JP2001153480A - Refrigerating plant - Google Patents
Refrigerating plantInfo
- Publication number
- JP2001153480A JP2001153480A JP33550999A JP33550999A JP2001153480A JP 2001153480 A JP2001153480 A JP 2001153480A JP 33550999 A JP33550999 A JP 33550999A JP 33550999 A JP33550999 A JP 33550999A JP 2001153480 A JP2001153480 A JP 2001153480A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- liquid
- compressor
- circuit
- temperature sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0254—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
- F25B2313/02541—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0254—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
- F25B2313/02543—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/0272—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0314—Temperature sensors near the indoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/031—Sensor arrangements
- F25B2313/0315—Temperature sensors near the outdoor heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/16—Receivers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/07—Exceeding a certain pressure value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1933—Suction pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2106—Temperatures of fresh outdoor air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2116—Temperatures of a condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた冷凍装置に関し、特に、冷媒回路内を循環する非
共沸混合冷媒の組成を安定化させるための技術に係るも
のである。The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant, and more particularly to a technique for stabilizing the composition of a non-azeotropic mixed refrigerant circulating in a refrigerant circuit. .
【0002】[0002]
【従来の技術】従来より、蒸気圧縮式冷凍サイクルを行
う冷凍装置の冷媒回路は、一般に、圧縮機と、凝縮器
と、膨張弁と、蒸発器とが、冷媒配管によって順に接続
されて構成されている。そして、この種の冷媒回路に
は、特開平11−72257号公報に示すように、圧縮
機の吸入配管にアキュムレータを取り付けたものがあ
る。このアキュムレータ内では、低圧のガス冷媒に混入
した液冷媒がガス冷媒から分離する。したがって、図2
に示すように、アキュムレータ(1) 内には、回路内の冷
媒の一部が液冷媒(RL)の状態で滞留することとなる。2. Description of the Related Art Conventionally, a refrigerant circuit of a refrigerating apparatus for performing a vapor compression type refrigerating cycle generally comprises a compressor, a condenser, an expansion valve, and an evaporator connected in order by refrigerant piping. ing. As this type of refrigerant circuit, there is a refrigerant circuit in which an accumulator is attached to a suction pipe of a compressor as disclosed in Japanese Patent Application Laid-Open No. H11-72257. In the accumulator, the liquid refrigerant mixed in the low-pressure gas refrigerant is separated from the gas refrigerant. Therefore, FIG.
As shown in (1), a part of the refrigerant in the circuit stays in the accumulator (1) in the state of the liquid refrigerant (RL).
【0003】一方、R407C等の非共沸混合冷媒は、
沸点の異なる複数の冷媒を混合することにより構成され
ている。そして、各組成冷媒の比率、つまり組成比が異
なると、その特性は異なったものとなる。したがって、
非共沸混合冷媒が所定の特性を発揮するように、その組
成比は厳密に定められている。On the other hand, non-azeotropic mixed refrigerants such as R407C are:
It is constituted by mixing a plurality of refrigerants having different boiling points. If the ratio of each composition refrigerant, that is, the composition ratio is different, the characteristics will be different. Therefore,
The composition ratio is strictly determined so that the non-azeotropic refrigerant exhibits predetermined characteristics.
【0004】[0004]
【発明が解決しようとする課題】ところで、上記冷媒回
路で非共沸混合冷媒を使用する場合、アキュムレータ
(1) に流入する低圧の冷媒は基本的にガス冷媒(RG)であ
るが、その中に液冷媒(RL)が含まれている場合、その液
冷媒(RL)は、非共沸混合冷媒の特性上、蒸発しにくい高
沸点冷媒(R407Cの場合はR134a)の組成比が
高く、蒸発しやすい低沸点冷媒(R407Cの場合はR
32)の組成比が低い状態となっている。When a non-azeotropic refrigerant mixture is used in the refrigerant circuit, an accumulator is required.
The low-pressure refrigerant flowing into (1) is basically a gas refrigerant (RG), but when a liquid refrigerant (RL) is contained therein, the liquid refrigerant (RL) is a non-azeotropic mixed refrigerant. The high boiling point refrigerant (R134a in the case of R407C) which is difficult to evaporate has a high composition ratio, and the low boiling point refrigerant (R407C in the case of R407C) which is easily evaporated.
32) is in a low composition ratio.
【0005】その上、液冷媒(RL)は、ガス冷媒(RG)に比
べて密度が高いため、冷媒が滞留しているアキュムレー
タ(1) 内では、液冷媒に高沸点冷媒が多く含まれている
こととなり、逆にガス冷媒(RG)は、非共沸混合冷媒の本
来の組成比と比べて、高沸点冷媒の比率がかなり低い状
態になっている。したがって、アキュムレータからは、
このように高沸点冷媒の比率が低く、低沸点冷媒の比率
が高くなったガス冷媒(RG)が流出して、圧縮機に吸入さ
れることになる。In addition, since the liquid refrigerant (RL) has a higher density than the gas refrigerant (RG), the liquid refrigerant contains a large amount of high-boiling refrigerant in the accumulator (1) in which the refrigerant stays. In contrast, the gas refrigerant (RG) has a state in which the ratio of the high-boiling refrigerant is considerably lower than the original composition ratio of the non-azeotropic mixed refrigerant. Therefore, from the accumulator,
As described above, the gas refrigerant (RG) in which the ratio of the high-boiling refrigerant is low and the ratio of the low-boiling refrigerant is high flows out and is sucked into the compressor.
【0006】以上のことから、上述の例では非共沸混合
冷媒が本来の組成比とは異なる状態で冷媒回路内を循環
することになる。そのため、冷媒特性の変化により、高
圧が上昇するなどして冷凍装置が本来の能力を発揮でき
なくなるおそれがあり、運転の効率が悪くなるなど、冷
凍装置の信頼性が低下するおそれがあった。As described above, in the above-described example, the non-azeotropic mixed refrigerant circulates in the refrigerant circuit in a state different from the original composition ratio. For this reason, there is a possibility that the refrigerating apparatus may not be able to exhibit its original ability due to a change in refrigerant characteristics due to an increase in high pressure or the like, and the reliability of the refrigerating apparatus may be reduced, such as a decrease in operation efficiency.
【0007】本発明は、このような問題点に鑑みて創案
されたものであり、その目的とするところは、冷媒回路
内を流れる非共沸混合冷媒の組成を安定させることによ
って、冷凍装置の信頼性が低下するのを防止することで
ある。[0007] The present invention has been made in view of the above problems, and an object of the present invention is to stabilize the composition of a non-azeotropic mixed refrigerant flowing in a refrigerant circuit to thereby improve the refrigeration system. The purpose is to prevent the reliability from deteriorating.
【0008】[0008]
【課題を解決するための手段】本発明は、非共沸混合冷
媒を用いた冷凍装置において、冷媒を高圧のレシーバな
どの貯留部に貯留しながら冷媒回路内で循環させるよう
にしたものである。SUMMARY OF THE INVENTION The present invention relates to a refrigerating apparatus using a non-azeotropic mixed refrigerant, wherein the refrigerant is circulated in a refrigerant circuit while being stored in a storage section such as a high-pressure receiver. .
