure gas phase density calculation unit 56 , a refrigerant flow rate calculation unit 58 and a thermal output calculation unit 60 . These calculation units do not need to be clearly distinguished in the calculation unit 46. For example, some calculation units may overlap, and one calculation unit may be included in another calculation unit. . The computing unit 46 may be implemented by software, for example, by causing a processing device such as a CPU (Central Processing Unit) to execute a program, or may be implemented by hardware such as an IC (Integrated Circuit). However, it may be implemented using both software and hardware.

高圧気相エンタルピ算出部52は、高圧気相圧力Paおよび高圧気相温度Taに基づいて、高段圧縮機18bの吐出口における高圧気相エンタルピhaを算出する。 The high-pressure gas-phase enthalpy calculator 52 calculates the high-pressure gas-phase enthalpy ha at the discharge port of the high-stage compressor 18b based on the high-pressure gas-phase pressure Pa and the high-pressure gas-phase temperature Ta.

中圧気相温度算出部54は、高圧気相圧力Pa、高圧気相温度Ta、中圧気相圧力Psおよび断熱効率ηadに基づいて中圧気相温度Tsを算出する。この中圧気相温度Tsは中圧気相流路28bにおける冷媒の温度(つまり、図2におけるLb点の温度)であるが、該中圧気相流路28bは圧縮機18の筺体内部にあることから、温度計を設けることは困難であり、中圧気相温度算出部54による算出が有用である。また、この部分の温度計を省略することでそれだけ廉価となる。中圧気相温度Tsを求めるための途中計算として、中圧気相流路28bにおける中間エンタルピhs(つまり、図2におけるLb点のエンタルピ)を求めてもよい。 The medium pressure gas phase temperature calculator 54 calculates the medium pressure gas phase temperature Ts based on the high pressure gas phase pressure Pa, the high pressure gas phase temperature Ta, the medium pressure gas phase pressure Ps and the adiabatic efficiency ηad. This intermediate-pressure gas phase temperature Ts is the temperature of the refrigerant in the intermediate-pressure gas-phase flow path 28b (that is, the temperature at point Lb in FIG. 2). , it is difficult to provide a thermometer, and the calculation by the medium-pressure vapor phase temperature calculator 54 is useful. Also, by omitting the thermometer for this portion, the cost can be reduced accordingly. Intermediate enthalpy hs in medium-pressure gas phase flow path 28b (that is, enthalpy at point Lb in FIG. 2) may be obtained as an intermediate calculation for obtaining medium-pressure gas phase temperature Ts.

中圧気相密度算出部56は、中圧気相圧力Psおよび中圧気相温度Tsに基づいて、中圧気相流路28bの中圧気相密度ρsを算出する。中圧気相密度ρsは冷媒固有の物性値であり、ρs=f(Ps、Ts)、という状態方程式に基づいて求められる。ところで、高圧気相エンタルピ算出部52、中圧気相温度算出部54および中圧気相密度算出部56を一まとめとしてみると、中圧気相密度ρsは高圧気相圧力Pa、高圧気相温度Ta、中圧気相圧力Psおよび断熱効率ηadの4つのパラメータで算出され、パラメータの数が少なくて演算負荷が小さいが、条件によってはさらに別のパラメータを付加的に利用してもよい。 The intermediate pressure gas phase density calculator 56 calculates the intermediate pressure gas phase density ρs of the intermediate pressure gas phase flow path 28b based on the intermediate pressure gas phase pressure Ps and the intermediate pressure gas phase temperature Ts. The intermediate pressure gas phase density ρs is a physical property value unique to the refrigerant, and is obtained based on the state equation ρs=f s (Ps, Ts). By the way, when the high-pressure gas-phase enthalpy calculator 52, the medium-pressure gas-phase temperature calculator 54, and the medium-pressure gas-phase density calculator 56 are put together, the medium-pressure gas-phase density ρs is the high-pressure gas-phase pressure Pa, the high-pressure gas-phase temperature Ta, It is calculated using the four parameters of medium-pressure gas-phase pressure Ps and adiabatic efficiency η ad , and the number of parameters is small and the computational load is small, but depending on the conditions, another parameter may additionally be used.

