JP2948105B2 - Refrigeration air conditioner using non-azeotropic mixed refrigerant - Google Patents

Refrigeration air conditioner using non-azeotropic mixed refrigerant

Info

Publication number
JP2948105B2
JP2948105B2 JP6207457A JP20745794A JP2948105B2 JP 2948105 B2 JP2948105 B2 JP 2948105B2 JP 6207457 A JP6207457 A JP 6207457A JP 20745794 A JP20745794 A JP 20745794A JP 2948105 B2 JP2948105 B2 JP 2948105B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
temperature
composition
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6207457A
Other languages
Japanese (ja)
Other versions
JPH0875280A (en
Inventor
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6207457A priority Critical patent/JP2948105B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to ES98107191T priority patent/ES2178068T3/en
Priority to ES98107196T priority patent/ES2176850T3/en
Priority to DE69527092T priority patent/DE69527092T2/en
Priority to DE69532003T priority patent/DE69532003T2/en
Priority to DE69517099T priority patent/DE69517099T2/en
Priority to EP98107191A priority patent/EP0854329B1/en
Priority to US08/500,551 priority patent/US5626026A/en
Priority to EP98107193A priority patent/EP0854330B1/en
Priority to ES98107194T priority patent/ES2176849T3/en
Priority to PT95304838T priority patent/PT693663E/en
Priority to ES98107193T priority patent/ES2178069T3/en
Priority to ES98107192T priority patent/ES2208995T3/en
Priority to EP95304838A priority patent/EP0693663B1/en
Priority to DE69526980T priority patent/DE69526980T2/en
Priority to ES98107195T priority patent/ES2178070T3/en
Priority to EP98107196A priority patent/EP0854332B1/en
Priority to EP98107192A priority patent/EP0853221B1/en
Priority to EP98107195A priority patent/EP0853222B1/en
Priority to EP98107194A priority patent/EP0854331B1/en
Priority to PT98107192T priority patent/PT853221E/en
Priority to DE69527095T priority patent/DE69527095T2/en
Priority to DE69526979T priority patent/DE69526979T2/en
Priority to ES95304838T priority patent/ES2148441T3/en
Priority to DE69526982T priority patent/DE69526982T2/en
Priority to AU25041/95A priority patent/AU683385B2/en
Priority to CN95108967A priority patent/CN1067154C/en
Priority to TW084107907A priority patent/TW289079B/zh
Publication of JPH0875280A publication Critical patent/JPH0875280A/en
Priority to US08/779,851 priority patent/US5735132A/en
Priority to US09/005,813 priority patent/US5941084A/en
Priority to HK98100593A priority patent/HK1001659A1/en
Priority to KR2019980010044U priority patent/KR200145320Y1/en
Application granted granted Critical
Publication of JP2948105B2 publication Critical patent/JP2948105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、冷媒循環組成が初期
充填組成と異なった場合でも、運転効率が良く且つ信頼
性の高い運転を行う冷凍空調装置に関し、詳細には高沸
点成分と低沸点成分とからなる非共沸混合冷媒を用いた
冷凍空調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration and air-conditioning system which operates with high operating efficiency and high reliability even when the refrigerant circulation composition is different from the initial filling composition. The present invention relates to a refrigeration air conditioner using a non-azeotropic mixed refrigerant composed of components.

【0002】[0002]

【従来の技術】図27は、例えば特開昭61−6546
号公報に示された従来の非共沸混合冷媒を用いた冷凍空
調装置の構成を示す構成図であり、図において、1は圧
縮機、2は凝縮器、3は減圧装置、4は蒸発器、5はア
キュムレータであり、これらは配管により直列に接続さ
れ、冷凍空調装置を構成し、冷媒として、高沸点成分と
低沸点成分とからなる非共沸混合冷媒を用いている。
2. Description of the Related Art FIG.
FIG. 1 is a configuration diagram showing a configuration of a conventional refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant, in which reference numeral 1 denotes a compressor, 2 denotes a condenser, 3 denotes a decompression device, and 4 denotes an evaporator. Numerals 5 and 5 denote accumulators, which are connected in series by piping to form a refrigerating air conditioner, and use a non-azeotropic mixed refrigerant composed of a high-boiling component and a low-boiling component as a refrigerant.

【0003】次に動作について説明する。上記のように
構成された冷凍空調装置において、圧縮機1で圧縮され
た高温高圧の冷媒ガスは凝縮器2で凝縮液化され、減圧
装置3で減圧されて低圧の気液二相冷媒となって蒸発器
4に流入する。この冷媒は、蒸発器4で蒸発し、アキュ
ムレータ5を経て圧縮機1に戻り、再び圧縮されて凝縮
器2へ送り込まれる。またアキュムレータ5は、冷凍空
調装置の運転条件や負荷条件によって発生した余剰な冷
媒を溜めることにより、圧縮機1への液戻りを防止して
いる。
Next, the operation will be described. In the refrigeration and air-conditioning apparatus configured as described above, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is condensed and liquefied by the condenser 2 and decompressed by the decompression device 3 to become a low-pressure gas-liquid two-phase refrigerant. It flows into the evaporator 4. This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Further, the accumulator 5 prevents the liquid from returning to the compressor 1 by storing excess refrigerant generated by operating conditions and load conditions of the refrigerating air conditioner.

【0004】このような冷凍空調装置では、冷媒として
目的に合わせた非共沸混合冷媒を使用することにより、
単一冷媒では得られなかったより低い蒸発温度、あるい
はより高い凝縮温度を得ることができたり、あるいはサ
イクル効率をより向上させることができたりするなどの
利点が得られることは従来から知られている。また、従
来から広く用いられているR12やR22などの冷媒
は、オゾン層破壊の原因となるため、これらの代替冷媒
として非共沸混合冷媒が提案されている。
[0004] In such a refrigeration / air-conditioning system, a non-azeotropic mixed refrigerant is used as a refrigerant.
It is conventionally known that advantages such as a lower evaporation temperature or a higher condensation temperature that could not be obtained with a single refrigerant or a higher cycle efficiency can be obtained. . In addition, since refrigerants such as R12 and R22, which have been widely used in the past, cause depletion of the ozone layer, non-azeotropic mixed refrigerants have been proposed as substitutes for these refrigerants.

【0005】[0005]

【発明が解決しようとする課題】従来の非共沸混合冷媒
を用いた冷凍空調装置は以上のように構成されているの
で、冷凍空調装置の運転条件や負荷条件が一定であれ
ば、冷凍サイクル内を循環する冷媒組成は一定であり、
上述のような効率の良い冷凍サイクルを構成する。とこ
ろが運転条件や負荷条件が変化し、特にアキュムレータ
内に貯溜される冷媒量が変化すると、冷凍サイクル内を
循環する冷媒組成が変化し、この循環冷媒組成に応じた
冷凍サイクルの制御、すなわち圧縮機の回転数制御や膨
張弁の開度制御による冷媒流量の調整が必要となる。し
かし、従来の冷凍空調装置では、この循環冷媒組成を検
知する手段を設けていないため、循環冷媒組成に応じた
最適な運転が維持できないなどの問題点があった。また
冷凍サイクルの使用中の冷媒漏れや、あるいは冷媒充填
時の誤動作で循環冷媒組成が変化した場合にも、この循
環冷媒組成の異常を検知できず、安全性および信頼性の
高い冷凍空調装置が得られないなどの問題点があった。
The conventional refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture is constructed as described above. Therefore, if the operating conditions and load conditions of the refrigeration / air-conditioning system are constant, the refrigeration cycle The composition of the refrigerant circulating inside is constant,
An efficient refrigeration cycle as described above is configured. However, when operating conditions and load conditions change, especially when the amount of refrigerant stored in the accumulator changes, the composition of the refrigerant circulating in the refrigeration cycle changes, and control of the refrigeration cycle according to the circulating refrigerant composition, that is, the compressor It is necessary to adjust the flow rate of the refrigerant by controlling the number of rotations and controlling the opening of the expansion valve. However, in the conventional refrigeration / air-conditioning apparatus, since there is no means for detecting the circulating refrigerant composition, there has been a problem that an optimal operation according to the circulating refrigerant composition cannot be maintained. Also, even if the circulating refrigerant composition changes due to a refrigerant leak during use of the refrigeration cycle or a malfunction at the time of charging the refrigerant, the abnormality of the circulating refrigerant composition cannot be detected. There was a problem that it could not be obtained.

【0006】請求項1の発明は上記のような問題点を解
消するためになされたもので、温度検出器と圧力検出器
からの信号を組成演算器によって演算し、冷凍空調装置
の運転条件や負荷条件の変化により循環組成が変化した
場合や、あるいは冷凍空調装置使用中の冷媒漏れや、冷
媒充填時の誤動作で循環組成が変化した場合でも、サイ
クル内の循環組成を正確に検知することができる非共沸
混合冷媒を用いた冷凍空調装置を得ることを目的とす
る。
The invention of claim 1 has been made in order to solve the above-mentioned problems. Signals from a temperature detector and a pressure detector are calculated by a composition calculator to determine the operating conditions of the refrigeration and air conditioning system. Even if the circulating composition changes due to a change in load conditions, or if the circulating composition changes due to a refrigerant leak during use of a refrigeration / air-conditioning system or a malfunction during charging of the refrigerant, the circulating composition in the cycle can be accurately detected. It is an object of the present invention to obtain a refrigeration air conditioner using a non-azeotropic mixed refrigerant that can be used.

【0007】請求項2の発明は、第1及び第2の温度検
出器と圧力検出器からの信号を組成演算器によって演算
し、冷凍空調装置の運転条件や負荷条件の変化により循
環組成が変化した場合や、あるいは冷凍空調装置使用中
の冷媒漏れや、冷媒充填時の誤動作で循環組成が変化し
た場合でも、サイクル内の循環組成を正確に検知するこ
とができる非共沸混合冷媒を用いた冷凍空調装置を得る
ことを目的とする。
According to a second aspect of the present invention, the signals from the first and second temperature detectors and the pressure detectors are calculated by a composition calculator, and the circulating composition changes due to changes in the operating conditions and load conditions of the refrigeration and air conditioning system. Even if the refrigerant composition leaks during use of the refrigeration / air-conditioning system, or if the circulating composition changes due to a malfunction during the charging of the refrigerant, a non-azeotropic mixed refrigerant that can accurately detect the circulating composition in the cycle is used. The purpose is to obtain a refrigeration air conditioner.

【0008】請求項3の発明は、複数の温度検出器と圧
力検出器からの信号を組成演算器によって演算し、冷凍
空調装置の運転条件や負荷条件の変化により循環組成が
変化した場合や、あるいは冷凍空調装置使用中の冷媒漏
れや、冷媒充填時の誤動作で循環組成が変化した場合で
も、サイクル内の循環組成を正確に検知することができ
る非共沸混合冷媒を用いた冷凍空調装置を得ることを目
的とする。
According to a third aspect of the present invention, signals from a plurality of temperature detectors and pressure detectors are calculated by a composition calculator, and when the circulating composition changes due to a change in operating conditions or load conditions of the refrigeration and air conditioning system, Alternatively, a refrigeration air conditioner using a non-azeotropic mixed refrigerant that can accurately detect the circulating composition in the cycle even if the circulating composition changes due to refrigerant leakage during use of the refrigeration air conditioning device or malfunction during refrigerant charging. The purpose is to gain.

【0009】請求項4の発明は、バイパス配管の高圧側
と低圧側との間で熱交換させて、装置をコンパクトにし
た非共沸混合冷媒を用いた冷凍空調装置を得ることを目
的とする。
A fourth object of the present invention is to obtain a refrigeration and air-conditioning apparatus using a non-azeotropic mixed refrigerant, which is made compact by exchanging heat between the high-pressure side and the low-pressure side of the bypass pipe. .