【0009】具体的に、本発明が講じた解決手段は、非
共沸混合冷媒により蒸気圧縮式冷凍サイクルを行う冷媒
回路(12)を備えた冷凍装置を前提としている。そして、
該冷媒回路(12)の高圧液ラインに、上記冷媒を貯留しな
がら液冷媒を流出させる貯留部(43)を設けた構成とした
ものである。Specifically, the solution taken by the present invention presupposes a refrigeration apparatus having a refrigerant circuit (12) for performing a vapor compression refrigeration cycle using a non-azeotropic mixed refrigerant. And
The high pressure liquid line of the refrigerant circuit (12) is provided with a storage part (43) for discharging the liquid refrigerant while storing the refrigerant.
【0010】上記構成においては、圧縮機(21)の吸入側
にアキュムレータを備えていない冷媒回路(12)に構成す
ることが好ましい。つまり、蒸発器(31,23) の出口側を
圧縮機(21)の吸入側に直接に接続することが好ましい。
なお、この場合の「直接」は、蒸発器(31,23) と圧縮機
(21)との間に四路切換弁などを接続する構成までを除く
意味で用いているのではないことは当然で、蒸発器(31,
23) と圧縮機(21)とをアキュムレータを介さずに接続す
ることを意味している。[0010] In the above configuration, it is preferable that the refrigerant circuit (12) has no accumulator on the suction side of the compressor (21). That is, it is preferable that the outlet side of the evaporator (31, 23) is directly connected to the suction side of the compressor (21).
In this case, “direct” means the evaporator (31,23) and the compressor
(21) is not used in the sense of excluding the configuration of connecting a four-way switching valve or the like between the evaporator (31,
23) and the compressor (21) are connected without using an accumulator.
【0011】また、上記構成においては、冷媒回路(12)
内での冷媒の循環方向を反転させる切換機構(22)と、各
循環方向で凝縮器(23,31) からの液冷媒を貯留部(43)に
流入させる方向制御回路(41)とを設け、貯留部(43)の下
流側に膨張機構(EV)が接続された構成とすることが好ま
しい。Further, in the above configuration, the refrigerant circuit (12)
A switching mechanism (22) for reversing the direction of circulation of the refrigerant in the chamber, and a direction control circuit (41) for flowing the liquid refrigerant from the condenser (23, 31) into the storage section (43) in each circulation direction. Preferably, an expansion mechanism (EV) is connected downstream of the storage section (43).
【0012】また、上記構成においては、貯留部(43)と
膨張機構(EV)との間の液配管と、圧縮機(21)の吐出配管
との間に接続された液封防止通路(27)を設け、該液封防
止通路(27)を、該液配管側から吐出配管側への冷媒の流
通を許容する一方向通路として構成することが好まし
い。In the above configuration, the liquid seal prevention passage (27) connected between the liquid pipe between the storage part (43) and the expansion mechanism (EV) and the discharge pipe of the compressor (21). ) Is provided, and the liquid-sealing prevention passage (27) is preferably configured as a one-way passage that allows refrigerant to flow from the liquid pipe side to the discharge pipe side.
【0013】また、上記構成においては、吐出管温度セ
ンサ(Td)と、凝縮器温度センサ(Tc,Te) と、蒸発器温度
センサ(Te,Tc) と、各温度センサ(Td,Tc,Te)の出力に応
じて膨張機構(EV)の開度を制御する制御手段(50)とを備
えた構成とすることが好ましい。Further, in the above configuration, the discharge pipe temperature sensor (Td), the condenser temperature sensor (Tc, Te), the evaporator temperature sensor (Te, Tc), and each temperature sensor (Td, Tc, Te) ) Is preferably provided with a control means (50) for controlling the degree of opening of the expansion mechanism (EV) in accordance with the output of (EV).
【0014】また、上記構成においては、非共沸混合冷
媒として、R407Cを使用することができる。In the above configuration, R407C can be used as the non-azeotropic mixed refrigerant.
【0015】−作用− 上記解決手段において、R407Cなどの非共沸混合冷
媒は、高圧のレシーバなどの貯留部(43)内に余剰分が貯
留されながら、冷媒回路(12)内を循環する。この貯留部
(43)内は高圧であり、ほとんどが液冷媒の状態で存在
し、液に比べてガスの量は僅かである。また、貯留部(4
3)内のガス密度は液の密度に比べて非常に小さい。以上
のことから、R32が少しガス化していたとしても、貯
留部(43)内に貯留している液冷媒は、高沸点冷媒と低沸
点冷媒の組成比が非共沸混合冷媒の本来の組成比とほと
んど変わらない状態であり、この液冷媒が貯留部(43)か
ら流出するので、安定した組成比の冷媒が冷媒回路(12)
内を循環することとなる。-Operation- In the above solution, the non-azeotropic mixed refrigerant such as R407C circulates in the refrigerant circuit (12) while the surplus is stored in the storage part (43) such as a high-pressure receiver. This reservoir
(43) has a high pressure, most of which exists in a liquid refrigerant state, and the amount of gas is smaller than that of liquid. The storage unit (4
The gas density in 3) is very small compared to the liquid density. From the above, even if R32 is slightly gasified, the liquid refrigerant stored in the storage part (43) has a composition ratio of the high-boiling refrigerant and the low-boiling refrigerant that is the original composition of the non-azeotropic mixed refrigerant. This is a state that is almost the same as the ratio, and since this liquid refrigerant flows out of the storage section (43), a refrigerant having a stable composition ratio is
It will circulate inside.
【0016】特に、上記構成において圧縮機(21)の吸入
側にアキュムレータを使用しない構成にすると、この低
圧ガスラインでの組成の変動も生じない。In particular, in the above configuration, if the accumulator is not used on the suction side of the compressor (21), the composition does not fluctuate in the low-pressure gas line.
【0017】また、冷媒の循環方向を反転可能に構成し
て、貯留部(43)の上流側に方向制御回路(41)を設け、下
流側に膨張機構(EV)を設けると、冷媒の循環方向を正逆
いずれに切り換えた場合でも、冷媒は、圧縮機(21)から
凝縮器(23,31) 、方向制御回路(41)、貯留部(43)、膨張
機構(EV)、そして蒸発器(31,23) を通って圧縮機(21)に
戻る循環で冷凍サイクルを行う。その際、高圧の貯留部
(43)に余剰冷媒が貯留しながら液冷媒が流出するので、
やはり安定した組成比の冷媒が回路(12)内を循環するこ
ととなる。[0017] When the direction of circulation of the refrigerant is configured to be reversible, a direction control circuit (41) is provided upstream of the storage section (43), and an expansion mechanism (EV) is provided downstream of the storage section (43). Regardless of whether the direction is switched forward or reverse, the refrigerant flows from the compressor (21) to the condensers (23, 31), the direction control circuit (41), the storage unit (43), the expansion mechanism (EV), and the evaporator. The refrigeration cycle is performed by circulation returning to the compressor (21) through (31, 23). At that time, high pressure storage
As the liquid refrigerant flows out while the surplus refrigerant is stored in (43),
Also, a refrigerant having a stable composition ratio circulates in the circuit (12).