冷媒流量算出部58は、中圧気相密度ρs、回転数N、押しのけ容積Vおよび体積効率ηに基づいて、凝縮器20を流れる冷媒の冷媒流量Gを算出する。冷媒流量Gは質量流量であって、G=ρs・N・V・ηにより求められる。押しのけ容積Vおよび体積効率ηは特性データ50から供給される。回転数Nは回転数制御部48から供給されるので、該回転数制御部48は回転数検出手段を兼ねることになるが、圧縮機18の実回転数を検出するセンサ(回転数検出手段)を別途設けてもよい。 The refrigerant flow rate calculator 58 calculates the refrigerant flow rate G of the refrigerant flowing through the condenser 20 based on the medium-pressure gas phase density ρs, the number of rotations N, the displacement V , and the volumetric efficiency ηV. The refrigerant flow rate G is a mass flow rate and is obtained by G=ρs·N· V ·ηV. Displacement V and volumetric efficiency η V are supplied from characteristic data 50 . Since the number of revolutions N is supplied from the number of revolutions control section 48, the number of revolutions control section 48 also serves as means for detecting the number of revolutions. may be provided separately.

熱出力算出部60は凝縮器20が被加熱媒体を加熱する熱出力Qを算出する。熱出力算出部60は、まず、高圧液相圧力Pbおよび高圧液相温度Tbに基づいて、凝縮器20の吐出口におけるエンタルピhbを算出する。そして熱出力Qを、Q=G・(ha-hb)として求める。高圧気相エンタルピhaは、高圧気相エンタルピ算出部52で求められたものを利用できるが、流路28cに何らかの機器が設けられている場合には、該機器の下流側で凝縮器20の吸入口直前の圧力および温度からエンタルピha’を求め、熱出力Qを、Q=G・(ha’-hb)として求めると一層正確になる。 The thermal output calculator 60 calculates the thermal output Q with which the condenser 20 heats the medium to be heated. The heat output calculator 60 first calculates the enthalpy hb at the discharge port of the condenser 20 based on the high-pressure liquid phase pressure Pb and the high-pressure liquid phase temperature Tb. Then, the heat output Q is obtained as Q=G.(ha-hb). The high-pressure gas-phase enthalpy ha obtained by the high-pressure gas-phase enthalpy calculator 52 can be used. It is more accurate to determine the enthalpy ha' from the pressure and temperature just before the mouth and the thermal power Q as Q=G.(ha'-hb).

回転数制御部48は、凝縮器20による熱出力Qが目的値となるようにインバータ13の回転数制御を行い、冷媒流量Gが調整される。さらに、凝縮器20が加熱する被加熱媒体の供給量を調整してもよい。 The rotation speed control unit 48 controls the rotation speed of the inverter 13 so that the heat output Q of the condenser 20 becomes a target value, and the refrigerant flow rate G is adjusted. Furthermore, the supply amount of the medium to be heated that is heated by the condenser 20 may be adjusted.

図4は、ヒートポンプ装置10の制御手順を示すフローチャートであり、本実施の形態にかかる流量演算方法が含まれる。この手順は微小時間ごとに繰り返し実行される。 FIG. 4 is a flowchart showing the control procedure of the heat pump device 10, including the flow rate calculation method according to the present embodiment. This procedure is repeatedly executed every minute time.

ステップS1は高圧気相エンタルピ算出ステップであり、高圧気相エンタルピ算出部52により高圧気相エンタルピhaが算出される。ステップS2は中圧気相温度算出ステップであり、中圧気相温度算出部54により中圧気相温度Tsが算出される。ステップS3は中圧気相密度算出ステップであり中圧気相密度算出部56により中圧気相密度ρsが算出される。ステップS4は冷媒流量算出ステップであり、冷媒流量算出部58により冷媒流量Gが算出される。ステップS5は熱出力算出ステップであり、熱出力算出部60により熱出力Qが算出される。ステップS6は回転数制御ステップであり、回転数制御部48によりインバータ13の回転数Nが制御される。 Step S1 is a high pressure gas phase enthalpy calculation step, and the high pressure gas phase enthalpy calculator 52 calculates the high pressure gas phase enthalpy ha. Step S<b>2 is a medium pressure gas phase temperature calculation step, and the medium pressure gas phase temperature calculation unit 54 calculates the medium pressure gas phase temperature Ts. Step S3 is a medium pressure gas phase density calculation step, in which the medium pressure gas phase density calculator 56 calculates the medium pressure gas phase density ρs. Step S<b>4 is a refrigerant flow rate calculation step, and the refrigerant flow rate G is calculated by the refrigerant flow rate calculator 58 . Step S5 is a thermal output calculation step, and the thermal output Q is calculated by the thermal output calculator 60. FIG. Step S<b>6 is a rotation speed control step, and the rotation speed N of the inverter 13 is controlled by the rotation speed control unit 48 .

