JPH0835725A - Refrigerating air conditioner using non-azeotrope refrigerant - Google Patents

Refrigerating air conditioner using non-azeotrope refrigerant

Info

Publication number
JPH0835725A
JPH0835725A JP16957094A JP16957094A JPH0835725A JP H0835725 A JPH0835725 A JP H0835725A JP 16957094 A JP16957094 A JP 16957094A JP 16957094 A JP16957094 A JP 16957094A JP H0835725 A JPH0835725 A JP H0835725A
Authority
JP
Japan
Prior art keywords
refrigerant
composition
temperature
expansion valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16957094A
Other languages
Japanese (ja)
Other versions
JP2943613B2 (en
Inventor
Yoshihiro Sumida
嘉裕 隅田
Takashi Okazaki
多佳志 岡崎
Osamu Morimoto
修 森本
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16957094A priority Critical patent/JP2943613B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to EP98107194A priority patent/EP0854331B1/en
Priority to ES98107194T priority patent/ES2176849T3/en
Priority to DE69527092T priority patent/DE69527092T2/en
Priority to DE69526982T priority patent/DE69526982T2/en
Priority to EP95304838A priority patent/EP0693663B1/en
Priority to ES98107193T priority patent/ES2178069T3/en
Priority to DE69532003T priority patent/DE69532003T2/en
Priority to ES98107191T priority patent/ES2178068T3/en
Priority to EP98107193A priority patent/EP0854330B1/en
Priority to DE69527095T priority patent/DE69527095T2/en
Priority to ES98107192T priority patent/ES2208995T3/en
Priority to DE69526979T priority patent/DE69526979T2/en
Priority to PT95304838T priority patent/PT693663E/en
Priority to ES98107196T priority patent/ES2176850T3/en
Priority to EP98107195A priority patent/EP0853222B1/en
Priority to DE69526980T priority patent/DE69526980T2/en
Priority to EP98107192A priority patent/EP0853221B1/en
Priority to PT98107192T priority patent/PT853221E/en
Priority to ES95304838T priority patent/ES2148441T3/en
Priority to ES98107195T priority patent/ES2178070T3/en
Priority to EP98107196A priority patent/EP0854332B1/en
Priority to US08/500,551 priority patent/US5626026A/en
Priority to EP98107191A priority patent/EP0854329B1/en
Priority to DE69517099T priority patent/DE69517099T2/en
Priority to AU25041/95A priority patent/AU683385B2/en
Priority to CN95108967A priority patent/CN1067154C/en
Priority to TW084107907A priority patent/TW289079B/zh
Publication of JPH0835725A publication Critical patent/JPH0835725A/en
Priority to US08/779,851 priority patent/US5735132A/en
Priority to US09/005,813 priority patent/US5941084A/en
Priority to HK98100593A priority patent/HK1001659A1/en
Priority to KR2019980010044U priority patent/KR200145320Y1/en
Application granted granted Critical
Publication of JP2943613B2 publication Critical patent/JP2943613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To obtain a refrigerating air conditioner in which the optimum operation can be always conducted even if the refrigerant composition of non- azeotrope refrigerant circulated in a refrigerating cycle is altered. CONSTITUTION:A refrigerating cycle is composed by coupling a compressor 1, a four-way valve 31, a first heat exchanger 32, first expansion valves 3a, 3b, second heat exchangers 41a, 41b and an accumulator 5. Tubes between the exchanger 32 and the valves 3a, 3b are connected to the accumulator 5 by a bypass tube 50 via a second expansion valve 51, the temperature and the pressure of the refrigerant at the outlet of the valve 51 and the refrigerant temperature of the inlet of the valve 51 are detected, and the refrigerant composition circulated in the cycle is calculated by a composition calculator 20. Simultaneously, the operation of the cycle is controlled by a controller 21 in response to the circulated composition detected by the calculator 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非共沸混合冷媒を用いた
冷凍空調装置に関し、特に冷媒循環組成が初期充填組成
と異なった場合でも、信頼性が高く、かつ効率良く運転
を行う冷凍空調装置の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating and air-conditioning system using a non-azeotropic mixed refrigerant, and particularly to a refrigerating and air-conditioning system which is highly reliable and operates efficiently even when the refrigerant circulation composition is different from the initial filling composition. The present invention relates to the configuration of the device.

【0002】[0002]

【従来の技術】図22は特開昭61ー6546号公報に
示された従来の非共沸混合冷媒を用いた冷凍空調装置の
構成を示すものである。図において、1は圧縮機、2は
凝縮器、3は膨張弁、4は蒸発器、5はアキュムレータ
であり、これらは配管により直列に接続されて冷凍空調
装置を構成し、高沸点成分と低沸点成分とからなる非共
沸混合冷媒を用いている。
2. Description of the Related Art FIG. 22 shows a structure of a conventional refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant disclosed in JP-A-61-1546. In the figure, 1 is a compressor, 2 is a condenser, 3 is an expansion valve, 4 is an evaporator, and 5 is an accumulator. A non-azeotropic mixed refrigerant composed of a boiling point component is used.

【0003】上記のように構成された冷凍空調装置にお
いて、圧縮機1で圧縮された高温高圧の冷媒ガスは凝縮
器2で凝縮液化し、膨張弁3で減圧されて低圧の気液二
相冷媒となって蒸発器4に流入する。この冷媒は、蒸発
器4で蒸発し、アキュムレータ5を経て圧縮機1に戻
り、再び圧縮されて凝縮器2へ送り込まれる。またアキ
ュムレータ5は、冷凍空調装置の運転条件や負荷条件に
よって発生した余剰な冷媒を溜めることにより、圧縮機
1への液戻りを防止している。
In the refrigerating and air-conditioning apparatus constructed as described above, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is condensed and liquefied by the condenser 2 and decompressed by the expansion valve 3 to form a low-pressure gas-liquid two-phase refrigerant. And flows into the evaporator 4. This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Further, the accumulator 5 prevents the liquid from returning to the compressor 1 by accumulating the excess refrigerant generated due to the operating condition and the load condition of the refrigerating air conditioner.

【0004】このような冷凍空調装置では、冷媒として
目的に合わせた非共沸混合冷媒を使用することにより、
単一冷媒では得られなかったより低い蒸発温度、あるい
はより高い凝縮温度が得られたり、あるいはサイクル効
率がより向上するなどの利点が得られることは従来から
知られている。また、従来から広く用いられているR1
2やR22などの冷媒は、オゾン層破壊の原因となるた
め、これらの代替冷媒として非共沸混合冷媒が提案され
ている。
In such a refrigerating and air-conditioning apparatus, by using a non-azeotropic mixed refrigerant as a refrigerant,
It is conventionally known that advantages such as a lower evaporation temperature or a higher condensation temperature which cannot be obtained with a single refrigerant or a higher cycle efficiency can be obtained. In addition, R1 which has been widely used from the past
Since refrigerants such as 2 and R22 cause ozone layer destruction, non-azeotropic mixed refrigerants have been proposed as alternative refrigerants for these.

【0005】[0005]

【発明が解決しようとする課題】従来の非共沸混合冷媒
を用いた冷凍空調装置は以上のように構成されているの
で、冷凍空調装置の運転条件や負荷条件が一定であれ
ば、冷凍サイクル内を循環する冷媒組成は一定であり、
上述のような効率の良い冷凍サイクルを構成する。とこ
ろが運転条件や負荷条件が変化し、特にアキュムレータ
内に貯溜される冷媒量が変化すると、冷凍サイクル内を
循環する冷媒組成が変化し、この循環冷媒組成に応じた
冷凍サイクルの制御、すなわち圧縮機の回転数制御や膨
張弁の開度制御等による冷媒流量の調整が必要となる。
しかし、従来の冷凍空調装置では、この循環冷媒組成を
検知する手段を設けていないため、循環冷媒組成に応じ
た最適な運転が維持できないという問題点があった。ま
た冷凍サイクルの使用中の冷媒漏れや、あるいは冷媒充
填時の誤動作で循環冷媒組成が変化した場合にも、この
循環冷媒組成の異常を検知できず、安全性、及び信頼性
の高い冷凍空調装置が得られないという問題点があっ
た。
Since the conventional refrigerating and air-conditioning apparatus using the non-azeotropic mixed refrigerant is constructed as described above, if the operating conditions and load conditions of the refrigerating and air-conditioning apparatus are constant, the refrigerating cycle The composition of the refrigerant circulating inside is constant,
The efficient refrigeration cycle as described above is configured. However, when operating conditions and load conditions change, especially when the amount of refrigerant stored in the accumulator changes, the refrigerant composition that circulates in the refrigeration cycle changes, and control of the refrigeration cycle according to this circulating refrigerant composition, that is, the compressor It is necessary to adjust the flow rate of the refrigerant by controlling the number of revolutions, controlling the opening of the expansion valve, or the like.
However, the conventional refrigerating air conditioner has a problem that it is not possible to maintain the optimum operation according to the circulating refrigerant composition because the means for detecting the circulating refrigerant composition is not provided. Even if the circulating refrigerant composition changes due to refrigerant leakage during use of the refrigeration cycle or malfunction during charging of the refrigerant, this abnormality in the circulating refrigerant composition cannot be detected, and the safety and reliability of the refrigeration air conditioning system is high. There was a problem that was not obtained.

【0006】本発明は上記のような問題点を解消するた
めになされたもので、冷凍サイクル内を循環する冷媒組
成が変化しても常に最適な冷凍サイクルの運転を可能に
した冷凍空調装置を得ることを目的としている。
The present invention has been made in order to solve the above problems, and provides a refrigerating air-conditioning apparatus that always enables an optimal refrigerating cycle operation even if the composition of the refrigerant circulating in the refrigerating cycle changes. The purpose is to get.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
非共沸混合冷媒を用いた冷凍空調装置は、圧縮機、凝縮
器、膨張弁、及び蒸発器を連結して冷凍サイクルを構成
するものにおいて、蒸発器入口部の冷媒の温度と圧力、
及び凝縮器出口部の冷媒温度を検出してサイクル内を循
環する冷媒組成を演算する組成演算器を設けると共に、
この組成演算器により検出された循環組成に応じて冷凍
サイクルの運転制御を行う制御装置を設けたものであ
る。
A refrigeration air conditioner using a non-azeotropic mixed refrigerant according to claim 1 of the present invention constitutes a refrigeration cycle by connecting a compressor, a condenser, an expansion valve and an evaporator. The temperature and pressure of the refrigerant at the evaporator inlet,
And a composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the refrigerant temperature at the outlet of the condenser,
A control device for controlling the operation of the refrigeration cycle in accordance with the circulation composition detected by the composition calculator is provided.

【0008】本発明の請求項2に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、凝縮器、膨張弁、及び
蒸発器を連結して冷凍サイクルを構成するものにおい
て、蒸発器入口部の冷媒の温度と圧力を検出してサイク
ル内を循環する冷媒組成を演算する組成演算器を設ける
と共に、この組成演算器により検出された循環組成に応
じて冷凍サイクルの運転制御を行う制御装置を設けたも
のである。
A refrigeration air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a second aspect of the present invention constitutes a refrigeration cycle by connecting a compressor, a condenser, an expansion valve, and an evaporator. A control is provided to detect the temperature and pressure of the refrigerant at the inlet and provide a composition calculator for calculating the composition of the refrigerant circulating in the cycle, and to control the operation of the refrigeration cycle in accordance with the circulation composition detected by the composition calculator. A device is provided.

【0009】本発明の請求項3に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、凝縮器、膨張弁、蒸発
器、及びアキュムレータを連結して冷凍サイクルを構成
するものにおいて、アキュムレータ内、あるいはアキュ
ムレータと圧縮機吸入配管との間の冷媒の温度と圧力を
検出してサイクル内を循環する冷媒組成を演算する組成
演算器を設けると共に、この組成演算器により検出され
た循環組成に応じて圧縮機や膨張弁の制御を行う制御装
置を設けたものである。
In a refrigerating air-conditioning system using a non-azeotropic mixed refrigerant according to a third aspect of the present invention, a refrigerating cycle is constituted by connecting a compressor, a condenser, an expansion valve, an evaporator and an accumulator, A composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant in the accumulator or between the accumulator and the compressor suction pipe, and the circulation composition detected by this composition calculator A control device for controlling the compressor and the expansion valve according to the above is provided.

【0010】本発明の請求項4に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、凝縮器、膨張弁、蒸発
器、及びアキュムレータを連結して冷凍サイクルを構成
するものにおいて、アキュムレータの液面を検出してサ
イクル内を循環する冷媒組成を演算する組成演算器を設
けると共に、この組成演算器により検出された循環組成
に応じて冷凍サイクルの運転制御を行う制御装置を設け
たものである。
According to a fourth aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant, which comprises a refrigerating cycle by connecting a compressor, a condenser, an expansion valve, an evaporator and an accumulator. A composition calculator that detects the liquid level of the accumulator and calculates the refrigerant composition that circulates in the cycle is provided, and a control device that controls the operation of the refrigeration cycle according to the circulation composition detected by this composition calculator is provided. It is a thing.

【0011】本発明の請求項5に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、四方弁、第1熱交換
器、第1膨張弁、及び第2熱交換器を連結して冷凍サイ
クルを構成するものにおいて、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力、及び第2膨張弁の入口部の冷媒温度を検
出して、サイクル内を循環する冷媒組成を演算する組成
演算器を設けると共に、この組成演算器により検出され
た循環組成に応じて冷凍サイクルの運転制御を行う制御
装置を設けたものである。
According to a fifth aspect of the present invention, in a refrigerating and air-conditioning system using a non-azeotropic mixed refrigerant, a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger are connected. In a refrigerating cycle, the pipe between the first heat exchanger and the first expansion valve and the suction pipe of the compressor are connected by a bypass pipe via the second expansion valve, A composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant at the outlet and the refrigerant temperature at the inlet of the second expansion valve and being detected by this composition calculator A control device for controlling the operation of the refrigeration cycle according to the circulation composition is provided.