【0018】また、液封防止通路(27)を設けると、圧縮
機(21)の運転を停止したときに、貯留部(43)に溜まり込
んだ冷媒が周囲温度の上昇によって膨張しても、その膨
張した冷媒が液封防止通路(27)を通って、圧縮機(21)の
吐出管側から熱交換器(23,31) 側へ逃げることになる。When the liquid seal prevention passage (27) is provided, when the operation of the compressor (21) is stopped, even if the refrigerant accumulated in the storage section (43) expands due to an increase in the ambient temperature, The expanded refrigerant escapes from the discharge pipe side of the compressor (21) to the heat exchanger (23, 31) through the liquid seal prevention passage (27).
【0019】また、膨張機構(EV)の開度を各温度センサ
(Td,Tc,Te)を使って制御すると、運転中の蒸発器(31,2
3) の温度や凝縮器(23,31) の温度に対して、吐出管温
度を適正な値になるように調整することができるので、
冷媒の状態変化が、予め定められたモリエル線図上で正
確に推移することになり、組成がより安定化することと
なる。Further, the opening degree of the expansion mechanism (EV) is determined by each temperature sensor.
When controlled using (Td, Tc, Te), the operating evaporator (31,2
The discharge pipe temperature can be adjusted to an appropriate value for the temperature of 3) and the temperature of the condenser (23, 31).
The change in the state of the refrigerant changes accurately on a predetermined Mollier diagram, and the composition is further stabilized.
【0020】[0020]
【発明の効果】従って、上記解決手段によれば、R40
7Cなどの非共沸混合冷媒が本来の組成比とほとんど変
わらない安定した状態で冷媒回路(12)内を循環するの
で、冷媒特性の変化も殆どなく、冷凍装置(10)が本来の
能力を安定して発揮できる。したがって、運転効率の低
下も抑えられ、冷凍装置(10)の信頼性を高められる。こ
のことから、高圧液ラインに貯留部(43)を設けること
と、圧縮機(21)の吸入側にアキュムレータを使用しない
構成にすることは、非共沸混合冷媒を用いる冷媒回路(1
2)において極めて適していると言うことができる。Therefore, according to the above solution, R40
Since the non-azeotropic refrigerant such as 7C circulates in the refrigerant circuit (12) in a stable state that is almost the same as the original composition ratio, there is almost no change in the refrigerant characteristics, and the refrigeration system (10) has its original capacity. Can be demonstrated stably. Therefore, a decrease in operation efficiency is suppressed, and the reliability of the refrigeration system (10) can be improved. For this reason, providing the storage section (43) in the high-pressure liquid line and not using an accumulator on the suction side of the compressor (21) requires a refrigerant circuit (1) using a non-azeotropic mixed refrigerant.
It can be said that 2) is very suitable.
【0021】また、冷媒回路(12)内での冷媒の循環方向
を可逆に構成した場合には、例えば非共沸混合冷媒を用
いた空気調和装置などにおいて、冷房運転を行う場合と
暖房運転を行う場合のいずれであっても、安定した運転
をすることが可能となる。When the direction of circulation of the refrigerant in the refrigerant circuit (12) is configured to be reversible, for example, in an air conditioner using a non-azeotropic mixed refrigerant, a case where cooling operation is performed and a case where heating operation is performed are described. In either case, stable operation can be performed.
【0022】また、液封防止通路(27)を設けておけば、
貯留部(43)に溜まり込んだ液冷媒が原因で、該貯留部(4
3)の周囲での異常な圧力上昇が生じるのを防止できる。If a liquid seal prevention passage (27) is provided,
Due to the liquid refrigerant accumulated in the storage section (43), the storage section (4
Abnormal pressure rise around 3) can be prevented.
【0023】また、各温度センサ(Td,Tc,Te)を使って膨
張機構(EV)の開度を調整すると、冷媒の組成をより安定
化させることができるので、装置の信頼性をより一層高
めることが可能となる。When the opening degree of the expansion mechanism (EV) is adjusted using the temperature sensors (Td, Tc, Te), the composition of the refrigerant can be further stabilized, so that the reliability of the apparatus can be further improved. It is possible to increase.
【0024】[0024]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0025】図1に示すように、本実施形態の冷凍装置
(10)は、一台の室外ユニット(20)に対して一台の室内ユ
ニット(30)が接続されたいわゆるセパレートタイプの空
気調和装置(10)であり、この空気調和装置(10)の冷媒回
路(12)は、非共沸混合冷媒であるR407Cにより蒸気
圧縮式冷凍サイクルを行うように構成されている。As shown in FIG. 1, the refrigeration apparatus of the present embodiment
(10) is a so-called separate type air conditioner (10) in which one outdoor unit (20) is connected to one indoor unit (30), and the refrigerant of the air conditioner (10) is The circuit (12) is configured to perform a vapor compression refrigeration cycle using a non-azeotropic mixed refrigerant R407C.
【0026】上記室外ユニット(20)は、圧縮機(21)と四
路切換弁(切換機構)(22)と室外熱交換器(23)と補助熱
交換器(24)と膨張回路(40)とにより単一の熱源ユニット
を構成している。また、上記室内ユニット(30)は室内熱
交換器(31)を備え、単一の利用ユニットを構成してい
る。The outdoor unit (20) comprises a compressor (21), a four-way switching valve (switching mechanism) (22), an outdoor heat exchanger (23), an auxiliary heat exchanger (24), and an expansion circuit (40). These form a single heat source unit. The indoor unit (30) includes an indoor heat exchanger (31) and constitutes a single utilization unit.
【0027】そして、上記圧縮機(21)と四路切換弁(22)
と室外熱交換器(23)と補助熱交換器(24)と膨張回路(40)
と室内熱交換器(31)とが冷媒配管(11)によって順に接続
されて、冷媒が循環して熱移動を行う冷媒回路(12)が構
成されている。冷媒回路(12)は、上記室外熱交換器(23)
及び補助熱交換器(24)と室内熱交換器(31)との間が、膨
張回路(40)などを含む液ライン(1L)と、圧縮機(21)など
を含むガスライン(1G)とに構成されている。なお、本実
施形態において、圧縮機(21)の吸入側にアキュムレータ
は設けられていない。The compressor (21) and the four-way switching valve (22)
And outdoor heat exchanger (23), auxiliary heat exchanger (24) and expansion circuit (40)
And the indoor heat exchanger (31) are connected in order by a refrigerant pipe (11) to form a refrigerant circuit (12) in which the refrigerant circulates and performs heat transfer. The refrigerant circuit (12) is the outdoor heat exchanger (23)
A liquid line (1L) including an expansion circuit (40) and a gas line (1G) including a compressor (21) are provided between the auxiliary heat exchanger (24) and the indoor heat exchanger (31). Is configured. In the present embodiment, no accumulator is provided on the suction side of the compressor (21).