【0010】請求項5の発明は、低圧側冷媒の温度およ
び圧力を検出する複数個の温度検出器と圧力検出器から
の信号を組成演算器によって演算し、冷凍空調装置の運
転条件や負荷条件の変化により循環組成が変化した場合
や、あるいは冷凍空調装置使用中の冷媒漏れや、冷媒充
填時の誤動作で循環組成が変化した場合でも、サイクル
内の循環組成を正確に検知することができる非共沸混合
冷媒を用いた冷凍空調装置を得ることを目的とする。
According to a fifth aspect of the present invention, a signal from a plurality of temperature detectors for detecting the temperature and pressure of the low-pressure side refrigerant and a signal from the pressure detector are calculated by a composition calculator, and operating conditions and load conditions of the refrigeration and air-conditioning apparatus are calculated. The circulating composition in the cycle can be accurately detected even if the circulating composition changes due to a change in the circulating composition, or if the circulating composition changes due to a refrigerant leak during use of the refrigeration / air-conditioning device or a malfunction during the charging of the refrigerant. It is an object of the present invention to obtain a refrigeration air conditioner using an azeotropic mixed refrigerant.

【0011】請求項6の発明は、組成演算器により検出
された冷媒組成に応じて圧縮機、第1減圧装置などを制
御する制御装置を設け、冷凍空調装置の運転条件や負荷
条件の変化により循環組成が変化した場合や、あるいは
冷凍空調装置使用中の冷媒漏れや、冷媒充填時の誤動作
で循環組成が変化した場合でも冷凍空調装置の最適運転
が可能となる非共沸混合冷媒を用いた冷凍空調装置を得
ることを目的とする。
According to a sixth aspect of the present invention, there is provided a control device for controlling a compressor, a first decompression device, and the like in accordance with the refrigerant composition detected by the composition computing device. A non-azeotropic mixed refrigerant that enables optimal operation of the refrigeration air conditioner even when the circulation composition changes, or when the refrigerant composition changes due to refrigerant leakage during use of the refrigeration air conditioner or a malfunction during filling of the refrigerant. The purpose is to obtain a refrigeration air conditioner.

【0012】請求項7の発明は、循環組成が所定範囲か
ら外れた場合に警告信号を発する比較演算手段を設け、
非共沸混合冷媒の循環組成が使用中に冷媒漏れによって
変化したり、冷媒充填時の誤動作で循環組成が変化した
ことを確実に検知でき、安全性や信頼性の高い非共沸混
合冷媒を用いた冷凍空調装置を得ることを目的とする。
According to a seventh aspect of the present invention, there is provided a comparison operation means for issuing a warning signal when the circulating composition is out of a predetermined range,
It is possible to reliably detect that the circulating composition of a non-azeotropic mixed refrigerant changes due to refrigerant leakage during use, or that the circulating composition has changed due to a malfunction during refrigerant charging. The purpose is to obtain the used refrigeration and air-conditioning system.

【0013】[0013]

【課題を解決するための手段】請求項1の発明に係る非
共沸混合冷媒を用いた冷凍空調装置は、低圧側冷媒の温
度と圧力を検出する温度検出器並びに圧力検出器と、温
度検出器と圧力検出器で検出した信号から、冷凍サイク
ル内を循環する冷媒組成を演算する組成演算器とを設け
たものである。
According to a first aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising: a temperature detector for detecting a temperature and a pressure of a low-pressure side refrigerant; a pressure detector; And a composition calculator for calculating the composition of the refrigerant circulating in the refrigeration cycle from the signal detected by the pressure detector and the pressure detector.

【0014】請求項2の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、低圧側冷媒の温度と圧力を検出す
る第1温度検出器と圧力検出器と、高圧側冷媒の温度を
検出する第2温度検出器と、第1温度検出器と第2温度
検出器および圧力検出器で検出した信号から、冷凍サイ
クル内を循環する冷媒組成を演算する組成演算器とを設
けたものである。
According to a second aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising: a first temperature detector for detecting the temperature and pressure of the low-pressure refrigerant; a pressure detector; A second temperature detector for detecting, and a composition calculator for calculating a refrigerant composition circulating in the refrigeration cycle from signals detected by the first temperature detector, the second temperature detector, and the pressure detector. is there.

【0015】請求項3の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、高圧側冷媒の温度を検出する3個
以上の温度検出器および高圧側冷媒の圧力を検出する圧
力検出器と、3個以上の温度検出器と圧力検出器で検出
した信号から、冷凍サイクル内を循環する冷媒組成を演
算する組成演算器とを設けたものである。
According to a third aspect of the present invention, there is provided a refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture, wherein three or more temperature detectors for detecting the temperature of the high-pressure refrigerant and a pressure detector for detecting the pressure of the high-pressure refrigerant. And a composition calculator for calculating the composition of the refrigerant circulating in the refrigeration cycle from signals detected by three or more temperature detectors and pressure detectors.

【0016】請求項4の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、バイパス配管を冷却する方法とし
て高圧側と低圧側との間で熱交換させるように構成した
ものである。
A refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to the invention of claim 4 is configured such that heat is exchanged between a high pressure side and a low pressure side as a method of cooling a bypass pipe.

【0017】請求項5の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、低圧側冷媒の温度を検出する3個
以上の温度検出器および低圧側冷媒の圧力を検出する圧
力検出器と、3個以上の温度検出器と圧力検出器で検出
した信号から、冷凍サイクル内を循環する冷媒組成を演
算する組成演算器とを設けたものである。
According to a fifth aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising three or more temperature detectors for detecting the temperature of the low-pressure refrigerant and a pressure detector for detecting the pressure of the low-pressure refrigerant. And a composition calculator for calculating the composition of the refrigerant circulating in the refrigeration cycle from signals detected by three or more temperature detectors and pressure detectors.

【0018】請求項6の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、組成演算器により検出された冷媒
組成に応じて圧縮機、第1減圧装置などを制御する制御
装置を設けたものである。
A refrigeration and air-conditioning system using a non-azeotropic mixed refrigerant according to the invention of claim 6 is provided with a control device for controlling a compressor, a first pressure reducing device, and the like according to the refrigerant composition detected by a composition calculator. It is a thing.

【0019】請求項7の発明に係る非共沸混合冷媒を用
いた冷凍空調装置は、組成演算器により検出された冷媒
組成が所定範囲から外れた場合に警告信号を発する比較
演算手段と、この比較演算手段が発する前記警報信号に
よって動作する警報装置とを設けたものである。
According to a seventh aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising: a comparison operation means for issuing a warning signal when the refrigerant composition detected by the composition operation device is out of a predetermined range; And an alarm device operated by the alarm signal generated by the comparison operation means.

【0020】[0020]

【作用】請求項1の発明における非共沸混合冷媒を用い
た冷凍空調装置は、温度検出器と圧力検出器で検出した
信号から、冷凍サイクル内を循環する冷媒組成を演算
し、冷凍空調装置の運転条件や負荷条件の変化により循
環組成が変化した場合や、あるいは冷凍空調装置使用中
の冷媒漏れや、冷媒充填時の誤動作で循環組成が変化し
た場合でも、サイクル内の循環組成を正確に検知する。
According to the first aspect of the present invention, a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant calculates a refrigerant composition circulating in a refrigeration cycle from signals detected by a temperature detector and a pressure detector. Even if the circulating composition changes due to changes in operating conditions or load conditions, or if the circulating composition changes due to a refrigerant leak during use of a refrigeration / air-conditioning system or a malfunction during charging of the refrigerant, the circulating composition in the cycle can be accurately determined. Detect.

【0021】請求項2の発明における非共沸混合冷媒を
用いた冷凍空調装置は、第1温度検出器と第2温度検出
器および圧力検出器で検出した信号から、冷凍サイクル
内を循環する冷媒組成を演算し、冷凍空調装置の運転条
件や負荷条件の変化により循環組成が変化した場合や、
あるいは冷凍空調装置使用中の冷媒漏れや、冷媒充填時
の誤動作で循環組成が変化した場合でも、サイクル内の
循環組成を正確に検知する。
A refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to the second aspect of the present invention provides a refrigerant circulating in a refrigeration cycle based on signals detected by a first temperature detector, a second temperature detector and a pressure detector. Calculate the composition, if the circulating composition changes due to changes in the operating conditions and load conditions of the refrigeration and air conditioning system,
Alternatively, even if the circulating composition changes due to a refrigerant leak during use of the refrigeration / air-conditioning apparatus or a malfunction at the time of charging the refrigerant, the circulating composition in the cycle is accurately detected.

【0022】請求項3の発明における非共沸混合冷媒を
用いた冷凍空調装置は、高圧側冷媒の温度を検出する複
数個の温度検出器と圧力検出器で検出した信号から、冷
凍サイクル内を循環する冷媒組成を演算し、冷凍空調装
置の運転条件や負荷条件の変化により循環組成が変化し
た場合や、あるいは冷凍空調装置使用中の冷媒漏れや、
冷媒充填時の誤動作で循環組成が変化した場合でも、サ
イクル内の循環組成を正確に検知する。
The refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to the third aspect of the present invention provides a refrigeration cycle based on signals detected by a plurality of temperature detectors for detecting the temperature of the high-pressure side refrigerant and the pressure detectors. Calculate the circulating refrigerant composition, when the circulating composition changes due to changes in the operating conditions and load conditions of the refrigeration air conditioner, or refrigerant leakage during use of the refrigeration air conditioner,
Even if the circulating composition changes due to a malfunction at the time of charging the refrigerant, the circulating composition in the cycle is accurately detected.

【0023】請求項4の発明における非共沸混合冷媒を
用いた冷凍空調装置は、バイパス配管を冷却する方法と
して高圧側と低圧側との間で熱交換させ、冷凍空調装置
の構造をコンパクトにすることができる。
In the refrigeration / air-conditioning system using the non-azeotropic refrigerant mixture according to the fourth aspect of the present invention, heat is exchanged between the high-pressure side and the low-pressure side as a method of cooling the bypass pipe, thereby making the structure of the refrigeration / air-conditioning system compact. can do.

【0024】請求項5の発明における非共沸混合冷媒を
用いた冷凍空調装置は、低圧側冷媒の温度を検出する複
数個の温度検出器と圧力検出器で検出した信号から、冷
凍サイクル内を循環する冷媒組成を演算し、冷凍空調装
置の運転条件や負荷条件の変化により循環組成が変化し
た場合や、あるいは冷凍空調装置使用中の冷媒漏れや、
冷媒充填時の誤動作で循環組成が変化した場合でも、サ
イクル内の循環組成を正確に検知する。
According to a fifth aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic refrigerant mixture, wherein a plurality of temperature detectors for detecting the temperature of the low-pressure side refrigerant and signals detected by the pressure detectors are used to control the inside of the refrigeration cycle. Calculate the circulating refrigerant composition, when the circulating composition changes due to changes in the operating conditions and load conditions of the refrigeration air conditioner, or refrigerant leakage during use of the refrigeration air conditioner,
Even if the circulating composition changes due to a malfunction at the time of charging the refrigerant, the circulating composition in the cycle is accurately detected.

【0025】請求項6の発明における非共沸混合冷媒を
用いた冷凍空調装置は、組成演算器により検出された冷
媒組成に応じて圧縮機、第1減圧装置などを制御し、冷
凍空調装置の運転条件や負荷条件の変化により循環組成
が変化した場合や、あるいは冷凍空調装置使用中の冷媒
漏れや、冷媒充填時の誤動作で循環組成が変化した場合
でも冷凍空調装置の最適運転が可能となる。
According to the sixth aspect of the present invention, a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant controls a compressor, a first pressure reducing device, and the like in accordance with a refrigerant composition detected by a composition calculator, and Optimum operation of the refrigeration air conditioner is possible even when the circulation composition changes due to changes in operating conditions and load conditions, or when the refrigerant composition changes due to refrigerant leakage during use of the refrigeration air conditioner or malfunction during filling of the refrigerant. .

