JPH0854161A - Refrigerant leakage detecting method of refrigerating device - Google Patents

Refrigerant leakage detecting method of refrigerating device

Info

Publication number
JPH0854161A
JPH0854161A JP6210615A JP21061594A JPH0854161A JP H0854161 A JPH0854161 A JP H0854161A JP 6210615 A JP6210615 A JP 6210615A JP 21061594 A JP21061594 A JP 21061594A JP H0854161 A JPH0854161 A JP H0854161A
Authority
JP
Japan
Prior art keywords
refrigerant
leakage
temperature
pressure
refrigerating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6210615A
Other languages
Japanese (ja)
Inventor
Ichiro Kamimura
一朗 上村
Kazuhiro Shimura
一廣 志村
Naoto Sakamoto
直人 坂本
Koji Inoue
幸治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6210615A priority Critical patent/JPH0854161A/en
Publication of JPH0854161A publication Critical patent/JPH0854161A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a refrigerant leakage detecting method of a refrigerating device, which is capable of detecting the leakage of the refrigerant before starting operation, in the refrigerating device employing the refrigerant of non-azeotrope refrigerant. CONSTITUTION:A refrigerant leakage detecting method is capable of detecting the leakage of the refrigerant at a time not during the operation of a refrigerating device but at a time during stopping the operation of the refrigerating device, having a refrigerant circuit employing the refrigerant of non-azeotrope refrigerant consisting of high-boiling point refrigerant and low-boiling point refrigerant, and the leakage of refrigerant can be detected before starting the operation whereby a trouble, such as making the cause of accident due to the operation in spite of the shortage of the refrigerant or making an objection that a sufficient refrigerating capacity can not be obtained in spite of the operation of the refrigerating device, can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置における冷媒
の漏洩検出方法に関し、特に運転停止時に冷媒の漏洩を
検出する冷凍装置の冷媒漏洩検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant leakage detection method for a refrigeration system, and more particularly to a refrigerant leakage detection method for a refrigeration system for detecting a refrigerant leakage when operation is stopped.

【0002】[0002]

【従来の技術】ヒートポンプ式冷凍装置の冷媒回路にお
いて、冷媒回路を構成するパイプの接続部や冷凍機器等
から冷媒回路内に封入された冷媒が漏れることがある。
2. Description of the Related Art In a refrigerant circuit of a heat pump type refrigerating apparatus, a refrigerant filled in the refrigerant circuit may leak from a connecting portion of a pipe constituting the refrigerant circuit, a refrigerating device or the like.

【0003】このように、冷媒回路内の冷媒が漏れて運
転に必要な冷媒量が不足すると冷凍能力が低下し、必要
な冷凍能力を得られなくなったり、圧縮機等の故障の原
因になるという不都合がある。
As described above, when the refrigerant in the refrigerant circuit leaks and the amount of refrigerant required for operation is insufficient, the refrigerating capacity is lowered, and the necessary refrigerating capacity cannot be obtained, or the compressor or the like is broken. There is inconvenience.

【0004】従来、このような冷媒の漏れによる冷媒不
足は、冷凍装置を運転中に冷凍能力が低下していること
に気が付いた場合にのみ、冷凍装置の異常に気が付き、
その冷凍能力の低下の原因の一つとして冷媒の漏れを推
定している。
Conventionally, the shortage of the refrigerant due to the leakage of the refrigerant causes the abnormality of the refrigerating apparatus to be noticed only when it is noticed that the refrigerating capacity is lowered during the operation of the refrigerating apparatus.
It is estimated that the refrigerant leaks as one of the causes of the deterioration of the refrigerating capacity.

【0005】一方、近年においては、特開昭54ー25
61号公報に開示されているように、冷凍装置の冷媒と
して、高沸点冷媒と低沸点冷媒とからなる非共沸混合冷
媒を用いたものが公知である。
On the other hand, in recent years, JP-A-54-25
As disclosed in Japanese Patent No. 61, a refrigerant using a non-azeotropic mixed refrigerant composed of a high-boiling-point refrigerant and a low-boiling-point refrigerant is known as a refrigerant of a refrigeration system.

