JP6739664B2 - Refrigeration air conditioner and control device - Google Patents

Refrigeration air conditioner and control device Download PDF

Info

Publication number
JP6739664B2
JP6739664B2 JP2019549769A JP2019549769A JP6739664B2 JP 6739664 B2 JP6739664 B2 JP 6739664B2 JP 2019549769 A JP2019549769 A JP 2019549769A JP 2019549769 A JP2019549769 A JP 2019549769A JP 6739664 B2 JP6739664 B2 JP 6739664B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
azeotropic mixed
air
mixed refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019549769A
Other languages
Japanese (ja)
Other versions
JPWO2019082331A1 (en
Inventor
昌彦 中川
昌彦 中川
七種 哲二
哲二 七種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019082331A1 publication Critical patent/JPWO2019082331A1/en
Application granted granted Critical
Publication of JP6739664B2 publication Critical patent/JP6739664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Description

本発明は、冷媒回路からの冷媒漏えいの有無を判定する制御装置、及び制御装置を備えた冷凍空調装置に関する。 The present invention relates to a control device that determines whether or not a refrigerant leaks from a refrigerant circuit, and a refrigerating and air-conditioning apparatus including the control device.

従来の空調装置が行う冷媒漏えいの検出の一例が特許文献1に開示されている。特許文献1には、冷凍回路中に冷媒量が必要量あると仮定し、熱負荷により求められる理論冷凍サイクルにおける状態量と実測された状態量との差が所定の値以上の状態が一定期間継続したとき、冷媒不足と判断することが記載されている。特許文献1には、状態量の具体例として蒸発器入口温度が開示されている。 Patent Document 1 discloses an example of refrigerant leak detection performed by a conventional air conditioner. In Patent Document 1, it is assumed that there is a required amount of refrigerant in the refrigeration circuit, and a state in which the difference between the state amount in the theoretical refrigeration cycle obtained by the heat load and the actually measured state amount is a predetermined value or more for a certain period. It is described that when it continues, it is judged that the refrigerant is insufficient. Patent Document 1 discloses an evaporator inlet temperature as a specific example of the state quantity.

特開平5−99542号公報Japanese Patent Laid-Open No. 5-99542

特許文献1に開示された冷媒漏えいの検出は、状態量の変化により冷凍サイクル全体の冷媒量不足の有無を検知するものであり、冷媒漏れの発生部位を特定するものではない。そのため、現地作業者が冷媒回路の補修作業を開始する前に冷媒漏れ部位特定のためのチェック作業が必要になる。 The detection of refrigerant leakage disclosed in Patent Document 1 is to detect whether or not the refrigerant amount is insufficient in the entire refrigeration cycle based on a change in the state quantity, and is not to identify the location where the refrigerant leakage occurs. Therefore, it is necessary for the on-site worker to perform a check operation for identifying the refrigerant leakage portion before starting the repair operation of the refrigerant circuit.

本発明は、上記のような課題を解決するためになされたもので、冷媒漏れが発生した部位を特定することができる冷凍空調装置及び制御装置を提供するものである。 The present invention has been made to solve the above problems, and provides a refrigerating and air-conditioning apparatus and a control apparatus that can specify a portion where a refrigerant leak has occurred.

本発明に係る冷凍空調装置は、圧縮機、凝縮器、膨張部、蒸発器及びアキュームレータが配管で接続され、沸点の異なる複数種の冷媒が混合された非共沸混合冷媒が循環する冷媒回路と、前記蒸発器に流入する前記非共沸混合冷媒の温度を測定する流入温度センサと、前記蒸発器に流入する前記非共沸混合冷媒の圧力が設定圧力になるように前記冷媒回路を制御する点検モード時において、前記設定圧力における飽和温度と前記流入温度センサが測定する温度との温度差を算出し、前記温度差と、前記複数種の冷媒の異なる沸点に基づいて設定された閾値とを比較して前記非共沸混合冷媒の漏えいの有無を判定する制御装置と、を有するものである。 Refrigeration air conditioner according to the present invention, a compressor, a condenser, an expansion unit, an evaporator and an accumulator are connected by a pipe, a refrigerant circuit in which a non-azeotropic mixed refrigerant in which plural kinds of refrigerants having different boiling points are mixed is circulated. , An inflow temperature sensor for measuring the temperature of the non-azeotropic mixed refrigerant flowing into the evaporator, and controlling the refrigerant circuit so that the pressure of the non-azeotropic mixed refrigerant flowing into the evaporator becomes a set pressure. in inspection mode, said calculating a temperature difference between the temperature of the inlet temperature sensor and the saturation temperature is measured at the set pressure, and the temperature difference with a threshold value that is set based different boiling points of the plurality of kinds of refrigerants And a control device that determines whether or not the non-azeotropic mixed refrigerant is leaking by comparison.

本発明によれば、非共沸混合冷媒が気液二相状態で流動する部位での冷媒漏れの発生を検知することで、膨張部から蒸発器の出口までの区間、又は凝縮器に、冷媒漏えいの発生部位を特定することができる。 According to the present invention, by detecting the occurrence of refrigerant leakage in the region where the non-azeotropic mixed refrigerant flows in the gas-liquid two-phase state, the section from the expansion section to the outlet of the evaporator, or the condenser, the refrigerant The location of the leak can be identified.

本発明の実施の形態1に係る冷凍空調装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram showing an example of the refrigerating and air-conditioning system concerning Embodiment 1 of the present invention. 図1に示した制御装置の一構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a control device shown in FIG. 1. 非共沸混合冷媒がR407Cである場合の冷媒の沸点及び組成比率を示す表である。It is a table showing the boiling point and composition ratio of the refrigerant when the non-azeotropic mixed refrigerant is R407C. 本発明の実施の形態1における点検モード時の冷媒の状態を示すp−h線図である。FIG. 5 is a ph diagram showing the state of the refrigerant in the inspection mode according to the first embodiment of the present invention. 図3に示した非共沸混合冷媒を構成する3種類の冷媒のうち、R32及びR125が漏えいした場合における図4に示した点A〜Cの温度を示す表である。4 is a table showing temperatures at points A to C shown in FIG. 4 when R32 and R125 among the three kinds of refrigerants constituting the non-azeotropic mixed refrigerant shown in FIG. 3 leak. 本発明の実施の形態1に係る冷凍空調装置の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the refrigerating air-conditioning apparatus which concerns on Embodiment 1 of this invention.

実施の形態1.
本実施の形態1に係る冷凍空調装置について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る冷凍空調装置の一例を示す冷媒回路図である。本実施の形態1の冷凍空調装置100は、例えば、冷却庫のような冷却対象を冷却する装置である。図1に示すように、冷凍空調装置100は、冷媒回路10と、凝縮温度センサ21と、膨張部入口温度センサ22と、流入圧力センサ23と、流入温度センサ24と、制御装置50とを有する。冷媒回路10は、圧縮機11、凝縮器12、膨張部13、蒸発器14、アキュームレータ15及び受液器16が配管で接続され、沸点の異なる複数種の冷媒が混合された非共沸混合冷媒が循環する構成である。
Embodiment 1.
The refrigerating and air-conditioning apparatus according to Embodiment 1 will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing an example of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. The refrigerating and air-conditioning apparatus 100 according to the first embodiment is an apparatus that cools a cooling target such as a refrigerator. As shown in FIG. 1, the refrigeration air conditioning system 100 includes a refrigerant circuit 10, a condensation temperature sensor 21, an expansion part inlet temperature sensor 22, an inflow pressure sensor 23, an inflow temperature sensor 24, and a control device 50. .. The refrigerant circuit 10 is a non-azeotropic mixed refrigerant in which a compressor 11, a condenser 12, an expansion unit 13, an evaporator 14, an accumulator 15 and a liquid receiver 16 are connected by piping, and a plurality of kinds of refrigerants having different boiling points are mixed. Is a circulating structure.