【0026】請求項7の発明における非共沸混合冷媒を
用いた冷凍空調装置は、循環組成が所定範囲から外れた
場合に警告信号で警報装置を動作させ、非共沸混合冷媒
の循環組成が使用中に冷媒漏れによって変化したり、冷
媒充填時の誤動作で循環組成が変化したことを確実に検
知する。
In the refrigeration and air-conditioning system using the non-azeotropic mixed refrigerant according to the seventh aspect of the present invention, when the circulating composition is out of a predetermined range, an alarm is activated by a warning signal, and the circulating composition of the non-azeotropic mixed refrigerant is reduced. It reliably detects a change due to a refrigerant leak during use or a change in the circulation composition due to a malfunction at the time of charging the refrigerant.

【0027】[0027]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1はこの発明の実施例1による非共沸混合冷媒
を用いた冷凍空調装置を示す冷媒回路図であり、図にお
いて、1は圧縮機、2は凝縮器、3は例えば第1毛細管
を使用した第1減圧装置、4は蒸発器、5はアキュムレ
ータであり、これらを配管により直列に接続することに
より冷凍サイクルを構成している。この冷凍サイクル内
には、例えば高沸点成分R134aと低沸点成分R32
からなる非共沸混合冷媒が充填されている。
Embodiment 1 FIG. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention. In the drawing, 1 is a compressor, 2 is a condenser, and 3 is, for example, a first capillary. The first decompression device 4 is an evaporator, 4 is an accumulator, and 5 is an accumulator, and these are connected in series by piping to constitute a refrigeration cycle. In this refrigeration cycle, for example, a high boiling component R134a and a low boiling component R32
Is charged.

【0028】11は圧縮機1の吐出配管と圧縮機1の吸
入配管をバイパスするバイパス配管であり、このバイパ
ス配管11の途中には、第2減圧装置である第2毛細管
12が設けられている。13はバイパス配管11の高圧
側から第2毛細管12へ流入する非共沸混合冷媒を冷却
する冷却手段としての二重管熱交換器であり、バイパス
配管11の低圧側との熱交換器で構成されている。ま
た、第2毛細管12の出口部には、冷媒温度を検出する
第1温度検出器21と冷媒圧力を検出する第1圧力検出
器22が設けられている。30は組成演算器であり、第
1温度検出器21と第1圧力検出器22の検出信号が入
力される。
Reference numeral 11 denotes a bypass pipe which bypasses a discharge pipe of the compressor 1 and a suction pipe of the compressor 1, and a second capillary 12 as a second pressure reducing device is provided in the middle of the bypass pipe 11. . Reference numeral 13 denotes a double-pipe heat exchanger as cooling means for cooling the non-azeotropic refrigerant mixture flowing from the high-pressure side of the bypass pipe 11 into the second capillary tube 12, and is constituted by a heat exchanger with the low-pressure side of the bypass pipe 11. Have been. At the outlet of the second capillary tube 12, a first temperature detector 21 for detecting the refrigerant temperature and a first pressure detector 22 for detecting the refrigerant pressure are provided. Reference numeral 30 denotes a composition calculator to which detection signals of the first temperature detector 21 and the first pressure detector 22 are input.

【0029】組成演算器30は、第1温度検出器21と
第1圧力検出器22が検出する第2毛細管12の出口部
の温度と圧力に基づいて冷凍サイクル内の非共沸混合冷
媒の循環組成を演算する機能を有している。
The composition calculator 30 circulates the non-azeotropic refrigerant mixture in the refrigeration cycle based on the temperature and pressure at the outlet of the second capillary tube 12 detected by the first temperature detector 21 and the first pressure detector 22. It has the function of calculating the composition.

【0030】次に動作について説明する。圧縮機1で圧
縮された高温高圧の冷媒ガスは凝縮器2で凝縮液化し、
第1減圧装置3で減圧され、低圧の気液二相冷媒となっ
て蒸発器4に流入する。この冷媒は、蒸発器4で蒸発
し、アキュムレータ5を経て圧縮機1に戻り、再び圧縮
されて凝縮器2へ送り込まれる。冷凍空調装置の運転条
件や負荷条件によって発生した余剰な非共沸混合冷媒
は、アキュムレータ5内に溜る。このアキュムレータ5
内の冷媒は、高沸点成分に富んだ液相と、低沸点成分に
富んだ気相に分離され、高沸点成分に富んだ液相はアキ
ュムレータ5内に貯溜される。このためアキュムレータ
5内に液冷媒が存在すると、冷凍サイクル内を循環する
冷媒組成は低沸点成分が多くなる(循環組成が増加す
る)傾向を示す。
Next, the operation will be described. The high-temperature and high-pressure refrigerant gas compressed in the compressor 1 is condensed and liquefied in the condenser 2,
The pressure is reduced by the first pressure reducing device 3, and the low-pressure gas-liquid two-phase refrigerant flows into the evaporator 4. This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Excess non-azeotropic refrigerant mixture generated due to operating conditions and load conditions of the refrigeration / air-conditioning device accumulates in the accumulator 5. This accumulator 5
The refrigerant therein is separated into a liquid phase rich in high boiling components and a gas phase rich in low boiling components, and the liquid phase rich in high boiling components is stored in the accumulator 5. For this reason, when the liquid refrigerant exists in the accumulator 5, the refrigerant composition circulating in the refrigeration cycle tends to have a large amount of low-boiling components (the circulation composition increases).

【0031】バイパス配管11には、圧縮機1より吐出
された高圧蒸気冷媒の一部が流入し、二重管熱交換器1
3の環状部で低圧の冷媒と熱交換して、凝縮液化する。
この液冷媒は第2毛細管12で減圧され、低圧の冷媒と
なって二重管熱交換器13の内管部に流入し、環状部の
高圧冷媒と熱交換して、蒸発する。この低圧蒸気冷媒
は、圧縮機1の吸入配管へ流入する。なお図2は、この
バイパス配管11内の冷媒の状態変化を圧力−エンタル
ピー線図上に示したもので、図中A点は二重管熱交換器
13の高圧側入口、B点は二重管熱交換器13の高圧側
出口および第2毛細管12の入口、C点は二重管熱交換
器13の低圧側入口および第2毛細管12の出口、D点
は二重管熱交換器13の低圧側出口での非共沸混合冷媒
の状態を表している。
A part of the high-pressure steam refrigerant discharged from the compressor 1 flows into the bypass pipe 11, and the double pipe heat exchanger 1
The heat exchanges with the low-pressure refrigerant in the annular portion 3 to condense and liquefy.
This liquid refrigerant is decompressed in the second capillary tube 12, becomes a low-pressure refrigerant, flows into the inner tube of the double-tube heat exchanger 13, exchanges heat with the high-pressure refrigerant in the annular portion, and evaporates. This low-pressure vapor refrigerant flows into the suction pipe of the compressor 1. FIG. 2 shows a change in the state of the refrigerant in the bypass pipe 11 on a pressure-enthalpy diagram, in which point A is the inlet on the high pressure side of the double tube heat exchanger 13 and point B is the double The high pressure side outlet of the tube heat exchanger 13 and the inlet of the second capillary 12, the point C is the low pressure side inlet of the double tube heat exchanger 13 and the outlet of the second capillary 12, and the point D is the double tube heat exchanger 13. This shows the state of the non-azeotropic mixed refrigerant at the low pressure side outlet.

【0032】二重管熱交換器13は、高圧冷媒と低圧冷
媒とで十分な熱交換が行われるように設計されており、
また図2中一点鎖線で示すように等温線は液相域ではほ
ぼ垂直となっているため、B点で表される二重管熱交換
器13の高圧側出口冷媒温度は、C点で表される二重管
熱交換器13の低圧側入口冷媒温度付近まで冷却され
る。さらに第2毛細管12を通る冷媒は、等エンタルピ
ー膨張となるため、B点で表される二重管熱交換器13
の低圧側入口冷媒は、ほぼ低圧の飽和液状態となる。
The double tube heat exchanger 13 is designed so that sufficient heat exchange is performed between the high-pressure refrigerant and the low-pressure refrigerant.
Further, as shown by the dashed line in FIG. 2, the isotherm is substantially vertical in the liquid phase region, so the refrigerant temperature at the high pressure side outlet of the double tube heat exchanger 13 represented by the point B is represented by the point C. Is cooled to the vicinity of the low-pressure-side inlet refrigerant temperature of the double-tube heat exchanger 13. Further, since the refrigerant passing through the second capillary 12 undergoes isenthalpy expansion, the double-tube heat exchanger 13 represented by point B
The low-pressure-side inlet refrigerant is in a substantially low-pressure saturated liquid state.

【0033】次に、組成演算器30の動作を図3の非共
沸混合冷媒の気液平衡線図を用いて説明する。組成演算
器30は、第1温度検出器21と第1圧力検出器22よ
り、低圧飽和液状態となっている第2毛細管12の出口
部の温度(T1)と圧力(P1)を取り込む。圧力P1
における非共沸混合冷媒の飽和液温度は、冷凍サイクル
内の循環組成すなわちバイパス配管11内を流れる循環
組成により、図3に示すように変化する。ここで循環組
成は、非共沸混合冷媒の低沸点成分の重量分率である。
従って図3の関係を用いることにより、第1温度検出器
21と第1圧力検出器22より検出された温度T1と圧
力P1より、サイクル内の循環組成αを検知することが
できる。図4は、図3に示した非共沸混合冷媒の気液平
衡線図から、飽和液温度T1と圧力P1と循環組成αの
関係を示したものである。この関係を予め組成演算器3
0内に記憶させておけば、温度T1と圧力P1より循環
組成αを演算することができる。図4の関係は、例えば α=(a・T12 +b・T1+c)(d・P12 +e・
P1+f) ここでa,b,c,d,e,fは定数 で表され、この演算式に基づいて、組成演算器30は、
循環組成αを演算する。
Next, the operation of the composition calculator 30 will be described with reference to the vapor-liquid equilibrium diagram of the non-azeotropic mixed refrigerant in FIG. The composition calculator 30 takes in the temperature (T1) and the pressure (P1) at the outlet of the second capillary 12 in the low-pressure saturated liquid state from the first temperature detector 21 and the first pressure detector 22. Pressure P1
The saturated liquid temperature of the non-azeotropic refrigerant mixture changes in accordance with the circulation composition in the refrigeration cycle, that is, the circulation composition flowing in the bypass pipe 11, as shown in FIG. Here, the circulation composition is the weight fraction of the low boiling point component of the non-azeotropic mixed refrigerant.
Therefore, by using the relationship of FIG. 3, the circulation composition α in the cycle can be detected from the temperature T1 and the pressure P1 detected by the first temperature detector 21 and the first pressure detector 22. FIG. 4 shows the relationship between the saturated liquid temperature T1, the pressure P1, and the circulation composition α from the vapor-liquid equilibrium diagram of the non-azeotropic refrigerant mixture shown in FIG. This relationship is determined in advance by the composition calculator 3
If stored in 0, the circulation composition α can be calculated from the temperature T1 and the pressure P1. 4 is, for example, α = (a · T1 2 + b · T1 + c) (d · P1 2 + e ·
P1 + f) Here, a, b, c, d, e, and f are represented by constants, and based on this equation, the composition calculator 30 calculates
The circulation composition α is calculated.