このように、ヒートポンプ装置10および冷媒流量演算方法においては、圧縮機18内部の中圧気相流路28bに温度センサを設けることが困難であるが、高圧気相圧力Pa、高圧気相温度Ta、中圧気相圧力Psおよび断熱効率ηadに基づいて中圧気相温度Tsが算出され、さらに中圧気相密度ρsが求められる。これにより熱出力Qが求まり、適正な出力制御を行うことができる。 As described above, in the heat pump device 10 and the refrigerant flow rate calculation method, it is difficult to provide a temperature sensor in the medium pressure gas phase flow path 28b inside the compressor 18, but the high pressure gas phase pressure Pa, the high pressure gas phase temperature Ta, A medium pressure gas phase temperature Ts is calculated based on the medium pressure gas phase pressure Ps and the adiabatic efficiency ηad, and a medium pressure gas phase density ρs is obtained. As a result, the heat output Q can be obtained, and appropriate output control can be performed.

さらに、高価な流量計(例えば冷媒流量計や蒸気流量計など)が不要となりシステムを簡易かつ廉価に構成することができる。 Furthermore, expensive flowmeters (for example, refrigerant flowmeters, steam flowmeters, etc.) are not required, and the system can be configured simply and inexpensively.

冷媒流量Gを求める一連の計算過程において、断熱効率ηadの値は高段圧縮機18bの運転状態(圧力差、圧力比、回転数など)に基づいて調整・補正すると一層正確な計算が可能となる。次に説明する図5のフローチャートの例でも同様である。 In a series of calculation processes for obtaining the refrigerant flow rate G, the value of the adiabatic efficiency ηad can be adjusted and corrected based on the operating conditions (pressure difference, pressure ratio, rotation speed, etc.) of the high-stage compressor 18b to enable more accurate calculations. Become. The same applies to the example of the flowchart of FIG. 5, which will be described next.

次に、冷媒流量Gを求める手順の変形例を図5に基づいて説明する。 Next, a modification of the procedure for obtaining the coolant flow rate G will be described with reference to FIG.

図5のステップS11において、まず高圧気相エンタルピhaを算出する。これは上記のステップS1と同じ高圧気相エンタルピ算出ステップである。 At step S11 in FIG. 5, first, the high-pressure vapor phase enthalpy ha is calculated. This is the same high-pressure vapor phase enthalpy calculation step as step S1 above.

ステップS12において、中圧気相密度ρsに相当する仮定中圧気相密度ρs’を想定される適当な値に仮定する。仮定中圧気相密度ρs’の初期値は固定値であってもよい。ここで添え字の「’」は仮定値を示すものとする。以下同様である。 In step S12, an assumed intermediate pressure gas phase density ρs' corresponding to the intermediate pressure gas phase density ρs is assumed to be an assumed appropriate value. The initial value of the assumed intermediate pressure gas phase density ρs' may be a fixed value. Here, the suffix "'" indicates a hypothetical value. The same applies hereinafter.

ステップS13において、仮定中圧気相密度ρs’と中圧気相圧力Psとに基づいて仮定中間エンタルピhs’、hs’=f(ρs’、Ps)を求める。仮定中間エンタルピhs’は、上記の中間エンタルピhsの仮定値に相当する。 In step S13, an assumed intermediate enthalpy hs', hs'=f(ρs', Ps) is obtained based on the assumed intermediate pressure gas phase density ρs' and intermediate pressure gas phase pressure Ps. The hypothetical intermediate enthalpy hs' corresponds to the hypothetical value of the intermediate enthalpy hs described above.