【0028】上記圧縮機(21)は、例えば、インバータに
より運転周波数(運転容量)が可変に調節されるスクロ
ールタイプに構成されている。この圧縮機(21)の吐出側
には、圧縮機(21)の運転音を低減するための消音器(25)
が接続されている。消音器(25)は、圧縮機(21)から四路
切換弁(22)へ向かう方向への冷媒の流れのみを許容する
逆止弁の機能を備えている。The compressor (21) is, for example, of a scroll type whose operating frequency (operating capacity) is variably adjusted by an inverter. On the discharge side of the compressor (21), a muffler (25) for reducing the operation noise of the compressor (21)
Is connected. The muffler (25) has a check valve function that allows only the flow of the refrigerant in the direction from the compressor (21) to the four-way switching valve (22).
【0029】上記四路切換弁(22)は、冷房運転時に図1
の実線に示すように切り換わり、暖房運転時に図1の破
線に示すように切り換わって、冷媒回路(12)内での冷媒
の循環方向を反転させる。そして、上記室外熱交換器(2
3)及び補助熱交換器(24)は、冷房運転時に凝縮器として
機能し、暖房運転時に蒸発器として機能する熱源側熱交
換器であり、その近傍には室外ファン(Fo)が設けられて
いる。また、上記室内熱交換器(31)は、冷房運転時に蒸
発器として機能し、暖房運転時に凝縮器として機能する
利用側熱交換器であり、その近傍に室内ファン(Fr)が設
けられている。The four-way switching valve (22) operates during cooling operation as shown in FIG.
1 during the heating operation, and switches as shown by the broken line in FIG. 1 to reverse the circulation direction of the refrigerant in the refrigerant circuit (12). Then, the outdoor heat exchanger (2
3) and the auxiliary heat exchanger (24) are heat source side heat exchangers that function as a condenser during the cooling operation and function as an evaporator during the heating operation, and an outdoor fan (Fo) is provided in the vicinity thereof. I have. Further, the indoor heat exchanger (31) is a use side heat exchanger that functions as an evaporator during the cooling operation and functions as a condenser during the heating operation, and an indoor fan (Fr) is provided in the vicinity thereof. .
【0030】上記膨張回路(40)は、冷媒を減圧するよう
に構成されている。この膨張回路(40)は、ブリッジ回路
で構成された方向制御回路(41)と、この方向制御回路(4
1)に接続された一方向通路(42)とを備えている。方向制
御回路(41)は、冷房運転時と暖房運転時のいずれでも、
そのときに凝縮器として機能している熱交換器(23,24),
(31)からの液冷媒を一方向通路(42)に案内するように構
成されている。The expansion circuit (40) is configured to reduce the pressure of the refrigerant. The expansion circuit (40) includes a direction control circuit (41) formed of a bridge circuit and the direction control circuit (4).
And a one-way passage (42) connected to (1). The direction control circuit (41) performs the cooling operation and the heating operation,
Heat exchanger (23, 24), which then functions as a condenser,
The liquid refrigerant from (31) is configured to be guided to the one-way passage (42).
【0031】一方向通路(42)には、上流側に位置して冷
媒を貯溜しながら液冷媒を流出させるレシーバ(貯留
部)(43)と、その下流側に位置する開度調整自在な電子
膨張弁(膨張機構)(EV)とが直列に配置されている。以
上の構成により、レシーバ(43)は、常に電子膨張弁(EV)
の上流側の高圧液ラインに位置しており、冷媒の循環方
向に拘わらず、凝縮器(23,24),(31)からの高圧の液冷媒
が流入するようになっている。なお、レシーバ(43)と電
子膨張弁(EV)との間には、冷媒中の塵埃を除去するフィ
ルタ(26)が配置されている。In the one-way passage (42), a receiver (reservoir) (43) located on the upstream side for storing the refrigerant and allowing the liquid refrigerant to flow out, and an electronically adjustable opening located on the downstream side. An expansion valve (expansion mechanism) (EV) is arranged in series. With the above configuration, the receiver (43) is always an electronic expansion valve (EV)
And a high-pressure liquid refrigerant from the condensers (23, 24) and (31) flows in regardless of the refrigerant circulation direction. Note that a filter (26) for removing dust in the refrigerant is arranged between the receiver (43) and the electronic expansion valve (EV).
【0032】上記方向制御回路(41)は、具体的には、第
1流入路(44)と第1流出路(45)と第2流入路(46)と第2
流出路(47)とがブリッジ状に接続されて構成されてい
る。各流入路(44,46) 及び各流出路(45,47) には、それ
ぞれ逆止弁(CV,CV,…)が設けられている。More specifically, the direction control circuit (41) includes a first inflow path (44), a first outflow path (45), a second inflow path (46), and a second inflow path (46).
The outflow path (47) is connected in a bridge shape. Each of the inflow channels (44, 46) and the outflow channels (45, 47) is provided with a check valve (CV, CV,...).
【0033】上記第1流入路(44)は、室外熱交換器(23)
が接続される第1接続点(P1)から、一方向通路(42)の上
流端が接続される第2接続点(P2)に向う冷媒流れを形成
している。また、上記第1流出路(45)は、一方向通路(4
2)の下流端が接続される第3接続点(P3)から、室内熱交
換器(31)が接続される第4接続点(P4)に向う冷媒流れを
形成している。The first inflow path (44) is connected to the outdoor heat exchanger (23).
Forms a refrigerant flow from the first connection point (P1) to which the first connection point (P1) is connected to the second connection point (P2) to which the upstream end of the one-way passage (42) is connected. In addition, the first outflow path (45) is a one-way path (4
A refrigerant flow is formed from the third connection point (P3) to which the downstream end of (2) is connected to the fourth connection point (P4) to which the indoor heat exchanger (31) is connected.
【0034】上記第2流入路(46)は、第4接続点(P4)か
ら第2接続点(P2)に向う冷媒流れを形成している。ま
た、上記第2流出路(47)は、第3接続点(P3)から第1接
続点(P1)に向う冷媒流れを形成している。The second inflow path (46) forms a refrigerant flow from the fourth connection point (P4) to the second connection point (P2). The second outflow channel (47) forms a refrigerant flow from the third connection point (P3) to the first connection point (P1).
【0035】上記一方向通路(42)は、レシーバ(43)と電
子膨張弁(EV)との間(さらに具体的にはフィルタ(26)と
電子膨張弁(EV)との間)の液管(高圧液ライン)が、圧
縮機(21)の吐出配管に、圧縮機(21)の停止時における液
封を防止する液封防止通路(27)を介して接続されてい
る。この液封防止通路(27)は、上記液配管側から吐出配
管側への冷媒の流通を許容する一方向通路であり、その
経路内に逆止弁(CV)を備えている。The one-way passage (42) is provided between the receiver (43) and the electronic expansion valve (EV) (more specifically, between the filter (26) and the electronic expansion valve (EV)). A (high-pressure liquid line) is connected to a discharge pipe of the compressor (21) via a liquid seal prevention passage (27) for preventing liquid seal when the compressor (21) is stopped. The liquid seal prevention passage (27) is a one-way passage that allows the flow of the refrigerant from the liquid pipe side to the discharge pipe side, and includes a check valve (CV) in the path.