【0034】なお、上記循環組成検知法は、二重管熱交
換器13の低圧側入口冷媒が飽和液状態である場合につ
いて説明したが、二重管熱交換器13内での熱交換が十
分でなく、二重管熱交換器13の低圧側入口冷媒が飽和
液状態まで達せず、わずかに気液二相状態となっても、
循環組成の検知精度は十分に確保される。これは、図5
に示すように、例えばR32とR134aからなる非共
沸混合冷媒では、気液二相状態の乾き度変化に対する平
衡温度の変化が小さいためである。図5は圧力500k
PaにおけるR32とR134aをそれぞれ重量分率2
5%、75%で混合した非共沸混合冷媒の気液二相状態
の乾き度Xの変化に対する平衡温度変化を示したもので
ある。R32/R134aでは、飽和液温度(X=0に
おける温度)と飽和蒸気温度(X=1における温度)と
の差が約6℃と小さく、このためX=0.1における平
衡温度と飽和液温度との差は、約0.8℃と小さい。従
って、本実施例の循環組成検知法では、二重管熱交換器
13の低圧側入口冷媒が乾き度0.1程度の気液二相状
態となっても、飽和液状態との温度差は非常に小さく、
循環組成の検知精度は実用上十分に確保される。
Although the above-described circulating composition detection method has been described for the case where the refrigerant at the low-pressure side of the double-tube heat exchanger 13 is in a saturated liquid state, the heat exchange in the double-tube heat exchanger 13 is not sufficient. Rather, even if the low-pressure side inlet refrigerant of the double tube heat exchanger 13 does not reach the saturated liquid state and slightly enters the gas-liquid two-phase state,
The detection accuracy of the circulation composition is sufficiently ensured. This is shown in FIG.
This is because, for example, in the non-azeotropic mixed refrigerant composed of R32 and R134a, the change in the equilibrium temperature with respect to the change in dryness in the gas-liquid two-phase state is small. FIG. 5 shows a pressure of 500k.
The weight fraction of R32 and R134a in Pa was 2
It is a graph showing a change in equilibrium temperature with respect to a change in dryness X in a gas-liquid two-phase state of a non-azeotropic mixed refrigerant mixed at 5% and 75%. In R32 / R134a, the difference between the saturated liquid temperature (the temperature at X = 0) and the saturated vapor temperature (the temperature at X = 1) is as small as about 6 ° C., so that the equilibrium temperature and the saturated liquid temperature at X = 0.1 Is as small as about 0.8 ° C. Therefore, in the circulation composition detection method of the present embodiment, even if the low pressure side inlet refrigerant of the double pipe heat exchanger 13 is in a gas-liquid two-phase state with a dryness of about 0.1, the temperature difference from the saturated liquid state is Very small,
The detection accuracy of the circulating composition is sufficiently secured for practical use.

【0035】なお、本実施例では、高圧側冷媒の冷却手
段として、低圧側冷媒の二重管熱交換器13を用いた場
合で説明したが、高圧側配管と低圧側配管を接触させ
て、熱交換を行っても同様の効果を得ることができる。
In the present embodiment, the case where the double-tube heat exchanger 13 for the low-pressure side refrigerant is used as the cooling means for the high-pressure side refrigerant has been described. The same effect can be obtained by performing heat exchange.

【0036】また、本実施例では、混合冷媒として二成
分系を対象として説明したが、三成分系など多成分系の
場合においても同様の効果を得ることができる。
In this embodiment, a two-component refrigerant is described as a mixed refrigerant. However, similar effects can be obtained in the case of a multi-component refrigerant such as a three-component refrigerant.

【0037】実施例2.図6はこの発明の実施例2によ
る非共沸混合冷媒を用いた冷凍空調装置を示す冷媒回路
図であり、図において、第2減圧手段として電気式膨張
弁120が用いられている。またこの電気式膨張弁12
0の入口部には、その冷媒温度を検出する第2温度検出
器24が設けられている。組成演算器30は、第1温度
検出器21と第1圧力検出器22および第2温度検出器
24が検出する温度と圧力に基づいて、電気式膨張弁1
20の出口部の冷媒乾き度と冷凍サイクル内の非共沸混
合冷媒の循環組成を演算する機能を有しいる。31は電
気式膨張弁制御器であり、第1温度検出器21が検出す
る電気式膨張弁120の出口部の温度と第2温度検出器
24が検出する二重管熱交換器13の低圧側出口部の温
度から、電気式膨張弁120の開度を制御する機能を有
している。
Embodiment 2 FIG. FIG. 6 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention. In the drawing, an electric expansion valve 120 is used as a second pressure reducing means. The electric expansion valve 12
A second temperature detector 24 for detecting the temperature of the refrigerant is provided at the inlet of the zero. The composition calculator 30 detects the electric expansion valve 1 based on the temperature and pressure detected by the first temperature detector 21, the first pressure detector 22, and the second temperature detector 24.
It has a function of calculating the dryness of the refrigerant at the outlet 20 and the circulating composition of the non-azeotropic mixed refrigerant in the refrigeration cycle. Reference numeral 31 denotes an electric expansion valve controller, which detects the temperature at the outlet of the electric expansion valve 120 detected by the first temperature detector 21 and the low-pressure side of the double-pipe heat exchanger 13 detected by the second temperature detector 24. It has a function of controlling the opening of the electric expansion valve 120 based on the temperature of the outlet.

【0038】次に動作について説明する。バイパス配管
11には、圧縮機1より吐出された高圧蒸気冷媒の一部
が流入し、二重管熱交換器13の環状部で低圧の冷媒と
熱交換して、凝縮液化する。この液冷媒は電気式膨張弁
120で減圧され、乾き度がXの低圧の気液二相冷媒と
なって二重管熱交換器13の内管部に流入し、環状部の
高圧冷媒と熱交換して、蒸発する。この低圧蒸気冷媒
は、圧縮機1の吸入配管へ流入する。なお図7は、この
バイパス配管11内の冷媒の状態変化を圧力−エンタル
ピー線図上に示したもので、図中A点は二重管熱交換器
13の高圧側入口、B点は二重管熱交換器13の高圧側
出口および電気式膨張弁120の入口、C点は二重管熱
交換器13の低圧側入口および電気式膨張弁120の出
口、D点は二重管熱交換器13の低圧側出口での非共沸
混合冷媒の状態を表している。二重管熱交換器13は、
高圧冷媒と低圧冷媒とで十分な熱交換が行われ、B点で
表される二重管熱交換器13の高圧側出口および電気式
膨張弁120の入口部の冷媒が、過冷却状態となるよう
に設計されている。
Next, the operation will be described. A part of the high-pressure vapor refrigerant discharged from the compressor 1 flows into the bypass pipe 11, and exchanges heat with the low-pressure refrigerant in the annular portion of the double pipe heat exchanger 13 to condense and liquefy. This liquid refrigerant is decompressed by the electric expansion valve 120, becomes a low-pressure gas-liquid two-phase refrigerant having a dryness of X, flows into the inner pipe portion of the double-tube heat exchanger 13, and exchanges heat with the high-pressure refrigerant in the annular portion. Change and evaporate. This low-pressure vapor refrigerant flows into the suction pipe of the compressor 1. FIG. 7 shows a change in the state of the refrigerant in the bypass pipe 11 on a pressure-enthalpy diagram. In FIG. 7, point A is the inlet on the high pressure side of the double tube heat exchanger 13 and point B is the double The high pressure side outlet of the pipe heat exchanger 13 and the inlet of the electric expansion valve 120, point C is the low pressure side inlet of the double pipe heat exchanger 13 and the outlet of the electric expansion valve 120, and the point D is the double pipe heat exchanger. 13 illustrates the state of the non-azeotropic mixed refrigerant at the low pressure side outlet of No. 13. The double tube heat exchanger 13
Sufficient heat exchange is performed between the high-pressure refrigerant and the low-pressure refrigerant, and the refrigerant at the high-pressure outlet of the double-pipe heat exchanger 13 and the inlet of the electric expansion valve 120 represented by point B is in a supercooled state. It is designed to be.

【0039】組成演算器30の動作を図8に示すフロー
チャートを用いて説明する。組成演算器30の動作が開
始されると、まず、第1温度検出器21と第1圧力検出
器22および第2温度検出器24で検出された電気式膨
張弁120の出口部の冷媒温度T1と圧力P1および電
気式膨張弁120の入口の冷媒温度T2を組成演算器3
0に取り込む(ステップST1)。次に、冷凍サイクル
内の循環組成αを仮定する(ステップST2)。この循
環組成の仮定値αと電気式膨張弁120の入口温度T2
および電気式膨張弁120の出口圧力P1から、電気式
膨張弁120の出口部の冷媒乾き度Xを計算する(ステ
ップST3)。すなわち、電気式膨張弁120を通過す
る冷媒は、等エントロピーで膨張するため、この電気式
膨張弁120の入口温度T2と電気式膨張弁120の出
口圧力P1および乾き度Xには、図9に示すような関係
がある。従って、予めこの関係を X=f1 (T2、P1、α)・・・・・・(1) なる関係式として、組成演算器30内に記憶させておけ
ば、この式(1)を用いて温度T2、圧力P1、循環組
成仮定値αから電気式膨張弁120の出口冷媒乾き度X
を計算することができる。さらに、電気式膨張弁120
の出口温度T1と圧力P1およびステップST3で求め
た乾き度Xから、循環組成α’を計算する(ステップS
T4)。すなわち、圧力P1における乾き度Xの気液二
相状態の非共沸混合冷媒の温度は、冷凍サイクル内の循
環組成すなわちバイパス配管11内を流れる循環組成に
より、図10に示すように変化する。従って図10の関
係を用いることにより、電気式膨張弁120の出口部の
温度T1と圧力P1および乾き度Xより、サイクル内の
循環組成α’を演算することができる。図11は、図1
0の関係から、電気式膨張弁120出口部の温度T1と
圧力P1および乾き度Xと循環組成αの関係を示したも
のである。従って、予めこの関係を α’=f2 (T1、P1、X)・・・・・・(2) なる関係式として、組成演算器30内に記憶させておけ
ば、この式(2)を用いて電気式膨張弁120の出口部
の温度T2、圧力P1、乾き度Xから循環組成α’を計
算することが可能である。この循環組成α’と最初に仮
定した循環組成αを比較し、両者が一致していれば、循
環組成はαとして求まる(ステップST5)。両者が一
致していなければ、循環組成αを仮定し直し(ステップ
ST6)、再びステップST3に戻って上記計算を行
い、両者が一致するまで計算を続行する。
The operation of the composition calculator 30 will be described with reference to the flowchart shown in FIG. When the operation of the composition calculator 30 is started, first, the refrigerant temperature T1 at the outlet of the electric expansion valve 120 detected by the first temperature detector 21, the first pressure detector 22, and the second temperature detector 24 is detected. And the pressure P1 and the refrigerant temperature T2 at the inlet of the electric expansion valve 120,
0 (step ST1). Next, a circulation composition α in the refrigeration cycle is assumed (step ST2). This assumed value α of the circulation composition and the inlet temperature T2 of the electric expansion valve 120
From the outlet pressure P1 of the electric expansion valve 120, the dryness X of the refrigerant at the outlet of the electric expansion valve 120 is calculated (step ST3). That is, since the refrigerant passing through the electric expansion valve 120 expands with isentropy, the inlet temperature T2 of the electric expansion valve 120, the outlet pressure P1 of the electric expansion valve 120, and the dryness X are as shown in FIG. There is a relationship as shown. Therefore, if this relation is stored in advance in the composition calculator 30 as the relational expression of X = f 1 (T2, P1, α) (1), this equation (1) can be used. From the temperature T2, pressure P1, and assumed circulation composition value α, the dryness X of the refrigerant at the outlet of the electric expansion valve 120
Can be calculated. Further, the electric expansion valve 120
The circulation composition α ′ is calculated from the outlet temperature T1, the pressure P1, and the dryness X obtained in step ST3 (step S3).
T4). That is, the temperature of the non-azeotropic mixed refrigerant in the gas-liquid two-phase state with the dryness X at the pressure P1 changes as shown in FIG. 10 depending on the circulation composition in the refrigeration cycle, that is, the circulation composition flowing in the bypass pipe 11. Therefore, by using the relationship of FIG. 10, the circulation composition α ′ in the cycle can be calculated from the temperature T1, the pressure P1, and the dryness X at the outlet of the electric expansion valve 120. FIG.
From the relationship of 0, the relationship between the temperature T1 and the pressure P1 at the outlet of the electric expansion valve 120 and the dryness X and the circulation composition α is shown. Therefore, if this relation is stored in advance in the composition calculator 30 as a relational expression of α ′ = f 2 (T1, P1, X) (2), this expression (2) is obtained. The circulating composition α ′ can be calculated from the temperature T2, the pressure P1, and the dryness X at the outlet of the electric expansion valve 120 using the above method. The circulating composition α ′ is compared with the initially assumed circulating composition α, and if they match, the circulating composition is obtained as α (step ST5). If they do not match, the circulation composition α is assumed again (step ST6), and the process returns to step ST3 to perform the above calculation, and continues the calculation until the two match.