【0012】本発明の請求項6に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、四方弁、第1熱交換
器、第1膨張弁、及び第2熱交換器を連結して冷凍サイ
クルを構成するものにおいて、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力を検出して、サイクル内を循環する冷媒組
成を演算する組成演算器を設けると共に、この組成演算
器により検出された循環組成に応じて冷凍サイクルの運
転制御を行う制御装置を設けたものである。
According to a sixth aspect of the present invention, there is provided a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant, which comprises a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger connected to each other. In a refrigerating cycle, the pipe between the first heat exchanger and the first expansion valve and the suction pipe of the compressor are connected by a bypass pipe via the second expansion valve, A composition calculator that detects the temperature and pressure of the refrigerant at the outlet and calculates the refrigerant composition circulating in the cycle is provided, and the operation of the refrigeration cycle is controlled according to the circulation composition detected by this composition calculator. A control device is provided.

【0013】本発明の請求項7に係る非共沸混合冷媒を
用いた冷凍空調装置は、請求項5または6の冷凍空調装
置におけるバイパス配管に、第1熱交換器と第1膨張弁
の間の配管とで熱交換を行う熱交換部を設けたものであ
る。
According to a seventh aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant, wherein a bypass pipe in the refrigerating and air-conditioning apparatus according to the fifth or sixth aspect is provided between the first heat exchanger and the first expansion valve. The heat exchanging section for exchanging heat with the pipe is provided.

【0014】本発明の請求項8に係る非共沸混合冷媒を
用いた冷凍空調装置は、上記各冷凍空調装置に対して、
組成演算器で検出された循環組成が所定範囲から外れた
場合に警告信号を発する比較演算手段と、この比較演算
手段が発する警報信号によって動作する警報手段を設け
たものである。
A refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to claim 8 of the present invention,
A comparison calculation means for issuing a warning signal when the circulating composition detected by the composition calculation device is out of a predetermined range, and an alarm means for operating according to an alarm signal issued by the comparison calculation means are provided.

【0015】[0015]

【作用】本発明の請求項1においては、圧縮機、凝縮
器、膨張弁、及び蒸発器を連結した冷凍サイクル内を循
環する冷媒組成を、蒸発器入口部の冷媒の温度と圧力、
及び凝縮器出口部の冷媒温度を検出して、検出値を組成
演算器に入力し、演算する。組成演算器が検出した冷媒
循環組成は制御装置に入力され、冷媒循環組成に応じた
圧縮機や膨張弁などの制御値が決定されるため、冷凍空
調装置の運転条件や負荷条件の変化により循環組成が変
化した場合や、あるいは冷凍空調装置使用中の冷媒漏れ
や、冷媒充填時の誤動作で循環組成が変化した場合でも
冷凍空調装置の最適運転を可能にすることができる。
According to the first aspect of the present invention, the composition of the refrigerant circulating in the refrigeration cycle in which the compressor, the condenser, the expansion valve and the evaporator are connected is determined by the temperature and pressure of the refrigerant at the evaporator inlet,
Also, the refrigerant temperature at the outlet of the condenser is detected, and the detected value is input to the composition calculator for calculation. The refrigerant circulation composition detected by the composition calculator is input to the control device, and the control values for the compressor, expansion valve, etc. are determined according to the refrigerant circulation composition. Even if the composition changes, or if the circulation composition changes due to a refrigerant leak during use of the refrigeration air conditioner or a malfunction during charging of the refrigerant, it is possible to enable optimum operation of the refrigeration air conditioner.

【0016】本発明の請求項2においては、上記冷凍サ
イクルにおける蒸発器入口部の冷媒の温度と圧力のみを
組成演算器に入力し、組成演算器では蒸発器へ流入する
冷媒の乾き度が所定の値と仮定して冷媒組成を演算す
る。従って、簡単な装置構成で、上記装置と同様のもの
が実現する。
In the second aspect of the present invention, only the temperature and pressure of the refrigerant at the inlet of the evaporator in the refrigeration cycle are input to the composition calculator, and the dryness of the refrigerant flowing into the evaporator is predetermined in the composition calculator. The refrigerant composition is calculated assuming that Therefore, the same device as the above device can be realized with a simple device configuration.

【0017】本発明の請求項3においては、圧縮機、凝
縮器、膨張弁、蒸発器、及びアキュムレータを連結した
冷凍サイクルにおいて、アキュムレータ内、または上記
アキュムレータと圧縮機吸入配管との間の冷媒温度と圧
力を検出して、検出値を組成演算器に入力し、組成演算
器ではアキュムレータへ流入する冷媒の乾き度が所定の
値と仮定して冷媒組成を演算する。従って、上記装置と
同様、簡単な装置構成で、循環組成が変化した場合でも
冷凍空調装置の最適運転を可能にすることができる。
According to a third aspect of the present invention, in a refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected, a refrigerant temperature in the accumulator or between the accumulator and the compressor suction pipe is set. The pressure is detected, the detected value is input to the composition calculator, and the composition calculator calculates the refrigerant composition on the assumption that the dryness of the refrigerant flowing into the accumulator is a predetermined value. Therefore, similar to the above-mentioned device, the refrigeration / air-conditioning device can be optimally operated with a simple device configuration even when the circulation composition changes.

【0018】本発明の請求項4においては、アキュムレ
ータの液面を検知し、検知信号を組成演算器に入力す
る、組成演算器では予め調べておいた液面の高さと循環
組成の関係から、冷媒組成を演算する。従って、上記装
置と同様、簡単な装置構成で、循環組成が変化した場合
でも冷凍空調装置の最適運転を可能にすることができ
る。
According to a fourth aspect of the present invention, the liquid level of the accumulator is detected, and the detection signal is input to the composition calculator. From the relationship between the liquid level height and the circulating composition, which has been examined in advance by the composition calculator, Calculate the refrigerant composition. Therefore, similar to the above-mentioned device, the refrigeration / air-conditioning device can be optimally operated with a simple device configuration even when the circulation composition changes.

【0019】本発明の請求項5、及び6においては、圧
縮機、四方弁、第1熱交換器、第1膨張弁、及び第2熱
交換器を連結した冷凍サイクルにおいて、第1熱交換器
と第1膨張弁の間の配管と、上記圧縮機の吸入配管とを
第2膨張弁を介して接続するバイパス配管を設け、ここ
に温度検出器と圧力検出器を設けて冷媒組成を演算す
る。この様な構成では、第2膨張弁の下流側が常に低圧
の二相状態になるので、冷房、暖房にかかわらず、同一
の検出器で検出された温度、及び圧力から冷媒組成がわ
かる。
According to the fifth and sixth aspects of the present invention, in the refrigeration cycle in which the compressor, the four-way valve, the first heat exchanger, the first expansion valve, and the second heat exchanger are connected, the first heat exchanger is used. And a first expansion valve, and a bypass pipe that connects the suction pipe of the compressor via the second expansion valve, and a temperature detector and a pressure detector are provided therein to calculate the refrigerant composition. . In such a configuration, the downstream side of the second expansion valve is always in a low-pressure two-phase state, so that the refrigerant composition can be known from the temperature and pressure detected by the same detector regardless of cooling or heating.

【0020】本発明の請求項7においては、バイパス配
管に熱交換部を設け、バイパス配管を流れる冷媒の持つ
エンタルピーを主配管を流れる冷媒へ伝達し、エネルギ
ーロスを防ぐ。
According to the seventh aspect of the present invention, a heat exchange section is provided in the bypass pipe, and the enthalpy of the refrigerant flowing through the bypass pipe is transmitted to the refrigerant flowing through the main pipe to prevent energy loss.

【0021】本発明の請求項8においては、組成演算器
が検出した冷媒循環組成が、予め定めた所定範囲から外
れた場合には、これを比較演算手段によって判断し、警
報手段を作動させるため、非共沸混合冷媒の循環組成が
使用中に冷媒漏れによって変化したり、冷媒充填時の誤
動作で循環組成が変化したことを確実に検知でき、安全
性や信頼性の高い冷凍空調装置の提供が可能となる。
According to the eighth aspect of the present invention, when the refrigerant circulation composition detected by the composition calculator is out of a predetermined range, it is judged by the comparison calculation means to activate the alarm means. , It is possible to reliably detect that the circulation composition of the non-azeotropic mixed refrigerant changes due to refrigerant leakage during use, or that the circulation composition has changed due to malfunction during refrigerant charging, providing a highly safe and reliable refrigeration air conditioner. Is possible.

【0022】[0022]

【実施例】【Example】

実施例1.以下、本発明の実施例を図について説明す
る。図1は本発明に係わる冷凍空調装置の第1の実施例
を示すもので、1は圧縮機、2は凝縮器、3は電気式膨
張弁、4は蒸発器、5はアキュムレータであり、これら
を配管により直列に接続することにより冷凍サイクルを
構成しており、電気式膨張弁3の開度は制御装置21の
出力信号により制御される。この冷凍サイクルには、例
えば高沸点成分R134aと低沸点成分R32からなる
非共沸混合冷媒が充填されている。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention, in which 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, 4 is an evaporator, and 5 is an accumulator. Of the electric expansion valve 3 is controlled by an output signal of the control device 21. This refrigeration cycle is filled with a non-azeotropic mixed refrigerant composed of, for example, a high boiling point component R134a and a low boiling point component R32.

【0023】蒸発器4の入口部には、その冷媒温度T1
を検出する第1温度検出器11と冷媒圧力P1 を検出す
る第1圧力検出器12がそれぞれ設けられており、また
凝縮器2の出口部には、その冷媒温度T2 を検出する第
2温度検出器13が設けられており、これら検出器1
1、12、13の検出信号は組成演算器20に入力され
る。また、圧縮機1の吐出配管にはその冷媒圧力を検出
する第2圧力検出器14が設けられており、この検出器
14の検出信号は、検出器13の検出信号とともに制御
装置21に入力される。
At the inlet of the evaporator 4, the refrigerant temperature T1
Is provided with a first temperature detector 11 for detecting the refrigerant pressure and a first pressure detector 12 for detecting the refrigerant pressure P1, and at the outlet of the condenser 2, a second temperature detector for detecting the refrigerant temperature T2 is provided. A detector 13 is provided and these detectors 1
The detection signals 1, 12, and 13 are input to the composition calculator 20. Further, the discharge pipe of the compressor 1 is provided with a second pressure detector 14 for detecting the pressure of the refrigerant, and the detection signal of this detector 14 is input to the control device 21 together with the detection signal of the detector 13. It

【0024】組成演算器20は、検出器11、12、1
3が検出する温度T1 、圧力P1 、温度T2 に基づいて
非共沸混合冷媒の循環組成αを演算する機能を有してお
り、この循環組成αの演算値は制御装置21に入力され
る。また制御装置21は、循環組成αと検出器14が検
出する圧力P2 から凝縮圧力における飽和液温度TLを
演算する機能と、この飽和液温度TL と検出器13が検
出する温度T2 から凝縮器2の出口部における過冷却度
を演算する機能と、この過冷却度が所定の値となるよう
に電気式膨張弁3の開度を制御する機能を有している。
The composition calculator 20 comprises detectors 11, 12, 1
3 has a function of calculating the circulation composition α of the non-azeotropic mixed refrigerant based on the temperature T1, the pressure P1 and the temperature T2 detected, and the calculated value of the circulation composition α is input to the control device 21. Further, the control device 21 has a function of calculating the saturated liquid temperature TL at the condensing pressure from the circulation composition α and the pressure P2 detected by the detector 14, and the condenser 2 from the saturated liquid temperature TL and the temperature T2 detected by the detector 13. It has a function of calculating the degree of supercooling at the outlet portion of and the function of controlling the opening degree of the electric expansion valve 3 so that the degree of supercooling becomes a predetermined value.

【0025】次に、上記のように構成された本実施例の
動作について説明する。圧縮機1で圧縮された高温高圧
の冷媒ガスは凝縮器2で凝縮液化し、膨張弁3で減圧さ
れ、低圧の気液二相冷媒となって蒸発器4に流入する。
この冷媒は、蒸発器4で蒸発し、アキュムレータ5を経
て圧縮機1に戻り、再び圧縮されて凝縮器2へ送り込ま
れる。冷凍空調装置の運転条件や負荷条件によって発生
した余剰な冷媒は、アキュムレータ5内に溜る。
Next, the operation of this embodiment configured as described above will be described. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is condensed and liquefied by the condenser 2, decompressed by the expansion valve 3, and becomes a low-pressure gas-liquid two-phase refrigerant and flows into the evaporator 4.
This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Excessive refrigerant generated due to operating conditions and load conditions of the refrigerating and air-conditioning apparatus accumulates in the accumulator 5.