【0036】上記レシーバ(43)の上部と、常時低圧液ラ
インとなる一方向通路(42)における電子膨張弁(EV)より
下流側との間にはバイパス通路(49)が接続されている。
該バイパス通路(49)には電磁弁(SV)が設けられていて、
レシーバ(43)内のガス冷媒を抜くことができるように構
成されている。A bypass passage (49) is connected between an upper portion of the receiver (43) and a downstream side of the electronic expansion valve (EV) in the one-way passage (42) which is always a low-pressure liquid line.
An electromagnetic valve (SV) is provided in the bypass passage (49),
The gas refrigerant in the receiver (43) can be drawn out.
【0037】一方、上記圧縮機(21)の吐出管には、該圧
縮機(21)の吐出管温度を検出する吐出管温度センサ(Td)
が配置されている。また、室外ユニット(20)の空気吸込
口には、室外空気温度を検出する外気温センサ(Ta)が配
置され、室外熱交換器(23)には、冷房運転時には凝縮温
度となり、暖房運転時には蒸発温度となる外熱交温度を
検出する外熱交温度センサ(Tc)が配置されている。さら
に、上記室内ユニット(30)の空気吸込口には、室内空気
温度を検出する室温センサ(Tr)が配置され、室内熱交換
器(31)には、冷房運転時には蒸発温度となり、暖房運転
時には凝縮温度となる内熱交温度を検出する内熱交温度
センサ(Te)が配置されている。On the other hand, the discharge pipe of the compressor (21) has a discharge pipe temperature sensor (Td) for detecting the discharge pipe temperature of the compressor (21).
Is arranged. In addition, an outdoor air temperature sensor (Ta) that detects an outdoor air temperature is disposed at an air suction port of the outdoor unit (20), and the outdoor heat exchanger (23) has a condensing temperature during a cooling operation and a condensing temperature during a heating operation. An external heat exchange temperature sensor (Tc) for detecting an external heat exchange temperature that is an evaporation temperature is provided. Further, at the air inlet of the indoor unit (30), a room temperature sensor (Tr) for detecting indoor air temperature is arranged, and the indoor heat exchanger (31) has an evaporating temperature during a cooling operation and an evaporation temperature during a heating operation. An internal heat exchange temperature sensor (Te) for detecting an internal heat exchange temperature that is a condensing temperature is arranged.
【0038】上記圧縮機(21)の吐出管には、高圧冷媒圧
力を検出して、該高圧冷媒圧力の過上昇によりオンとな
って高圧保護信号を出力する高圧保護圧力スイッチ(HS)
が配置されている。また、圧縮機(21)の吸込管には、低
圧冷媒圧力を検出して、該低圧冷媒圧力の過低下により
オンとなって低圧保護信号を出力する低圧保護圧力スイ
ッチ(LS1) と、上記低圧冷媒圧力を検出して、該低圧冷
媒圧力が所定値になるとオンとなって低圧制御信号を出
力する低圧制御圧力スイッチ(LS2) とが配置されてい
る。A high-pressure protection pressure switch (HS) which detects a high-pressure refrigerant pressure and outputs a high-pressure protection signal when the high-pressure refrigerant pressure excessively rises is provided to the discharge pipe of the compressor (21).
Is arranged. A low-pressure protection pressure switch (LS1) that detects a low-pressure refrigerant pressure and turns on when a low-pressure refrigerant pressure is excessively low to output a low-pressure protection signal is provided in the suction pipe of the compressor (21). A low-pressure control pressure switch (LS2) that detects a refrigerant pressure and turns on when the low-pressure refrigerant pressure reaches a predetermined value to output a low-pressure control signal;
【0039】そして、上記各温度センサ(Td,Ta,Tc,Tr,T
e)、高圧保護圧力スイッチ(HS)、低圧保護圧力スイッチ
(LS1) 、及び低圧制御圧力スイッチ(LS2) の出力信号
は、制御手段であるコントローラ(50)に入力され、該コ
ントローラ(50)が、入力信号に基づいて空調運転を制御
するように構成されている。The above temperature sensors (Td, Ta, Tc, Tr, T
e), high pressure protection pressure switch (HS), low pressure protection pressure switch
The output signals of (LS1) and the low-pressure control pressure switch (LS2) are input to a controller (50) as control means, and the controller (50) is configured to control the air conditioning operation based on the input signal. ing.
【0040】このコントローラ(50)は、各機器を制御し
て冷房運転と暖房運転を行うとともに、冷媒回路(12)内
を流れる非共沸混合冷媒の組成が安定するような制御を
行うように構成されている。The controller (50) controls each device to perform a cooling operation and a heating operation, and also performs control to stabilize the composition of the non-azeotropic mixed refrigerant flowing in the refrigerant circuit (12). It is configured.
【0041】具体的に、このコントローラ(50)は、例え
ば、圧縮機(21)のインバータの運転周波数を所定数の周
波数ステップNに区分して、室内温度が設定温度になる
ように周波数ステップNを制御する。また、このコント
ローラ(50)は、外熱交温度センサ(Tc)及び内熱交温度セ
ンサ(Te)が検出する凝縮温度や蒸発温度から最適な冷凍
効果を与える吐出管温度の最適値を算出し、該吐出管温
度がその最適値になるように弁開度を設定して電子膨張
弁(EV)の開度を制御する。Specifically, the controller (50) divides the operating frequency of the inverter of the compressor (21) into a predetermined number of frequency steps N, for example. Control. Further, the controller (50) calculates the optimum value of the discharge pipe temperature that gives the optimum refrigerating effect from the condensation temperature and the evaporation temperature detected by the external heat exchange temperature sensor (Tc) and the internal heat exchange temperature sensor (Te). The opening degree of the electronic expansion valve (EV) is controlled by setting the valve opening degree so that the discharge pipe temperature becomes the optimum value.
【0042】このような制御をすることで、冷媒回路(1
2)内での冷媒の循環時に、定められたモリエル線図上で
の動作が保証されることとなり、その結果、非共沸混合
冷媒の組成の変動が抑えられる。つまり、R407Cに
おけるR32とR134aとの組成比が安定する。By performing such control, the refrigerant circuit (1)
When the refrigerant circulates in 2), the operation on the determined Mollier diagram is guaranteed, and as a result, the fluctuation of the composition of the non-azeotropic mixed refrigerant is suppressed. That is, the composition ratio of R32 to R134a in R407C is stabilized.
【0043】なお、本実施形態の冷媒回路(12)は、上述
したように圧縮機(21)の吸入側にアキュムレータを用い
ない回路としている。このため、圧縮機(21)への吸入冷
媒の過熱度が充分に大きくなるような制御を行ったり、
レシーバ(43)からの液冷媒の流出量を調節する構造にし
たりすることで、圧縮機(21)への液バックが生じないよ
うにしている。The refrigerant circuit (12) of this embodiment is a circuit that does not use an accumulator on the suction side of the compressor (21) as described above. For this reason, control is performed such that the degree of superheat of the refrigerant sucked into the compressor (21) is sufficiently large,
By adopting a structure for adjusting the amount of liquid refrigerant flowing out from the receiver (43), liquid back to the compressor (21) is prevented.
【0044】−運転動作− 次に、この空気調和装置(10)の具体的な運転動作につい
て説明する。-Operating operation- Next, a specific operating operation of the air conditioner (10) will be described.