【0006】このような非共沸混合冷媒を用いた冷凍装
置においても、単一冷媒の場合と同様に冷媒の漏れによ
る冷媒の不足が生じることがある。
Even in the refrigerating apparatus using such a non-azeotropic mixed refrigerant, the shortage of the refrigerant may occur due to the leakage of the refrigerant as in the case of the single refrigerant.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来は、上述
のように冷凍装置の運転を開始した後に初めて冷媒不足
が判断されるために、途中で運転を停止して冷媒の補充
や、漏れを直す等のメンテナンスが必要なために、必要
なときに運転できなくなるという問題点がある。
However, in the prior art, since the shortage of the refrigerant is judged only after the operation of the refrigerating apparatus is started as described above, the operation is stopped midway to replenish the refrigerant or leak the refrigerant. Since maintenance such as repairing is necessary, there is a problem that the operation cannot be performed when necessary.

【0008】特に、冷凍装置の冷媒として、高沸点冷媒
と低沸点冷媒からなる非共沸混合冷媒混合を用いた場合
には、沸点の低い冷媒が先に漏れやすいことから混合比
率の均等が崩れ易く、漏れが生じると冷凍能力が著しく
低下してしまうという問題点がある。
In particular, when a non-azeotropic mixed refrigerant mixture consisting of a high boiling point refrigerant and a low boiling point refrigerant is used as the refrigerant of the refrigerating device, the refrigerant having a low boiling point tends to leak first, so that the mixing ratio is not uniform. However, there is a problem that the refrigerating capacity is remarkably reduced when a leak occurs.

【0009】そこで、本発明は上記課題を解決するため
になされたものであり、非共沸混合冷媒を用いた冷凍装
置において、停止時に冷媒の漏れを検出することができ
る冷凍装置の冷媒漏洩検出方法を提供することを目的と
している。
Therefore, the present invention has been made in order to solve the above problems, and in a refrigerating apparatus using a non-azeotropic mixed refrigerant, refrigerant leakage detection of the refrigerating apparatus capable of detecting refrigerant leakage when stopped. It is intended to provide a way.

【0010】[0010]

【課題を解決するための手段】第1の発明は、高沸点冷
媒と低沸点冷媒とからなる非共沸混合冷媒を冷媒回路に
循環する冷凍装置の冷媒漏洩検出方法であって、冷凍装
置の運転停止時に、前記冷媒回路内の冷媒状態を検出し
て冷媒漏洩を検出するものである。
A first aspect of the present invention is a refrigerant leakage detection method for a refrigeration system in which a non-azeotropic mixed refrigerant comprising a high boiling point refrigerant and a low boiling point refrigerant is circulated in a refrigerant circuit. When the operation is stopped, the refrigerant state in the refrigerant circuit is detected to detect refrigerant leakage.

【0011】第2の発明は、高沸点冷媒と低沸点冷媒と
からなる非共沸混合冷媒を冷媒回路に循環する冷凍装置
の冷媒漏洩検出方法であって、冷凍装置の運転停止時
に、前記冷媒回路内の温度と圧力とを測定し、これらの
測定した温度と圧力とを、予め温度と圧力との関係にお
ける冷媒漏洩量の関係を計測したデータと比較して冷媒
漏洩を検出するものである。
A second aspect of the present invention is a refrigerant leakage detection method for a refrigeration system in which a non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant is circulated in a refrigerant circuit. The temperature and the pressure in the circuit are measured, and the measured temperature and the pressure are compared with the data obtained by measuring the relationship of the refrigerant leakage amount in the relationship between the temperature and the pressure in advance to detect the refrigerant leakage. .

【0012】[0012]

【作用】第1の発明によれば、冷凍装置の運転時ではな
く、運転停止時に冷媒回路内の冷媒状態を検出し、これ
により、運転前に事前に冷媒漏洩を検出することができ
るので、冷媒不足にもかかわらず運転して故障の原因に
なったり、運転しているにもかかわらず十分な冷凍能力
が得られないということがない。即ち、運転開始前に冷
媒の漏れを検出することができ、それに応じて運転開始
前に漏れ箇所の修理や、冷媒の補充等のメンテナンスを
することができる。
According to the first aspect of the present invention, the refrigerant state in the refrigerant circuit can be detected when the refrigeration system is not in operation but when the operation is stopped, and thus refrigerant leakage can be detected in advance before operation. There is no possibility that the product will malfunction due to operation despite the shortage of refrigerant, or that sufficient refrigeration capacity will not be obtained despite operation. That is, the leakage of the refrigerant can be detected before the start of the operation, and accordingly, the maintenance such as the repair of the leakage point and the replenishment of the refrigerant can be performed before the start of the operation.