【0040】次に、電気式膨張弁制御器31の動作につ
いて説明する。電気式膨張弁制御器31は、二重管熱交
換器13の高圧側出口部の冷媒が確実に過冷却状態とな
るように電気式膨張弁120の開度を制御する。すなわ
ち、電気式膨張弁制御器31は、第1温度検出器21が
検出する電気式膨張弁120の出口部の温度(T1)と
第2温度検出器24が検出する電気式膨張弁120の入
口部の温度(T2)を取り込み、この差温(T2−T
1)を計算する。さらに電気式膨張弁制御器31は、こ
の差温が所定値(例えば10℃)以下となるように、P
ID制御等のフィードバック制御により電気式膨張弁1
20の開度修正値を演算し、開度指令を電気式膨張弁1
20に出力する。この結果、二重管熱交換器13の高圧
側出口部の冷媒は確実に過冷却状態となり、バイパス配
管11を流れる冷媒流量を最小限にして冷凍サイクルの
エネルギー損失を最小にすることができる。
Next, the operation of the electric expansion valve controller 31 will be described. The electric expansion valve controller 31 controls the opening of the electric expansion valve 120 so that the refrigerant at the high pressure side outlet of the double-pipe heat exchanger 13 is surely in a supercooled state. That is, the electric expansion valve controller 31 determines the temperature (T1) of the outlet of the electric expansion valve 120 detected by the first temperature detector 21 and the inlet of the electric expansion valve 120 detected by the second temperature detector 24. Part temperature (T2), the difference temperature (T2-T
Calculate 1). Further, the electric expansion valve controller 31 sets the P differential so that the temperature difference becomes equal to or less than a predetermined value (for example, 10 ° C.).
Electric expansion valve 1 by feedback control such as ID control
Calculates the opening correction value of 20 and sends the opening command to the electric expansion valve 1
20. As a result, the refrigerant at the high pressure side outlet of the double tube heat exchanger 13 is reliably in a supercooled state, and the flow rate of the refrigerant flowing through the bypass pipe 11 can be minimized to minimize the energy loss of the refrigeration cycle.

【0041】本実施例の組成演算器30は、電気式膨張
弁120出口部の冷媒乾き度を計算して、循環組成を演
算しているため、冷凍サイクルの運転状態が変化して、
二重管熱交換器13の熱交換量が変化しても、確実に循
環組成を検知することができる。またバイパス配管11
を流れる冷媒流量は、電気式膨張弁120により二重管
熱交換器13の高圧側出口部の冷媒が確実に過冷却状態
となるように制御されているため、循環組成の検知が確
実に行われると共に、バイパス配管11を流れる冷媒流
量を最小限にして冷凍サイクルのエネルギー損失を最小
にすることができる。
Since the composition calculator 30 of this embodiment calculates the dryness of the refrigerant at the outlet of the electric expansion valve 120 to calculate the circulation composition, the operating state of the refrigeration cycle changes.
Even if the amount of heat exchange of the double tube heat exchanger 13 changes, the circulation composition can be reliably detected. Also, bypass pipe 11
Is controlled by the electric expansion valve 120 to ensure that the refrigerant at the high pressure side outlet of the double-tube heat exchanger 13 is in a supercooled state. In addition, the flow rate of the refrigerant flowing through the bypass pipe 11 can be minimized to minimize the energy loss of the refrigeration cycle.

【0042】実施例3.図12はこの発明の実施例3に
よる非共沸混合冷媒を用いた冷凍空調装置を示す冷媒回
路図であり、図において、四方弁51を切り替えること
によって、冷房と暖房が行えるヒートポンプ形冷凍空調
装置を示している。52は冷房時に凝縮器、暖房時に蒸
発器として動作する室外熱交換器、61は冷房時に蒸発
器、暖房時に凝縮器として動作する室内熱交換器であ
る。バイパス配管11や組成演算器30および電気式膨
張弁制御器31などの構成は、実施例2と同様である。
Embodiment 3 FIG. FIG. 12 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 3 of the present invention. In FIG. 12, a heat pump type refrigeration / air-conditioning apparatus capable of performing cooling and heating by switching a four-way valve 51. Is shown. 52 is an outdoor heat exchanger that operates as a condenser during cooling and as an evaporator during heating, and 61 is an indoor heat exchanger that operates as an evaporator during cooling and as a condenser during heating. The configurations of the bypass pipe 11, the composition calculator 30, the electric expansion valve controller 31, and the like are the same as those in the second embodiment.

【0043】実施例2に示した循環組成検知の原理は、
主回路内の第1減圧装置3の出口温度と圧力および入口
温度を用いても成立するが、第1減圧装置3の冷媒の流
れ方向は冷房と暖房で異なるため、冷房および暖房時に
循環組成を検知するためには、第1減圧装置3の出入口
部にそれぞれ温度検出器と圧力検出器が必要となり、合
計4個の検出器を設ける必要がある。しかしこの実施例
の冷凍空調装置では、冷房、暖房にかかわらず、常にバ
イパス配管11内の第1温度検出器21と第1圧力検出
器22および第2温度検出器24の3個の検出器によ
り、循環組成を検知することができる。すなわち、本実
施例では、検出器が少なく、低コストで冷房および暖房
時の循環組成を検知することができる。
The principle of detecting the circulating composition shown in Example 2 is as follows.
This is also established by using the outlet temperature, the pressure, and the inlet temperature of the first pressure reducing device 3 in the main circuit. However, since the flow direction of the refrigerant in the first pressure reducing device 3 is different between cooling and heating, the circulation composition during cooling and heating is reduced. For detection, a temperature detector and a pressure detector are required at the entrance and exit of the first decompression device 3, respectively, and it is necessary to provide a total of four detectors. However, in the refrigerating air conditioner of this embodiment, the first temperature detector 21, the first pressure detector 22, and the second temperature detector 24 in the bypass pipe 11 always use the three detectors regardless of cooling or heating. , The circulating composition can be detected. That is, in the present embodiment, the number of detectors is small, and the circulating composition during cooling and heating can be detected at low cost.

【0044】実施例4.図13はこの発明の実施例4に
よる非共沸混合冷媒を用いた冷凍空調装置を示す冷媒回
路図であり、図において、第2減圧装置として毛細管1
2が用いられている。組成演算器30の動作などは、実
施例1と同様であり、説明は省略するが、第2減圧装置
として電気式膨張弁に比べて安価な毛細管を用いること
により、低コストで非共沸混合冷媒の循環組成を検知す
ることができる。
Embodiment 4 FIG. FIG. 13 is a refrigerant circuit diagram showing a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to Embodiment 4 of the present invention.
2 is used. The operation of the composition calculator 30 is the same as that of the first embodiment, and the description is omitted. However, by using a cheaper capillary tube than the electric expansion valve as the second pressure reducing device, non-azeotropic mixing can be performed at low cost. The circulating composition of the refrigerant can be detected.

【0045】実施例5.図14はこの発明の実施例5に
よる非共沸混合冷媒を用いた冷凍空調装置を示す冷媒回
路図であり、図において、バイパス配管11の高圧冷媒
を冷却する二重管熱交換器13として、周囲空気と熱交
換するものを示している。バイパス配管11に導かれた
冷媒蒸気は、この二重管熱交換器13で周囲空気と熱交
換して凝縮液化する。この液冷媒は、毛細管12により
減圧され、低圧の冷媒となってアキュムレータ5へ流入
する。この二重管熱交換器13は、高圧冷媒が管内を流
れる管の表面に、フィン14を設けて、周囲空気との熱
交換を促進している。組成演算器30の動作は、実施例
2と同様であり、説明は省略するが、冷却手段として安
価なフィン付き管を用いることにより、低コストで非共
沸混合冷媒の循環組成を検知することができる。
Embodiment 5 FIG. FIG. 14 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 5 of the present invention. In the drawing, as a double-pipe heat exchanger 13 for cooling high-pressure refrigerant in a bypass pipe 11, It shows one that exchanges heat with the surrounding air. The refrigerant vapor guided to the bypass pipe 11 exchanges heat with the surrounding air in the double pipe heat exchanger 13 to be condensed and liquefied. This liquid refrigerant is decompressed by the capillary tube 12, becomes a low-pressure refrigerant, and flows into the accumulator 5. In this double-pipe heat exchanger 13, fins 14 are provided on the surface of the pipe through which the high-pressure refrigerant flows inside the pipe to promote heat exchange with ambient air. The operation of the composition calculator 30 is the same as that of the second embodiment, and the description is omitted. However, by using an inexpensive finned tube as the cooling means, it is possible to detect the circulating composition of the non-azeotropic refrigerant mixture at low cost. Can be.

【0046】実施例6.図15はこの発明の実施例6に
よる非共沸混合冷媒を用いた冷凍空調装置を示す冷媒回
路図であり、図において、二重管熱交換器13の高圧側
配管には、その出口付近に5個の温度検出器25a,2
5b,25c,25d,25eが設けられており、また
バイパス配管11の入口部には、バイパス配管11の高
圧圧力を測定する圧力検出器26が取り付けられてい
る。組成演算器30は、5個の温度検出器25と圧力検
出器26が検出する温度と圧力に基づいて、冷凍サイク
ル内の非共沸混合冷媒の循環組成を演算する機能を有し
ている。また第2減圧装置としては第2毛細管12を用
いている。
Embodiment 6 FIG. FIG. 15 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 6 of the present invention. In the drawing, the high-pressure side pipe of the double-tube heat exchanger 13 has Five temperature detectors 25a, 2
5 b, 25 c, 25 d, and 25 e are provided, and a pressure detector 26 for measuring a high pressure of the bypass pipe 11 is attached to an inlet of the bypass pipe 11. The composition calculator 30 has a function of calculating the circulating composition of the non-azeotropic mixed refrigerant in the refrigeration cycle based on the temperatures and pressures detected by the five temperature detectors 25 and the pressure detectors 26. Further, a second capillary tube 12 is used as a second decompression device.