【0045】まず、冷房運転サイクル時には、圧縮機(2
1)から吐出されたガス冷媒は、室外熱交換器(23)及び補
助熱交換器(24)で凝縮して液化し、この液冷媒が第1流
入路(44)を通ってレシーバ(43)に一旦貯溜される。そし
て、液冷媒がレシーバ(43)から流出し、電子膨張弁(EV)
で減圧した後、第1流出路(45)を経て室内熱交換器(31)
で蒸発して圧縮機(21)に戻る。First, during the cooling operation cycle, the compressor (2
The gas refrigerant discharged from 1) is condensed and liquefied in the outdoor heat exchanger (23) and the auxiliary heat exchanger (24), and the liquid refrigerant passes through the first inflow path (44) and is received by the receiver (43). Is stored once. Then, the liquid refrigerant flows out of the receiver (43), and the electronic expansion valve (EV)
After the pressure is reduced by the first outlet passage (45), the indoor heat exchanger (31)
And return to the compressor (21).
【0046】一方、暖房運転サイクル時には、圧縮機(2
1)から吐出されたガス冷媒は、室内熱交換器(31)で凝縮
して液化し、この液冷媒が第2流入路(46)を通ってレシ
ーバ(43)に一旦貯溜される。そして、液冷媒がレシーバ
(43)から流出し、電子膨張弁(EV)で減圧した後、第2流
出路(47)を経て補助熱交換器(24)及び室外熱交換器(23)
で蒸発して圧縮機(21)に戻る。その際、余剰の冷媒がレ
シーバ(43)に貯留しながら、冷媒の循環動作が行われ
る。On the other hand, during the heating operation cycle, the compressor (2
The gas refrigerant discharged from 1) is condensed and liquefied in the indoor heat exchanger (31), and the liquid refrigerant is temporarily stored in the receiver (43) through the second inflow path (46). And the liquid refrigerant is the receiver
After flowing out from (43) and depressurized by the electronic expansion valve (EV), the auxiliary heat exchanger (24) and the outdoor heat exchanger (23) pass through the second outflow path (47).
And return to the compressor (21). At that time, the circulation operation of the refrigerant is performed while the surplus refrigerant is stored in the receiver (43).
【0047】なお、冷房運転サイクル時と暖房運転サイ
クル時のいずれの場合も、通常は電磁弁(SV)が閉じられ
ていて、レシーバ(43)からガス冷媒が流出しないように
設定されている。In both the cooling operation cycle and the heating operation cycle, the solenoid valve (SV) is normally closed so that the gas refrigerant does not flow out of the receiver (43).
【0048】以上の動作において、レシーバ(43)内は高
圧であり、周囲の状況などによってR32のガス冷媒が
発生しても、その量は僅かであり、しかもガスの密度は
液の密度に比べて極めて小さい。したがって、レシーバ
(43)から流出する液冷媒の組成は、この回路(12)で使用
している非共沸混合冷媒であるR407Cの本来の組成
から殆ど変化せず、このように安定した組成の液冷媒が
レシーバ(43)から流出して回路(12)内を循環することと
なる。In the above operation, the pressure in the receiver (43) is high, and even if R32 gas refrigerant is generated due to the surrounding conditions, the amount is small, and the gas density is smaller than the liquid density. And extremely small. Therefore, the receiver
The composition of the liquid refrigerant flowing out of (43) hardly changes from the original composition of the non-azeotropic mixed refrigerant R407C used in this circuit (12), and the liquid refrigerant having such a stable composition is obtained. It flows out of the receiver (43) and circulates in the circuit (12).
【0049】また、各運転サイクル時において、コント
ローラ(50)は、周波数ステップNを適正値に設定して圧
縮機(21)の容量を制御すると共に、外熱交温度センサ(T
c)及び内熱交温度センサ(Te)が検出する凝縮温度や蒸発
温度から最適な冷凍効果を与える吐出管温度の最適値を
算出して、該吐出管温度がその最適値になるように弁開
度を設定する。そして、この弁開度が得られるようなパ
ルス信号を電子膨張弁(25)に送信して該電子膨張弁(EV)
の開度を制御し、室内負荷に対応した空調運転を行う。In each operation cycle, the controller (50) controls the capacity of the compressor (21) by setting the frequency step N to an appropriate value, and also controls the external heat exchange temperature sensor (T
c) and the internal heat exchange temperature sensor (Te) calculates the optimum value of the discharge pipe temperature that gives the optimum refrigeration effect from the condensation temperature and the evaporation temperature detected by the sensor, and controls the valve so that the discharge pipe temperature becomes the optimum value. Set the opening. Then, a pulse signal for obtaining the valve opening degree is transmitted to the electronic expansion valve (25), and the electronic expansion valve (EV)
Control the opening degree of the air conditioner and perform air conditioning operation corresponding to the indoor load.
【0050】このことによって、冷媒回路(12)内での非
共沸混合冷媒の循環時に、予め定められたモリエル線図
上での動作が保証されることとなるので、その点でもR
407CにおけるR32とR134aの比率を安定させ
ることができる。By this, when the non-azeotropic refrigerant mixture is circulated in the refrigerant circuit (12), the operation on the predetermined Mollier diagram is guaranteed.
The ratio between R32 and R134a in 407C can be stabilized.
【0051】また、本実施形態では、圧縮機(21)の吸入
側にアキュムレータを用いない回路としているが、上述
したように圧縮機(21)への吸入冷媒の過熱度が充分に大
きくなるような制御を行ったり、レシーバ(43)からの液
冷媒の流出量を調節する構造にしたりしているため、圧
縮機(21)への液バックは生じない。そして、アキュムレ
ータを使用しないため、従来とは違って、圧縮機(21)の
吸入側での冷媒の滞留に伴う冷媒の組成比の変動も生じ
ない。Further, in the present embodiment, a circuit without using an accumulator on the suction side of the compressor (21) is used. However, as described above, the degree of superheating of the refrigerant sucked into the compressor (21) is sufficiently increased. Such control is performed and the amount of the liquid refrigerant flowing out of the receiver (43) is adjusted, so that liquid back to the compressor (21) does not occur. Since the accumulator is not used, the composition ratio of the refrigerant does not fluctuate due to the stagnation of the refrigerant on the suction side of the compressor (21) unlike the related art.
【0052】なお、本実施形態において、運転停止時に
電子膨張弁(EV)と電磁弁(SV)とを閉鎖した状態で、周囲
温度の上昇などによりレシーバ(43)内の液冷媒が膨張し
ても、この冷媒は一方向通路(42)から液封防止通路(27)
を流れて熱交換器(23,31) 側へ逃げていくこととなる。
つまり、液封が防止される。In the present embodiment, when the operation is stopped, the liquid refrigerant in the receiver (43) expands due to an increase in ambient temperature or the like with the electronic expansion valve (EV) and the solenoid valve (SV) closed. Also, this refrigerant flows from the one-way passage (42) to the liquid seal prevention passage (27).
And escapes to the heat exchanger (23, 31) side.
That is, liquid sealing is prevented.