圧縮機11は、低温低圧の状態の非共沸混合冷媒を吸入及び圧縮して高温高圧の状態の非共沸混合冷媒を吐出する。圧縮機11は、例えば、容量を制御することができるインバータ圧縮機である。凝縮器12は、室外空気と非共沸混合冷媒との間で熱交換させる熱交換器である。膨張部13は、非共沸混合冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部13は、例えば、開度を調整できる電子式膨張弁である。蒸発器14は、冷却室の冷却を行い、冷却室の空気と非共沸混合冷媒との間で熱交換させる熱交換器である。 The compressor 11 draws in and compresses the low-temperature low-pressure non-azeotropic mixed refrigerant and discharges the high-temperature high-pressure non-azeotropic mixed refrigerant. The compressor 11 is, for example, an inverter compressor whose capacity can be controlled. The condenser 12 is a heat exchanger for exchanging heat between the outdoor air and the non-azeotropic mixed refrigerant. The expansion section 13 is a pressure reducing valve or an expansion valve that decompresses and expands the non-azeotropic mixed refrigerant. The expansion section 13 is, for example, an electronic expansion valve whose opening can be adjusted. The evaporator 14 is a heat exchanger that cools the cooling chamber and exchanges heat between the air in the cooling chamber and the non-azeotropic mixed refrigerant.

アキュームレータ15及び受液器16は、ガス冷媒と液冷媒とを分離する。受液器16の出口配管は、受液器16が空にならない限り液相の冷媒を流出するように構成されている。受液器16は、冷媒回路10を循環する非共沸混合冷媒のうち、機器周辺の温度変化などにより発生する余剰冷媒を貯留する。アキュームレータ15は、液バック運転など過渡的に蒸発器14から液相冷媒が返ってきた場合に、液相冷媒を貯留する。本実施の形態1では、図1に示すように冷凍空調装置100に受液器16が設けられている場合で説明するが、受液器16が設けられていなくてもよい。 The accumulator 15 and the liquid receiver 16 separate the gas refrigerant and the liquid refrigerant. The outlet pipe of the liquid receiver 16 is configured so that the liquid-phase refrigerant flows out unless the liquid receiver 16 is emptied. The liquid receiver 16 stores, of the non-azeotropic mixed refrigerant that circulates in the refrigerant circuit 10, an excess refrigerant that is generated due to a temperature change around the device. The accumulator 15 stores the liquid-phase refrigerant when the liquid-phase refrigerant is transiently returned from the evaporator 14 such as the liquid back operation. In the first embodiment, the case where the liquid receiver 16 is provided in the refrigerating and air-conditioning apparatus 100 as shown in FIG. 1 will be described, but the liquid receiver 16 may not be provided.

凝縮温度センサ21は、凝縮器12の冷媒出口側に設けられている。凝縮温度センサ21は、凝縮器12を流通する非共沸混合冷媒の凝縮温度Ctempを測定する。膨張部入口温度センサ22は、膨張部13の冷媒入口側に設けられている。膨張部入口温度センサ22は、膨張部13に流入する非共沸混合冷媒の膨張前温度を測定する。流入圧力センサ23は、蒸発器14の冷媒入口側に設けられている。流入圧力センサ23は、蒸発器14に流入する非共沸混合冷媒の圧力PLを測定する。流入温度センサ24は、蒸発器14の冷媒入口側に設けられている。流入温度センサ24は、蒸発器14に流入する非共沸混合冷媒の温度を測定する。 The condensation temperature sensor 21 is provided on the refrigerant outlet side of the condenser 12. The condensation temperature sensor 21 measures the condensation temperature Ctemp of the non-azeotropic mixed refrigerant flowing through the condenser 12. The expansion portion inlet temperature sensor 22 is provided on the refrigerant inlet side of the expansion portion 13. The expansion part inlet temperature sensor 22 measures the pre-expansion temperature of the non-azeotropic mixed refrigerant flowing into the expansion part 13. The inflow pressure sensor 23 is provided on the refrigerant inlet side of the evaporator 14. The inflow pressure sensor 23 measures the pressure PL of the non-azeotropic mixed refrigerant flowing into the evaporator 14. The inflow temperature sensor 24 is provided on the refrigerant inlet side of the evaporator 14. The inflow temperature sensor 24 measures the temperature of the non-azeotropic mixed refrigerant flowing into the evaporator 14.

制御装置50は、冷媒回路10における各部の圧力及び温度の測定値と、空調対象空間の設定温度を含む各種設定値とに基づいて、冷凍空調装置100の運転を制御する。制御装置50は、例えば、マイクロコンピュータである。図2は、図1に示した制御装置の一構成例を示すブロック図である。制御装置50は、冷凍サイクル制御手段51と、点検モード実行手段52と、算出手段53と、判定手段54とを有する。制御装置50は、図に示していないが、プログラムを記憶するメモリと、プログラムにしたがって処理を実行するCPU(Central Processing Unit)とを有する。CPUがプログラムを実行することで、図2に示した冷凍サイクル制御手段51、点検モード実行手段52、算出手段53及び判定手段54が冷凍空調装置100に構成される。図に示さないメモリは、設定温度、冷凍空調装置100の制御及び冷媒漏れ判定に用いられる各種情報を記憶する。 The control device 50 controls the operation of the refrigerating and air conditioning device 100 based on the measured values of the pressure and temperature of each part in the refrigerant circuit 10 and various set values including the set temperature of the air conditioning target space. The control device 50 is, for example, a microcomputer. FIG. 2 is a block diagram showing a configuration example of the control device shown in FIG. The control device 50 has a refrigeration cycle control means 51, an inspection mode execution means 52, a calculation means 53, and a determination means 54. Although not shown, the control device 50 has a memory that stores a program and a CPU (Central Processing Unit) that executes processing in accordance with the program. When the CPU executes the program, the refrigeration cycle control means 51, the inspection mode execution means 52, the calculation means 53, and the determination means 54 shown in FIG. A memory (not shown) stores various information used for setting temperature, controlling the refrigerating and air-conditioning apparatus 100, and determining refrigerant leakage.

なお、冷凍空調装置100には、室外空気の温度を測定する温度センサ及び冷却室の空気の温度を測定する温度センサが設けられているが、これらの温度センサを図に示すことを省略している。また、図1に示していないが、蒸発器14に冷却室の空気を供給するファンが設けられていてもよく、凝縮器12に室外空気を供給するファンが設けられていてもよい。この場合、制御装置50はこれらのファンの運転周波数を制御してもよい。さらに、冷凍空調装置100は、冷媒回路10に流れる非共沸混合冷媒の流れ方向を切り替える流路切替部を備えていてもよい。この場合、冷凍空調装置100は、冷却運転及び加熱運転のどちらの運転も行うことができる。冷凍空調装置100の空調対象空間は冷却室に限らない。 Although the refrigeration air conditioner 100 is provided with a temperature sensor that measures the temperature of the outdoor air and a temperature sensor that measures the temperature of the air in the cooling chamber, these temperature sensors are omitted from the drawing. There is. Although not shown in FIG. 1, the evaporator 14 may be provided with a fan for supplying air in the cooling chamber, and the condenser 12 may be provided with a fan for supplying outdoor air. In this case, the controller 50 may control the operating frequencies of these fans. Further, the refrigerating and air-conditioning apparatus 100 may include a flow path switching unit that switches the flow direction of the non-azeotropic mixed refrigerant flowing in the refrigerant circuit 10. In this case, the refrigeration air conditioning system 100 can perform both the cooling operation and the heating operation. The air conditioning target space of the refrigerating and air conditioning apparatus 100 is not limited to the cooling room.