ステップS14において、仮定断熱効率ηad’を求める。仮定断熱効率ηad’は、上記の断熱効率ηadの仮定値に相当するもので、ηad’=(hd_ad-hs’)/(hd-hs’)として求められる。ここでhd_adは、理想吐出エンタルピ、つまり等エントロピ過程で変化した際のエンタルピである。等エントロピ過程は図2の点Lb~点Lciを結ぶ線上で変化する。hdは実吐出エンタルピである。図2では、hd_adは概念的に点Lciに相当し、hdは概念的に点Lcに相当する。 In step S14, an assumed adiabatic efficiency ηad' is obtained. The assumed adiabatic efficiency ηad' corresponds to the assumed value of the adiabatic efficiency ηad described above, and is obtained as ηad'=(h d_ad -hs')/(hd-hs'). Here, hd_ad is the ideal discharge enthalpy, that is, the enthalpy when changed in an isentropic process. The isentropic process changes on the line connecting point Lb to point Lci in FIG. hd is the actual discharge enthalpy. In FIG. 2, hd_ad conceptually corresponds to point Lci, and hd conceptually corresponds to point Lc.

ステップS15において、記憶されている断熱効率ηadと算出された仮定断熱効率ηad’とを比較する。断熱効率ηadと仮定断熱効率ηad’とが等しくまたは差が十分に小さければ(Y)ステップS17へ移り、差が存在しまたは閾値以上(N)であればステップS16へ移る。 In step S15, the stored adiabatic efficiency ηad and the calculated assumed adiabatic efficiency ηad' are compared. If the adiabatic efficiency ηad and the assumed adiabatic efficiency ηad' are equal or the difference is sufficiently small (Y), the process proceeds to step S17.

ステップS16においては、ソルバーにより仮定中圧気相密度ρs’を変更・再仮定してステップS13へ戻る。ステップS13へ戻ることによりステップS13~S16の間でループ計算が行われ、断熱効率ηadと仮定断熱効率ηad’との差は次第に小さくなるように収束し、やがてステップS17へ移ることになる。 In step S16, the solver changes and re-assumes the assumed intermediate pressure gas phase density ρs', and the process returns to step S13. By returning to step S13, a loop calculation is performed between steps S13 to S16, and the difference between the adiabatic efficiency ηad and the assumed adiabatic efficiency ηad' gradually converges, and eventually the process moves to step S17.

ステップS17においては、断熱効率ηadと仮定断熱効率ηad’とが等しくまたは差が十分に小さくなっている。このとき、中圧気相密度ρsと仮定中圧気相密度ρs’とが等しくまたは差が十分に小さくなっている。そこで、ρs=ρs’と代入処理をすることによって中圧気相密度ρsが確定し、求められたことになる。この後、ステップS18おいては熱出力Qを算出し、ステップS19においてはインバータ13の回転数制御を行う。これらは上記のステップS5およびステップS6と同じ処理である。 In step S17, the adiabatic efficiency ηad and the assumed adiabatic efficiency ηad' are equal or the difference is sufficiently small. At this time, the intermediate pressure gas phase density ρs and the assumed intermediate pressure gas phase density ρs' are equal or the difference is sufficiently small. Therefore, by substituting .rho.s=.rho.s', the intermediate pressure gas phase density .rho.s is determined and obtained. Thereafter, the heat output Q is calculated in step S18, and the rotation speed of the inverter 13 is controlled in step S19. These are the same processes as steps S5 and S6 described above.

このような中圧気相密度ρsの演算方法では、途中段階で中圧気相温度Tsを求める必要がない。また、ソルバーおよびループによる収束計算は計算機による計算の用途に有用である。 In such a method of calculating the intermediate pressure gas phase density ρs, it is not necessary to find the intermediate pressure gas phase temperature Ts in the middle. Convergence calculations by solvers and loops are also useful for computational applications.