【0013】非共沸混合冷媒としているのは、非共沸混
合冷媒は漏れによる冷媒状態、例えば圧力等が変化しや
すく、冷媒状態を検出することにより、容易に冷媒の漏
洩が検出できるからである。
The non-azeotropic mixed refrigerant is used because the non-azeotropic mixed refrigerant is liable to change the refrigerant state due to leakage, for example, the pressure, and the leakage of the refrigerant can be easily detected by detecting the refrigerant state. is there.

【0014】第2の発明によれば、第1の発明におい
て、所定温度における冷媒の圧力を計測したデータを予
め用意しておき、運転停止時に冷媒回路内の温度と冷媒
圧力を検出することによって、冷媒の漏れを容易に且つ
確実に検出する。
According to a second aspect of the present invention, in the first aspect of the present invention, data for measuring the pressure of the refrigerant at a predetermined temperature is prepared in advance, and the temperature and the refrigerant pressure in the refrigerant circuit are detected when the operation is stopped. Easily and reliably detect refrigerant leakage.

【0015】[0015]

【実施例】以下、本発明の実施例を添付図面を参照して
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

【0016】図1は、本発明にかかる冷凍装置の冷媒回
路図である。この冷凍装置は、冷媒回路を循環する冷媒
としては、高沸点冷媒と低沸点冷媒からなる非共沸混合
冷媒が用いられている。
FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus according to the present invention. In this refrigeration system, a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant is used as the refrigerant circulating in the refrigerant circuit.

【0017】図1の冷媒回路1において、圧縮機3、室
内熱交換器5、流量制御弁7、室外熱交換器9、流路切
り換え弁としての四方弁11、アキュムレータ13が、
この順序で配置されている。
In the refrigerant circuit 1 of FIG. 1, a compressor 3, an indoor heat exchanger 5, a flow control valve 7, an outdoor heat exchanger 9, a four-way valve 11 as a flow path switching valve, and an accumulator 13 are provided.
They are arranged in this order.

【0018】熱交換器としての室外熱交換器9と室内熱
交換器5は、それぞれファン5a、9aを備えていて、
室外空気または室内空気が熱交換されている。
The outdoor heat exchanger 9 and the indoor heat exchanger 5 as heat exchangers are equipped with fans 5a and 9a, respectively.
The outdoor air or indoor air is heat-exchanged.

【0019】四方弁11は、冷房運転時には、破線で示
すように冷媒を流すように位置して、暖房運転時には実
線で示すように位置される。このように四方弁11を切
り換えることにより、冷房と暖房の冷媒流路を切り換え
る。
The four-way valve 11 is positioned so that the refrigerant flows as shown by the broken line during the cooling operation, and as shown by the solid line during the heating operation. By switching the four-way valve 11 in this way, the cooling medium passage and the cooling medium passage are switched.

【0020】非共沸混合冷媒としては、例えば、R13
4aを52Wt %、R125を25Wt %、R32を2
3Wt %で混合した混合冷媒が用いられる。一般に、R
134aの沸点は摂氏−26度、R125の沸点は摂氏
−48度、R32の沸点は摂氏−52度である。このよ
うな組成の混合冷媒では、冷媒の漏洩があると沸点の低
いR32やR125の冷媒が先に漏れ易く、組成が大き
くくずれるので冷凍効果を十分に発揮することができな
くなるとともに、密度の高いR32やR125の冷媒か
ら先に漏洩することとなり、漏洩による圧力変化も単一
冷媒に比較して大きいのが一般的である。
As the non-azeotropic mixed refrigerant, for example, R13
4a 52 Wt%, R125 25 Wt%, R32 2
A mixed refrigerant mixed at 3 wt% is used. Generally, R
The boiling point of 134a is -26 degrees Celsius, the boiling point of R125 is -48 degrees Celsius, and the boiling point of R32 is -52 degrees Celsius. In the mixed refrigerant having such a composition, if the refrigerant leaks, the refrigerant having a low boiling point such as R32 or R125 is likely to leak first, and the composition is largely broken, so that the refrigerating effect cannot be sufficiently exerted and the density is high. The refrigerant of R32 or R125 leaks first, and the pressure change due to the leakage is generally larger than that of a single refrigerant.