次に、冷凍空調装置100の冷却運転について説明する。圧縮機11に吸入される冷媒は、圧縮機11によって圧縮され、高温高圧のガス状態で圧縮機11から吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、凝縮器12に流入する。凝縮器12において、高温高圧のガス冷媒は室外空気と熱交換されて凝縮し、液化する。凝縮された液状態の冷媒が受液器16に流入すると、余剰冷媒分が受液器16に貯留され、液冷媒のみが受液器16から流出する。液冷媒は、膨張部13に流入すると、膨張部13において膨張及び減圧されて、低温低圧の気液二相状態の冷媒となる。気液二相の冷媒は、蒸発器14に流入する。蒸発器14において、気液二相の冷媒は、冷却室の空気と熱交換されて蒸発してガス化する。このとき、冷却室が冷却される。低温低圧のガス状態の冷媒は圧縮機11に吸入される。 Next, the cooling operation of the refrigerating and air-conditioning apparatus 100 will be described. The refrigerant sucked into the compressor 11 is compressed by the compressor 11 and is discharged from the compressor 11 in a high temperature and high pressure gas state. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the condenser 12. In the condenser 12, the high-temperature and high-pressure gas refrigerant is heat-exchanged with outdoor air to be condensed and liquefied. When the condensed refrigerant in the liquid state flows into the receiver 16, the excess refrigerant is stored in the receiver 16 and only the liquid refrigerant flows out from the receiver 16. When the liquid refrigerant flows into the expansion section 13, the liquid refrigerant is expanded and decompressed in the expansion section 13 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the evaporator 14. In the evaporator 14, the gas-liquid two-phase refrigerant is heat-exchanged with the air in the cooling chamber to be evaporated and gasified. At this time, the cooling chamber is cooled. The low-temperature low-pressure gas-state refrigerant is sucked into the compressor 11.

図3は、非共沸混合冷媒がR407Cである場合の冷媒の沸点及び組成比率を示す表である。本実施の形態1では、冷媒回路10に封入される非共沸混合冷媒がR407Cの場合で説明する。図3に示すように、R407Cは、R32、R125及びR134aの冷媒が混合されている。R32の沸点が−51.7℃であり、R125の沸点が−48.1℃であり、R134aの沸点が−26.1℃である。即ち、R407Cを構成する3種類の冷媒のうち、R134aの沸点が最も高い。R32及びR125の沸点の温度差が3.6℃であるのに対し、R125及びR134aの沸点の温度差は22.0℃である。また、組成比率に注目すると、R32及びR125の組成比率を合算した値は、48%であり、R134aの52%とほぼ同等である。 FIG. 3 is a table showing the boiling points and composition ratios of the refrigerant when the non-azeotropic mixed refrigerant is R407C. In the first embodiment, the case where the non-azeotropic mixed refrigerant sealed in the refrigerant circuit 10 is R407C will be described. As shown in FIG. 3, R407C is a mixture of R32, R125, and R134a refrigerants. The boiling point of R32 is -51.7°C, the boiling point of R125 is -48.1°C, and the boiling point of R134a is -26.1°C. That is, R134a has the highest boiling point among the three types of refrigerants constituting R407C. The temperature difference between the boiling points of R32 and R125 is 3.6°C, whereas the temperature difference between the boiling points of R125 and R134a is 22.0°C. Focusing on the composition ratio, the sum of the composition ratios of R32 and R125 is 48%, which is almost equal to 52% of R134a.

冷媒が図3に示した非共沸混合冷媒である場合、冷媒の相変化が発生する熱交換器の内部では、3種類の冷媒がそれぞれ異なるタイミングで相変化を開始する。例えば、凝縮器12の内部では、3種類の冷媒のうち、沸点の最も高いR134aがR125及びR32よりも先に液化をはじめる。一方、蒸発器14の内部では、3種類の冷媒のうち、沸点の低いR125及びR32がR134aよりも先に気化をはじめる。つまり、熱交換器内部において、冷媒が気液二相で混在する部位では、3種類の冷媒の組成比率が図3に示す値とは異なっている。具体的には、気液二相の液冷媒中では、R134aの組成比率は52%よりも多く、R125及びR32の組成比率の合算値は48%よりも少ない状態になる。気液二相のガス冷媒中では、R125及びR32の組成比率の合算値は48%よりも多く、R134aの組成比率は52%よりも少ない状態になる。 When the refrigerant is the non-azeotropic mixed refrigerant shown in FIG. 3, inside the heat exchanger where the phase change of the refrigerant occurs, the three kinds of refrigerant start phase change at different timings. For example, inside the condenser 12, among the three types of refrigerant, R134a having the highest boiling point starts liquefying before R125 and R32. On the other hand, inside the evaporator 14, among the three kinds of refrigerants, R125 and R32 having a low boiling point start vaporizing before R134a. That is, the composition ratios of the three kinds of refrigerants are different from the values shown in FIG. 3 in the portion where the refrigerants are mixed in the gas-liquid two phase inside the heat exchanger. Specifically, in the gas-liquid two-phase liquid refrigerant, the composition ratio of R134a is more than 52%, and the total value of the composition ratios of R125 and R32 is less than 48%. In the gas-liquid two-phase gas refrigerant, the sum of the composition ratios of R125 and R32 is more than 48%, and the composition ratio of R134a is less than 52%.

ここで、凝縮器12又は蒸発器14の伝熱管にクラックが発生するなどして冷媒漏れが発生した場合を考える。冷媒回路10において、冷媒が気液二相状態になる部位は、凝縮器12と、膨張部13から蒸発器14に至る区間とである。上述したように、混合冷媒中の各冷媒の分布は相状態により異なる。そのため、冷媒が気液二相の状態になっている部位で冷媒漏れが発生すると、冷媒回路10を流動する冷媒の組成が変化し、冷媒漏れの進行に伴って組成の変化が大きくなる。具体的には、クラック発生部位が主に気相冷媒が流れる部位である場合、R125及びR32が多く漏えいすることになり、R134aの組成比率が図3に示した値よりも大きくなる。一方、クラック発生部位が主に液相冷媒が流れる部位である場合、R134aが多く漏えいすることになり、R125及びR32の組成比率が図3に示した値よりも大きくなる。 Here, consider a case where a refrigerant leak occurs due to a crack in the heat transfer tube of the condenser 12 or the evaporator 14. In the refrigerant circuit 10, the part where the refrigerant is in the gas-liquid two-phase state is the condenser 12 and the section from the expansion part 13 to the evaporator 14. As described above, the distribution of each refrigerant in the mixed refrigerant differs depending on the phase state. Therefore, when a refrigerant leak occurs in a portion where the refrigerant is in a gas-liquid two-phase state, the composition of the refrigerant flowing in the refrigerant circuit 10 changes, and the composition changes greatly as the refrigerant leakage progresses. Specifically, when the cracked part is mainly the part where the vapor phase refrigerant flows, a large amount of R125 and R32 leaks, and the composition ratio of R134a becomes larger than the value shown in FIG. On the other hand, when the crack-occurring portion is mainly a portion where the liquid-phase refrigerant flows, a large amount of R134a leaks, and the composition ratio of R125 and R32 becomes larger than the value shown in FIG.

次に、制御装置50が行う冷媒漏れ判定を説明する。冷凍空調装置100は、冷却室の空調を行う通常運転モードと、冷媒漏えいを検出するための点検モードとを有する。点検モードは、制御装置50が、冷媒漏えいの有無を判定するために、蒸発器14における圧力PLを設定圧力に保つ点検条件で、冷媒回路10を制御するモードである。 Next, the refrigerant leak determination performed by the control device 50 will be described. The refrigerating and air-conditioning apparatus 100 has a normal operation mode for air-conditioning the cooling chamber and an inspection mode for detecting refrigerant leakage. The inspection mode is a mode in which the control device 50 controls the refrigerant circuit 10 under an inspection condition in which the pressure PL in the evaporator 14 is kept at the set pressure in order to determine whether or not the refrigerant leaks.