【0026】次に、組成演算器20の動作を図2に示す
フローチャート、及び図3に示す冷凍サイクルの圧力−
エンタルピー線図、図4の非共沸混合冷媒の気液平衡線
図に基づいて説明する。なお、図3において、実線Aは
循環組成αに対する飽和液曲線、実線Bは循環組成αに
対する飽和蒸気曲線、実線Cはサイクル動作線、一点鎖
線は等温線である。また、図4において、横軸は低沸点
成分の重量分率、縦軸は温度、点線は蒸発器4の入口部
の圧力がP1 の時の飽和蒸気温度(X=1)、一点鎖線
は飽和液温度(X=0)、実線は乾き度Xにおける温度
(0〈X〈1)である。組成演算器20の動作が開始さ
れると、まずステップS1では、検出器11、12、1
3で検出された蒸発器4の入口部の冷媒温度T1 と圧力
P1 、及び凝縮器2の出口部の温度T2 を組成演算器2
0に取り込む。次にステップS2では、冷凍サイクル内
の循環組成αを仮定し、ステップS3では、この仮定の
下で、蒸発器4へ流入する冷媒の乾き度Xを計算する。
すなわち図3に示すように仮定した循環組成αの下で
は、凝縮器2の出口部の温度T2 からエンタルピーHが
求まり、蒸発器4の入口部の圧力P1 よりHL が得ら
れ、蒸発器4の入口部の乾き度Xが近似的に次式により
一義的に定まる。
Next, the operation of the composition calculator 20 will be described with reference to the flow chart shown in FIG. 2 and the pressure of the refrigeration cycle shown in FIG.
Description will be made based on the enthalpy diagram and the vapor-liquid equilibrium diagram of the non-azeotropic mixed refrigerant of FIG. In FIG. 3, a solid line A is a saturated liquid curve with respect to the circulating composition α, a solid line B is a saturated vapor curve with respect to the circulating composition α, a solid line C is a cycle operation line, and a chain line is an isotherm. In FIG. 4, the horizontal axis represents the weight fraction of the low boiling point component, the vertical axis represents the temperature, the dotted line represents the saturated vapor temperature (X = 1) when the pressure at the inlet of the evaporator 4 is P1, and the dashed line represents the saturation. The liquid temperature (X = 0), and the solid line is the temperature at dryness X (0 <X <1). When the operation of the composition calculator 20 is started, first, in step S1, the detectors 11, 12, 1 are detected.
The refrigerant temperature T1 and pressure P1 at the inlet of the evaporator 4 and the temperature T2 at the outlet of the condenser 2 detected in Step 3 are used as the composition calculator 2
Capture to 0. Next, in step S2, the circulation composition α in the refrigeration cycle is assumed, and in step S3, the dryness X of the refrigerant flowing into the evaporator 4 is calculated under this assumption.
That is, under the circulation composition α assumed as shown in FIG. 3, the enthalpy H is obtained from the temperature T2 at the outlet of the condenser 2, and HL is obtained from the pressure P1 at the inlet of the evaporator 4, and the evaporator 4 is obtained. The dryness X of the inlet part of is approximately uniquely determined by the following equation.

【0027】[0027]

【数1】 [Equation 1]

【0028】ここでHV は飽和蒸気曲線とサイクル動作
線が交わる点のエンタルピーである。実際には乾き度X
と温度T2 、及び圧力P1 との関係を予め組成演算器2
0内に記憶しておき、温度T2 、圧力P1 の値を用い
て、乾き度Xを算出する。さらにステップS4では、こ
の蒸発器4の入口部の乾き度Xと蒸発器4の入口部の冷
媒温度T1 、及び圧力P1 より循環組成α* を計算す
る。すなわち乾き度がXである気液二相状態の非共沸混
合冷媒の温度と圧力は、図4に示すように冷凍サイクル
内を流れる循環組成によって定まる。したがって図4中
実線で示した特性を用いることにより、循環組成α*
計算することができる。ステップS5では、この循環組
成α* と最初に仮定した循環組成αを比較し、両者が一
致していれば、循環組成はαとして求まる。両者が一致
していなければ、ステップS2に戻り、再び循環組成α
を仮定し直し、両者が一致するまで計算を続行する。
Here, H V is the enthalpy at the point where the saturated vapor curve and the cycle operation line intersect. Actually dryness X
The relationship between the temperature T2 and the pressure P1 is calculated in advance by the composition calculator 2
It is stored in 0 and the dryness X is calculated using the values of the temperature T2 and the pressure P1. Further, in step S4, the circulation composition α * is calculated from the dryness X at the inlet of the evaporator 4, the refrigerant temperature T1 at the inlet of the evaporator 4, and the pressure P1. That is, the temperature and pressure of the gas-liquid two-phase non-azeotropic mixed refrigerant having a dryness of X are determined by the circulation composition flowing in the refrigeration cycle as shown in FIG. Therefore, the circulation composition α * can be calculated by using the characteristics shown by the solid line in FIG. In step S5, the circulation composition α * is compared with the initially assumed circulation composition α, and if both agree, the circulation composition is obtained as α. If they do not match, the process returns to step S2 and the circulation composition α
Re-estimate and continue the calculation until they match.

【0029】次に、制御装置21の動作を図5に示すフ
ローチャートを用いて説明する。制御装置21の動作が
開始されると、まずステップS1では、凝縮器2の出口
部の温度T2 と凝縮圧力P2 を検出する。次にステップ
S2では、組成演算器20より循環組成αを取り込み、
ステップS3では、凝縮圧力P2 と循環組成αから、圧
力P2 における飽和液温度TL を計算する。この飽和液
温度TL は、循環組成αが定まっているため、圧力P2
より一義的に定まる(図3参照)。さらにステップS4
では、T2 とTL から凝縮器2の出口部の冷媒過冷却度
SCを計算する(SC=TL −T2 )。ステップS5で
は、この過冷却度SCが所定の値、例えば5℃と一致し
ているか否かを判定し、所定の値と一致していると判断
されたときには、終了ステップへ移行する。また所定の
の値と一致していないと判断された場合には、ステップ
S6へ移行して電気式膨張弁3の開度変更処理を実行す
る。
Next, the operation of the control device 21 will be described with reference to the flowchart shown in FIG. When the operation of the control device 21 is started, first, in step S1, the temperature T2 at the outlet of the condenser 2 and the condensation pressure P2 are detected. Next, in step S2, the circulating composition α is fetched from the composition calculator 20,
In step S3, the saturated liquid temperature TL at the pressure P2 is calculated from the condensing pressure P2 and the circulation composition α. The saturated liquid temperature TL is determined by the pressure P2 because the circulating composition α is determined.
It is more uniquely determined (see FIG. 3). Further step S4
Then, the refrigerant supercooling degree SC at the outlet of the condenser 2 is calculated from T2 and TL (SC = TL-T2). In step S5, it is determined whether or not the degree of supercooling SC matches a predetermined value, for example, 5 ° C., and when it is determined that it matches the predetermined value, the process proceeds to the end step. When it is determined that the value does not match the predetermined value, the process proceeds to step S6, and the opening degree changing process of the electric expansion valve 3 is executed.

【0030】上記の動作を繰り返すことにより、冷凍空
調装置の運転条件や負荷条件の変化により冷凍サイクル
内の循環組成が変化した場合や、あるいは冷凍空調装置
使用中の冷媒漏れや、冷媒充填時の誤動作で循環組成が
変化した場合でも、凝縮器2の出口部の過冷却度は適正
値に保たれ、常に最適な運転が可能となる。
By repeating the above operation, when the circulation composition in the refrigeration cycle changes due to changes in the operating conditions and load conditions of the refrigeration / air-conditioning system, or when the refrigerant leaks during use of the refrigerating / air-conditioning system or when the refrigerant is charged. Even if the circulation composition changes due to a malfunction, the degree of supercooling at the outlet of the condenser 2 is maintained at an appropriate value, and optimum operation can always be performed.

【0031】なお、本実施例としては、混合冷媒として
二成分系を対象として説明したが、三成分系など多成分
系の場合においても同様の効果を得ることができる。
In this embodiment, the two-component system is described as the mixed refrigerant, but the same effect can be obtained in the case of a multi-component system such as a three-component system.

【0032】また本実施例の制御装置21では、サイク
ル内の循環組成が変化しても、凝縮器2の出口部の過冷
却度を一定に保つように電気式膨張弁3の開度を制御す
るものについて説明したが、蒸発器4の出口部の温度を
検出して、循環組成αと蒸発圧力P1 から圧力P1 にお
ける飽和蒸気温度Tvを計算し(図3参照)、蒸発器4
の出口部の過熱度が一定となるように制御するものであ
っても、上記と同様、冷凍空調装置の最適運転を可能に
することができる。
Further, in the control device 21 of this embodiment, the opening degree of the electric expansion valve 3 is controlled so that the degree of supercooling at the outlet of the condenser 2 is kept constant even if the circulating composition in the cycle changes. As described above, the temperature at the outlet of the evaporator 4 is detected, the saturated vapor temperature Tv at the pressure P1 is calculated from the circulating composition α and the evaporation pressure P1 (see FIG. 3), and the evaporator 4
Even if the superheat degree of the outlet of the above is controlled to be constant, the optimum operation of the refrigerating and air-conditioning apparatus can be enabled in the same manner as above.

【0033】さらに本実施例では、制御装置21は、サ
イクル内の循環組成が変化しても電気式膨張弁3の開度
を最適に制御するものについて説明したが、圧縮機1の
回転数を循環組成に応じて制御するものであっても、同
様の効果を得ることができる。
Further, in this embodiment, the control device 21 has been described as the one which optimally controls the opening degree of the electric expansion valve 3 even if the circulation composition in the cycle changes. Even if it is controlled according to the circulation composition, the same effect can be obtained.

【0034】実施例2.図6は本発明に係わる冷凍空調
装置の第2の実施例を示すもので、蒸発器4の入口部に
は、その冷媒温度T1 を検出する第1温度検出器11と
第1冷媒圧力P1 を検出する第1圧力検出器12がそれ
ぞれ設けられており、これら検出器11、12検出信号
は組成演算器20に入力される。また凝縮器2の出口部
には、その冷媒温度T2 を検出する第2温度検出器13
が設けられており、また圧縮機1の吐出配管にはその冷
媒圧力を検出する第2圧力検出器14が設けられてお
り、これら検出器13、14の検出信号は、制御装置2
1に入力される。
Embodiment 2 FIG. FIG. 6 shows a second embodiment of the refrigerating and air-conditioning apparatus according to the present invention. At the inlet of the evaporator 4, a first temperature detector 11 for detecting the refrigerant temperature T1 and a first refrigerant pressure P1 are provided. The 1st pressure detector 12 which detects is provided, respectively, and these detectors 11 and 12 detection signals are inputted into composition operation machine 20. A second temperature detector 13 for detecting the refrigerant temperature T2 is provided at the outlet of the condenser 2.
Is provided, and the discharge pipe of the compressor 1 is provided with a second pressure detector 14 for detecting the refrigerant pressure. The detection signals of these detectors 13 and 14 are the control device 2
Input to 1.

【0035】組成演算器20は、検出器11、12、が
検出する温度T1 、及び圧力P1 に基づいて非共沸混合
冷媒の循環組成αを演算する機能を有しており、この循
環組成αの演算値は制御装置21に入力される。また制
御装置21は、循環組成αと検出器14が検出する圧力
P2 から凝縮圧力における飽和液温度TL を演算する機
能と、この飽和液温度TL と検出器13が検出する温度
T2 から凝縮器2の出口部の過冷却度を演算する機能
と、この過冷却度が所定の値となるように電気式膨張弁
3の開度を制御する機能を有している。
The composition calculator 20 has a function of calculating the circulating composition α of the non-azeotropic mixed refrigerant based on the temperature T1 and the pressure P1 detected by the detectors 11 and 12, and the circulating composition α The calculated value of is input to the control device 21. Further, the control device 21 has a function of calculating the saturated liquid temperature TL at the condensing pressure from the circulation composition α and the pressure P2 detected by the detector 14, and the condenser 2 from the saturated liquid temperature TL and the temperature T2 detected by the detector 13. It has a function of calculating the degree of supercooling of the outlet portion of and the function of controlling the opening degree of the electric expansion valve 3 so that the degree of supercooling becomes a predetermined value.

【0036】次に、本実施例の組成演算器20の動作を
説明する。組成演算器20では、まず蒸発器4の入口部
の温度T1 と圧力P1 を取り込む。蒸発器4へ流入する
冷媒は、通常乾き度が0.1から0.3程度の気液二状
態となっており、この乾き度を例えば0.2と仮定する
ことにより、温度T1 と圧力P1 の情報のみで、循環組
成αを推定することができる。すなわち、図4中に実線
で示した特性を用いることにより、温度T1 と圧力P1
から循環組成αを計算することができる。
Next, the operation of the composition calculator 20 of this embodiment will be described. The composition calculator 20 first takes in the temperature T1 and pressure P1 at the inlet of the evaporator 4. The refrigerant flowing into the evaporator 4 is normally in a gas-liquid two-state with a dryness of about 0.1 to 0.3. By assuming the dryness to be 0.2, for example, the temperature T1 and the pressure P1 are set. The circulation composition α can be estimated only by the information. That is, by using the characteristics shown by the solid line in FIG. 4, the temperature T1 and the pressure P1 are
The circulation composition α can be calculated from

【0037】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例では蒸発
器4の入口部の温度と圧力のみにより、冷凍サイクル内
の循環組成を検出することができ、循環組成が変化して
も凝縮器2の出口部の過冷却度は適正値に保たれ、常に
最適な運転が可能となる。
The operation of the control device 21 is the same as that of the first embodiment, and therefore its explanation is omitted. However, in this embodiment, the circulation composition in the refrigeration cycle is determined only by the temperature and pressure at the inlet of the evaporator 4. Is detected, the degree of supercooling at the outlet of the condenser 2 is maintained at an appropriate value even if the circulating composition changes, and optimum operation is always possible.

【0038】なお、乾き度Xの設定値は上記実施例では
0.1から0.3程度としたが、上記値に限定しない。
The set value of the dryness X is about 0.1 to 0.3 in the above embodiment, but is not limited to the above value.