【0021】ここで、冷媒漏洩検出機構について説明す
る。
Here, the refrigerant leakage detection mechanism will be described.

【0022】室内熱交換器5及び室外熱交換器9には、
それぞれ冷媒回路内の温度を検出する2つの温度検出器
15、16が設けられている。冷媒回路内の温度検出
は、室内熱交換器5及び室外熱交換器9付近に設けるこ
とに限るものではなく、冷媒回路内の温度を検出するも
のであればどこの温度を検出するものでもよいが、本実
施例では、過熱度制御に用いている温度検出器を利用し
ており、別途温度検出器を設けることなく部品点数の削
減が図られている。尚、上述の温度検出する装置として
例えば、室外空気の温度を検出するサーモ(サーミス
タ)や、室内空気の温度を検出するサーモ(サーミス
タ)であってもよい。これは冷凍装置の運転停止中は室
内及び室外の空気温度(雰囲気温度)と室内及び室外熱
交換器の温度は略同一であるからである。
The indoor heat exchanger 5 and the outdoor heat exchanger 9 include
Two temperature detectors 15 and 16 which respectively detect the temperature in the refrigerant circuit are provided. The temperature detection in the refrigerant circuit is not limited to being provided in the vicinity of the indoor heat exchanger 5 and the outdoor heat exchanger 9, and any temperature may be detected as long as it detects the temperature in the refrigerant circuit. However, in this embodiment, the temperature detector used for superheat control is used, and the number of parts is reduced without providing a separate temperature detector. The device for detecting the temperature described above may be, for example, a thermo (thermistor) that detects the temperature of outdoor air or a thermo (thermistor) that detects the temperature of indoor air. This is because the air temperature (ambient temperature) inside and outside the room and the temperature inside and outside the heat exchanger are substantially the same while the refrigeration system is stopped.

【0023】また、(凝縮)圧力は低温側で決まる。温
度検出器15,16の2箇所で温度を検出しているのは
室内外で温度差があった場合適確な温度を測定するため
である。
The (condensation) pressure is determined on the low temperature side. The temperature is detected at two locations of the temperature detectors 15 and 16 in order to measure an appropriate temperature when there is a temperature difference between the inside and outside of the room.

【0024】従って、室内熱交換器5が複数個並列に設
置される場合、それぞれの温度検出器の最低温度と圧力
で測定する。
Therefore, when a plurality of indoor heat exchangers 5 are installed in parallel, the minimum temperature and pressure of each temperature detector are measured.

【0025】圧縮機13の吐出口側には、冷媒回路内の
冷媒圧力を検出する圧力検出器17が設けられている。
圧力検出器17は、圧縮機13に設けることに限らず、
冷媒回路内であればどこでもよいが、他の制御機器等と
纏めて室外機に設けられた圧縮機13に配置することに
よって作業性の向上が図られている。
A pressure detector 17 for detecting the pressure of the refrigerant in the refrigerant circuit is provided on the discharge port side of the compressor 13.
The pressure detector 17 is not limited to being provided in the compressor 13,
Although it may be placed anywhere in the refrigerant circuit, the workability is improved by disposing it together with other control devices and the like in the compressor 13 provided in the outdoor unit.

【0026】上述した温度検出器15、16と、圧力検
出器17とは、それぞれ制御装置19に接続されてお
り、温度検出器15、16は制御装置19に温度検出信
号を送るようになっている。この制御装置19は、冷凍
装置の運転時には入力されず、冷凍装置の運転が停止さ
れると入力されて起動する。
The above-mentioned temperature detectors 15 and 16 and the pressure detector 17 are respectively connected to the control device 19, and the temperature detectors 15 and 16 send a temperature detection signal to the control device 19. There is. The control device 19 is not input during the operation of the refrigerating apparatus, but is input and starts when the operation of the refrigerating apparatus is stopped.