【0047】次に、組成演算器30の動作を説明する。
二重管熱交換器13に流入した高圧の蒸気冷媒は、低温
の低圧冷媒と熱交換し、凝縮液化する。この高圧冷媒の
温度変化を図16に示す。二重管熱交換器13の高圧側
入口部には過熱蒸気域、中間部には二相域、出口部には
過冷却液域が存在する。二重管熱交換器13の高圧側配
管に取り付けられた5個の温度検出器25の検出値をT
a,Tb,Tc,Td,Teとして、図16中に示して
いる。二相域では、潜熱変化となるため、その温度変化
は小さく、この二相域の温度を検出しているTa,T
b,Tcの温度変化も小さくなる。一方、過冷却液域で
は、顕熱変化となるため、その温度変化は大きく、この
過冷却液域の温度を検出しているTd,Teの温度変化
も大きくなる。従って、5個の温度検出器25の温度信
号の差を流れ方向に順次比較し、この差が大きく変化し
たポイントの温度を飽和液温度とみなすことができる。
例えば、図16に示した例では、流れ方向の温度差(T
a−Tb),(Tb−Tc),(Tc−Td),(Td
−Te)を比較し、(Ta−Tb)と(Tb−Tc)の
値に比べて(Tc−Td)が大きくなり、この結果、T
cを飽和液温度とみなすことができる。
Next, the operation of the composition calculator 30 will be described.
The high-pressure vapor refrigerant that has flowed into the double-tube heat exchanger 13 exchanges heat with a low-temperature low-pressure refrigerant and is condensed and liquefied. FIG. 16 shows the temperature change of the high-pressure refrigerant. The double-tube heat exchanger 13 has a superheated steam region at the high pressure side inlet, a two-phase region at the intermediate portion, and a supercooled liquid region at the outlet. The detected values of the five temperature detectors 25 attached to the high pressure side pipe of the double pipe heat exchanger 13
a, Tb, Tc, Td, and Te are shown in FIG. Since the latent heat changes in the two-phase region, the temperature change is small, and the temperatures Ta, T
Temperature changes of b and Tc also become small. On the other hand, in the supercooled liquid region, sensible heat changes, so the temperature change is large, and the temperature changes of Td and Te that detect the temperature of the supercooled liquid region also become large. Therefore, the difference between the temperature signals of the five temperature detectors 25 is sequentially compared in the flow direction, and the temperature at the point where the difference greatly changes can be regarded as the saturated liquid temperature.
For example, in the example shown in FIG. 16, the temperature difference (T
a-Tb), (Tb-Tc), (Tc-Td), (Td
−Te), (Tc−Td) becomes larger than the values of (Ta−Tb) and (Tb−Tc), and as a result, T
c can be regarded as the saturated liquid temperature.

【0048】さらに組成演算器30では、この飽和液温
度Tcと圧力検出器26が検出する高圧圧力Pから、図
17に示した飽和液温度と圧力と循環組成の関係から、
循環組成αを演算する。
Further, in the composition calculator 30, from the saturated liquid temperature Tc and the high pressure P detected by the pressure detector 26, the relationship between the saturated liquid temperature, the pressure and the circulation composition shown in FIG.
The circulation composition α is calculated.

【0049】実施例7.図18はこの発明の実施例7に
よる非共沸混合冷媒を用いた冷凍空調装置の冷媒回路図
であり、図において、二重管熱交換器13はバイパス配
管11の高圧側配管と低圧側配管を接触させた熱交換器
で構成している。また第2減圧装置としては第2毛細管
12を用いている。二重管熱交換器13の低圧側配管に
は、その出口付近に5個の温度検出器25a,25b,
25c,25d,25eが設けられており、またバイパ
ス配管11の出口部には、バイパス配管11の低圧圧力
を測定する圧力検出器27が取り付けられている。組成
演算器30は、5個の温度検出器25と圧力検出器27
が検出する温度と圧力に基づいて、冷凍サイクル内の非
共沸混合冷媒の循環組成を演算する機能を有しいる。
Embodiment 7 FIG. FIG. 18 is a refrigerant circuit diagram of a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to Embodiment 7 of the present invention. In the drawing, a double-pipe heat exchanger 13 includes a high-pressure pipe and a low-pressure pipe of a bypass pipe 11. And a heat exchanger in contact with the heat exchanger. Further, a second capillary tube 12 is used as a second decompression device. In the low pressure side pipe of the double pipe heat exchanger 13, five temperature detectors 25a, 25b,
25 c, 25 d, and 25 e are provided, and a pressure detector 27 for measuring a low pressure of the bypass pipe 11 is attached to an outlet of the bypass pipe 11. The composition calculator 30 includes five temperature detectors 25 and a pressure detector 27.
Has the function of calculating the circulating composition of the non-azeotropic refrigerant mixture in the refrigeration cycle based on the temperature and pressure detected by the refrigeration cycle.

【0050】次に、組成演算器30の動作について説明
する。二重管熱交換器13に流入した高圧の蒸気冷媒
は、低温の低圧冷媒と熱交換し、凝縮液化する。この液
冷媒は、毛細管12で減圧され、低圧の二相冷媒となっ
て二重管熱交換器13へ流入する。この低圧の二相冷媒
は二重管熱交換器13内で加熱され、過熱蒸気冷媒とな
って、圧縮機1の吸入配管へ流入する。この低圧冷媒の
温度変化を図19に示す。二重管熱交換器13の低圧側
入口部には二相域、出口部には過熱蒸気域が存在する。
二重管熱交換器13の低圧側配管に取り付けられた5個
の温度検出器25の検出値をTa,Tb,Tc,Td,
Teとして、図19中に示している。二相域では、潜熱
変化となるため、その温度変化は小さく、この二相域の
温度を検出しているTa,Tb,Tcの温度変化も小さ
くなる。一方、過熱蒸気域では、顕熱変化となるため、
その温度変化は大きく、この過冷却液域の温度を検出し
ているTd,Teの温度変化も大きくなる。従って、5
個の温度検出器25の温度信号の差を流れ方向に順次比
較し、この差が大きく変化したポイントの温度を飽和液
温度とみなすことができる。例えば、図19に示した例
では、流れ方向の温度差(Ta−Tb),(Tb−T
c),(Tc−Td),(Td−Te)を比較し、(T
a−Tb)と(Tb−Tc)の値に比べて(Tc−T
d)が大きくなり、この結果、Tcを飽和蒸気温度とみ
なすことができる。
Next, the operation of the composition calculator 30 will be described. The high-pressure vapor refrigerant that has flowed into the double-tube heat exchanger 13 exchanges heat with a low-temperature low-pressure refrigerant and is condensed and liquefied. This liquid refrigerant is decompressed by the capillary tube 12, becomes a low-pressure two-phase refrigerant, and flows into the double-tube heat exchanger 13. This low-pressure two-phase refrigerant is heated in the double-pipe heat exchanger 13, becomes superheated vapor refrigerant, and flows into the suction pipe of the compressor 1. FIG. 19 shows the temperature change of the low-pressure refrigerant. The double-tube heat exchanger 13 has a two-phase region at the low-pressure-side inlet and a superheated steam region at the outlet.
The detected values of the five temperature detectors 25 attached to the low-pressure pipe of the double-pipe heat exchanger 13 are represented by Ta, Tb, Tc, Td,
Te is shown in FIG. Since the latent heat changes in the two-phase region, the temperature change is small, and the temperature changes of Ta, Tb, and Tc detecting the temperature in the two-phase region are also small. On the other hand, in the superheated steam region, sensible heat changes,
The temperature change is large, and the temperature changes of Td and Te detecting the temperature of the supercooled liquid region also become large. Therefore, 5
The difference between the temperature signals of the individual temperature detectors 25 is sequentially compared in the flow direction, and the temperature at the point where the difference greatly changes can be regarded as the saturated liquid temperature. For example, in the example shown in FIG. 19, the temperature differences (Ta−Tb), (Tb−T
c), (Tc−Td), and (Td−Te) are compared, and (T
a-Tb) and (Tb-Tc).
d) becomes large, and as a result, Tc can be regarded as a saturated steam temperature.

【0051】さらに組成演算器30では、この飽和蒸気
温度Tcと圧力検出器27が検出する低圧圧力Pと、図
20に示した飽和蒸気温度と圧力と循環組成の関係か
ら、循環組成αを演算する。
Further, the composition calculator 30 calculates the circulation composition α from the saturated steam temperature Tc, the low pressure P detected by the pressure detector 27, and the relationship between the saturated steam temperature, the pressure and the circulation composition shown in FIG. I do.

【0052】実施例8.図21はこの発明の実施例8に
よる非共沸混合冷媒を用いた冷凍空調装置の冷媒回路図
であり、1台の室外機に2台の室内機を接続してなる冷
凍空調装置を示している。図において、50は室外機
で、圧縮機1およびバイパス配管11、室外熱交換器5
2、室外送風機53、アキュムレータ5で構成されてお
り、圧縮機1の吐出側の配管には第2圧力検出器26が
設けられている。60は室内機で、室内熱交換器61、
第1減圧装置3は第1電気式膨脹弁で構成されており、
室内熱交換機46の出入口部には、第4温度検出器6
2、第5温度検出器63が設けられている。また、11
は圧縮機1の吐出配管と吸入配管をバイパスするバイパ
ス配管であり、このバイパス配管11の途中には、第2
減圧装置である第2電気式膨脹弁120が設けられてい
る。13はバイパス配管11の高圧側から第2電気式膨
脹弁120へ流入する非共沸混合冷媒を冷却する冷却手
段であり、バイパス配管11の低圧側との二重管式熱交
換器で構成されている。また、第2電気式膨脹弁120
の出口部には、冷媒温度を検出する第1温度検出器21
と冷媒圧力を検出する第1圧力検出器22が設けられて
おり、第2電気式膨脹弁120の入口部には、冷媒温度
を検出する第2温度検出器24が設けられている。な
お、室内送風機は省略している。
Embodiment 8 FIG. FIG. 21 is a refrigerant circuit diagram of a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to Embodiment 8 of the present invention, and shows a refrigeration / air-conditioning system in which one outdoor unit is connected to two indoor units. I have. In the figure, reference numeral 50 denotes an outdoor unit, which includes a compressor 1, a bypass pipe 11, and an outdoor heat exchanger 5.
2. It is composed of an outdoor blower 53 and an accumulator 5, and a second pressure detector 26 is provided in a pipe on the discharge side of the compressor 1. 60 is an indoor unit, and an indoor heat exchanger 61;
The first pressure reducing device 3 is constituted by a first electric expansion valve,
A fourth temperature detector 6 is provided at the entrance and exit of the indoor heat exchanger 46.
Second, a fifth temperature detector 63 is provided. Also, 11
Is a bypass pipe that bypasses the discharge pipe and the suction pipe of the compressor 1.
A second electric expansion valve 120 as a pressure reducing device is provided. A cooling means 13 cools the non-azeotropic mixed refrigerant flowing from the high pressure side of the bypass pipe 11 to the second electric expansion valve 120, and is constituted by a double-pipe heat exchanger with the low pressure side of the bypass pipe 11. ing. Also, the second electric expansion valve 120
A first temperature detector 21 for detecting the refrigerant temperature
And a first pressure detector 22 for detecting a refrigerant pressure, and a second temperature detector 24 for detecting a refrigerant temperature is provided at an inlet of the second electric expansion valve 120. Note that the indoor blower is omitted.

【0053】組成演算器30は、第1温度検出器21と
第1圧力検出器22および第2温度検出器24が検出す
る温度と圧力に基づいて、バイパス配管11内の第2電
気式膨脹弁120の出口部の冷媒乾き度と冷凍サイクル
内の非共沸混合冷媒の循環組成を演算する機能を有しい
る。
The composition calculator 30 is configured to control the second electric expansion valve in the bypass pipe 11 based on the temperature and pressure detected by the first temperature detector 21, the first pressure detector 22, and the second temperature detector 24. It has a function of calculating the refrigerant dryness at the outlet 120 and the circulating composition of the non-azeotropic mixed refrigerant in the refrigeration cycle.