【0039】このように構成することにより、組成演算
器20での演算が簡単になり、簡単な装置構成で上記と
同様の装置が実現でき、安価となる。
With such a configuration, the calculation by the composition calculator 20 is simplified, the same device as the above can be realized with a simple device structure, and the cost is reduced.

【0040】実施例3.図7は本発明に係わる冷凍空調
装置の第3の実施例を示すものであり、アキュムレータ
5内には、その冷媒温度T1 を検出する第1温度検出器
11と冷媒圧力P1 を検出する圧力検出器12がそれぞ
れ設けられており、これら検出器11、12の検出信号
は組成演算器20に入力される。組成演算器20は、検
出器11、12、が検出するアキュムレータ5内の温度
T1 、及び圧力P1 に基づいて非共沸混合冷媒の循環組
成αを演算する機能を有しており、以下、この組成演算
器20の動作について説明する。
Example 3. FIG. 7 shows a third embodiment of the refrigerating and air-conditioning apparatus according to the present invention. Inside the accumulator 5, there is a first temperature detector 11 for detecting the refrigerant temperature T1 and a pressure detection for detecting the refrigerant pressure P1. Each of the detectors 12 is provided, and the detection signals of the detectors 11 and 12 are input to the composition calculator 20. The composition calculator 20 has a function of calculating the circulation composition α of the non-azeotropic mixed refrigerant based on the temperature T1 in the accumulator 5 and the pressure P1 detected by the detectors 11 and 12. The operation of the composition calculator 20 will be described.

【0041】演算制御器20では、まず検出器11、1
2で検出されたアキュムレータ5内の冷媒温度T1 と圧
力P1 を取り込む。アキュムレータ5へ流入する冷媒
は、通常乾き度が0.8〜1.0程度の気液二相状態と
なっているが、近似的に乾き度を例えば0.9と見なす
ことができる。この状態の冷媒の温度と圧力は、図8に
示すように冷凍サイクル内を流れる非共沸混合冷媒の循
環組成によって定まる。したがって図8中実線で示した
特性を用いることによりアキュムレータ5内の温度T1
、及び圧力P1 のみで、循環組成αを演算することが
できる。
In the arithmetic controller 20, first, the detectors 11 and 1
The refrigerant temperature T1 and pressure P1 in the accumulator 5 detected in 2 are taken in. The refrigerant flowing into the accumulator 5 is usually in a gas-liquid two-phase state having a dryness of about 0.8 to 1.0, but the dryness can be approximately regarded as 0.9. The temperature and pressure of the refrigerant in this state are determined by the circulating composition of the non-azeotropic mixed refrigerant flowing in the refrigeration cycle as shown in FIG. Therefore, by using the characteristic shown by the solid line in FIG.
, And the pressure P1 alone, the circulation composition α can be calculated.

【0042】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例ではアキ
ュムレータ5内の温度と圧力のみにより、冷凍サイクル
内の循環組成を検出することができ、実施例2と同様、
組成演算器20での演算が簡単になり、簡単な装置構成
で、実施例1と同様の装置が、安価に得られる。
Since the operation of the control device 21 is the same as that of the first embodiment, a description thereof will be omitted. However, in this embodiment, the circulation composition in the refrigeration cycle is detected only by the temperature and pressure in the accumulator 5. It is possible to
The calculation by the composition calculator 20 is simple, and the device similar to that of the first embodiment can be obtained at a low cost with a simple device configuration.

【0043】なお、本実施例ではアキュムレータ5内の
温度と圧力を測定するものを示したが、アキュムレータ
5と圧縮機1の吸入配管との間に第1温度検出器11と
圧力検出器12を設けてもよい。また、乾き度Xの設定
値は上記実施例では0.8から1.0程度としたが、上
記値に限定しない。
In this embodiment, the temperature and pressure in the accumulator 5 are measured, but the first temperature detector 11 and the pressure detector 12 are provided between the accumulator 5 and the suction pipe of the compressor 1. It may be provided. Further, although the set value of the dryness X is set to about 0.8 to 1.0 in the above embodiment, the set value is not limited to the above value.

【0044】実施例4.図9は本発明に係わる冷凍空調
装置の第4の実施例を示すもので、アキュムレータ5に
は、その内部の冷媒液面を検出する液面検出器15が設
けられており、さらにこの液面検出器15の信号は、組
成演算器20に入力される。この液面検出器15として
は、例えば超音波式液面計や静電容量式液面計など公知
の液面計が用いられる。組成演算器20は、検出器15
が検出するアキュムレータ5内の冷媒液面高さhに基づ
いて、非共沸混合冷媒の循環組成αを演算する機能を有
しており、以下、この組成演算器20の動作について説
明する。
Example 4. FIG. 9 shows a fourth embodiment of the refrigerating and air-conditioning apparatus according to the present invention. The accumulator 5 is provided with a liquid level detector 15 for detecting the liquid level of the refrigerant inside the accumulator 5, and this liquid level is further provided. The signal of the detector 15 is input to the composition calculator 20. As the liquid level detector 15, for example, a known liquid level gauge such as an ultrasonic type liquid level gauge or a capacitance type liquid level gauge is used. The composition calculator 20 includes a detector 15
Has a function of calculating the circulation composition α of the non-azeotropic mixed refrigerant on the basis of the refrigerant liquid level height h in the accumulator 5 detected by the above. The operation of the composition calculator 20 will be described below.

【0045】組成演算器20の動作が開始されると、ま
ず液面検出器15で検出されたアキュムレータ5内の冷
媒液面高さhを取り込む。一般に、非共沸混合冷媒を用
いた冷凍サイクルのアキュムレータ内の冷媒は、高沸点
成分に富んだ液相と、低沸点成分に富んだ気相に分離さ
れ、高沸点成分に富んだ液相はアキュムレータ内に貯溜
される。このためアキュムレータ内に液冷媒が存在する
と、冷凍サイクル内を循環する冷媒組成は低沸点成分が
多くなる(循環組成が増加する)傾向を示す。図10は
このアキュムレータ内の冷媒液面高さhと循環組成αの
関係を示したもので、アキュムレータ内の冷媒液面高さ
が増加する、すなわちアキュムレータ内の液冷媒量が増
加する程、循環組成は増加する。したがって、この図1
0に示した関係を予め実験などによって調べておけば、
液面検出器15で検出されたアキュムレータ5内の冷媒
液面高さhから循環組成αを演算することができる。
When the operation of the composition calculator 20 is started, first, the refrigerant liquid level height h in the accumulator 5 detected by the liquid level detector 15 is fetched. Generally, the refrigerant in the accumulator of a refrigeration cycle using a non-azeotropic mixed refrigerant is separated into a liquid phase rich in high boiling point components and a gas phase rich in low boiling point components, and a liquid phase rich in high boiling point components is It is stored in the accumulator. Therefore, when the liquid refrigerant is present in the accumulator, the refrigerant composition circulating in the refrigeration cycle tends to have a large amount of low-boiling components (the circulation composition increases). FIG. 10 shows the relationship between the refrigerant liquid level height h in the accumulator and the circulation composition α. As the refrigerant liquid level height in the accumulator increases, that is, as the amount of liquid refrigerant in the accumulator increases, the circulation The composition increases. Therefore, this FIG.
If you check the relationship shown in 0 by experiments in advance,
The circulation composition α can be calculated from the refrigerant liquid level height h in the accumulator 5 detected by the liquid level detector 15.

【0046】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例ではアキ
ュムレータ5内の冷媒液面高さのみにより、冷凍サイク
ル内の循環組成を検出することができ、装置構成が簡単
で、かつ循環組成が変化しても凝縮器2の出口部の過冷
却度は適正値に保たれ、常に最適な運転が可能となる。
Since the operation of the control device 21 is the same as that of the first embodiment, its explanation is omitted, but in this embodiment, the circulation composition in the refrigerating cycle is determined only by the liquid level of the refrigerant in the accumulator 5. It can be detected, the device configuration is simple, and even if the circulating composition changes, the degree of supercooling at the outlet of the condenser 2 is maintained at an appropriate value, and optimum operation can always be performed.

【0047】なお、上記実施例では、液面検知手段15
として超音波式や静電容量式などの液面計を用いた場合
について説明したが、冷凍サイクルの運転条件や負荷条
件に基づいてサイクル内の余剰な冷媒量を演算し、アキ
ュムレータ5内の液面高さを検出しても同様の効果を発
揮する。例えば、冷房運転時は余剰冷媒は発生せず、暖
房運転時にはある量の余剰冷媒が発生することを、予め
実験などによって調べておき、予め計測されたこの運転
条件と余剰冷媒量の関係から、アキュムレータ5内の液
面高さを演算で検出しても良い。またこの際、冷暖房運
転時の室内空気温度や室外空気温度などの情報を付加し
て、アキュムレータ内の液面検出精度を向上させても良
い。
In the above embodiment, the liquid level detecting means 15
The case where a liquid level gauge such as an ultrasonic type or a capacitance type is used has been described above. However, the excess refrigerant amount in the cycle is calculated based on the operating conditions and load conditions of the refrigeration cycle, and the liquid in the accumulator 5 is calculated. The same effect is exhibited even if the surface height is detected. For example, during cooling operation, no excess refrigerant is generated, during heating operation, a certain amount of excess refrigerant is generated, it has been investigated in advance by experiments, etc., and the relationship between this operation condition and the excess refrigerant amount measured in advance, The liquid level height in the accumulator 5 may be detected by calculation. At this time, information such as the indoor air temperature and the outdoor air temperature during the cooling and heating operation may be added to improve the liquid level detection accuracy in the accumulator.

【0048】実施例5.図11は本発明に係わる冷凍空
調装置の第5の実施例を示すものであり、1台の室外機
に2台の室内機を接続してなる冷凍空調装置を示してい
る。図11において、30は室外機で、圧縮機1、及び
四方弁31、室外熱交換器(第1熱交換器)32、室外
送風機33、アキュムレータ5で構成されており、圧縮
機1の吐出側の配管には第2圧力検出器14が設けられ
ている。40a、40b(以下、総称する時は40)は
各々室内機で、室内熱交換器(第2熱交換器)41a、
または41b(以下、総称する時は41)と、第1膨張
弁である電気式膨張弁3a、または3b(以下、総称す
る時は3)で構成されており、室内熱交換機41の出入
口部には、各々第3温度検出器42a、42b(以下、
総称する時は42)、及び第4温度検出器43a、43
b(以下、総称する時は43)が設けられている。また
室外熱交換器32と室内機40内の電気式膨張弁3を接
続する配管の途中には、この配管とアキュムレータ5を
接続するバイパス配管50が設けられており、このバイ
パス配管50の途中には第2膨張弁である毛細管51が
設けられている。また、バイパス配管50には、毛細管
51の出口部に第1温度検出器11と第1圧力検出器1
2が設けられており、また毛細管51の入口部には第2
温度検出器13が設けられている。なお、室内送風機は
省略している。
Example 5. FIG. 11 shows a fifth embodiment of the refrigerating and air-conditioning apparatus according to the present invention, showing a refrigerating and air-conditioning apparatus in which two outdoor units are connected to one outdoor unit. In FIG. 11, reference numeral 30 denotes an outdoor unit, which includes a compressor 1, a four-way valve 31, an outdoor heat exchanger (first heat exchanger) 32, an outdoor blower 33, and an accumulator 5, and a discharge side of the compressor 1. A second pressure detector 14 is provided in the pipe. 40a, 40b (hereinafter, when collectively referred to as 40) are indoor units, and indoor heat exchanger (second heat exchanger) 41a,
Or 41b (hereinafter, collectively referred to as 41) and the first expansion valve, an electric expansion valve 3a or 3b (hereinafter, collectively referred to as 3), which is provided at the inlet / outlet portion of the indoor heat exchanger 41. Are the third temperature detectors 42a and 42b (hereinafter,
When collectively referred to as 42), and the fourth temperature detectors 43a, 43
b (hereinafter, 43 when collectively referred to) is provided. Further, a bypass pipe 50 connecting this pipe and the accumulator 5 is provided in the middle of the pipe connecting the outdoor heat exchanger 32 and the electric expansion valve 3 in the indoor unit 40, and in the middle of the bypass pipe 50. Is provided with a capillary tube 51 which is a second expansion valve. In the bypass pipe 50, the first temperature detector 11 and the first pressure detector 1 are provided at the outlet of the capillary 51.
2 is provided, and a second portion is provided at the entrance of the capillary tube 51.
A temperature detector 13 is provided. The indoor blower is omitted.