【0027】制御装置19の演算部21には、図2に示
すような所定温度における冷媒の圧力を計測したデータ
が収納されており、検出された温度から検出圧力に対応
する冷媒漏洩率が演算されるようになっている。このデ
ータは所定温度における冷媒の圧力を予め実測したもの
である。
The calculation unit 21 of the control device 19 stores data obtained by measuring the pressure of the refrigerant at a predetermined temperature as shown in FIG. 2, and calculates the refrigerant leakage rate corresponding to the detected pressure from the detected temperature. It is supposed to be done. This data is an actual measurement of the pressure of the refrigerant at a predetermined temperature.

【0028】ここで、図2に示す圧力曲線について説明
する。この圧力曲線は、縦軸に冷媒の圧力(Kg /c
m2 )を示し、横軸に冷媒漏洩率(%)を示したもの
で、各冷媒温度毎に圧力と冷媒漏洩率との関係を曲線で
示すものである。この図2は非共沸混合冷媒の場合を示
し、同様な関係を単一冷媒(Rー22)について示した
図3と比較すると、混合冷媒の場合には検出圧力により
冷媒漏洩率が著しく変化することが明らかである。従っ
て、このような冷媒温度と圧力との関係を単一冷媒の場
合に適用しても、圧力と冷媒漏洩率との関係を示す圧力
曲線が緩慢であるため、測定しにくい。従って、この方
法は、非共沸混合冷媒の場合に用いた方が効果的に冷媒
漏洩を検出することができる。
The pressure curve shown in FIG. 2 will be described. In this pressure curve, the vertical axis represents the pressure of the refrigerant (Kg / c
m 2 ), the horizontal axis indicates the refrigerant leakage rate (%), and the relationship between the pressure and the refrigerant leakage rate for each refrigerant temperature is shown by a curve. This FIG. 2 shows the case of a non-azeotropic mixed refrigerant, and comparing it with FIG. 3 showing a similar relationship for a single refrigerant (R-22), in the case of a mixed refrigerant, the refrigerant leakage rate significantly changes depending on the detected pressure. It is clear that Therefore, even if such a relationship between the refrigerant temperature and the pressure is applied to the case of a single refrigerant, the pressure curve showing the relationship between the pressure and the refrigerant leakage rate is slow and it is difficult to measure. Therefore, this method can detect refrigerant leakage more effectively when used in the case of a non-azeotropic mixed refrigerant.

【0029】制御装置19の警報表示器23は、演算部
21で演算した冷媒漏洩率が所定の値より少ない場合に
演算部21から警報信号を受け、点灯しまたは点滅する
ものである。
The alarm indicator 23 of the control device 19 receives an alarm signal from the calculator 21 when the refrigerant leakage rate calculated by the calculator 21 is smaller than a predetermined value, and turns on or blinks.

【0030】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.

【0031】図1の冷媒回路1においては、冷房運転時
には、図1の四方弁31が破線で示すように位置し、圧
縮機3、室外熱交換器9、流量制御弁7、室内熱交換器
5、四方弁11、アキュムレータ13の順序で冷媒が循
環される。一方、暖房運転時には、図1の実線で示すよ
うに四方弁11が位置し、圧縮機3、室内熱交換器5、
流量制御弁7、室外熱交換器9、四方弁11、アキュム
レータ13の順序で冷媒が循環される。
In the refrigerant circuit 1 of FIG. 1, during cooling operation, the four-way valve 31 of FIG. 1 is positioned as shown by the broken line, and the compressor 3, the outdoor heat exchanger 9, the flow control valve 7, the indoor heat exchanger are shown. The refrigerant is circulated in the order of 5, the four-way valve 11 and the accumulator 13. On the other hand, during the heating operation, the four-way valve 11 is positioned as shown by the solid line in FIG. 1, the compressor 3, the indoor heat exchanger 5,
The refrigerant is circulated in the order of the flow control valve 7, the outdoor heat exchanger 9, the four-way valve 11, and the accumulator 13.