高圧気相圧力Pa、高圧気相温度Ta、中圧気相圧力Psおよび断熱効率ηadに基づいて、中圧気相密度ρsを算出する手順はさらに様々な方法があり得る。冷媒流量Gは、各種の方法により得られた中圧気相密度ρsに基づいて算出される。 There may be various methods for calculating the intermediate pressure gas phase density ρs based on the high pressure gas phase pressure Pa, the high pressure gas phase temperature Ta, the intermediate pressure gas phase pressure Ps, and the adiabatic efficiency ηad. The refrigerant flow rate G is calculated based on the intermediate pressure gas phase density ρs obtained by various methods.

本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。 It goes without saying that the present invention is not limited to the above-described embodiments, and can be freely modified without departing from the gist of the present invention.

10 ヒートポンプ装置
12 回路部
13 インバータ
14 制御部
16 蒸発器
18 圧縮機
18a 低段圧縮機
18b 高段圧縮機
20 凝縮器
22 高段膨張弁(高段膨張機構)
24 気液分離器
26 低段膨張弁(低段膨張機構)
28b 中圧気相流路
32 中間配管
34 高圧気相圧力計(高圧気相圧力検出手段)
36 高圧気相温度計(高圧気相温度検出手段)
38 高圧液相圧力計
40 高圧液相温度計
42 中圧気相圧力計(中圧気相圧力検出手段)
44 記憶部
46 演算部
48 回転数制御部
50 特性データ
52 高圧気相エンタルピ算出部
54 中圧気相温度算出部
56 中圧気相密度算出部
58 冷媒流量算出部
60 熱出力算出部
10 heat pump device 12 circuit unit 13 inverter 14 control unit 16 evaporator 18 compressor 18a low-stage compressor 18b high-stage compressor 20 condenser 22 high-stage expansion valve (high-stage expansion mechanism)
24 gas-liquid separator 26 low-stage expansion valve (low-stage expansion mechanism)
28b Intermediate-pressure gas-phase flow path 32 Intermediate pipe 34 High-pressure gas-phase pressure gauge (high-pressure gas-phase pressure detection means)
36 high-pressure gas-phase thermometer (high-pressure gas-phase temperature detection means)
38 High pressure liquid phase pressure gauge 40 High pressure liquid phase thermometer 42 Medium pressure gas phase pressure gauge (means for detecting medium pressure gas phase pressure)
44 Storage unit 46 Calculation unit 48 Rotation speed control unit 50 Characteristic data 52 High pressure gas phase enthalpy calculation unit 54 Medium pressure gas phase temperature calculation unit 56 Medium pressure gas phase density calculation unit 58 Refrigerant flow rate calculation unit 60 Thermal output calculation unit

Claims (3)