冷凍サイクル制御手段51及び点検モード実行手段52は、凝縮温度センサ21、膨張部入口温度センサ22及び流入温度センサ24から取得する温度と、流入圧力センサ23から取得する圧力PLとに基づいて、冷凍空調装置100の運転状態を把握する。冷凍サイクル制御手段51は、通常運転モードにおいて、冷却室の空気温度が設定温度になるように、圧縮機11の運転周波数と、蒸発器14及び凝縮器12の冷却風量と、膨張部13の開度とを制御する。 The refrigeration cycle control means 51 and the inspection mode execution means 52 perform refrigeration based on the temperatures acquired from the condensation temperature sensor 21, the expansion part inlet temperature sensor 22 and the inflow temperature sensor 24 and the pressure PL acquired from the inflow pressure sensor 23. Understand the operating state of the air conditioner 100. In the normal operation mode, the refrigeration cycle control means 51 operates so that the air temperature in the cooling chamber reaches the set temperature, the operating frequency of the compressor 11, the cooling air flow rates of the evaporator 14 and the condenser 12, and the opening of the expansion section 13. Control the degree and.

冷凍サイクル制御手段51及び点検モード実行手段52は、凝縮器12に供給される室外空気の温度及び冷却負荷の大きさに応じて、凝縮器12の冷却風量及び圧縮機11の運転周波数を制御することで、凝縮器12における冷媒の圧力PHを調整する。また、冷凍サイクル制御手段51及び点検モード実行手段52は、圧縮機11の運転周波数、蒸発器14の冷却風量及び膨張部13の開度等を制御することで圧力PLを調整し、蒸発器14の冷媒出口の過熱度を設定過熱度に保つ。 The refrigeration cycle control means 51 and the inspection mode execution means 52 control the cooling air volume of the condenser 12 and the operating frequency of the compressor 11 according to the temperature of the outdoor air supplied to the condenser 12 and the magnitude of the cooling load. Thus, the pressure PH of the refrigerant in the condenser 12 is adjusted. Further, the refrigeration cycle control means 51 and the inspection mode execution means 52 adjust the pressure PL by controlling the operating frequency of the compressor 11, the cooling air flow rate of the evaporator 14, the opening degree of the expansion part 13, and the like, and the evaporator 14 is controlled. The superheat degree of the refrigerant outlet of is maintained at the set superheat degree.

点検モード実行手段52は、冷凍空調装置100を比較的長時間で連続運転できる条件の下で、点検モードを実行する。例えば、冷凍サイクルの状態が安定するまで圧縮機11がサーモオフなどにより停止しないように、点検モード実行手段52は、除霜運転を終了したとき、又は冷却室の実際の温度が冷却室の設定温度よりも高いとき等に、点検モードを実行する。具体的には、蒸発器14を流通する非共沸混合冷媒の圧力から換算される蒸発温度が冷却室の設定温度よりも高いとき、点検モード実行手段52は点検モードを実行する。この場合、サーモオフにならないため、制御装置50は、冷媒回路10を循環する非共沸混合冷媒を安定した状態に保つことで、冷媒の漏えいの有無を判定できる。 The inspection mode executing means 52 executes the inspection mode under the condition that the refrigerating and air-conditioning apparatus 100 can be continuously operated for a relatively long time. For example, the inspection mode executing means 52 may prevent the compressor 11 from stopping due to thermo-off or the like until the state of the refrigeration cycle stabilizes, when the defrosting operation is completed or the actual temperature of the cooling chamber is the set temperature of the cooling chamber. When it is higher than the above, the inspection mode is executed. Specifically, when the evaporation temperature converted from the pressure of the non-azeotropic mixed refrigerant flowing through the evaporator 14 is higher than the set temperature of the cooling chamber, the inspection mode execution means 52 executes the inspection mode. In this case, since the thermostat does not turn off, the control device 50 can determine whether or not the refrigerant leaks by keeping the non-azeotropic mixed refrigerant circulating in the refrigerant circuit 10 in a stable state.

図4は、本発明の実施の形態1における点検モード時の冷媒の状態を示すp−h線図である。図4の縦軸は冷媒の圧力[MPa]を示し、横軸は比エンタルピ[kJ/kg]を示す。点検モード実行手段52は、点検モードを開始すると、受液器16が貯留する液冷媒が空になるように、短時間の液バック運転を発生させた後、蒸発器14における圧力PLを設定圧力に保つ点検条件を満たすように、冷媒回路10を制御する。点検モード実行手段52がアキュームレータ15に余剰冷媒を貯留させた後、アキュームレータ15の余剰冷媒を減らすように冷媒回路10に非共沸混合冷媒を循環させることで、非共沸混合冷媒の組成比率が冷媒回路10全体で均等に保たれる。これは、複数種の冷媒のうち、一部の種類の冷媒が他の冷媒よりも多く漏れている場合に冷媒の組成比率に変化が生じ、その変化を検知しやすくするためである。 FIG. 4 is a ph diagram showing the state of the refrigerant in the inspection mode according to the first embodiment of the present invention. The vertical axis of FIG. 4 represents the pressure of the refrigerant [MPa], and the horizontal axis represents the specific enthalpy [kJ/kg]. When the inspection mode execution means 52 starts the inspection mode, it causes a short liquid back operation so that the liquid refrigerant stored in the liquid receiver 16 becomes empty, and then sets the pressure PL in the evaporator 14 to the set pressure. The refrigerant circuit 10 is controlled so as to satisfy the inspection condition maintained at. After the inspection mode executing means 52 stores the excess refrigerant in the accumulator 15, the non-azeotropic mixed refrigerant is circulated in the refrigerant circuit 10 so as to reduce the excess refrigerant in the accumulator 15, so that the composition ratio of the non-azeotropic mixed refrigerant is increased. The refrigerant circuit 10 is kept even in its entirety. This is to make it easier to detect a change in the composition ratio of the refrigerant when some kinds of the refrigerant leak out of the plurality of kinds of refrigerant more than other refrigerants.

図4に示すように、圧縮機11で圧縮された非共沸混合冷媒は、凝縮器12によって凝縮して、A点を通過し、更に過冷却されてB点に至る。その後、非共沸混合冷媒は、膨張部13によって減圧され、C点に至る。そして、非共沸混合冷媒は、蒸発器14によって蒸発して、圧縮機11に吸入される。 As shown in FIG. 4, the non-azeotropic mixed refrigerant compressed by the compressor 11 is condensed by the condenser 12, passes through point A, and is further cooled to reach point B. Then, the non-azeotropic mixed refrigerant is decompressed by the expansion section 13 and reaches the point C. Then, the non-azeotropic mixed refrigerant is evaporated by the evaporator 14 and drawn into the compressor 11.

点検モード実行手段52が設定する点検条件のパラメータとして、圧力PLの他に、凝縮温度Ctemp及び過冷却度SCが含まれていてもよい。この場合、点検条件は、圧力PLが設定圧力と一致する条件の他に、凝縮温度Ctempが目標凝縮温度CTgと一致する条件と、過冷却度SCが目標過冷却度SCgと一致する条件を含む。過冷却度SCは、膨張部13の入口側に流れる非共沸混合冷媒の過冷却度である。点検モード実行手段52は、凝縮温度センサ21が測定する凝縮温度Ctempから膨張部入口温度センサ22が測定する膨張前温度を減算することで、過冷却度SCを求める。なお、圧力PLが設定圧力と一致するとは、圧力PLが設定圧力と完全に一致する場合だけでなく、これら2つの値が一定の許容範囲で一致する場合を含む。このことは、点検条件のパラメータが過冷却度SC及び凝縮温度Ctempの場合も同様である。 In addition to the pressure PL, the condensing temperature Ctemp and the supercooling degree SC may be included as the parameters of the inspection condition set by the inspection mode executing means 52. In this case, the inspection conditions include a condition that the condensation temperature Ctemp matches the target condensation temperature CTg and a condition that the supercooling degree SC matches the target supercooling degree SCg, in addition to the condition that the pressure PL matches the set pressure. .. The degree of supercooling SC is the degree of supercooling of the non-azeotropic mixed refrigerant flowing on the inlet side of the expansion section 13. The inspection mode execution means 52 obtains the supercooling degree SC by subtracting the pre-expansion temperature measured by the expansion part inlet temperature sensor 22 from the condensation temperature Ctemp measured by the condensation temperature sensor 21. The pressure PL matches the set pressure includes not only the case where the pressure PL completely matches the set pressure but also the case where these two values match within a certain allowable range. This is the same when the parameters of the inspection conditions are the supercooling degree SC and the condensing temperature Ctemp.