【0049】20は組成演算器であり、バイパス配管5
0に設けられた第1温度検出器11、第1圧力検出器1
2、第2温度検出器13の信号が入力され、サイクル内
を循環する冷媒組成を演算する。21は制御装置であ
り、組成演算器20からの循環組成信号、及び第1圧力
検出器12、第2圧力検出器14、室内機40内の第3
温度検出器42、第4温度検出器43からの信号が入力
される。制御装置21では、これらの入力信号を下に、
循環組成に応じた圧縮機1の回転数と室外送風機33の
回転数、室内機の電気式膨張弁3の開度を演算し、その
指令を圧縮機1、室外送風機33、電気式膨張弁3にそ
れぞれ送信する。圧縮機1、及び室外送風機33、電気
式膨張弁3では、制御装置21より送られた指令値を受
けて、その回転数や弁開度が駆動される。また、22は
比較演算手段であり、組成演算器20より循環組成信号
が入力され、循環組成が予め定めた所定範囲内に入って
いるか否かを比較演算する。この比較演算手段22に
は、警報装置23が接続されており、循環組成が所定範
囲から外れた場合には、警告信号を警報装置23に送信
する。
Reference numeral 20 denotes a composition calculator, which is a bypass pipe 5
No. 1, first temperature detector 11 and first pressure detector 1
2. The signal from the second temperature detector 13 is input to calculate the composition of the refrigerant circulating in the cycle. Reference numeral 21 is a control device, and the circulating composition signal from the composition calculator 20, the first pressure detector 12, the second pressure detector 14, and the third inside the indoor unit 40.
The signals from the temperature detector 42 and the fourth temperature detector 43 are input. In the control device 21, these input signals are
The rotation speed of the compressor 1 and the rotation speed of the outdoor blower 33 according to the circulation composition, and the opening degree of the electric expansion valve 3 of the indoor unit are calculated, and the command is given to the compressor 1, the outdoor blower 33, and the electric expansion valve 3 To send to each. In the compressor 1, the outdoor blower 33, and the electric expansion valve 3, the command value sent from the control device 21 is received, and the rotation speed and valve opening degree are driven. Reference numeral 22 denotes a comparison calculation means, which receives a circulation composition signal from the composition calculation device 20 and performs comparison calculation on whether or not the circulation composition is within a predetermined range. An alarm device 23 is connected to the comparison calculation means 22, and when the circulating composition is out of a predetermined range, an alarm signal is transmitted to the alarm device 23.

【0050】次に、上記のように構成された本実施例の
動作について、図11、及び図12に示す制御ブロック
図を用いて説明する。組成演算器20は、バイパス配管
50に設けた第1温度検出器11、第1圧力検出器1
2、第2温度検出器13からの信号を取り込み、図3、
及び図4に示した関係を用いて、毛細管51の入口部の
冷媒乾き度Xを計算し、サイクル内の循環組成αを演算
する。制御装置21では、この循環組成αに応じた最適
な圧縮機1の回転数指令と室外送風機33の回転数指
令、電気式膨張弁3の開度指令を演算する。
Next, the operation of this embodiment configured as described above will be described with reference to the control block diagrams shown in FIGS. 11 and 12. The composition calculator 20 includes a first temperature detector 11 and a first pressure detector 1 provided in the bypass pipe 50.
2, capturing the signal from the second temperature detector 13,
And the dryness X of the refrigerant at the inlet of the capillary tube 51 is calculated using the relationship shown in FIG. 4 to calculate the circulation composition α in the cycle. The control device 21 calculates the optimum rotation speed command of the compressor 1, the rotation speed command of the outdoor blower 33, and the opening degree command of the electric expansion valve 3 according to the circulation composition α.

【0051】まず暖房運転について説明する。暖房運転
時には、冷媒は図11中の実線矢印の方向に循環し、室
内熱交換器41が凝縮器となって暖房が行われる。圧縮
機1の回転数は、凝縮圧力が目標値に一致するように制
御され、この凝縮圧力目標値は、例えば凝縮温度Tcが
50℃となる圧力として求まる。非共沸混合冷媒の凝縮
温度を、飽和蒸気温度と飽和液温度の平均値と定義する
と、凝縮温度Tcが50℃となる凝縮圧力目標値Pc
は、図13に示すように、循環組成αにより一義的に定
まる。従って制御装置21では、予め図13の関係式を
記憶させておき、組成演算器20から送信される循環組
成信号を用いて、凝縮圧力目標値が演算される。さらに
制御装置21では、第2圧力検出器14が検出する圧力
と凝縮圧力目標値との差に応じて、PID制御等のフィ
ードバック制御により圧縮機1の回転数の修正値が演算
され、圧縮機回転数指令が圧縮機1に出力される。
First, the heating operation will be described. During the heating operation, the refrigerant circulates in the direction of the solid arrow in FIG. 11, and the indoor heat exchanger 41 serves as a condenser for heating. The rotation speed of the compressor 1 is controlled so that the condensing pressure matches the target value, and the condensing pressure target value is obtained as a pressure at which the condensing temperature Tc becomes 50 ° C., for example. If the condensation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the condensation pressure target value Pc at which the condensation temperature Tc becomes 50 ° C.
Is uniquely determined by the circulation composition α, as shown in FIG. Therefore, in the controller 21, the relational expression of FIG. 13 is stored in advance, and the condensing pressure target value is calculated using the circulating composition signal transmitted from the composition calculator 20. Further, in the control device 21, the correction value of the rotation speed of the compressor 1 is calculated by feedback control such as PID control according to the difference between the pressure detected by the second pressure detector 14 and the condensing pressure target value, and the compressor is operated. The rotation speed command is output to the compressor 1.

【0052】室外送風機33の回転数は、蒸発圧力が目
標値に一致するように制御され、この蒸発圧力目標値
は、例えば蒸発温度Teが0℃となる圧力として求ま
る。非共沸混合冷媒の蒸発温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、蒸発温度Teが0℃とな
る蒸発圧力目標値Peは、図14に示すように、循環組
成αにより一義的に定まる。従って制御装置21では、
予め図14の関係式を記憶させておき、組成演算器20
から送信される循環組成信号を用いて、蒸発圧力目標値
が演算される。さらに制御装置21では、第1圧力検出
器12が検出する圧力と蒸発圧力目標値との差に応じ
て、PID制御等のフィードバック制御により室外送風
機33の回転数の修正値が演算され、室外送風機回転数
指令が室外送風機33に出力される。
The rotation speed of the outdoor blower 33 is controlled so that the evaporation pressure matches the target value, and this evaporation pressure target value is obtained as a pressure at which the evaporation temperature Te becomes 0 ° C., for example. When the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the evaporation pressure target value Pe at which the evaporation temperature Te becomes 0 ° C. is determined by the circulation composition α as shown in FIG. It is uniquely determined. Therefore, in the control device 21,
The relational expression of FIG. 14 is stored in advance, and the composition calculator 20
The target evaporation pressure value is calculated by using the circulation composition signal transmitted from. Further, in the control device 21, the correction value of the rotation speed of the outdoor blower 33 is calculated by feedback control such as PID control according to the difference between the pressure detected by the first pressure detector 12 and the evaporation pressure target value, and the outdoor blower is calculated. The rotation speed command is output to the outdoor blower 33.

【0053】電気式膨張弁3の開度は、室内熱交換器4
1の出口部の過冷却度が所定の値、例えば5℃となるよ
うに制御される。この過冷却度は、室内熱交換器41内
の圧力における飽和液温度と室内熱交換器41の出口部
の温度との差として求めることができ、飽和液温度は図
15に示すように圧力と循環組成の関数として求めるこ
とができる。従って制御装置21では、予め図15の関
係式を記憶させておき、組成演算器20から送信される
循環組成信号と第2圧力検出器14から送信される圧力
信号、及び第3温度検出器42から送信される温度信号
を用いて、飽和液温度、及び室内熱交換器41の出口部
過冷却度が演算される。さらに制御装置21では、この
出口部の過冷却度と所定値(5℃)との差に応じて、P
ID制御等のフィードバック制御により電気式膨張弁3
の開度の修正値が演算され、電気式膨張弁開度指令が電
気式膨張弁3に出力される。
The opening degree of the electric expansion valve 3 is the same as that of the indoor heat exchanger 4.
The degree of supercooling at the outlet of No. 1 is controlled to a predetermined value, for example, 5 ° C. This degree of supercooling can be obtained as the difference between the saturated liquid temperature at the pressure inside the indoor heat exchanger 41 and the temperature at the outlet of the indoor heat exchanger 41, and the saturated liquid temperature corresponds to the pressure as shown in FIG. It can be determined as a function of circulation composition. Therefore, in the control device 21, the relational expression of FIG. 15 is stored in advance, and the circulating composition signal transmitted from the composition calculator 20, the pressure signal transmitted from the second pressure detector 14, and the third temperature detector 42. The saturated liquid temperature and the outlet supercooling degree of the indoor heat exchanger 41 are calculated using the temperature signal transmitted from the. Further, in the control device 21, the P value corresponding to the difference between the supercooling degree at the outlet and the predetermined value (5 ° C.) is set.
Electric expansion valve 3 by feedback control such as ID control
The correction value of the opening of is calculated, and the electric expansion valve opening command is output to the electric expansion valve 3.

【0054】一方、冷房運転時には、冷媒は図11中の
破線矢印の方向に循環し、室内熱交換器41が蒸発器と
なって冷房が行われる。圧縮機1の回転数は、蒸発圧力
が目標値に一致するように制御され、この蒸発圧力目標
値は、例えば蒸発温度Teが0℃となる圧力として求ま
る。非共沸混合冷媒の蒸発温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、蒸発温度Teが0℃とな
る蒸発圧力目標値Peは、図14に示すように、循環組
成αにより一義的に定まる。従って制御装置21では、
予め図14の関係式を記憶させておき、組成演算器20
から送信される循環組成信号を用いて、蒸発圧力目標値
が演算される。さらに制御装置21では、第1圧力検出
器12が検出する圧力と蒸発圧力目標値との差に応じ
て、PID制御等のフィードバック制御により圧縮機1
の回転数の修正値が演算され、圧縮機回転数指令が圧縮
機1に出力される。
On the other hand, during the cooling operation, the refrigerant circulates in the direction of the broken arrow in FIG. 11, and the indoor heat exchanger 41 serves as an evaporator for cooling. The rotation speed of the compressor 1 is controlled so that the evaporation pressure matches a target value, and this evaporation pressure target value is obtained as a pressure at which the evaporation temperature Te becomes 0 ° C., for example. When the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the evaporation pressure target value Pe at which the evaporation temperature Te becomes 0 ° C. is determined by the circulation composition α as shown in FIG. It is uniquely determined. Therefore, in the control device 21,
The relational expression of FIG. 14 is stored in advance, and the composition calculator 20
The target evaporation pressure value is calculated by using the circulation composition signal transmitted from. Further, the control device 21 performs feedback control such as PID control according to the difference between the pressure detected by the first pressure detector 12 and the evaporation pressure target value, and the compressor 1
The corrected value of the rotation speed is calculated, and the compressor rotation speed command is output to the compressor 1.

【0055】室外送風機33の回転数は、凝縮圧力が目
標値に一致するように制御され、この凝縮圧力目標値
は、例えば凝縮温度Tcが50℃となる圧力として求ま
る。非共沸混合冷媒の凝縮温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、凝縮温度Tcが50℃と
なる凝縮圧力目標値Pcは、図13に示すように、循環
組成αにより一義的に定まる。従って制御装置21で
は、予め図13の関係式を記憶させておき、組成演算器
20から送信される循環組成信号を用いて、凝縮圧力目
標値が演算される。さらに制御装置21では、第2圧力
検出器14が検出する圧力と凝縮圧力目標値との差に応
じて、PID制御等のフィードバック制御により室外送
風機33の回転数の修正値が演算され、室外送風機回転
数指令が室外送風機33に出力される。
The rotation speed of the outdoor blower 33 is controlled so that the condensing pressure matches the target value, and this condensing pressure target value is obtained as a pressure at which the condensing temperature Tc becomes 50 ° C., for example. When the condensation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the condensation pressure target value Pc at which the condensation temperature Tc becomes 50 ° C. is determined by the circulation composition α as shown in FIG. It is uniquely determined. Therefore, in the controller 21, the relational expression of FIG. 13 is stored in advance, and the condensing pressure target value is calculated using the circulating composition signal transmitted from the composition calculator 20. Further, in the control device 21, the correction value of the rotation speed of the outdoor blower 33 is calculated by feedback control such as PID control according to the difference between the pressure detected by the second pressure detector 14 and the condensing pressure target value, and the outdoor blower is calculated. The rotation speed command is output to the outdoor blower 33.

【0056】電気式膨張弁3の開度は、室内熱交換器4
1の出口部の過熱度が所定の値、例えば5℃となるよう
に制御される。この過熱度は、室内熱交換器41内の圧
力における飽和蒸気温度と室内熱交換器41の出口部の
温度との差として求めることができ、飽和蒸気温度は図
15に示した飽和液温度と同様に圧力と循環組成の関数
として求めることができる。従って制御装置21では、
予め飽和蒸気温度と圧力と循環組成の関係式を記憶させ
ておき、組成演算器20から送信される循環組成信号と
第1圧力検出器12から送信される圧力信号、及び第4
温度検出器43から送信される温度信号を用いて、飽和
蒸気温度、及び室内熱交換器41の出口部過熱度が演算
される。さらに制御装置21では、この出口部過熱度と
所定値(5℃)との差に応じて、PID制御等のフィー
ドバック制御により電気式膨張弁3の開度の修正値が演
算され、電気式膨張弁開度指令が電気式膨張弁3に出力
される。
The opening degree of the electric expansion valve 3 is the same as that of the indoor heat exchanger 4.
The degree of superheat at the outlet of No. 1 is controlled to a predetermined value, for example, 5 ° C. This degree of superheat can be obtained as the difference between the saturated steam temperature at the pressure inside the indoor heat exchanger 41 and the temperature at the outlet of the indoor heat exchanger 41, and the saturated steam temperature is equal to the saturated liquid temperature shown in FIG. Similarly, it can be obtained as a function of pressure and circulation composition. Therefore, in the control device 21,
A relational expression of saturated vapor temperature, pressure and circulation composition is stored in advance, and a circulation composition signal transmitted from the composition calculator 20, a pressure signal transmitted from the first pressure detector 12, and a fourth
The saturated steam temperature and the outlet superheat degree of the indoor heat exchanger 41 are calculated using the temperature signal transmitted from the temperature detector 43. Further, in the control device 21, the correction value of the opening degree of the electric expansion valve 3 is calculated by feedback control such as PID control according to the difference between the outlet superheat degree and the predetermined value (5 ° C.), and the electric expansion is performed. A valve opening command is output to the electric expansion valve 3.