低圧冷媒を外部熱源で蒸発させる蒸発器と、
蒸発した低圧冷媒を圧縮して中間圧冷媒にする低段圧縮機と、
中間圧冷媒を圧縮して高圧冷媒にする高段圧縮機と、
高圧冷媒を凝縮させ被加熱媒体を加熱する凝縮器と、
凝縮した高圧冷媒を減圧膨張して中間圧にする高段膨張機構と、
前記高段膨張機構から導入された中間圧冷媒を気液分離する気液分離器と、
前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間の中圧気相流路に導入する中間配管と、
前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にし、前記蒸発器に導入する低段膨張機構と、
前記高段圧縮機の吐出口における冷媒の高圧気相圧力を検出する高圧気相圧力検出手段と、
前記高段圧縮機の吐出口における冷媒の高圧気相温度を検出する高圧気相温度検出手段と、
前記中間配管または前記中圧気相流路における冷媒の中圧気相圧力を検出する中圧気相圧力検出手段と、
前記高段圧縮機の回転数を検出する回転数検出手段と、
前記高段圧縮機の断熱効率、体積効率および押しのけ量を示す特性データを記憶する記憶部と、
前記高圧気相圧力、前記高圧気相温度、前記中圧気相圧力および前記断熱効率に基づいて、前記中圧気相流路の中圧気相密度を算出する中圧気相密度算出部と、
前記中圧気相密度、前記回転数、前記押しのけ量および前記体積効率に基づいて、前記凝縮器を流れる冷媒流量を算出する冷媒流量算出部と、
前記高圧気相圧力および前記高圧気相温度に基づいて、前記高段圧縮機の吐出口における高圧気相エンタルピを算出する高圧気相エンタルピ算出部と、
を有し、
前記中圧気相密度算出部は、
前記中圧気相密度に相当する仮定中圧気相密度を仮定し、前記高圧気相エンタルピおよび前記仮定中圧気相密度に基づいて、前記断熱効率に相当する仮定断熱効率を算出し、前記断熱効率と前記仮定断熱効率との差に基づいて前記仮定中圧気相密度を再仮定することによりループ計算を行い、
前記差が閾値以下となったときに前記仮定中圧気相密度を前記中圧気相密度とすることを特徴とするヒートポンプ装置。
an evaporator that evaporates the low-pressure refrigerant with an external heat source;
a low-stage compressor that compresses the evaporated low-pressure refrigerant into an intermediate-pressure refrigerant;
a high-stage compressor that compresses intermediate-pressure refrigerant into high-pressure refrigerant;
a condenser for condensing the high-pressure refrigerant and heating the medium to be heated;
a high-stage expansion mechanism that decompresses and expands the condensed high-pressure refrigerant to an intermediate pressure;
a gas-liquid separator for gas-liquid separation of the intermediate-pressure refrigerant introduced from the high-stage expansion mechanism;
an intermediate pipe for introducing the intermediate-pressure refrigerant introduced from the gas-phase side outlet of the gas-liquid separator into the intermediate-pressure gas-phase flow path between the discharge port of the low-stage compressor and the suction port of the high-stage compressor; ,
a low-stage expansion mechanism that decompresses and expands the intermediate-pressure refrigerant introduced from the liquid phase side outlet of the gas-liquid separator to a low pressure and introduces it into the evaporator;
high-pressure gas-phase pressure detection means for detecting the high-pressure gas-phase pressure of the refrigerant at the discharge port of the high-stage compressor;
high-pressure gas-phase temperature detection means for detecting the high-pressure gas-phase temperature of the refrigerant at the discharge port of the high-stage compressor;
intermediate pressure gas phase pressure detection means for detecting the intermediate pressure gas phase pressure of the refrigerant in the intermediate pipe or the intermediate pressure gas phase flow path;
rotation speed detection means for detecting the rotation speed of the high-stage compressor;
a storage unit for storing characteristic data indicating adiabatic efficiency, volumetric efficiency and displacement of the high-stage compressor;
a medium-pressure gas-phase density calculator that calculates the medium-pressure gas-phase density of the medium-pressure gas-phase channel based on the high-pressure gas-phase pressure, the high-pressure gas-phase temperature, the medium-pressure gas-phase pressure, and the adiabatic efficiency;
a refrigerant flow rate calculation unit that calculates a refrigerant flow rate flowing through the condenser based on the medium pressure gas phase density, the rotation speed, the displacement amount, and the volumetric efficiency;
a high-pressure gas-phase enthalpy calculation unit that calculates a high-pressure gas-phase enthalpy at a discharge port of the high-stage compressor based on the high-pressure gas-phase pressure and the high-pressure gas-phase temperature;
has
The medium pressure gas phase density calculation unit
Assuming an assumed intermediate pressure gas phase density corresponding to the intermediate pressure gas phase density, calculating an assumed adiabatic efficiency corresponding to the adiabatic efficiency based on the high pressure gas phase enthalpy and the assumed intermediate pressure gas phase density, and calculating the adiabatic efficiency and performing a loop calculation by re-assuming the assumed intermediate pressure gas phase density based on the difference from the assumed adiabatic efficiency;
A heat pump device , wherein the assumed medium-pressure gas phase density is set to the medium-pressure gas phase density when the difference becomes equal to or less than a threshold value .
請求項1に記載のヒートポンプ装置において、
前記低段圧縮機と前記高段圧縮機は一体型多段圧縮機であることを特徴とするヒートポンプ装置。
In the heat pump device according to claim 1,