点検モード実行手段52は、凝縮温度Ctempが目標凝縮温度CTgで安定し、過冷却度SCが目標過冷却度SCgで安定し、圧力PLが設定圧力で安定するように、冷媒回路10を制御する。図4に示す例では、目標凝縮温度CTgは45℃であり、目標過冷却度SCgは5Kであり、圧力PLの設定圧力は0.3MPaである。 The inspection mode execution means 52 controls the refrigerant circuit 10 so that the condensing temperature Ctemp is stable at the target condensing temperature CTg, the supercooling degree SC is stable at the target supercooling degree SCg, and the pressure PL is stable at the set pressure. .. In the example shown in FIG. 4, the target condensing temperature CTg is 45° C., the target supercooling degree SCg is 5K, and the set pressure of the pressure PL is 0.3 MPa.

ここで、点検モード時の圧力PLが通常運転モード時の冷却運転の圧力PLよりも高くなるように、点検モード実行手段52は、圧縮機11の運転周波数、及び凝縮器12に室外空気を供給するファン(不図示)の出力などを調整している。また、点検モード時の凝縮温度Ctempが通常運転モード時の冷却運転の凝縮温度Ctempよりも低くなるように、点検モード実行手段52は、圧縮機11の運転周波数、及び凝縮器12に室外空気を供給するファンの出力などを調整する。これにより、アキュームレータ15内から余剰冷媒が減り、冷媒回路10に循環する非共沸混合冷媒が多くなり、非共沸混合冷媒の組成比率が冷媒回路10全体で均等に保たれる。 Here, the inspection mode execution means 52 supplies the operating frequency of the compressor 11 and the outdoor air to the condenser 12 so that the pressure PL in the inspection mode becomes higher than the pressure PL in the cooling operation in the normal operation mode. The output of the fan (not shown) is adjusted. In addition, the inspection mode execution unit 52 supplies the operating frequency of the compressor 11 and the outdoor air to the condenser 12 so that the condensation temperature Ctemp in the inspection mode becomes lower than the condensation temperature Ctemp in the cooling operation in the normal operation mode. Adjust the output of the fan to be supplied. As a result, the excess refrigerant decreases from the accumulator 15, the amount of the non-azeotropic mixed refrigerant circulating in the refrigerant circuit 10 increases, and the composition ratio of the non-azeotropic mixed refrigerant is kept uniform in the entire refrigerant circuit 10.

なお、点検条件のパラメータのうち、凝縮温度Ctempの代わりに、凝縮器12における冷媒の圧力PHを用いてもよい。圧力PHの飽和温度から凝縮温度Ctempを算出できるからである。 Of the parameters of the inspection condition, the pressure PH of the refrigerant in the condenser 12 may be used instead of the condensation temperature Ctemp. This is because the condensation temperature Ctemp can be calculated from the saturation temperature of the pressure PH.

制御装置50は、蒸発器14に流入する非共沸混合冷媒の圧力PLから求まる飽和温度の理論値と、蒸発器14の入口側に流れる非共沸混合冷媒の入口温度とに基づいて、冷媒漏れの有無を判定する。具体的には、算出手段53は、圧力PLにおける飽和温度と流入温度センサ24が測定する温度との温度差TDを算出する。判定手段54は、温度差TDと閾値Tthとを比較する。そして、判定手段54は、温度差TDが閾値Tthより大きい場合、冷媒漏れがあると判定する。閾値Tthは、例えば、1.5Kである。 The control device 50 determines the refrigerant based on the theoretical value of the saturation temperature obtained from the pressure PL of the non-azeotropic mixed refrigerant flowing into the evaporator 14 and the inlet temperature of the non-azeotropic mixed refrigerant flowing to the inlet side of the evaporator 14. Determine if there is a leak. Specifically, the calculation means 53 calculates the temperature difference TD between the saturation temperature at the pressure PL and the temperature measured by the inflow temperature sensor 24. The determination means 54 compares the temperature difference TD with the threshold value Tth. When the temperature difference TD is larger than the threshold value Tth, the determination unit 54 determines that there is a refrigerant leak. The threshold Tth is, for example, 1.5K.

また、判定手段54は、継続して温度差TDが閾値Tthを超える時間を計測し、計測した時間が設定時間以上である場合、冷媒漏れがあると判定してもよい。設定時間は、例えば、5分である。さらに、判定手段54は、冷媒漏れがあると判定すると、警報を出力してもよい。 Further, the determination unit 54 may continuously measure the time when the temperature difference TD exceeds the threshold value Tth, and may determine that there is a refrigerant leak when the measured time is equal to or longer than the set time. The set time is, for example, 5 minutes. Furthermore, the determination means 54 may output an alarm when it determines that there is a refrigerant leak.

図5は、図3に示した非共沸混合冷媒を構成する3種類の冷媒のうち、R32及びR125が漏えいした場合における図4に示した点A〜Cの温度を示す表である。図3に示した非共沸混合冷媒に漏れがない場合、図5に示すように、図4のA点の温度が45℃であり、B点の温度が40℃であり、C点の温度が−15.9℃である。−15.9℃の温度は、3種の冷媒の組成比率が図3に示した値である場合の圧力PLの飽和温度の理論値である。 FIG. 5 is a table showing the temperatures of points A to C shown in FIG. 4 when R32 and R125 among the three types of refrigerant constituting the non-azeotropic mixed refrigerant shown in FIG. 3 leak. When the non-azeotropic mixed refrigerant shown in FIG. 3 has no leakage, as shown in FIG. 5, the temperature at point A in FIG. 4 is 45° C., the temperature at point B is 40° C., and the temperature at point C is Is -15.9°C. The temperature of -15.9°C is a theoretical value of the saturation temperature of the pressure PL when the composition ratios of the three kinds of refrigerant are the values shown in Fig. 3.

図5において、R32及びR125の漏れの想定割合が増えると、R32及びR125の組成比率が減少するが、その反対にR134aの組成比率が増加している。そして、図5に示すように、冷媒の漏えいの想定割合が増えるにしたがって、設定圧力に一致する圧力PLの飽和温度が上昇する。図5に示す例では、冷媒漏れがない場合と冷媒漏れを10%と想定した場合とで、C点の温度差は1.7Kとなっている。 In FIG. 5, when the assumed leakage rate of R32 and R125 increases, the composition ratio of R32 and R125 decreases, but conversely, the composition ratio of R134a increases. Then, as shown in FIG. 5, as the assumed rate of refrigerant leakage increases, the saturation temperature of the pressure PL that matches the set pressure increases. In the example shown in FIG. 5, the temperature difference at the point C is 1.7 K between when there is no refrigerant leakage and when the refrigerant leakage is assumed to be 10%.

制御装置50は、温度差TDと閾値Tthとを比較し、温度差TDが閾値Tthを超える1.7Kであることから、冷媒漏れがあると判定する。図5では、冷媒漏れの有無の判定基準を、冷媒漏れが10%と想定した場合である。 The control device 50 compares the temperature difference TD with the threshold value Tth, and determines that there is refrigerant leakage because the temperature difference TD is 1.7K, which exceeds the threshold value Tth. In FIG. 5, the criterion for determining the presence/absence of refrigerant leakage is the case where the refrigerant leakage is assumed to be 10%.