【0053】−実施形態の効果− 以上説明したように、本実施形態によれば、暖房運転時
と冷房運転時のいずれにおいても、使用している非共沸
混合冷媒であるR407Cは、高圧のレシーバ(43)内に
余剰分が貯留されることで循環量を調節しながら、冷媒
回路(12)を循環する。また、このレシーバ(43)内が高圧
であるため、ほとんどが液冷媒の状態で存在し、しかも
ガスの密度が液の密度に比べて非常に小さいことから、
R32がガス化していても、レシーバ(43)内に貯留して
いる液冷媒はR407Cの本来の組成比とほとんど変わ
らない組成比となる。そして、このように安定した組成
比の冷媒が回路(12)内を循環し、しかも圧縮機(21)の吸
入側での組成比の変動も生じないので、冷媒特性の変化
が殆どなく、空気調和装置(10)が本来の能力を安定して
発揮できる。したがって、運転効率の低下も抑えられ、
装置(10)の信頼性を高められる。-Effects of Embodiment- As described above, according to the present embodiment, in both the heating operation and the cooling operation, the non-azeotropic mixed refrigerant R407C used is of high pressure. The excess amount is stored in the receiver (43), and the circulation amount is circulated in the refrigerant circuit (12) while adjusting the circulation amount. In addition, since the inside of the receiver (43) has a high pressure, most of the liquid exists in a liquid refrigerant state, and the density of the gas is very small compared to the density of the liquid.
Even if R32 is gasified, the liquid refrigerant stored in the receiver (43) has a composition ratio that is almost the same as the original composition ratio of R407C. The refrigerant having such a stable composition ratio circulates through the circuit (12), and the composition ratio does not fluctuate on the suction side of the compressor (21). The harmony device (10) can exhibit its original ability stably. Therefore, a decrease in driving efficiency is also suppressed,
The reliability of the device (10) can be increased.
【0054】また、電子膨張弁(EV)の開度を各温度セン
サ(Td,Tc,Te)を使って制御しているので、冷媒の状態変
化が、予め定められたモリエル線図上で正確に推移する
ことになる。このことから、組成がより安定化するの
で、装置の信頼性を一層高めることが可能となる。Further, since the opening degree of the electronic expansion valve (EV) is controlled by using the temperature sensors (Td, Tc, Te), the change in the state of the refrigerant can be accurately determined on a predetermined Mollier diagram. Will be changed. As a result, the composition is further stabilized, so that the reliability of the device can be further improved.
【0055】また、本実施形態では、たとえ冷媒の組成
が少し変動した状態でレシーバ(43)に流入したとして
も、冷媒は、レシーバ(43)内が高圧であるため、該レシ
ーバ(43)内で本来の組成比に近い状態に補正される。し
たがって、運転中にR407Cの組成比が大きく変動し
てしまうようなことを確実に防止できる。In the present embodiment, even if the refrigerant flows into the receiver (43) in a state where the composition of the refrigerant slightly fluctuates, the refrigerant has a high pressure in the receiver (43). Is corrected to a state close to the original composition ratio. Therefore, it is possible to reliably prevent the composition ratio of R407C from greatly changing during operation.
【0056】さらに、液封防止通路(27)を設けているた
め、運転停止時に周囲温度が上昇した場合でも、圧力が
異常上昇するのを防止できる。Further, since the liquid-sealing prevention passage (27) is provided, even if the ambient temperature increases when the operation is stopped, it is possible to prevent the pressure from abnormally increasing.
【0057】[0057]
【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.
【0058】例えば、上記実施形態は、一台の室外ユニ
ット(20)に一台の室内ユニット(30)が接続されたタイプ
として構成したが、一台の室外ユニット(20)に複数台の
室内ユニット(30)が接続されたタイプとしてもよい。ま
た、上記実施形態は、本発明の冷凍装置を暖房運転と冷
房運転とが可能な空気調和装置として構成したものであ
るが、本発明は、暖房運転のみ、あるいは冷房運転のみ
を行う空気調和装置にも適用可能であり、さらに、空気
調和装置以外の冷凍装置にも適用することができる。For example, in the above embodiment, one indoor unit (30) is connected to one outdoor unit (20), but a plurality of indoor units are connected to one outdoor unit (20). The type to which the unit (30) is connected may be used. In the above embodiment, the refrigeration apparatus of the present invention is configured as an air conditioner capable of performing a heating operation and a cooling operation. However, the present invention is directed to an air conditioner performing only a heating operation or performing only a cooling operation. The present invention is also applicable to refrigeration equipment other than the air conditioner.
【0059】また、使用する冷媒はR407Cに限ら
ず、他の非共沸混合冷媒を使用することも可能である。The refrigerant used is not limited to R407C, and other non-azeotropic mixed refrigerants can be used.
【図1】本発明の実施形態に係る空気調和装置の冷媒回
路図である。FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
【図2】従来の冷凍装置におけるアキュムレータを示す
概略図である。FIG. 2 is a schematic diagram showing an accumulator in a conventional refrigeration apparatus.
(10) 空気調和装置(冷凍装置) (12) 冷媒回路 (20) 室外ユニット (21) 圧縮機 (22) 四路切換弁(切換機構) (23) 室外熱交換器(凝縮器、蒸発器) (27) 液封防止通路 (30) 室内ユニット (31) 室内熱交換器(蒸発器、凝縮器) (41) 方向制御回路 (43) レシーバ(貯留部) (50) コントローラ(制御手段) (EV) 膨張機構 (Td) 吐出管温度センサ (Tc) 外熱交温度センサ(凝縮器温度センサ、蒸発器温
度センサ) (Te) 内熱交温度センサ(蒸発器温度センサ、凝縮器温
度センサ)(10) Air conditioner (refrigerator) (12) Refrigerant circuit (20) Outdoor unit (21) Compressor (22) Four-way switching valve (switching mechanism) (23) Outdoor heat exchanger (condenser, evaporator) (27) Liquid seal prevention passage (30) Indoor unit (31) Indoor heat exchanger (evaporator, condenser) (41) Direction control circuit (43) Receiver (reservoir) (50) Controller (control means) (EV ) Expansion mechanism (Td) Discharge pipe temperature sensor (Tc) External heat exchange temperature sensor (condenser temperature sensor, evaporator temperature sensor) (Te) Internal heat exchange temperature sensor (evaporator temperature sensor, condenser temperature sensor)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 辰男 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 Fターム(参考) 3L092 AA12 AA14 BA05 BA21 BA27 DA01 DA03 EA02 FA24 FA27 FA34 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tatsuo Fujiwara 1304 Kanaokacho, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Sakai Seisakusho Kanaoka Plant F-term (reference) 3L092 AA12 AA14 BA05 BA21 BA27 DA01 DA03 EA02 FA24 FA27 FA34
Claims (6)
イクルを行う冷媒回路(12)を備えた冷凍装置であって、 高圧液ラインに、上記冷媒を貯留しながら液冷媒を流出
させる貯留部(43)を備えている冷凍装置。1. A refrigeration system comprising a refrigerant circuit (12) for performing a vapor compression refrigeration cycle by using a non-azeotropic mixed refrigerant, comprising: a storage section for discharging a liquid refrigerant while storing the refrigerant in a high-pressure liquid line. A refrigeration apparatus comprising (43).