A heat pump apparatus, wherein the low-stage compressor and the high-stage compressor are integrated multi-stage compressors.
低圧冷媒を外部熱源で蒸発させる蒸発器と、
蒸発した低圧冷媒を圧縮して中間圧冷媒にする低段圧縮機と、
中間圧冷媒を圧縮して高圧冷媒にする高段圧縮機と、
高圧冷媒を凝縮させ被加熱媒体を加熱する凝縮器と、
凝縮した高圧冷媒を減圧膨張して中間圧にする高段膨張機構と、
前記高段膨張機構から導入された中間圧冷媒を気液分離する気液分離器と、
前記気液分離器の気相側出口から導入された中間圧冷媒を前記低段圧縮機の吐出口と前記高段圧縮機の吸入口との間の中圧気相流路に導入する中間配管と、
前記気液分離器の液相側出口から導入された中間圧冷媒を減圧膨張して低圧にし、前記蒸発器に導入する低段膨張機構と、
を有するヒートポンプ装置における前記凝縮器を流れる冷媒流量を求める冷媒流量演算方法において、
前記高段圧縮機の吐出口における冷媒の高圧気相圧力、前記高段圧縮機の吐出口における冷媒の高圧気相温度、前記中圧気相流路または前記中間配管における冷媒の中圧気相圧力および前記高段圧縮機の断熱効率に基づいて、前記中圧気相流路の中圧気相密度を算出する中圧気相密度算出ステップと、
前記中圧気相密度、前記高段圧縮機の回転数、前記高段圧縮機の押しのけ量および前記高段圧縮機の体積効率に基づいて、前記冷媒流量を算出する冷媒流量算出ステップと、
前記高圧気相圧力および前記高圧気相温度に基づいて、前記高段圧縮機の吐出口における高圧気相エンタルピを算出する高圧気相エンタルピ算出ステップと、
を有し、
前記中圧気相密度算出ステップは、
前記中圧気相密度に相当する仮定中圧気相密度を仮定し、前記高圧気相エンタルピおよび前記仮定中圧気相密度に基づいて、前記断熱効率に相当する仮定断熱効率を算出し、前記断熱効率と前記仮定断熱効率との差に基づいて前記仮定中圧気相密度を再仮定することによりループ計算を行い、
前記差が閾値以下となったときに前記仮定中圧気相密度を前記中圧気相密度とすることを特徴とする冷媒流量演算方法。
an evaporator that evaporates the low-pressure refrigerant with an external heat source;
a low-stage compressor that compresses the evaporated low-pressure refrigerant into an intermediate-pressure refrigerant;
a high-stage compressor that compresses intermediate-pressure refrigerant into high-pressure refrigerant;
a condenser for condensing the high-pressure refrigerant and heating the medium to be heated;
a high-stage expansion mechanism that decompresses and expands the condensed high-pressure refrigerant to an intermediate pressure;
a gas-liquid separator for gas-liquid separation of the intermediate-pressure refrigerant introduced from the high-stage expansion mechanism;
an intermediate pipe for introducing the intermediate-pressure refrigerant introduced from the gas-phase side outlet of the gas-liquid separator into the intermediate-pressure gas-phase flow path between the discharge port of the low-stage compressor and the suction port of the high-stage compressor; ,
a low-stage expansion mechanism that decompresses and expands the intermediate-pressure refrigerant introduced from the liquid phase side outlet of the gas-liquid separator to a low pressure and introduces it into the evaporator;
In a refrigerant flow rate calculation method for determining the refrigerant flow rate flowing through the condenser in a heat pump device having
high-pressure vapor phase pressure of the refrigerant at the discharge port of the high-stage compressor, high-pressure vapor-phase temperature of the refrigerant at the discharge port of the high-stage compressor, medium-pressure vapor phase pressure of the refrigerant in the medium-pressure gas-phase passage or the intermediate pipe, and a medium-pressure gas-phase density calculating step of calculating a medium-pressure gas-phase density of the medium-pressure gas-phase passage based on the adiabatic efficiency of the high-stage compressor;
a refrigerant flow rate calculating step of calculating the refrigerant flow rate based on the medium-pressure gas phase density, the rotation speed of the high-stage compressor, the displacement of the high-stage compressor, and the volumetric efficiency of the high-stage compressor;
a high-pressure gas-phase enthalpy calculation step of calculating a high-pressure gas-phase enthalpy at a discharge port of the high-stage compressor based on the high-pressure gas-phase pressure and the high-pressure gas-phase temperature;
has
The medium pressure gas phase density calculation step includes:
Assuming an assumed intermediate pressure gas phase density corresponding to the intermediate pressure gas phase density, calculating an assumed adiabatic efficiency corresponding to the adiabatic efficiency based on the high pressure gas phase enthalpy and the assumed intermediate pressure gas phase density, and calculating the adiabatic efficiency and performing a loop calculation by re-assuming the assumed intermediate pressure gas phase density based on the difference from the assumed adiabatic efficiency;
A refrigerant flow rate calculation method , wherein the assumed intermediate-pressure gas phase density is set to the intermediate-pressure gas phase density when the difference is equal to or less than a threshold value .
JP2018151848A 2018-08-10 2018-08-10 Heat pump device and refrigerant flow rate calculation method Active JP7151262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151848A JP7151262B2 (en) 2018-08-10 2018-08-10 Heat pump device and refrigerant flow rate calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151848A JP7151262B2 (en) 2018-08-10 2018-08-10 Heat pump device and refrigerant flow rate calculation method