上述したように、凝縮器12又は蒸発器14において、主に気相冷媒が流れる部位で冷媒漏えいが発生すると、R32及びR125が多く漏えいする。この場合、冷媒の漏えいが進行するにつれて、全冷媒中におけるR134aの組成比率が徐々に高くなるように、図3に示した組成比率が変化する。一方、凝縮器12又は蒸発器14において、主に液相冷媒が流れる部位で冷媒漏えいが発生すると、R134aが多く漏えいする。この場合、冷媒の漏えいが進行するにつれて、全冷媒中におけるR32及びR125の組成比率が徐々に高くなるように、図3に示した組成比率が変化する。図3に示したように、R134aは、R32及びR125に比べて沸点が高い。そのため、冷媒の組成比率の変化に伴って、圧力PLを一定値としたときの飽和温度が変化する。図5に示した例は、主に気相冷媒が流れる部位で冷媒漏えいが発生した場合を示す。 As described above, in the condenser 12 or the evaporator 14, if refrigerant leakage mainly occurs at a portion where the gas-phase refrigerant flows, a large amount of R32 and R125 leaks. In this case, as the leakage of the refrigerant progresses, the composition ratio shown in FIG. 3 changes so that the composition ratio of R134a in all the refrigerant gradually increases. On the other hand, in the condenser 12 or the evaporator 14, if a refrigerant leak mainly occurs in a portion where the liquid-phase refrigerant flows, a large amount of R134a leaks. In this case, as the refrigerant leakage progresses, the composition ratios shown in FIG. 3 change such that the composition ratios of R32 and R125 in all the refrigerants gradually increase. As shown in FIG. 3, R134a has a higher boiling point than R32 and R125. Therefore, the saturation temperature when the pressure PL is a constant value changes as the composition ratio of the refrigerant changes. The example shown in FIG. 5 shows a case where refrigerant leakage mainly occurs at a portion where the vapor-phase refrigerant flows.

本実施の形態1の冷凍空調装置100では、受液器16で余剰冷媒が貯留され、受液器16の出口から流出する冷媒は液相となる。そのため、制御装置50が蒸発器14の冷媒出口における冷媒が過熱ガスになるように制御すれば、冷媒が気液二相状態で存在する部位以外では冷媒の組成率変化は発生しない。本実施の形態1では、この現象を利用して、冷媒の漏えい部位を特定することができる。冷媒が気液二相状態で存在する部位とは、凝縮器12の内部と、膨張部13から蒸発器14の出口までの区間とである。 In the refrigeration air-conditioning apparatus 100 of Embodiment 1, the excess refrigerant is stored in the liquid receiver 16, and the refrigerant flowing out from the outlet of the liquid receiver 16 is in the liquid phase. Therefore, if the control device 50 controls the refrigerant at the refrigerant outlet of the evaporator 14 to become a superheated gas, the composition ratio of the refrigerant does not change except for the portion where the refrigerant exists in the gas-liquid two-phase state. In the first embodiment, this phenomenon can be used to identify the leaking portion of the refrigerant. The part where the refrigerant exists in the gas-liquid two-phase state is the inside of the condenser 12 and the section from the expansion part 13 to the outlet of the evaporator 14.

次に、冷凍空調装置100の動作について説明する。図6は、本発明の実施の形態1に係る冷凍空調装置の動作を示すフローチャートである。ここでは、点検条件のパラメータが凝縮温度Ctemp、過冷却度SC及び圧力PLの3つの場合で説明する。点検モード実行手段52は、点検モード開始前に除霜運転を行う。点検モード実行手段52は、除霜運転が終了したか否かを判定する(ステップST1)。 Next, the operation of the refrigerating and air-conditioning apparatus 100 will be described. FIG. 6 is a flowchart showing the operation of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. Here, the case where the parameters of the inspection conditions are the condensing temperature Ctemp, the supercooling degree SC, and the pressure PL will be described. The inspection mode execution means 52 performs a defrosting operation before starting the inspection mode. The inspection mode execution means 52 determines whether or not the defrosting operation has ended (step ST1).

ステップST1の判定の結果、除霜運転が終了していない場合、点検モード実行手段52は、ステップST1の処理に戻る。ステップST1の判定の結果、除霜運転が終了している場合、点検モード実行手段52は、冷媒漏れ判定に必要な安定期間が確保されているかを確認するために、サーモオンを維持できる状態かを判定する(ステップST2)。ステップST2の判定の結果、サーモオフする状態である場合、点検モード実行手段52は、ステップST2の処理に戻る。ステップST2の判定の結果、サーモオンを維持できる状態である場合、点検モード実行手段52は、ステップST3の処理に移行する。 If the result of determination in step ST1 is that the defrosting operation has not ended, the inspection mode execution means 52 returns to the processing in step ST1. If the result of the determination in step ST1 is that the defrosting operation has ended, the inspection mode execution means 52 determines whether or not the thermo-on can be maintained in order to confirm whether or not the stable period required for the refrigerant leakage determination is secured. The determination is made (step ST2). If the result of determination in step ST2 is that the thermostat is off, the inspection mode execution means 52 returns to the processing in step ST2. If the result of determination in step ST2 is that the thermo-on can be maintained, the inspection mode execution means 52 shifts to the processing in step ST3.

ステップST3において、点検モード実行手段52は、凝縮温度Ctemp、過冷却度SC及び圧力PLの各値の目標値として、目標凝縮温度CTg、目標過冷却度SCg及び設定圧力の値を図に示さないメモリから読み出す。続いて、点検モード実行手段52は、凝縮温度Ctemp、過冷却度SC及び圧力PLの各値がそれぞれの目標値に許容範囲で一致する点検条件を満たすか否かを判定する(ステップST4)。点検モード実行手段52は、点検条件が満たされ、かつ点検条件が安定するまで冷凍空調装置100の運転行う。 In step ST3, the inspection mode execution means 52 does not show the values of the target condensation temperature CTg, the target supercooling degree SCg, and the set pressure as the target values of the condensation temperature Ctemp, the supercooling degree SC, and the pressure PL. Read from memory. Subsequently, the inspection mode execution means 52 determines whether or not the respective values of the condensing temperature Ctemp, the supercooling degree SC, and the pressure PL satisfy the inspection conditions in which the respective target values are within an allowable range (step ST4). The inspection mode execution means 52 operates the refrigerating and air-conditioning apparatus 100 until the inspection conditions are satisfied and the inspection conditions are stable.

ステップST4において、点検条件が満たされない場合、制御装置50は、一定時間毎にステップST4の判定を繰り返す。ステップST4において、点検条件が満たされる場合、算出手段53は、圧力PLにおける飽和温度と流入温度センサ24が測定する温度との温度差TDを算出する。続いて、判定手段54は、温度差TDと閾値Tthとを比較し、温度差TDが閾値Tthよりも大きいか否かを判定する(ステップST5)。 When the inspection condition is not satisfied in step ST4, the control device 50 repeats the determination of step ST4 at regular time intervals. In step ST4, when the inspection condition is satisfied, the calculation means 53 calculates the temperature difference TD between the saturation temperature at the pressure PL and the temperature measured by the inflow temperature sensor 24. Then, the determination means 54 compares the temperature difference TD with the threshold value Tth and determines whether the temperature difference TD is larger than the threshold value Tth (step ST5).

ステップST5の判定の結果、温度差TDが閾値Tthよりも大きい場合、判定手段54は、非共沸混合冷媒が漏えいしていると判定する。一方、ステップST5において、温度差TDが閾値Tth以下である場合、判定手段54は、サーモオフしているか否かを判定する(ステップST6)。ステップST6の判定の結果、サーモオフしていない場合、判定手段54は、ステップST4〜ST6の判定を繰り返す。ステップST6の判定において、点検モードによる冷却により、サーモ停止している場合、判定手段54は、非共沸混合冷媒が漏えいしていないと判定する。 If the result of determination in step ST5 is that the temperature difference TD is greater than the threshold value Tth, the determination means 54 determines that the non-azeotropic mixed refrigerant is leaking. On the other hand, when the temperature difference TD is equal to or less than the threshold value Tth in step ST5, the determination means 54 determines whether or not the thermostat is off (step ST6). If the result of the determination in step ST6 is that the thermostat is not off, the determination means 54 repeats the determinations in steps ST4 to ST6. In the determination of step ST6, when the thermostat is stopped due to the cooling in the inspection mode, the determination means 54 determines that the non-azeotropic mixed refrigerant is not leaking.