【0032】冷凍装置の運転停止時、即ち運転開始前ま
たは運転後に冷凍装置が停止すると、制御装置19が入
力され、2つの温度検出器15及び16からの温度検出
信号を受ける。演算部21では、2つの温度検出器1
5、16から検出された温度の平均値を算出し、その算
出した温度における圧力と冷媒漏洩率との関係を演算す
る。
When the operation of the refrigerating apparatus is stopped, that is, when the refrigerating apparatus is stopped before or after the operation is started, the controller 19 is input and receives temperature detection signals from the two temperature detectors 15 and 16. In the calculation unit 21, the two temperature detectors 1
The average value of the temperatures detected from 5 and 16 is calculated, and the relationship between the pressure and the refrigerant leakage rate at the calculated temperature is calculated.

【0033】例えば、平均の冷媒温度が20℃である場
合、図2に示す20℃の圧力曲線が演算され、その時の
圧力検出器17で検出した圧力が約8Kg /cm2 である
場合には、約50%の冷媒が漏洩していることを判断す
る。そして、この場合、40%以上の漏洩であるから、
演算部21は警報信号を発す、警報表示器23が点灯す
る。
For example, when the average refrigerant temperature is 20 ° C., the pressure curve of 20 ° C. shown in FIG. 2 is calculated, and when the pressure detected by the pressure detector 17 at that time is about 8 kg / cm 2. , It is determined that about 50% of the refrigerant is leaking. And in this case, since the leakage is 40% or more,
The calculation unit 21 issues an alarm signal, and the alarm indicator 23 lights up.

【0034】操作者は、このような警報表示器23の点
灯により冷凍装置の運転前に気が付くから、冷媒の漏洩
を知り、冷凍装置運転前に漏洩箇所を調べて直し、ある
いは、必要に応じて冷媒を補充する。
Since the operator notices before operating the refrigerating device by turning on the alarm indicator 23 as described above, the operator knows the leakage of the refrigerant and investigates the leaked portion before operating the refrigerating device, or if necessary, corrects it. Add refrigerant.

【0035】尚、冷媒の圧力曲線は図2には10℃、2
0℃、30℃の場合を例示的に示しているが、実際には
1℃毎または2℃毎等の細かな温度範囲で示すものであ
る。
The pressure curve of the refrigerant is shown in FIG.
Although the case of 0 ° C. and 30 ° C. is shown as an example, it is actually shown in a fine temperature range such as every 1 ° C. or every 2 ° C.

【0036】これによって、冷媒が不足したまま運転す
ることを防止でき、圧縮機等の機器の損傷や冷凍能力の
低下を防止できる。
As a result, it is possible to prevent the engine from running with a shortage of the refrigerant, and to prevent damage to equipment such as the compressor and deterioration of the refrigerating capacity.

【0037】しかも運転前に冷媒不足を知るものである
から、運転時には冷凍装置の所定の冷凍能力を確保する
ことができる。
Moreover, since it is known that the refrigerant is insufficient before the operation, a predetermined refrigerating capacity of the refrigerating apparatus can be secured during the operation.

【0038】本発明は、上述した実施例に限定されず、
本発明の要旨を逸脱しない範囲で種々変形が可能であ
る。
The present invention is not limited to the above embodiment,
Various modifications can be made without departing from the scope of the present invention.

【0039】例えば、制御装置19が自動的に冷媒回路
内の冷媒温度と圧力を検出して検出値に基づいて演算す
るものに限らず、操作者が実際に測定した温度と圧力か
ら、図2に示すグラフを見て、これに基づいて判断する
ものであっても同様な効果を得ることができる。
For example, the control device 19 is not limited to one that automatically detects the refrigerant temperature and pressure in the refrigerant circuit and calculates based on the detected value. The same effect can be obtained even if the judgment is made based on the graph shown in FIG.