Publications (2)

Publication Number Publication Date
JP2020026920A JP2020026920A (en) 2020-02-20
JP7151262B2 true JP7151262B2 (en) 2022-10-12

Family

ID=69619853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151848A Active JP7151262B2 (en) 2018-08-10 2018-08-10 Heat pump device and refrigerant flow rate calculation method

Country Status (1)

Country Link
JP (1) JP7151262B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178042A (en) 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2012073002A (en) 2010-09-29 2012-04-12 Daikin Industries Ltd Refrigerating device
JP2014119157A (en) 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2015140980A (en) 2014-01-29 2015-08-03 パナソニック株式会社 Freezer unit
JP2016191548A (en) 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device
JP2016200314A (en) 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2017122556A (en) 2016-01-08 2017-07-13 三菱重工業株式会社 Two-stage compression type refrigeration cycle device, control device/method thereof, and control program
WO2017126539A1 (en) 2016-01-20 2017-07-27 三菱重工サーマルシステムズ株式会社 Refrigeration cycle provided with plurality of multistage compressors connected in parallel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178042A (en) 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP2012073002A (en) 2010-09-29 2012-04-12 Daikin Industries Ltd Refrigerating device
JP2014119157A (en) 2012-12-14 2014-06-30 Sharp Corp Heat pump type heating device
JP2015140980A (en) 2014-01-29 2015-08-03 パナソニック株式会社 Freezer unit
JP2016200314A (en) 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2017122556A (en) 2016-01-08 2017-07-13 三菱重工業株式会社 Two-stage compression type refrigeration cycle device, control device/method thereof, and control program
WO2017126539A1 (en) 2016-01-20 2017-07-27 三菱重工サーマルシステムズ株式会社 Refrigeration cycle provided with plurality of multistage compressors connected in parallel
JP2016191548A (en) 2016-06-16 2016-11-10 三菱電機株式会社 Refrigeration device and refrigeration cycle device

Also Published As

Publication number Publication date
JP2020026920A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
Jiang et al. A general model for two-stage vapor compression heat pump systems
Aprea et al. Experimental evaluation of electronic and thermostatic expansion valves performances using R22 and R407C
WO2013004233A1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
EP2693137A1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
CN107110585B (en) Indenter control
JPH1163694A (en) Refrigeration cycle
JP5808410B2 (en) Refrigeration cycle equipment
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
US20140298842A1 (en) Refrigeration cycle device
JP6772703B2 (en) Refrigerant circuit device
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP7012867B2 (en) Outdoor unit and refrigeration cycle device equipped with it
JP6987269B2 (en) Refrigeration cycle device
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP5921776B1 (en) Refrigeration cycle equipment
JP7151262B2 (en) Heat pump device and refrigerant flow rate calculation method
JPH0835725A (en) Refrigerating air conditioner using non-azeotrope refrigerant
JP7282157B2 (en) Outdoor unit and refrigeration cycle device provided with the same
JP2004225924A (en) Refrigeration cycle control system
JP2020076516A (en) Heat pump cycle and heat pump type steam generation device
JPWO2020065999A1 (en) Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner
JP7176310B2 (en) Heat pump steam generator
JP6972370B2 (en) Refrigeration cycle device
Singer et al. On-field measurement method of vapor injection heat pump system
JP6822007B2 (en) Refrigerant circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150