【0057】次に、比較演算手段22の動作について説
明する。比較演算手段22は、組成演算器20から循環
組成信号を取り込み、この循環組成が、予め記憶された
適正循環組成範囲内であるか否かを判定し、循環組成が
適正循環組成範囲内であれば、そのまま運転は続行され
る。一方、循環組成が使用中に冷媒漏れによって変化し
たり、冷媒充填時の誤動作で循環組成が変化した場合に
は、比較演算手段22では、この循環組成が、予め記憶
された適正循環組成範囲外であると判定すると、警報信
号を警報装置23へ送信する。この警報信号を受けた警
報装置23では、警告を所定時間発信して、冷凍空調装
置の非共沸混合冷媒の循環組成が、適正範囲から外れて
いることを警告する。
Next, the operation of the comparison calculation means 22 will be described. The comparison calculation means 22 takes in the circulation composition signal from the composition calculator 20, determines whether or not this circulation composition is within a proper circulation composition range stored in advance, and the circulation composition is within the proper circulation composition range. If so, the operation continues. On the other hand, when the circulation composition changes due to refrigerant leakage during use, or when the circulation composition changes due to an erroneous operation at the time of charging the refrigerant, the comparison calculation means 22 determines that this circulation composition is outside the pre-stored proper circulation composition range. If it is determined that, the alarm signal is transmitted to the alarm device 23. The alarm device 23 that has received this alarm signal issues a warning for a predetermined time to warn that the circulation composition of the non-azeotropic mixed refrigerant of the refrigerating and air-conditioning device is out of the proper range.

【0058】以上のように、本実施例に示すものでは、
冷房、暖房にかかわらず、常に第2膨張弁の下流側が低
圧の二相状態になるので、冷房時においても、暖房時に
おいても同一の検出器で温度、及び圧力を計測でき、冷
媒組成を演算することができる。従って、冷暖房別に検
出器を設ける必要がなく装置構成が簡単となり、かつ循
環組成が変化しても、常に最適な運転が可能となる。
As described above, according to the present embodiment,
Regardless of cooling or heating, the downstream side of the second expansion valve is always in a low-pressure two-phase state, so the temperature and pressure can be measured with the same detector during cooling and heating, and the refrigerant composition is calculated. can do. Therefore, it is not necessary to provide a detector separately for cooling and heating, the device configuration is simplified, and even if the circulating composition changes, optimum operation can always be performed.

【0059】なお、本実施例では、暖房運転時の室外送
風機33の回転数を、第1圧力検出器12の値が、循環
組成から演算される蒸発圧力目標値と一致するように制
御するものについて説明したが、室外熱交換器33の入
口部に温度検出器を設け、この温度が所定の値(例えば
0℃)となるように制御しても、同様の効果を得ること
ができる。
In this embodiment, the number of rotations of the outdoor blower 33 during heating operation is controlled so that the value of the first pressure detector 12 matches the evaporation pressure target value calculated from the circulation composition. However, the same effect can be obtained by providing a temperature detector at the inlet of the outdoor heat exchanger 33 and controlling the temperature to be a predetermined value (for example, 0 ° C.).

【0060】また本実施例では、冷房運転時の電気式膨
張弁3の開度を、室内熱交換器41の出口部の過熱度が
所定の値(例えば5℃)となるように制御するものにつ
いて説明したが、室内熱交換器41の出入口温度差が所
定の値(例えば10℃)となるように、すなわち第4温
度検出器と第3温度検出器の差温が所定の値となるよう
に制御しても、同様の効果を得ることができる。
In this embodiment, the opening degree of the electric expansion valve 3 during the cooling operation is controlled so that the superheat degree at the outlet of the indoor heat exchanger 41 becomes a predetermined value (for example, 5 ° C.). However, the inlet / outlet temperature difference of the indoor heat exchanger 41 has a predetermined value (for example, 10 ° C.), that is, the temperature difference between the fourth temperature detector and the third temperature detector has a predetermined value. Even if it is controlled to, the same effect can be obtained.

【0061】さらに本実施例では、1台の室外機30に
2台の室内機40が接続された、冷凍空調装置で説明し
たが、これに限るものではなく、1台の室内機のみが接
続されたものや、3台以上の室内機が接続されたもので
あっても、同様の効果を得ることができる。
Further, in the present embodiment, the description has been given of the refrigerating and air-conditioning system in which two indoor units 40 are connected to one outdoor unit 30, but the present invention is not limited to this, and only one indoor unit is connected. The same effect can be obtained even when the indoor unit is connected or three or more indoor units are connected.

【0062】実施例6.図16、及び図17は本発明に
係わる冷凍空調装置の第6の実施例を示すもので、図1
1と図16で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図16中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
この実施例では、組成演算器20に入力される信号は、
第1温度検出器11と第1圧力検出器12のみであり、
バイパス配管50の毛細管51に流入する冷媒乾き度X
を、例えば暖房運転時には0.1、冷房運転時には0.
2と仮定して、第1温度検出器11と第1圧力検出器1
2からの信号のみで、循環組成を演算する。以下、制御
装置21、及び比較演算手段22の動作は実施例5と同
様である。
Example 6. 16 and 17 show a sixth embodiment of the refrigerating and air-conditioning apparatus according to the present invention.
1 and FIG. 16, elements having the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 16 during the heating operation, and circulates in the direction of the broken arrow during the cooling operation.
In this embodiment, the signal input to the composition calculator 20 is
Only the first temperature detector 11 and the first pressure detector 12,
Refrigerant dryness X flowing into the capillary tube 51 of the bypass pipe 50
Is 0.1 for heating operation and 0. for cooling operation.
Assuming that the first temperature detector 11 and the first pressure detector 1
Only the signal from 2 calculates the circulation composition. Hereinafter, the operations of the control device 21 and the comparison calculation means 22 are the same as in the fifth embodiment.

【0063】従って、本実施例による冷凍空調装置は、
実施例2と同様、組成演算器20での演算が簡単にな
り、簡単な装置構成で実施例5と同様の装置が実現で
き、安価となる。
Therefore, the refrigerating and air-conditioning system according to this embodiment is
As in the case of the second embodiment, the calculation by the composition calculator 20 is simple, and the device similar to that of the fifth embodiment can be realized with a simple device configuration, which is inexpensive.

【0064】実施例7.図18、及び図19は本発明に
係わる冷凍空調装置の第7の実施例を示すもので、図1
1と図18で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図18中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
バイパス配管50には、第2膨張弁として、第2電気式
膨張弁51が設けられており、この弁開度は、制御装置
21により制御される。またバイパス配管50の途中に
は、室外熱交換器32と第1電気式膨張弁3とを接続す
る配管(主配管)と熱交換を行う熱交換部52が設けら
れており、バイパス配管50を流れる冷媒のもつエンタ
ルピーを主配管を流れる冷媒へ伝達するので上記エンタ
ルピーが回収され、エネルギーロスを防いでいる。さら
にこの熱交換部52の出口部には、第5温度検出器16
が設けられ、この検出信号は制御装置21に送られる。
Example 7. 18 and 19 show a seventh embodiment of the refrigerating and air-conditioning apparatus according to the present invention.
1 and FIG. 18, elements with the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 18 during the heating operation, and in the direction of the dashed arrow during the cooling operation.
The bypass pipe 50 is provided with a second electric expansion valve 51 as a second expansion valve, and the valve opening degree is controlled by the control device 21. A heat exchanging section 52 for exchanging heat with the pipe (main pipe) connecting the outdoor heat exchanger 32 and the first electric expansion valve 3 is provided in the middle of the bypass pipe 50. Since the enthalpy of the flowing refrigerant is transmitted to the refrigerant flowing through the main pipe, the enthalpy is recovered and energy loss is prevented. Further, at the outlet of the heat exchange section 52, the fifth temperature detector 16
Is provided, and this detection signal is sent to the control device 21.

【0065】本実施例における制御装置21では、バイ
パス配管50に設けた第2電気式膨張弁51の制御法の
みが、実施例6と異なるため、この第2電気式膨張弁5
1の制御法について説明する。第2電気式膨張弁51の
開度は、バイパス配管50に設けられた熱交換部52の
出入口部の温度差が所定の値(例えば10℃)となるよ
うに制御される。すなわち、バイパス配管51に設けら
れた第1温度検出器11と第5温度検出器16の信号が
制御装置21に送信され、制御装置21ではこの第1温
度検出器11と第5温度検出器16が検出した温度の差
を演算し、この温度差と所定値(例えば10℃)との差
に応じて、PID制御等のフィードバック制御により第
2電気式膨張弁51の開度の修正値が演算され、電気式
膨張弁開度指令が第2電気式膨張弁51に出力される。
このようにすることにより、バイパス配管50からアキ
ュムレータ5にいく冷媒が常に蒸気の状態となり、エネ
ルギーが有効に使われ、かつ圧縮機1への液戻りも防げ
る効果がある。
In the control device 21 of this embodiment, only the control method of the second electric expansion valve 51 provided in the bypass pipe 50 is different from that of the sixth embodiment.
The control method 1 will be described. The opening degree of the second electric expansion valve 51 is controlled so that the temperature difference between the inlet and outlet of the heat exchange section 52 provided in the bypass pipe 50 becomes a predetermined value (for example, 10 ° C.). That is, the signals of the first temperature detector 11 and the fifth temperature detector 16 provided in the bypass pipe 51 are transmitted to the control device 21, and the control device 21 controls the first temperature detector 11 and the fifth temperature detector 16 to operate. The temperature difference detected by the CPU is calculated, and the correction value of the opening degree of the second electric expansion valve 51 is calculated by feedback control such as PID control according to the difference between this temperature difference and a predetermined value (for example, 10 ° C.). The electric expansion valve opening command is output to the second electric expansion valve 51.
By doing so, the refrigerant flowing from the bypass pipe 50 to the accumulator 5 is always in a vapor state, energy is effectively used, and liquid return to the compressor 1 can be prevented.

【0066】なお、上記実施例では、第2膨張弁51と
して電気式膨張弁を用いた場合について説明したが、毛
細管などでもよい。
In the above embodiment, the electric expansion valve is used as the second expansion valve 51, but a capillary tube or the like may be used.

【0067】実施例8.図20、及び図21は本発明に
係わる冷凍空調装置の第8の実施例を示すもので、図1
8と図20で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図20中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
この実施例では、組成演算器20に入力される信号は、
実施例2、及び実施例6と同様、第1温度検出器11と
第1圧力検出器12のみであり、バイパス配管50の第
2電気式膨張弁51に流入する冷媒乾き度Xを、例えば
暖房運転時には0.1、冷房運転時には0.2と仮定し
て、第1温度検出器11と第1圧力検出器12からの信
号のみで、循環組成を演算する。以下、制御装置21、
及び比較演算手段22の動作は実施例7と同様である。
Example 8. 20 and 21 show an eighth embodiment of the refrigerating and air-conditioning apparatus according to the present invention.
8 and FIG. 20, the elements with the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 20 during the heating operation, and in the direction of the dashed arrow during the cooling operation.
In this embodiment, the signal input to the composition calculator 20 is
Similar to the second and sixth embodiments, there is only the first temperature detector 11 and the first pressure detector 12, and the refrigerant dryness X flowing into the second electric expansion valve 51 of the bypass pipe 50 is set to, for example, heating. The circulating composition is calculated only by the signals from the first temperature detector 11 and the first pressure detector 12, assuming 0.1 during operation and 0.2 during cooling operation. Hereinafter, the control device 21,
The operation of the comparison calculation means 22 is similar to that of the seventh embodiment.

【0068】なお、上記実施例では、第2膨張弁51と
して電気式膨張弁を用いた場合について説明したが、毛
細管などでもよい。
In the above embodiment, the electric expansion valve is used as the second expansion valve 51, but a capillary tube or the like may be used.

【0069】また、上記実施例5ないし実施例8では、
アキュムレータ5を有する冷凍空調装置を示したが、無
いものでもよい。この場合、バイパス配管50は圧縮機
の吸入配管と主配管とを第2膨張弁を介して接続する構
成となる。さらに、上記実施例5ないし実施例8では、
比較演算手段22が接続されており、循環組成が所定範
囲から外れた場合には、警告信号を警報装置23に送信
するように構成されているが、これら比較演算手段2
2、及び警報装置23を設けなくてもよい。また、実施
例1ないし実施例4に対し、上記比較演算手段22、及
び警報装置23を設けてもよい。
Further, in the above fifth to eighth embodiments,
Although the refrigerating air-conditioning apparatus having the accumulator 5 is shown, it may be omitted. In this case, the bypass pipe 50 is configured to connect the suction pipe of the compressor and the main pipe via the second expansion valve. Furthermore, in the above fifth to eighth embodiments,
The comparison calculation means 22 is connected and is configured to send a warning signal to the alarm device 23 when the circulation composition is out of the predetermined range.
2 and the alarm device 23 may not be provided. Further, the comparison calculation means 22 and the alarm device 23 may be provided for the first to fourth embodiments.