冷媒回路10には封入時の組成比率の混合冷媒が流れるが、相変化時は低沸点冷媒から蒸発するなど組成比率に差が生じる。そのため、図6に示した手順において、冷媒漏れがあると判定手段54が判定した場合、冷媒漏れの発生箇所は相変化の起こっている部位と特定できる。 Although the mixed refrigerant having the composition ratio at the time of filling flows into the refrigerant circuit 10, there is a difference in the composition ratio such as evaporation from the low boiling point refrigerant at the time of phase change. Therefore, in the procedure shown in FIG. 6, when the determining unit 54 determines that there is a refrigerant leak, the location where the refrigerant leak occurs can be identified as the location where the phase change has occurred.

なお、点検モード実行手段52は、点検モード実行中に、冷却室の空気温度が設定温度に到達しても、冷媒回路10に非共沸混合冷媒を循環させるように制御してもよい。この場合、制御装置50は、サーモオフしてしまうことを防ぎ、冷媒漏れ判定を行うことができる。 The inspection mode executing means 52 may control the non-azeotropic mixed refrigerant to circulate in the refrigerant circuit 10 even when the air temperature in the cooling chamber reaches the set temperature during the execution of the inspection mode. In this case, the control device 50 can prevent the thermostat from being turned off and can determine the refrigerant leakage.

本実施の形態1の冷凍空調装置100は、非共沸混合冷媒を封入冷媒として使用し、点検モードにおいて、蒸発器14に流入する冷媒圧力の理論上の飽和温度と蒸発器14の実測温度との温度差TDを閾値と比較することで、冷媒漏えいの有無を判定するものである。 The refrigerating air-conditioning apparatus 100 of Embodiment 1 uses the non-azeotropic mixed refrigerant as the enclosed refrigerant, and in the inspection mode, the theoretical saturation temperature of the refrigerant pressure flowing into the evaporator 14 and the measured temperature of the evaporator 14 The presence/absence of refrigerant leakage is determined by comparing the temperature difference TD of 1 to the threshold value.

本実施の形態1によれば、冷媒の組成比率の変化に伴って、特定の設定圧力における冷媒の飽和温度が変化することを利用して、冷媒が気液二相状態で流動する部位での冷媒漏れの発生を検知する。冷媒漏えいを検知した場合、膨張部13から蒸発器14の出口までの区間、又は凝縮器12に、冷媒漏えいの発生部位を特定することができる。そのため、作業者は、冷媒漏えい部位の特定にかかる作業負担が軽減する。また、冷媒漏えい部位を特定するまでに要する時間を大幅に短縮できるため、作業中の冷媒漏えい量を削減できる。冷媒漏えい量が削減するので、冷媒による地球環境への影響が抑制される。 According to the first embodiment, by utilizing the fact that the saturation temperature of the refrigerant at a specific set pressure changes in accordance with the change in the composition ratio of the refrigerant, the refrigerant flows in a gas-liquid two-phase state Detect the occurrence of refrigerant leakage. When a refrigerant leak is detected, the location of the refrigerant leak can be specified in the section from the expansion section 13 to the outlet of the evaporator 14 or in the condenser 12. Therefore, the operator is less burdened with the work for identifying the refrigerant leakage site. Moreover, since the time required to identify the refrigerant leakage portion can be significantly reduced, the amount of refrigerant leakage during work can be reduced. Since the amount of refrigerant leakage is reduced, the influence of the refrigerant on the global environment is suppressed.

10 冷媒回路、11 圧縮機、12 凝縮器、13 膨張部、14 蒸発器、15 アキュームレータ、16 受液器、21 凝縮温度センサ、22 膨張部入口温度センサ、23 流入圧力センサ、24 流入温度センサ、50 制御装置、51 冷凍サイクル制御手段、52 点検モード実行手段、53 算出手段、54 判定手段、100 冷凍空調装置。 10 Refrigerant circuit, 11 Compressor, 12 Condenser, 13 Expansion part, 14 Evaporator, 15 Accumulator, 16 Liquid receiver, 21 Condensation temperature sensor, 22 Expansion part inlet temperature sensor, 23 Inflow pressure sensor, 24 Inflow temperature sensor, 50 control device, 51 refrigeration cycle control means, 52 inspection mode execution means, 53 calculation means, 54 determination means, 100 refrigeration/air-conditioning device.

Claims (8)