【0054】40は制御装置であり、組成演算器30か
らの循環組成信号および第1温度検出器21、第3温度
検出器23、第1圧力検出器22、第2圧力検出器2
6、室内機60内の第4温度検出器62、第5温度検出
器63からの信号が入力される。制御装置40では、こ
れらの入力信号から循環組成に応じた圧縮機1の回転数
と室外送風機53の回転数、室内機60の第1減圧装置
3である第1電気式膨脹弁の開度およびバイパス配管1
1の第2電気式膨脹弁120の開度を演算し、その指令
を圧縮機1、室外送風機53、第1減圧装置3である第
1電気式膨脹弁、第2電気式膨脹弁120にそれぞれ送
信する。圧縮機1および室外送風機53、第1減圧装置
3である第1電気式膨脹弁、第2電気式膨脹弁120で
は、制御装置40より送られた指令値を受けて、その回
転数や弁開度が設定される。
Reference numeral 40 denotes a control device, which is a circulating composition signal from the composition calculator 30 and the first temperature detector 21, the third temperature detector 23, the first pressure detector 22, and the second pressure detector 2.
6. Signals from the fourth temperature detector 62 and the fifth temperature detector 63 in the indoor unit 60 are input. The control device 40 determines the rotation speed of the compressor 1 and the rotation speed of the outdoor blower 53 according to the circulating composition from these input signals, the opening degree of the first electric expansion valve that is the first pressure reducing device 3 of the indoor unit 60, and Bypass piping 1
The opening degree of the first second electric expansion valve 120 is calculated, and the command is sent to the compressor 1, the outdoor blower 53, and the first electric expansion valve and the second electric expansion valve 120 which are the first pressure reducing device 3, respectively. Send. The compressor 1, the outdoor blower 53, the first electric expansion valve and the second electric expansion valve 120, which are the first pressure reducing device 3, receive the command value sent from the control device 40, and their rotation speed and valve opening. The degree is set.

【0055】また41は比較演算器であり、組成演算器
30より循環組成信号が入力され、循環組成が予め定め
た所定範囲内に入っているか否かを比較演算する。この
比較演算器41には、警報装置42が接続されており、
循環組成が所定範囲から外れた場合には、警告信号を警
報装置42に送信する。
Reference numeral 41 denotes a comparison operation unit which receives a circulating composition signal from the composition operation unit 30 and performs a comparison operation to determine whether or not the circulating composition is within a predetermined range. An alarm device 42 is connected to the comparator 41,
When the circulation composition is out of the predetermined range, a warning signal is transmitted to the warning device 42.

【0056】次に、上記のように構成された本実施例の
動作について、図21の冷媒回路図および図22に示す
制御ブロック図を用いて説明する。組成演算器30は、
バイパス配管11に設けた第1温度検出器21、第1圧
力検出器22、第2温度検出器24からの信号を取り込
み、実施例2と同様の方法で、第2電気式膨脹弁120
の出口部の冷媒乾き度Xを計算し、冷凍サイクル内の循
環組成αを演算する。制御装置40では、この循環組成
αに応じた最適な圧縮機1の回転数指令と室外送風機5
3の回転数指令、第1減圧装置3である第1電気式膨脹
弁の開度指令、第2電気式膨脹弁120の開度指令を演
算する。
Next, the operation of the present embodiment configured as described above will be described with reference to the refrigerant circuit diagram of FIG. 21 and the control block diagram of FIG. The composition calculator 30 is
The signals from the first temperature detector 21, the first pressure detector 22, and the second temperature detector 24 provided in the bypass pipe 11 are taken in, and the second electric expansion valve 120 is provided in the same manner as in the second embodiment.
Is calculated, and the circulation composition α in the refrigeration cycle is calculated. In the control device 40, the optimum rotation speed command of the compressor 1 and the outdoor blower 5
The rotation number command of the third, the opening command of the first electric expansion valve which is the first pressure reducing device 3, and the opening command of the second electric expansion valve 120 are calculated.

【0057】まず暖房運転について説明する。暖房運転
時には、冷媒は図21中の実線矢印の方向に循環し、室
外熱交換器52が蒸発器、室内熱交換器61が凝縮器と
なって暖房が行われる。圧縮機1の回転数は、凝縮圧力
が目標値に一致するように制御され、この凝縮圧力目標
値は、例えば凝縮温度Tcが50℃となる圧力として求
まる。非共沸混合冷媒の凝縮温度を、飽和蒸気温度と飽
和液温度の平均値と定義すると、凝縮温度Tcが50℃
となる凝縮圧力目標値Pcは、図23に示すように、循
環組成αにより一義的に定まる。従って制御装置40で
は、予め図23の関係を Pc=f3 (α)・・・・・・(3) なる関係式として、制御装置40内に記憶させておけ
ば、この式(3)を用いて組成演算器30から送信され
る循環組成信号αから凝縮圧力目標値Pcが演算され
る。さらに制御装置40では、第2圧力検出器26が検
出する圧力P2と凝縮圧力目標値Pcとの差に応じて、
PID制御等のフィードバック制御により圧縮機1の回
転数の修正値が演算され、圧縮機回転数指令が圧縮機1
に出力される。
First, the heating operation will be described. During the heating operation, the refrigerant circulates in the direction of the solid line arrow in FIG. 21, and the outdoor heat exchanger 52 functions as an evaporator and the indoor heat exchanger 61 functions as a condenser to perform heating. The rotation speed of the compressor 1 is controlled such that the condensing pressure matches the target value, and the target condensing pressure value is obtained as a pressure at which the condensing temperature Tc becomes 50 ° C., for example. If the condensation temperature of the non-azeotropic refrigerant mixture is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the condensation temperature Tc is 50 ° C.
Is determined uniquely by the circulation composition α, as shown in FIG. Therefore, in the control device 40, if the relationship of FIG. 23 is stored in advance in the control device 40 as a relational expression of Pc = f 3 (α) (3), this expression (3) is obtained. The condensing pressure target value Pc is calculated from the circulating composition signal α transmitted from the composition calculator 30 using the calculation. Further, in the control device 40, according to the difference between the pressure P2 detected by the second pressure detector 26 and the condensing pressure target value Pc,
A correction value of the rotation speed of the compressor 1 is calculated by feedback control such as PID control, and the compressor rotation speed command is
Is output to

【0058】室外送風機53の回転数は、蒸発圧力が目
標値に一致するように制御され、この蒸発圧力目標値
は、例えば蒸発温度Teが0℃となる圧力として求ま
る。非共沸混合冷媒の蒸発温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、蒸発温度Teが0℃とな
る蒸発圧力目標値Peは、図24に示すように、循環組
成αにより一義的に定まる。従って制御装置40では、
予め図24の関係を Pe=f4 (α)・・・・・・(4) なる関係式として、制御装置40内に記憶させておけ
ば、この式(4)を用いて組成演算器30から送信され
る循環組成信号αから蒸発圧力目標値Peが演算され
る。さらに制御装置40では、第1圧力検出器22が検
出する圧力P1と蒸発圧力目標値Peとの差に応じて、
PID制御等のフィードバック制御により室外送風機5
3の回転数の修正値が演算され、室外送風機回転数指令
が室外送風機53に出力される。
The number of revolutions of the outdoor blower 53 is controlled so that the evaporation pressure matches the target value, and the target evaporation pressure is determined, for example, as the pressure at which the evaporation temperature Te becomes 0 ° C. If the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the evaporation pressure target value Pe at which the evaporation temperature Te becomes 0 ° C. is determined by the circulation composition α as shown in FIG. Uniquely determined. Therefore, in the control device 40,
If the relation of FIG. 24 is stored in advance in the control device 40 as a relational expression of Pe = f 4 (α) (4), the composition calculator 30 can be obtained by using this expression (4). Is calculated from the circulating composition signal α transmitted from. Further, in the control device 40, according to the difference between the pressure P1 detected by the first pressure detector 22 and the evaporation pressure target value Pe,
Outdoor blower 5 by feedback control such as PID control
The corrected value of the rotation speed of 3 is calculated, and the outdoor blower rotation speed command is output to the outdoor blower 53.

【0059】第1減圧装置3である第1電気式膨脹弁の
開度は、室内熱交換器61の出口過冷却度が所定の値、
例えば5℃となるように制御される。この過冷却度は、
室内熱交換器61内の圧力における飽和液温度と室内熱
交換器61の出口温度との差として求めることができ、
飽和液温度は図25に示すように圧力と循環組成の関数
として求めることができる。従って制御装置40では、
予め図25の関係を Tbub=f5 (P2,α)・・・・・・(5) なる関係式として、制御装置40内に記憶させておけ
ば、この式(5)を用いて組成演算器30から送信され
る循環組成信号αと第2圧力検出器26から送信される
圧力信号P2および第4温度検出器62から送信される
温度信号T4を用いて、飽和液温度Tbubおよび室内
熱交換器61の出口過冷却度(Tbub−T4)が演算
される。さらに制御装置40では、この出口過冷却度と
所定値(5℃)との差に応じて、PID制御等のフィー
ドバック制御により第1減圧装置3である第1電気式膨
脹弁の開度の修正値が演算され、電気式膨脹弁開度指令
が第1減圧装置3である第1電気式膨脹弁に出力され
る。
The degree of opening of the first electric expansion valve as the first pressure reducing device 3 is determined such that the degree of supercooling at the outlet of the indoor heat exchanger 61 is a predetermined value.
For example, the temperature is controlled to be 5 ° C. This degree of supercooling is
It can be obtained as the difference between the saturated liquid temperature at the pressure in the indoor heat exchanger 61 and the outlet temperature of the indoor heat exchanger 61,
The saturated liquid temperature can be obtained as a function of the pressure and the circulation composition as shown in FIG. Therefore, in the control device 40,
If the relation of FIG. 25 is stored in advance in the control device 40 as a relational expression of Tbub = f 5 (P2, α) (5), the composition calculation is performed using the expression (5). The saturated liquid temperature Tbu and indoor heat exchange are obtained using the circulating composition signal α transmitted from the heater 30, the pressure signal P2 transmitted from the second pressure detector 26, and the temperature signal T4 transmitted from the fourth temperature detector 62. The degree of supercooling at the outlet of the vessel 61 (Tbu-T4) is calculated. Further, the control device 40 corrects the opening degree of the first electric expansion valve which is the first pressure reducing device 3 by feedback control such as PID control in accordance with the difference between the outlet subcooling degree and a predetermined value (5 ° C.). The value is calculated, and the electric expansion valve opening command is output to the first electric expansion valve which is the first pressure reducing device 3.

【0060】第2電気式膨脹弁120の開度は、二重管
熱交換器13の高圧側出口部の冷媒が確実に過冷却状態
となるように制御する。すなわち、第1温度検出器21
が検出する第2電気式膨脹弁120の出口部の温度(T
1)と第2温度検出器24が検出する第2電気式膨脹弁
120の入口部の温度(T2)を取り込み、この差温
(T2−T1)を計算する。さらにこの差温が所定値
(例えば10℃)以下となるように、PID制御等のフ
ィードバック制御により第2電気式膨脹弁120の開度
修正値を演算し、開度指令を第2電気式膨脹弁120に
出力する。この結果、二重管熱交換器13の高圧側出口
部の冷媒は確実に過冷却状態となり、バイパス配管11
を流れる冷媒流量を最小限にして冷凍サイクルのエネル
ギー損失を最小にすることができる。
The degree of opening of the second electric expansion valve 120 is controlled so that the refrigerant at the outlet on the high pressure side of the double-pipe heat exchanger 13 is surely in a supercooled state. That is, the first temperature detector 21
Detects the temperature at the outlet of the second electric expansion valve 120 (T
1) and the temperature (T2) at the inlet of the second electric expansion valve 120 detected by the second temperature detector 24 is fetched, and this differential temperature (T2-T1) is calculated. Further, an opening correction value of the second electric expansion valve 120 is calculated by feedback control such as PID control so that the temperature difference becomes equal to or less than a predetermined value (for example, 10 ° C.), and the opening command is transmitted to the second electric expansion valve. Output to valve 120. As a result, the refrigerant at the outlet on the high pressure side of the double pipe heat exchanger 13 is surely in a supercooled state, and the bypass pipe 11
To minimize the energy loss of the refrigeration cycle.