【0070】[0070]

【発明の効果】以上のように本発明の請求項1によれ
ば、非共沸混合冷媒を用い、圧縮機、凝縮器、膨張弁、
及び蒸発器を連結して冷凍サイクルを構成する冷凍空調
装置において、蒸発器入口部の冷媒の温度と圧力、及び
凝縮器出口部の冷媒温度を検出してサイクル内を循環す
る冷媒組成を演算する組成演算器を設けると共に、この
組成演算器により検出された循環組成に応じて冷凍サイ
クルの運転制御を行う制御装置を設けたので、サイクル
内の循環組成が変化しても、常に最適な運転が可能とな
る。
As described above, according to claim 1 of the present invention, a non-azeotropic mixed refrigerant is used, and a compressor, a condenser, an expansion valve,
In a refrigerating air-conditioning apparatus that constitutes a refrigeration cycle by connecting an evaporator and a refrigerant, the temperature and pressure of the refrigerant at the evaporator inlet and the refrigerant temperature at the condenser outlet are detected to calculate the refrigerant composition circulating in the cycle. A composition calculator is provided and a control device that controls the operation of the refrigeration cycle in accordance with the circulation composition detected by this composition calculator is provided, so that even if the circulation composition in the cycle changes, optimum operation is always performed. It will be possible.

【0071】また、本発明の請求項2によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、及び蒸発器
を連結して冷凍サイクルを構成する冷凍空調装置におい
て、蒸発器入口部の冷媒の温度と圧力を検出してサイク
ル内を循環する冷媒組成を演算する組成演算器を設ける
と共に、この組成演算器により検出された循環組成に応
じて冷凍サイクルの運転制御を行う制御装置を設けたの
で、簡単な装置構成で、上記装置と同様の効果がある。
Further, according to claim 2 of the present invention, in the refrigerating and air-conditioning apparatus that uses the non-azeotropic mixed refrigerant and connects the compressor, the condenser, the expansion valve, and the evaporator to the refrigerating air-conditioning apparatus, A composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant at the inlet of the container is provided, and operation control of the refrigeration cycle is performed according to the circulation composition detected by this composition calculator. Since the control device is provided, a simple device configuration has the same effect as the above device.

【0072】また、本発明の請求項3によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、蒸発器、及
びアキュムレータを連結して冷凍サイクルを構成する冷
凍空調装置において、アキュムレータ内、あるいはアキ
ュムレータと圧縮機吸入配管との間の冷媒の温度と圧力
を検出してサイクル内を循環する冷媒組成を演算する組
成演算器を設けると共に、この組成演算器により検出さ
れた循環組成に応じて冷凍サイクルの運転制御を行う制
御装置を設けたので、簡単な装置構成で、上記装置と同
様の効果がある。
According to a third aspect of the present invention, in a refrigerating and air-conditioning apparatus that uses a non-azeotropic mixed refrigerant and connects a compressor, a condenser, an expansion valve, an evaporator, and an accumulator to form a refrigeration cycle. , A composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant in the accumulator or between the accumulator and the compressor suction pipe, and the circulation detected by this composition calculator Since the control device for controlling the operation of the refrigeration cycle according to the composition is provided, the same effect as the above device can be obtained with a simple device configuration.

【0073】また、本発明の請求項4によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、蒸発器、及
びアキュムレータを連結して冷凍サイクルを構成する冷
凍空調装置において、アキュムレータの液面を検出して
サイクル内を循環する冷媒組成を演算する組成演算器を
設けると共に、この組成演算器により検出された循環組
成に応じて冷凍サイクルの運転制御を行う制御装置を設
けたので、簡単な装置構成で、上記装置と同様の効果が
ある。
According to a fourth aspect of the present invention, in a refrigerating and air-conditioning apparatus that uses a non-azeotropic mixed refrigerant and connects a compressor, a condenser, an expansion valve, an evaporator, and an accumulator to form a refrigeration cycle. , A composition calculator for detecting the liquid level of the accumulator and calculating the refrigerant composition circulating in the cycle, and a control device for controlling the operation of the refrigeration cycle in accordance with the circulation composition detected by the composition calculator Therefore, with a simple device configuration, the same effect as the above device can be obtained.

【0074】また、本発明の請求項5によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する冷凍空調装置において、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力、及び第2膨張弁の入口部の冷媒温度を検
出して、サイクル内を循環する冷媒組成を演算する組成
演算器を設けると共に、この組成演算器により検出され
た循環組成に応じて冷凍サイクルの運転制御を行う制御
装置を設けたので、サイクル内の循環組成が変化して
も、常に最適な運転が可能となる。
According to claim 5 of the present invention, the non-azeotropic mixed refrigerant is used, and the compressor, the four-way valve, the first heat exchanger, the first heat exchanger,
In a refrigerating air-conditioning apparatus that forms a refrigeration cycle by connecting an expansion valve and a second heat exchanger, a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected to the second expansion valve. A composition for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant at the outlet of the second expansion valve and the refrigerant temperature at the inlet of the second expansion valve by connecting the bypass piping via the Since a controller is provided to control the operation of the refrigeration cycle according to the circulation composition detected by this composition calculator, optimum operation is always possible even if the circulation composition in the cycle changes. Becomes

【0075】また、本発明の請求項6によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する冷凍空調装置において、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力を検出して、サイクル内を循環する冷媒組
成を演算する組成演算器を設けると共に、この組成演算
器により検出された循環組成に応じて冷凍サイクルの運
転制御を行う制御装置を設けたので、簡単な装置構成
で、上記装置と同様の効果がある。
According to claim 6 of the present invention, the non-azeotropic mixed refrigerant is used, and the compressor, the four-way valve, the first heat exchanger, the first heat exchanger,
In a refrigerating air-conditioning apparatus that forms a refrigeration cycle by connecting an expansion valve and a second heat exchanger, a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected to the second expansion valve. And a composition calculator for calculating the refrigerant composition circulating in the cycle by detecting the temperature and pressure of the refrigerant at the outlet of the second expansion valve, and detecting by this composition calculator Since the control device for controlling the operation of the refrigeration cycle is provided according to the circulation composition thus obtained, the same effect as that of the above device can be obtained with a simple device configuration.

【0076】また、本発明の請求項7によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する上記冷凍空調装置において、バイパス配管に、第
1熱交換器と第1膨張弁の間の配管とで熱交換を行う熱
交換部を設けたので、サイクル内の循環組成が変化して
も、常に最適な運転が可能となるとともに、エネルギー
効率の高い冷凍空調装置が得られる。
According to claim 7 of the present invention, the non-azeotropic mixed refrigerant is used, and the compressor, the four-way valve, the first heat exchanger, the first heat exchanger,
In the above-mentioned refrigerating air-conditioning apparatus in which the expansion valve and the second heat exchanger are connected to form a refrigeration cycle, heat exchange is performed in the bypass pipe by heat exchange between the first heat exchanger and the pipe between the first expansion valve. Since the parts are provided, a refrigerating and air-conditioning apparatus with high energy efficiency can be obtained while always being able to perform optimum operation even if the circulation composition in the cycle changes.

【0077】また、本発明の請求項8によれば、上記各
冷凍空調装置において、組成演算器で検出された循環組
成が所定範囲から外れた場合に警告信号を発する比較演
算手段と、この比較演算手段が発する警報信号によって
動作する警報装置を設けたので、安全性や信頼性の高い
冷凍空調装置の提供が可能となる。
According to claim 8 of the present invention, in each of the refrigerating and air-conditioning devices, a comparison calculation means for issuing a warning signal when the circulation composition detected by the composition calculation device is out of a predetermined range, and the comparison calculation means. Since the alarm device that operates according to the alarm signal issued by the calculation means is provided, it is possible to provide a refrigeration and air-conditioning device with high safety and reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 1 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a first embodiment of the present invention.

【図2】本発明の実施例1に係わる組成演算器の動作を
示すフローチャートである。
FIG. 2 is a flowchart showing the operation of the composition calculator according to the first embodiment of the present invention.

【図3】本発明の実施例1に係わる組成演算器の動作を
圧力−エンタルピー線を用いて説明する説明図である。
FIG. 3 is an explanatory diagram for explaining the operation of the composition calculator according to the first embodiment of the present invention using a pressure-enthalpy line.

【図4】本発明の実施例1に係わる組成演算器の動作を
非共沸混合冷媒の温度と循環組成との関係を用いて説明
する説明図である。
FIG. 4 is an explanatory diagram for explaining the operation of the composition calculator according to the first embodiment of the present invention by using the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulating composition.

【図5】本発明の実施例1に係わる制御装置の動作を示
すフローチャートである。
FIG. 5 is a flowchart showing the operation of the control device according to the first embodiment of the present invention.

【図6】本発明の実施例2による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 6 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a second embodiment of the present invention.

【図7】本発明の実施例3による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 7 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a third embodiment of the present invention.

【図8】本発明の実施例3に係わる組成演算器の動作を
非共沸混合冷媒の温度と循環組成との関係を用いて説明
する説明図である。
FIG. 8 is an explanatory diagram for explaining the operation of the composition calculator according to the third embodiment of the present invention by using the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulating composition.

【図9】本発明の実施例4による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 9 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a fourth embodiment of the present invention.

【図10】本発明の実施例4に係わる組成演算器の動作
をアキュムレータ内の冷媒液面高さと循環組成との関係
を用いて説明する説明図である。
FIG. 10 is an explanatory diagram for explaining the operation of the composition calculator according to the fourth embodiment of the present invention, using the relationship between the refrigerant liquid level in the accumulator and the circulating composition.

【図11】本発明の実施例5による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 11 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a fifth embodiment of the present invention.

【図12】本発明の実施例5による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 12 is a control block diagram of a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a fifth embodiment of the present invention.

【図13】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の凝縮圧力と循環組成との関係を用いて
説明する説明図である。
FIG. 13 is an explanatory diagram for explaining the operation of the control device according to the fifth embodiment of the present invention by using the relationship between the condensing pressure of the non-azeotropic mixed refrigerant and the circulating composition.

【図14】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の蒸発圧力と循環組成との関係を用いて
説明する説明図である。
FIG. 14 is an explanatory diagram for explaining the operation of the control device according to the fifth embodiment of the present invention by using the relationship between the evaporation pressure of the non-azeotropic mixed refrigerant and the circulation composition.

【図15】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の飽和液温度と圧力と循環組成との関係
を用いて説明する説明図である。
FIG. 15 is an explanatory diagram for explaining the operation of the control device according to the fifth embodiment of the present invention by using the relationship between the saturated liquid temperature, the pressure, and the circulation composition of the non-azeotropic mixed refrigerant.

【図16】本発明の実施例6による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 16 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a sixth embodiment of the present invention.

【図17】本発明の実施例6による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 17 is a control block diagram of a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a sixth embodiment of the present invention.

【図18】本発明の実施例7による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 18 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Example 7 of the present invention.

【図19】本発明の実施例7による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 19 is a control block diagram of a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to a seventh embodiment of the present invention.

【図20】本発明の実施例8による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 20 is a configuration diagram showing a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to an eighth embodiment of the present invention.

【図21】本発明の実施例8による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 21 is a control block diagram of a refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Example 8 of the present invention.