【0040】[0040]

【発明の効果】第1の発明によれば、高沸点冷媒と低沸
点冷媒とからなる非共沸混合冷媒を用いた冷媒回路を有
する冷凍装置において、冷凍装置の運転時ではなく、運
転停止時に冷媒回路内の冷媒状態を検出するものである
から、運転前に事前に冷媒漏洩を検出することができる
ので、冷媒不足にもかかわらず運転して故障の原因にな
ったり、運転しているにもかかわらず十分な冷凍能力が
得られないということがない。即ち、運転開始前に冷媒
の漏れを検出することができ、それに応じて運転開始前
に漏れ箇所の修理や、冷媒の補充等のメンテナンスをす
ることができる。
According to the first aspect of the present invention, in a refrigerating apparatus having a refrigerant circuit using a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant, the refrigerating apparatus is not in operation but in operation stop. Since it detects the state of the refrigerant in the refrigerant circuit, it can detect the refrigerant leakage in advance before the operation. Nevertheless, there is no reason that sufficient refrigeration capacity cannot be obtained. That is, the leakage of the refrigerant can be detected before the start of the operation, and accordingly, the maintenance such as the repair of the leakage point and the replenishment of the refrigerant can be performed before the start of the operation.

【0041】第2の発明によれば、第1の発明におい
て、所定温度における冷媒の圧力を計測したデータを予
め用意しておき、運転停止時に冷媒回路内の温度と冷媒
圧力を検出することによって、冷媒の漏れを容易に且つ
確実に検出することができる。
According to the second aspect of the present invention, in the first aspect of the present invention, data for measuring the pressure of the refrigerant at a predetermined temperature is prepared in advance, and the temperature and the refrigerant pressure in the refrigerant circuit are detected when the operation is stopped. It is possible to easily and surely detect the leakage of the refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる冷媒漏洩検出方法を用いた冷凍
装置の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus using a refrigerant leakage detection method according to the present invention.

【図2】非共沸混合冷媒の圧力と冷媒漏洩率との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the pressure of a non-azeotropic mixed refrigerant and the refrigerant leakage rate.

【図3】単一冷媒における圧力と冷媒漏洩率との関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between pressure and refrigerant leakage rate in a single refrigerant.

【符号の説明】[Explanation of symbols]

1 冷凍装置 15 温度検出器 16 温度検出器 17 圧力検出器 19 制御装置 21 演算部 23 警報表示器 1 Refrigerating Device 15 Temperature Detector 16 Temperature Detector 17 Pressure Detector 19 Control Device 21 Computing Section 23 Alarm Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 幸治 大阪府守口市京阪本通2丁目5番地5号 三洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Inoue 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高沸点冷媒と低沸点冷媒とからなる非共
沸混合冷媒を冷媒回路に循環する冷凍装置の冷媒漏洩検
出方法であって、 冷凍装置の運転停止時に、前記冷媒回路内の冷媒状態を
検出して冷媒漏洩を検出することを特徴とする冷凍装置
の冷媒漏洩検出方法。
1. A method for detecting refrigerant leakage in a refrigeration system in which a non-azeotropic mixed refrigerant comprising a high-boiling-point refrigerant and a low-boiling-point refrigerant is circulated in a refrigerant circuit, wherein the refrigerant in the refrigerant circuit is in a non-operation state of the refrigeration system. A refrigerant leakage detection method for a refrigeration system, comprising detecting a state to detect a refrigerant leakage.
【請求項2】 高沸点冷媒と低沸点冷媒とからなる非共
沸混合冷媒を冷媒回路に循環する冷凍装置の冷媒漏洩検
出方法であって、 冷凍装置の運転停止時に、前記冷媒回路内の温度と圧力
とを測定し、これらの測定した温度と圧力とを、予め温
度と圧力との関係における冷媒漏洩量の関係を計測した
データと比較して冷媒漏洩を検出することを特徴とする
冷凍装置の冷媒漏洩検出方法。
2. A refrigerant leakage detection method for a refrigeration system in which a non-azeotropic mixed refrigerant composed of a high-boiling-point refrigerant and a low-boiling-point refrigerant is circulated in a refrigerant circuit, the temperature in the refrigerant circuit being when the refrigeration system is stopped. And a pressure are measured, and the measured temperature and pressure are compared with data in which the relationship of the refrigerant leakage amount in the relationship between the temperature and the pressure is measured in advance to detect the refrigerant leakage. Refrigerant leakage detection method.
JP6210615A 1994-08-11 1994-08-11 Refrigerant leakage detecting method of refrigerating device Pending JPH0854161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6210615A JPH0854161A (en) 1994-08-11 1994-08-11 Refrigerant leakage detecting method of refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210615A JPH0854161A (en) 1994-08-11 1994-08-11 Refrigerant leakage detecting method of refrigerating device