備えていない冷媒回路(12)に構成されている請求項1記
載の冷凍装置。2. The refrigeration system according to claim 1, wherein the refrigeration system is constituted by a refrigerant circuit (12) having no accumulator on the suction side of the compressor (21).
転させる切換機構(22)と、各循環方向で凝縮器(23,31)
からの液冷媒を貯留部(43)に流入させる方向制御回路(4
1)とを備え、貯留部(43)の下流側に膨張機構(EV)が接続
されている請求項1または2記載の冷凍装置。3. A switching mechanism (22) for reversing the direction of circulation of the refrigerant in the refrigerant circuit (12), and a condenser (23, 31) for each circulation direction.
Direction control circuit (4) that allows the liquid refrigerant from
The refrigeration apparatus according to claim 1 or 2, further comprising (1), wherein an expansion mechanism (EV) is connected downstream of the storage section (43).
管と、圧縮機(21)の吐出配管との間に接続された液封防
止通路(27)を備え、該液封防止通路(27)は、上記液配管
側から吐出配管側への冷媒の流通を許容する一方向通路
として構成されている請求項3記載の冷凍装置。4. A liquid sealing prevention passageway (27) connected between a liquid pipe between the storage section (43) and the expansion mechanism (EV) and a discharge pipe of the compressor (21). The refrigeration apparatus according to claim 3, wherein the liquid seal prevention passage (27) is configured as a one-way passage that allows refrigerant to flow from the liquid pipe side to the discharge pipe side.
ンサ(Tc,Te) と、蒸発器温度センサ(Te,Tc) と、各温度
センサ(Td,Tc,Te)の出力に応じて膨張機構(EV)の開度を
制御する制御手段(50)とを備えている請求項1乃至4の
何れか1記載の冷凍装置。5. A discharge pipe temperature sensor (Td), a condenser temperature sensor (Tc, Te), an evaporator temperature sensor (Te, Tc), and an output of each temperature sensor (Td, Tc, Te). The refrigeration apparatus according to any one of claims 1 to 4, further comprising control means (50) for controlling an opening degree of the expansion mechanism (EV) by using the control means.
項1乃至5の何れか1記載の冷凍装置。6. The refrigeration apparatus according to claim 1, wherein the non-azeotropic refrigerant mixture is R407C.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33550999A JP2001153480A (en) | 1999-11-26 | 1999-11-26 | Refrigerating plant |
CNB001283790A CN1141539C (en) | 1999-11-26 | 2000-11-23 | Refrigerating apparatus |
CN00262416U CN2458570Y (en) | 1999-11-26 | 2000-11-24 | Refrigerating device |
KR1020027006628A KR20020070982A (en) | 1999-11-26 | 2000-11-24 | Refrigerating device |
PCT/JP2000/008279 WO2001038801A1 (en) | 1999-11-26 | 2000-11-24 | Refrigerating device |
AU15503/01A AU1550301A (en) | 1999-11-26 | 2000-11-24 | Refrigerating device |
EP00977900A EP1235043A1 (en) | 1999-11-26 | 2000-11-24 | Refrigerating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33550999A JP2001153480A (en) | 1999-11-26 | 1999-11-26 | Refrigerating plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001153480A true JP2001153480A (en) | 2001-06-08 |
Family
ID=18289379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33550999A Pending JP2001153480A (en) | 1999-11-26 | 1999-11-26 | Refrigerating plant |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1235043A1 (en) |
JP (1) | JP2001153480A (en) |
KR (1) | KR20020070982A (en) |
CN (2) | CN1141539C (en) |
AU (1) | AU1550301A (en) |
WO (1) | WO2001038801A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111279141B (en) * | 2017-10-26 | 2021-06-25 | 三菱电机株式会社 | Refrigeration and air conditioning apparatus and control device |
JP6556414B1 (en) * | 2018-04-09 | 2019-08-07 | 三菱電機株式会社 | Superconducting magnet device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57198968A (en) * | 1981-05-29 | 1982-12-06 | Hitachi Ltd | Heat pump type refrigerator |
JPS6155562A (en) * | 1984-08-24 | 1986-03-20 | ダイキン工業株式会社 | Refrigerator using mixed refrigerant |
JPS63153367A (en) * | 1987-12-07 | 1988-06-25 | 松下電器産業株式会社 | Heat pump device |
JP3334222B2 (en) * | 1992-11-20 | 2002-10-15 | ダイキン工業株式会社 | Air conditioner |
JPH07103622A (en) * | 1993-09-30 | 1995-04-18 | Toshiba Corp | Air-conditioner |
-
1999
- 1999-11-26 JP JP33550999A patent/JP2001153480A/en active Pending
-
2000
- 2000-11-23 CN CNB001283790A patent/CN1141539C/en not_active Expired - Fee Related
- 2000-11-24 EP EP00977900A patent/EP1235043A1/en not_active Withdrawn
- 2000-11-24 CN CN00262416U patent/CN2458570Y/en not_active Expired - Fee Related
- 2000-11-24 KR KR1020027006628A patent/KR20020070982A/en not_active Application Discontinuation
- 2000-11-24 AU AU15503/01A patent/AU1550301A/en not_active Abandoned
- 2000-11-24 WO PCT/JP2000/008279 patent/WO2001038801A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
KR20020070982A (en) | 2002-09-11 |
CN1298082A (en) | 2001-06-06 |
AU1550301A (en) | 2001-06-04 |
CN1141539C (en) | 2004-03-10 |
EP1235043A1 (en) | 2002-08-28 |
CN2458570Y (en) | 2001-11-07 |
WO2001038801A1 (en) | 2001-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11268743B2 (en) | Air-conditioning apparatus having heating-defrosting operation mode | |
US8047011B2 (en) | Refrigeration system | |
US7617694B2 (en) | Apparatus and method for controlling super-heating degree in heat pump system | |
EP2147264B1 (en) | Refrigerant vapor compression system | |
US7752864B2 (en) | Refrigeration apparatus | |
EP2107322B1 (en) | Heat pump type hot water supply outdoor apparatus | |
US6883346B2 (en) | Freezer | |
US20080282728A1 (en) | Refrigerating Apparatus | |
US20090077985A1 (en) | Refrigerating Apparatus | |
US11112140B2 (en) | Air conditioning apparatus | |
WO2021014640A1 (en) | Refrigeration cycle device | |
JPH1114177A (en) | Air conditioner | |
JP2001280749A (en) | Refrigerating device | |
JP3317170B2 (en) | Refrigeration equipment | |
JP2001153480A (en) | Refrigerating plant | |
US20220412622A1 (en) | Refrigeration cycle apparatus | |
KR100748982B1 (en) | Air conditioner and Control method of the same | |
JP2757685B2 (en) | Operation control device for air conditioner | |
JP2007163011A (en) | Refrigeration unit | |
KR100941470B1 (en) | A heat pump system and an operating control method for the same | |
JP2002228284A (en) | Refrigerating machine | |
JP3945523B2 (en) | Refrigeration equipment | |
JP4798884B2 (en) | Refrigeration system | |
JP2008106953A (en) | Refrigerating device | |
JPH1038394A (en) | Refrigerant circulation type heat transfer equipment |