【図22】従来の非共沸混合冷媒を用いた冷凍空調装置
を示す構成図である。
FIG. 22 is a configuration diagram showing a conventional refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 電気式膨張弁 4 蒸発器 5 アキュムレータ 11 温度検出器 12 圧力検出器 13 温度検出器 14 圧力検出器 15 液面検出器 16 温度検出器 20 組成演算器 21 制御装置 22 比較演算器 23 警報装置 31 四方弁 32 室外熱交換器 41 室内熱交換
器 42 温度検出器 43 温度検出器 50 バイパス配管 51 第2膨張弁 52 熱交換部
1 Compressor 2 Condenser 3 Electric Expansion Valve 4 Evaporator 5 Accumulator 11 Temperature Detector 12 Pressure Detector 13 Temperature Detector 14 Pressure Detector 15 Liquid Level Detector 16 Temperature Detector 20 Composition Calculator 21 Controller 22 Comparison Calculator 23 Alarm device 31 Four-way valve 32 Outdoor heat exchanger 41 Indoor heat exchanger 42 Temperature detector 43 Temperature detector 50 Bypass piping 51 Second expansion valve 52 Heat exchange section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機株 式会社和歌山製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohiko Kasai 6-5-66 Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、及び蒸発器を連結して冷凍サイク
ルを構成するものにおいて、蒸発器入口部の冷媒温度を
検出する第1温度検出器、上記蒸発器入口部の冷媒圧力
を検出する圧力検出器、凝縮器出口部の冷媒温度を検出
する第2温度検出器、第1温度検出器と上記圧力検出器
と第2温度検出器で検出した信号から、サイクル内を循
環する冷媒組成を演算する組成演算器、及びこの組成演
算器により検出された冷媒組成に応じて上記冷凍サイク
ルの運転制御を行う制御装置を備えたことを特徴とする
非共沸混合冷媒を用いた冷凍空調装置。
1. A refrigerating cycle comprising a compressor, a condenser, an expansion valve, and an evaporator connected by using a non-azeotropic mixed refrigerant as the refrigerant, wherein the refrigerant temperature at the inlet of the evaporator is detected. 1 temperature detector, a pressure detector for detecting the refrigerant pressure at the evaporator inlet, a second temperature detector for detecting the refrigerant temperature at the condenser outlet, a first temperature detector, the pressure detector, and a second temperature A composition calculator for calculating the refrigerant composition circulating in the cycle from the signal detected by the detector, and a controller for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator A refrigerating and air-conditioning system using a non-azeotropic mixed refrigerant.
【請求項2】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、及び蒸発器を連結して冷凍サイク
ルを構成するものにおいて、蒸発器入口部の冷媒温度を
検出する温度検出器、上記蒸発器入口部の冷媒圧力を検
出する圧力検出器、上記温度検出器と上記圧力検出器で
検出した信号から、サイクル内を循環する冷媒組成を演
算する組成演算器、及びこの組成演算器により検出され
た冷媒組成に応じて上記冷凍サイクルの運転制御を行う
制御装置を備えたことを特徴とする非共沸混合冷媒を用
いた冷凍空調装置。
2. A temperature for detecting a refrigerant temperature at an inlet of an evaporator in a refrigerating cycle in which a non-azeotropic mixed refrigerant is used as a refrigerant and a compressor, a condenser, an expansion valve and an evaporator are connected to each other. Detector, a pressure detector for detecting the refrigerant pressure at the evaporator inlet, a composition calculator for calculating the refrigerant composition circulating in the cycle from the signals detected by the temperature detector and the pressure detector, and this composition A refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising a control device that controls the operation of the refrigeration cycle according to the refrigerant composition detected by a computing unit.
【請求項3】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、蒸発器、及びアキュムレータを連
結して冷凍サイクルを構成するものにおいて、アキュム
レータ内、または上記アキュムレータと圧縮機吸入配管
との間の冷媒温度を検出する温度検出器、上記アキュム
レータ内、または上記アキュムレータと圧縮機吸入配管
との間の冷媒圧力を検出する圧力検出器、上記温度検出
器と上記圧力検出器で検出した信号から、サイクル内を
循環する冷媒組成を演算する組成演算器、及びこの組成
演算器により検出された冷媒組成に応じて上記冷凍サイ
クルの運転制御を行う制御装置を備えたことを特徴とす
る非共沸混合冷媒を用いた冷凍空調装置。
3. A refrigeration cycle comprising a compressor, a condenser, an expansion valve, an evaporator, and an accumulator connected to each other by using a non-azeotropic mixed refrigerant as a refrigerant, in the accumulator or in the accumulator and the compressor. A temperature detector for detecting the refrigerant temperature between the suction pipe, the accumulator, or a pressure detector for detecting the refrigerant pressure between the accumulator and the compressor suction pipe, the temperature detector and the pressure detector. From the detected signal, a composition calculator for calculating the refrigerant composition circulating in the cycle, and a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator, Refrigerating and air-conditioning system using non-azeotropic mixed refrigerant.
【請求項4】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、蒸発器、及びアキュムレータを連
結して冷凍サイクルを構成するものにおいて、上記アキ
ュムレータの液面を検知する液面検知手段、この液面検
出手段で検出した信号から、サイクル内を循環する冷媒
組成を演算する組成演算器、及びこの組成演算器により
検出された冷媒組成に応じて上記冷凍サイクルの運転制
御を行う制御装置を備えたことを特徴とする非共沸混合
冷媒を用いた冷凍空調装置。
4. A liquid for detecting a liquid level of the accumulator, wherein a refrigeration cycle is formed by connecting a compressor, a condenser, an expansion valve, an evaporator and an accumulator using a non-azeotropic mixed refrigerant as the refrigerant. Surface detection means, from the signal detected by the liquid level detection means, a composition calculator for calculating the refrigerant composition circulating in the cycle, and operation control of the refrigeration cycle according to the refrigerant composition detected by the composition calculator A refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant, characterized in that it is provided with a control device.
【請求項5】 冷媒として非共沸混合冷媒を用い、圧縮
機、四方弁、第1熱交換器、第1膨張弁、及び第2熱交
換器を連結して冷凍サイクルを構成するものにおいて、
第1熱交換器と第1膨張弁の間の配管と、上記圧縮機の
吸入配管とを第2膨張弁を介して接続するバイパス配
管、第2膨張弁の出口部の冷媒温度を検出する第1温度
検出器、第2膨張弁の出口部の冷媒圧力を検出する圧力
検出器、第2膨張弁の入口部の冷媒温度を検出する第2
温度検出器、第1温度検出器と上記圧力検出器と第2温
度検出器で検出した信号から、サイクル内を循環する冷
媒組成を演算する組成演算器、及びこの組成演算器によ
り検出された冷媒組成に応じて上記冷凍サイクルの運転
制御を行う制御装置を備えたことを特徴とする非共沸混
合冷媒を用いた冷凍空調装置。
5. A refrigeration cycle comprising a non-azeotropic mixed refrigerant as a refrigerant, which is connected to a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger,
A bypass pipe that connects the pipe between the first heat exchanger and the first expansion valve and the suction pipe of the compressor via the second expansion valve; and a first pipe that detects the refrigerant temperature at the outlet of the second expansion valve. 1 temperature detector, pressure detector that detects the refrigerant pressure at the outlet of the second expansion valve, second that detects the refrigerant temperature at the inlet of the second expansion valve
A composition calculator that calculates the refrigerant composition circulating in the cycle from the signals detected by the temperature detector, the first temperature detector, the pressure detector, and the second temperature detector, and the refrigerant detected by the composition calculator A refrigerating and air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising a control device that controls the operation of the refrigeration cycle according to the composition.
【請求項6】 冷媒として非共沸混合冷媒を用い、圧縮
機、四方弁、第1熱交換器、第1膨張弁、及び第2熱交
換器を連結して冷凍サイクルを構成するものにおいて、
第1熱交換器と第1膨張弁の間の配管と、上記圧縮機の
吸入配管とを第2膨張弁を介して接続するバイパス配
管、第2膨張弁の出口部の冷媒温度を検出する温度検出
器、第2膨張弁の出口部の冷媒圧力を検出する圧力検出
器、上記温度検出器と上記圧力検出器で検出した信号か
ら、サイクル内を循環する冷媒組成を演算する組成演算
器、及びこの組成演算器により検出された冷媒組成に応
じて上記冷凍サイクルの運転制御を行う制御装置を備え
たことを特徴とする非共沸混合冷媒を用いた冷凍空調装
置。
6. A refrigeration cycle in which a non-azeotropic mixed refrigerant is used as a refrigerant, and a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger are connected to each other to constitute a refrigeration cycle,
Bypass pipe connecting the pipe between the first heat exchanger and the first expansion valve and the suction pipe of the compressor via the second expansion valve, the temperature for detecting the refrigerant temperature at the outlet of the second expansion valve A detector, a pressure detector that detects the refrigerant pressure at the outlet of the second expansion valve, a composition calculator that calculates the refrigerant composition circulating in the cycle from the signals detected by the temperature detector and the pressure detector, and A refrigerating air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator.
【請求項7】 バイパス配管に、第1熱交換器と第1膨
張弁の間の配管とで熱交換を行う熱交換部を設けたこと
を特徴とする請求項5または6記載の非共沸混合冷媒を
用いた冷凍空調装置。
7. The non-azeotropic method according to claim 5, wherein the bypass pipe is provided with a heat exchange section for exchanging heat with the pipe between the first heat exchanger and the first expansion valve. Refrigeration air conditioner using mixed refrigerant.
【請求項8】 組成演算器により検出された冷媒組成が
所定範囲から外れた場合に警告信号を発する比較演算手
段、及びこの比較演算手段が発する警報信号によって動
作する警報手段を設けたことを特徴とする請求項1ない
し7のいずれかに記載の非共沸混合冷媒を用いた冷凍空
調装置。
8. A comparison calculation means for issuing a warning signal when the refrigerant composition detected by the composition calculation device is out of a predetermined range, and an alarm means for operating according to an alarm signal issued by the comparison calculation means. A refrigerating and air-conditioning apparatus using the non-azeotropic mixed refrigerant according to any one of claims 1 to 7.
JP16957094A 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant Expired - Lifetime JP2943613B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP16957094A JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant
ES95304838T ES2148441T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A COMPOSITION CALCULATION UNIT.
EP98107192A EP0853221B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107194T ES2176849T3 (en) 1994-07-21 1995-07-11 REFRIGERATION AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
EP95304838A EP0693663B1 (en) 1994-07-21 1995-07-11 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
ES98107193T ES2178069T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
DE69532003T DE69532003T2 (en) 1994-07-21 1995-07-11 Cooling air conditioner with non-azeotropic refrigerant and a control information acquisition device
ES98107191T ES2178068T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER WITH A NON-AZEOTROPIC REFRIGERANT AND HAS A CONTROL INFORMATION DETECTION DEVICE.
EP98107193A EP0854330B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
DE69527095T DE69527095T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
ES98107192T ES2208995T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR APPARATUS.
DE69526979T DE69526979T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
PT95304838T PT693663E (en) 1994-07-21 1995-07-11 DEVICE FOR DETECTING CONTROL INFORMATION FOR A FRIGORIFIED AIR CONDITIONING APPLIANCE USING A COOLANT NOT A AZEOTROPE
ES98107196T ES2176850T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
EP98107195A EP0853222B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
DE69526980T DE69526980T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
EP98107194A EP0854331B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
DE69526982T DE69526982T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
PT98107192T PT853221E (en) 1994-07-21 1995-07-11 CONTROL DETECTION APPARATUS FOR A REFRIGERATION CONDITIONING APPLIANCE USING A REFRIGERANT NOT AZEOTROPE
ES98107195T ES2178070T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
EP98107196A EP0854332B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
US08/500,551 US5626026A (en) 1994-07-21 1995-07-11 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
EP98107191A EP0854329B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
DE69517099T DE69517099T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and calculator to determine its composition
DE69527092T DE69527092T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
AU25041/95A AU683385B2 (en) 1994-07-21 1995-07-18 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
CN95108967A CN1067154C (en) 1994-07-21 1995-07-21 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
TW084107907A TW289079B (en) 1994-07-21 1995-07-28
US08/779,851 US5735132A (en) 1994-07-21 1997-01-07 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
US09/005,813 US5941084A (en) 1994-07-21 1998-01-12 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
HK98100593A HK1001659A1 (en) 1994-07-21 1998-01-22 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
KR2019980010044U KR200145320Y1 (en) 1994-07-21 1998-06-12 Control information detecting apparatus using non-azeotropic mixed refrigerant for a refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16957094A JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Publications (2)

Publication Number Publication Date
JPH0835725A true JPH0835725A (en) 1996-02-06
JP2943613B2 JP2943613B2 (en) 1999-08-30

Family

ID=15888929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16957094A Expired - Lifetime JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Country Status (1)

Country Link
JP (1) JP2943613B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner
WO2008032578A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
JP2008157621A (en) * 2008-03-24 2008-07-10 Mitsubishi Electric Corp Refrigerating device
JP2010085014A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2010091264A (en) * 2008-10-06 2010-04-22 Thermo King Corp Temperature control system with directly-controlled purge cycle
EP2762805A4 (en) * 2011-09-30 2015-07-15 Mitsubishi Electric Corp Air-conditioning device
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
CN106871470A (en) * 2017-02-05 2017-06-20 广东美的暖通设备有限公司 The pressure regulating method of air-conditioning system and air-conditioning system
WO2018155513A1 (en) * 2017-02-27 2018-08-30 三菱重工サーマルシステムズ株式会社 Composition abnormality detection device and composition abnormality detection method
WO2020066002A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
WO2020066000A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60037445T2 (en) 1999-10-18 2008-12-04 Daikin Industries, Ltd. COOLING DEVICE
JP6433709B2 (en) * 2014-07-30 2018-12-05 三菱重工サーマルシステムズ株式会社 Turbo refrigerator, control device therefor, and control method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner
WO2008032578A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
JP2008064436A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
US8205464B2 (en) 2006-09-11 2012-06-26 Daikin Industries, Ltd. Refrigeration device
JP4548502B2 (en) * 2008-03-24 2010-09-22 三菱電機株式会社 Refrigeration equipment
JP2008157621A (en) * 2008-03-24 2008-07-10 Mitsubishi Electric Corp Refrigerating device
JP2010085014A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Refrigerating device
JP2010091264A (en) * 2008-10-06 2010-04-22 Thermo King Corp Temperature control system with directly-controlled purge cycle
EP2762805A4 (en) * 2011-09-30 2015-07-15 Mitsubishi Electric Corp Air-conditioning device
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
CN106871470A (en) * 2017-02-05 2017-06-20 广东美的暖通设备有限公司 The pressure regulating method of air-conditioning system and air-conditioning system
WO2018155513A1 (en) * 2017-02-27 2018-08-30 三菱重工サーマルシステムズ株式会社 Composition abnormality detection device and composition abnormality detection method
WO2020066002A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
WO2020066000A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Also Published As

Publication number Publication date
JP2943613B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US5941084A (en) Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
JP5234167B2 (en) Leakage diagnostic device
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
AU2018293858B2 (en) Air-conditioning device
EP2878899B1 (en) Air conditioner
JP6902390B2 (en) Refrigeration cycle equipment
WO2017163339A1 (en) Air-conditioning device
JP3463710B2 (en) Refrigeration equipment with non-azeotropic mixed refrigerant
JP6588626B2 (en) Refrigeration equipment
CN108954501B (en) Air conditioner
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP6739664B2 (en) Refrigeration air conditioner and control device
JP6762422B2 (en) Refrigeration cycle equipment
JPH1068555A (en) Circulating refrigerant composition detection method of refrigeration cycle and refrigerating apparatus using the detection method
WO2021192275A1 (en) Outdoor unit and refrigeration cycle device equipped with same
WO2020066001A1 (en) Refrigeration cycle device
WO2024009394A1 (en) Air conditioner and refrigerant leak detection method
JP6758075B2 (en) Air conditioner and refrigerant amount determination method
WO2020255355A1 (en) Outdoor unit, refrigeration cycle device, and refrigerator
CN115667820A (en) Cold/heat source unit, refrigeration cycle device, and refrigerator
JP2019207103A (en) Refrigeration device
JPH1038395A (en) Refrigerant circulation type heat transfer equipment
JPH1019407A (en) Refrigerant circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

EXPY Cancellation because of completion of term