Publications (1)

Publication Number Publication Date
JPH0854161A true JPH0854161A (en) 1996-02-27

Family

ID=16592264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210615A Pending JPH0854161A (en) 1994-08-11 1994-08-11 Refrigerant leakage detecting method of refrigerating device

Country Status (1)

Country Link
JP (1) JPH0854161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206509A (en) * 2014-04-18 2015-11-19 日立アプライアンス株式会社 Cold/hot heat equipment
WO2019082331A1 (en) * 2017-10-26 2019-05-02 三菱電機株式会社 Refrigeration air-conditioning device and control device
WO2020048551A1 (en) * 2018-09-07 2020-03-12 青岛海信日立空调系统有限公司 Air conditioner
US11175072B2 (en) 2016-03-23 2021-11-16 Mitsubishi Electric Corporation Air conditioner
WO2024009394A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Air conditioner and refrigerant leak detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129366A (en) * 1983-01-11 1984-07-25 株式会社日立製作所 Refrigerator
JPH04151474A (en) * 1990-10-12 1992-05-25 Toshiba Corp Air conditioner
JPH06117737A (en) * 1992-10-01 1994-04-28 Hitachi Ltd Refrigerant composition detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129366A (en) * 1983-01-11 1984-07-25 株式会社日立製作所 Refrigerator
JPH04151474A (en) * 1990-10-12 1992-05-25 Toshiba Corp Air conditioner
JPH06117737A (en) * 1992-10-01 1994-04-28 Hitachi Ltd Refrigerant composition detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206509A (en) * 2014-04-18 2015-11-19 日立アプライアンス株式会社 Cold/hot heat equipment
US11175072B2 (en) 2016-03-23 2021-11-16 Mitsubishi Electric Corporation Air conditioner
WO2019082331A1 (en) * 2017-10-26 2019-05-02 三菱電機株式会社 Refrigeration air-conditioning device and control device
JPWO2019082331A1 (en) * 2017-10-26 2020-04-02 三菱電機株式会社 Refrigeration air conditioner and control device
WO2020048551A1 (en) * 2018-09-07 2020-03-12 青岛海信日立空调系统有限公司 Air conditioner
WO2024009394A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Air conditioner and refrigerant leak detection method

Similar Documents

Publication Publication Date Title
US10837872B2 (en) Diagnosis control method of air conditioner
CN110895020B (en) Refrigerant leakage detection method and air conditioner
JP2007163106A (en) Air conditioner
JPH10122711A (en) Refrigerating cycle control device
CN105485856A (en) Air conditioning system and detection method of abnormity of air conditioning system in heating state
JP6521571B2 (en) Cooling and heating equipment
WO2017068686A1 (en) Refrigeration cycle device
CN105674507A (en) Method and device for detecting refrigerants of air conditioner
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
CN112747433A (en) Control method, storage medium and control device of air conditioner
CN114992776A (en) Refrigerant leakage detection method and device for air conditioning system, air conditioner and storage medium
US11835428B2 (en) Diagnosis control method of air conditioner
KR102150441B1 (en) Air conditioner
JP2000081258A (en) Refrigerating device and refrigerant leakage detecting method
JPH0854161A (en) Refrigerant leakage detecting method of refrigerating device
CN110173816A (en) A kind of detection method and detection device of air-conditioning refrigerant leakage
CN112097364B (en) Air conditioner and electronic expansion valve fault detection method thereof
JP4468222B2 (en) Refrigeration apparatus and air conditioner equipped with the same
CN117167900A (en) Four-way valve switching fault detection method, electronic equipment and air conditioning unit
EP1548379B1 (en) Refrigerating apparatus and control method thereof
KR100869959B1 (en) Test control method for airconditioner
KR100362374B1 (en) Method for indicating refrigerant leakage of refrigerating cycle
KR100656162B1 (en) Method fot controlling operation of a multi air conditioner system
JP2002221348A (en) Air conditioner
JP2010151397A (en) Failure diagnosing device used for refrigerating cycle circuit