圧縮機、凝縮器、膨張部、蒸発器及びアキュームレータが配管で接続され、沸点の異なる複数種の冷媒が混合された非共沸混合冷媒が循環する冷媒回路と、
前記蒸発器に流入する前記非共沸混合冷媒の温度を測定する流入温度センサと、
前記蒸発器に流入する前記非共沸混合冷媒の圧力が設定圧力になるように前記冷媒回路を制御する点検モード時において、前記設定圧力における飽和温度と前記流入温度センサが測定する温度との温度差を算出し、前記温度差と、前記複数種の冷媒の異なる沸点に基づいて設定された閾値とを比較して前記非共沸混合冷媒の漏えいの有無を判定する制御装置と、
を有する冷凍空調装置。
A compressor, a condenser, an expansion part, an evaporator and an accumulator are connected by a pipe, and a refrigerant circuit in which a non-azeotropic mixed refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is circulated,
An inflow temperature sensor for measuring the temperature of the non-azeotropic mixed refrigerant flowing into the evaporator;
In the inspection mode in which the refrigerant circuit is controlled so that the pressure of the non-azeotropic mixed refrigerant flowing into the evaporator becomes a set pressure, the temperature of the saturation temperature at the set pressure and the temperature measured by the inflow temperature sensor. A controller for determining the presence or absence of leakage of the non-azeotropic mixed refrigerant by calculating a difference, comparing the temperature difference and a threshold value set based on different boiling points of the plurality of types of refrigerants ,
Refrigerating and air-conditioning system.
前記蒸発器に流入する前記非共沸混合冷媒の圧力を測定する流入圧力センサをさらに有し、
前記制御装置は、
空調対象空間の設定温度を記憶し、前記蒸発器を流通する前記非共沸混合冷媒の圧力から換算される蒸発温度が前記設定温度よりも高い状態であるとき、前記点検モードを実行する、請求項1に記載の冷凍空調装置。
Further comprising an inflow pressure sensor for measuring the pressure of the non-azeotropic mixed refrigerant flowing into the evaporator,
The control device is
When the set temperature of the air-conditioned space is stored and the evaporation temperature converted from the pressure of the non-azeotropic mixed refrigerant flowing through the evaporator is higher than the set temperature, the inspection mode is executed. The refrigeration air-conditioning apparatus according to Item 1.
前記制御装置は、
前記点検モードにおいて、空調対象空間の空調を行う通常運転モードと比較して、前記非共沸混合冷媒の凝縮温度が低くなるように前記冷媒回路を制御する、請求項1または2に記載の冷凍空調装置。
The control device is
The refrigeration according to claim 1 or 2, wherein, in the inspection mode, the refrigerant circuit is controlled so that the condensation temperature of the non-azeotropic mixed refrigerant is lower than that in a normal operation mode in which the air-conditioned space is air-conditioned. Air conditioner.
前記制御装置は、
前記点検モードにおいて、前記凝縮器に流通する前記非共沸混合冷媒の凝縮温度と、前記膨張部の入口側に流れる前記非共沸混合冷媒の過冷却度とが、それぞれの目標値と許容範囲で一致するように前記冷媒回路を制御する、請求項1〜3のいずれか1項に記載の冷凍空調装置。
The control device is
In the inspection mode, the condensing temperature of the non-azeotropic mixed refrigerant flowing through the condenser, and the degree of supercooling of the non-azeotropic mixed refrigerant flowing to the inlet side of the expansion section, each target value and the allowable range. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3, wherein the refrigerant circuit is controlled so as to coincide with each other.
前記制御装置は、
前記点検モードにおいて、前記凝縮器に流通する前記非共沸混合冷媒の圧力と、前記膨張部の入口側に流れる前記非共沸混合冷媒の過冷却度とが、それぞれの目標値と許容範囲で一致するように前記冷媒回路を制御する、請求項1〜3のいずれか1項に記載の冷凍空調装置。
The control device is
In the inspection mode, the pressure of the non-azeotropic mixed refrigerant flowing in the condenser, and the degree of supercooling of the non-azeotropic mixed refrigerant flowing to the inlet side of the expansion section, in the respective target value and allowable range. The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3, wherein the refrigerant circuits are controlled so as to coincide with each other.
前記制御装置は、
除霜運転を終了した後に前記点検モードを実行する、請求項1〜5のいずれか1項に記載の冷凍空調装置。
The control device is
The refrigerating and air-conditioning apparatus according to claim 1, wherein the inspection mode is executed after the defrosting operation is completed.
前記制御装置は、
前記点検モードにおいて、空調対象空間の空気温度が設定温度に到達しても、前記冷媒回路に前記非共沸混合冷媒を循環させる、請求項1〜6のいずれか1項に記載の冷凍空調装置。
The control device is
The refrigerating air conditioner according to any one of claims 1 to 6, wherein in the inspection mode, the non-azeotropic mixed refrigerant is circulated in the refrigerant circuit even when the air temperature of the air conditioning target space reaches a set temperature. ..
圧縮機、凝縮器、膨張部、蒸発器及びアキュームレータが配管で接続され、沸点の異なる複数種の冷媒が混合された非共沸混合冷媒が循環する冷媒回路と、前記蒸発器に流入する前記非共沸混合冷媒の温度を測定する流入温度センサとを有する冷凍空調装置を制御する制御装置であって、
前記蒸発器に流入する前記非共沸混合冷媒の圧力が設定圧力になるように前記冷媒回路を制御する点検モード実行手段と、
前記設定圧力における飽和温度と前記流入温度センサが測定する温度との温度差を算出する算出手段と、
前記温度差と、前記複数種の冷媒の異なる沸点に基づいて設定された閾値とを比較して前記非共沸混合冷媒の漏えいの有無を判定する判定手段と、
を有する制御装置。
A compressor, a condenser, an expansion part, an evaporator and an accumulator are connected by a pipe, and a refrigerant circuit in which a non-azeotropic mixed refrigerant in which a plurality of kinds of refrigerants having different boiling points are mixed is circulated, and the non-refrigerant flowing into the evaporator. A control device for controlling a refrigerating and air-conditioning apparatus having an inflow temperature sensor for measuring the temperature of an azeotropic mixed refrigerant,
An inspection mode executing means for controlling the refrigerant circuit so that the pressure of the non-azeotropic mixed refrigerant flowing into the evaporator becomes a set pressure,
Calculating means for calculating a temperature difference between the saturation temperature at the set pressure and the temperature measured by the inflow temperature sensor;
Judgment means for judging the presence or absence of leakage of the non-azeotropic mixed refrigerant by comparing the temperature difference and a threshold value set based on different boiling points of the plurality of kinds of refrigerants ,
Control device having a.
JP2019549769A 2017-10-26 2017-10-26 Refrigeration air conditioner and control device Active JP6739664B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/038682 WO2019082331A1 (en) 2017-10-26 2017-10-26 Refrigeration air-conditioning device and control device

Publications (2)

Publication Number Publication Date
JPWO2019082331A1 JPWO2019082331A1 (en) 2020-04-02
JP6739664B2 true JP6739664B2 (en) 2020-08-12

Family

ID=66247356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549769A Active JP6739664B2 (en) 2017-10-26 2017-10-26 Refrigeration air conditioner and control device

Country Status (3)

Country Link
JP (1) JP6739664B2 (en)
CN (1) CN111279141B (en)
WO (1) WO2019082331A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248849B2 (en) * 2019-10-15 2022-02-15 Lennox Industries Inc. Detecting loss of charge in HVAC systems
CN112629898B (en) * 2020-11-24 2021-11-30 珠海格力电器股份有限公司 General control method based on refrigerant identification and standard refrigeration equipment

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599542A (en) * 1991-10-09 1993-04-20 Toyota Autom Loom Works Ltd Method of detecting shortage of coolant in refrigerating circuit
JP3342145B2 (en) * 1993-12-28 2002-11-05 三菱重工業株式会社 Air conditioner
JPH0854161A (en) * 1994-08-11 1996-02-27 Sanyo Electric Co Ltd Refrigerant leakage detecting method of refrigerating device
JP2001153480A (en) * 1999-11-26 2001-06-08 Daikin Ind Ltd Refrigerating plant
JP2003042655A (en) * 2001-07-27 2003-02-13 Toshiba Corp Refrigerator
JP2005106314A (en) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp Refrigeration unit
JP2008025935A (en) * 2006-07-24 2008-02-07 Daikin Ind Ltd Air conditioner
JP4749369B2 (en) * 2007-03-30 2011-08-17 三菱電機株式会社 Refrigeration cycle apparatus failure diagnosis apparatus and refrigeration cycle apparatus equipped with the same
JP5528119B2 (en) * 2008-01-21 2014-06-25 三菱電機株式会社 Heat pump device and air conditioner or water heater equipped with the heat pump device
JP5223795B2 (en) * 2009-06-29 2013-06-26 株式会社デンソー Heat pump water heater
JP2012137210A (en) * 2010-12-24 2012-07-19 Daikin Industries Ltd Refrigeration system
JP5818979B2 (en) * 2012-05-11 2015-11-18 三菱電機株式会社 Air conditioner
US9677799B2 (en) * 2012-07-23 2017-06-13 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus, refrigerant leakage detection device, and refrigerant leakage detection method
EP3150943B1 (en) * 2015-07-17 2019-03-27 Mitsubishi Electric Corporation Air conditioning apparatus including indoor unit and outdoor unit

Also Published As

Publication number Publication date
CN111279141B (en) 2021-06-25
CN111279141A (en) 2020-06-12
JPWO2019082331A1 (en) 2020-04-02
WO2019082331A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
US11131490B2 (en) Refrigeration device having condenser unit connected to compressor unit with on-site pipe interposed therebetween and remote from the compressor unit
US10247459B2 (en) Refrigeration cycle apparatus
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
US9625187B2 (en) Combined air-conditioning and hot-water supply system
CN111094877B (en) Refrigeration cycle device and refrigeration device
GB2585418A (en) Refrigeration air conditioner
US20200158352A1 (en) Air conditioner
US9851134B2 (en) Air-conditioning apparatus
JP6415703B2 (en) Refrigeration cycle equipment
JP6739664B2 (en) Refrigeration air conditioner and control device
JP6902390B2 (en) Refrigeration cycle equipment
JPH0835725A (en) Refrigerating air conditioner using non-azeotrope refrigerant
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
GB2562639A (en) Refrigeration device
JP6972369B2 (en) Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner
CN212253263U (en) Refrigerating air conditioner
JP2017067397A (en) Refrigerator
JP6762422B2 (en) Refrigeration cycle equipment
WO2020066001A1 (en) Refrigeration cycle device
WO2023002520A1 (en) Refrigeration cycle device and refrigeration air-conditioning device
WO2020255355A1 (en) Outdoor unit, refrigeration cycle device, and refrigerator
JP2017194222A (en) Air conditioner and refrigerant quantity determination method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6739664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250