【0061】一方、冷房運転時には、冷媒は図21中の
破線矢印の方向に循環し、室外熱交換器52が凝縮器、
室内熱交換器61が蒸発器となって冷房が行われる。圧
縮機1の回転数は、蒸発圧力が目標値に一致するように
制御され、この蒸発圧力目標値は、例えば蒸発温度Te
が0℃となる圧力として求まる。この蒸発圧力目標値P
eは、暖房運転時と同様に、式(4)より求まる。従っ
て制御装置40では、組成演算器30から送信される循
環組成信号αを用いて、蒸発圧力目標値Peが演算され
る。さらに制御装置40では、第1圧力検出器22が検
出する圧力P1と蒸発圧力目標値Peとの差に応じて、
PID制御等のフィードバック制御により圧縮機1の回
転数の修正値が演算され、圧縮機回転数指令が圧縮機1
に出力される。
On the other hand, during the cooling operation, the refrigerant circulates in the direction of the dashed arrow in FIG.
The indoor heat exchanger 61 serves as an evaporator to perform cooling. The rotation speed of the compressor 1 is controlled such that the evaporation pressure matches the target value. The target evaporation pressure is, for example, the evaporation temperature Te.
Is obtained as a pressure at which the temperature becomes 0 ° C. This evaporation pressure target value P
e is obtained from Expression (4) as in the heating operation. Accordingly, the control device 40 calculates the evaporation pressure target value Pe using the circulating composition signal α transmitted from the composition calculator 30. Further, in the control device 40, according to the difference between the pressure P1 detected by the first pressure detector 22 and the evaporation pressure target value Pe,
A correction value of the rotation speed of the compressor 1 is calculated by feedback control such as PID control, and the compressor rotation speed command is
Is output to

【0062】室外送風機53の回転数は、凝縮圧力が目
標値に一致するように制御され、この凝縮圧力目標値
は、例えば凝縮温度Tcが50℃となる圧力として求ま
る。この凝縮圧力目標値Pcは、暖房運転時と同様に、
式(3)より求まる。従って制御装置40では、組成演
算器30から送信される循環組成信号αを用いて、凝縮
圧力目標値Pcが演算される。さらに制御装置40で
は、第2圧力検出器26が検出する圧力P2と凝縮圧力
目標値Pcとの差に応じて、PID制御等のフィードバ
ック制御により室外送風機53の回転数の修正値が演算
され、室外送風機回転数指令が室外送風機53に出力さ
れる。
The number of revolutions of the outdoor blower 53 is controlled so that the condensing pressure matches the target value. The target condensing pressure value is obtained, for example, as a pressure at which the condensing temperature Tc becomes 50 ° C. This condensing pressure target value Pc is, as in the heating operation,
It is obtained from equation (3). Accordingly, the controller 40 calculates the condensing pressure target value Pc using the circulating composition signal α transmitted from the composition calculator 30. Further, in the control device 40, a correction value of the rotation speed of the outdoor blower 53 is calculated by feedback control such as PID control according to a difference between the pressure P2 detected by the second pressure detector 26 and the condensing pressure target value Pc, The outdoor blower rotation speed command is output to the outdoor blower 53.

【0063】第1減圧装置3である第1電気式膨脹弁の
開度は、室内熱交換器61の出口過熱度が所定の値、例
えば5℃となるように制御される。この過熱度は、室内
熱交換器61内の圧力における飽和蒸気温度と室内熱交
換器61の出口温度との差として求めることができ、飽
和蒸気温度は図26に示すように圧力と循環組成の関数
として求めることができる。従って制御装置40では、
予め図26の関係を Tdew=f6 (P1,α)・・・・・・(6) なる関係式として、制御装置40内に記憶させておけ
ば、この式(6)を用いて組成演算器30から送信され
る循環組成信号αと第1圧力検出器22から送信される
圧力信号P1および第5温度検出器63から送信される
温度信T5を用いて、飽和蒸気温度Tdewおよび室内
熱交換器61の出口過熱度(T5−Tdew)が演算さ
れる。さらに制御装置40では、この出口過熱度と所定
値(5℃)との差に応じて、PID制御等のフィードバ
ック制御により第1減圧装置3である第1電気式膨脹弁
の開度の修正値が演算され、電気式膨脹弁開度指令が第
1減圧装置3である第1電気式膨脹弁に出力される。
The degree of opening of the first electric expansion valve as the first pressure reducing device 3 is controlled so that the degree of superheat at the outlet of the indoor heat exchanger 61 becomes a predetermined value, for example, 5 ° C. This degree of superheat can be obtained as the difference between the saturated steam temperature at the pressure in the indoor heat exchanger 61 and the outlet temperature of the indoor heat exchanger 61. The saturated steam temperature is determined by the pressure and the circulation composition as shown in FIG. It can be obtained as a function. Therefore, in the control device 40,
If the relationship of FIG. 26 is stored in advance in the control device 40 as a relational expression of Tdew = f 6 (P1, α) (6), the composition calculation is performed using the expression (6). The saturated steam temperature Tdew and the indoor heat exchange are obtained using the circulating composition signal α transmitted from the heater 30, the pressure signal P1 transmitted from the first pressure detector 22 and the temperature signal T5 transmitted from the fifth temperature detector 63. The degree of superheat at the outlet of the vessel 61 (T5−Tdew) is calculated. Further, the controller 40 corrects the opening degree of the first electric expansion valve, which is the first pressure reducing device 3, by feedback control such as PID control according to the difference between the degree of superheat at the outlet and a predetermined value (5 ° C.). Is calculated, and the electric expansion valve opening command is output to the first electric expansion valve which is the first pressure reducing device 3.

【0064】第2電気式膨脹弁120の開度制御は、暖
房運転時と同様であるので、ここでは説明を省略し、次
に、比較演算器41の動作について説明する。比較演算
器41は、組成演算器30から循環組成信号を取り込
み、この循環組成が、予め記憶された適正循環組成範囲
内であるか否かを判定し、循環組成が適正循環組成範囲
内であれば、そのまま運転は続行される。一方、循環組
成が使用中に冷媒漏れによって変化したり、冷媒充填時
の誤動作で循環組成が変化した場合には、比較演算器4
1では、この循環組成が、予め記憶された適正循環組成
範囲外であると判定すると、警報信号を警報装置42へ
送信する。この警報信号を受けた警報装置42では、警
告を所定時間発信して、冷凍空調装置の非共沸混合冷媒
の循環組成が、適正範囲から外れていることを警告す
る。
Since the opening control of the second electric expansion valve 120 is the same as that in the heating operation, the description is omitted here. Next, the operation of the comparison calculator 41 will be described. The comparison calculator 41 takes in the circulating composition signal from the composition calculator 30 and determines whether or not this circulating composition is within a previously stored proper circulating composition range, and determines whether the circulating composition is within the proper circulating composition range. If so, the operation continues. On the other hand, if the circulating composition changes due to refrigerant leakage during use, or the circulating composition changes due to a malfunction during charging of the refrigerant, the comparison arithmetic unit 4
In 1, when it is determined that the circulating composition is out of the proper circulating composition range stored in advance, an alarm signal is transmitted to the alarm device 42. Upon receiving the warning signal, the warning device 42 issues a warning for a predetermined time to warn that the circulating composition of the non-azeotropic refrigerant mixture of the refrigeration / air-conditioning device is out of the proper range.

【0065】なお、本実施例では、暖房運転時の室外送
風機53の回転数を、第1圧力検出器22の値が、循環
組成から演算される蒸発圧力目標値と一致するように制
御するものについて説明したが、室外熱交換器52の入
口部に温度検出器を設け、この温度が所定の値(例えば
0℃)となるように制御しても、同様の効果を得ること
ができる。
In this embodiment, the number of revolutions of the outdoor blower 53 during the heating operation is controlled so that the value of the first pressure detector 22 matches the target evaporating pressure value calculated from the circulation composition. However, the same effect can be obtained by providing a temperature detector at the inlet of the outdoor heat exchanger 52 and controlling the temperature to be a predetermined value (for example, 0 ° C.).

【0066】また、本実施例では、冷房運転時の第1減
圧装置3である第1電気式膨脹弁の開度を、室内熱交換
器61の出口過熱度が所定の値(例えば5℃)となるよ
うに制御するものについて説明したが、室内熱交換器6
1の出入口温度差が所定の値(例えば10℃)となるよ
うに、すなわち第5温度検出器63と第4温度検出器6
2の差温が所定の値となるように制御しても、同様の効
果を得ることができる。
In the present embodiment, the opening degree of the first electric expansion valve, which is the first pressure reducing device 3 during the cooling operation, is set to a predetermined value (for example, 5 ° C.) at the outlet superheat degree of the indoor heat exchanger 61. In the above description, the control is performed so that the indoor heat exchanger 6 is controlled.
1 so that the inlet / outlet temperature difference becomes a predetermined value (for example, 10 ° C.), that is, the fifth temperature detector 63 and the fourth temperature detector 6
The same effect can be obtained even if the difference in temperature is controlled to be a predetermined value.

【0067】さらに、本実施例では、1台の室外機50
に2台の室内機60が接続された、冷凍空調装置で説明
したが、これに限るものではなく、1台の室内機のみが
接続されたものや、3台以上の室内機が接続されたもの
であっても、同様の効果を得ることができる。
Further, in this embodiment, one outdoor unit 50
Refrigeration and air-conditioning system in which two indoor units 60 are connected to the above, but the present invention is not limited to this, and only one indoor unit is connected, or three or more indoor units are connected. However, the same effect can be obtained.

【0068】[0068]

【発明の効果】以上のように、請求項1の発明によれ
ば、温度検出器と圧力検出器で検出した信号から、冷凍
サイクル内を循環する冷媒組成を演算するように構成し
たので、冷凍空調装置の運転条件や負荷条件の変化によ
り循環組成が変化した場合や、あるいは冷凍空調装置使
用中の冷媒漏れや、冷媒充填時の誤動作で循環組成が変
化した場合でも、サイクル内の循環組成を正確に検知す
ることができる非共沸混合冷媒を用いた冷凍空調装置が
得られる効果がある。
As described above, according to the first aspect of the present invention, the composition of the refrigerant circulating in the refrigeration cycle is calculated from the signals detected by the temperature detector and the pressure detector. Even if the circulating composition changes due to changes in the operating conditions and load conditions of the air conditioner, or if the circulating composition changes due to a refrigerant leak during use of the refrigeration air conditioner or a malfunction during the charging of the refrigerant, the circulating composition in the cycle is changed. There is an effect that a refrigeration air conditioner using a non-azeotropic mixed refrigerant that can be accurately detected can be obtained.

【0069】請求項2の発明によれば、第1温度検出器
と第2温度検出器および圧力検出器で検出した信号か
ら、冷凍サイクル内を循環する冷媒組成を演算するよう
に構成したので、冷凍空調装置の運転条件や負荷条件の
変化により循環組成が変化した場合や、あるいは冷凍空
調装置使用中の冷媒漏れや、冷媒充填時の誤動作で循環
組成が変化した場合でも、サイクル内の循環組成を正確
に検知することができる非共沸混合冷媒を用いた冷凍空
調装置が得られる効果がある。
According to the present invention, the composition of the refrigerant circulating in the refrigeration cycle is calculated from the signals detected by the first temperature detector, the second temperature detector, and the pressure detector. Even if the circulating composition changes due to changes in the operating conditions and load conditions of the refrigeration / air-conditioning system, or if the circulating composition changes due to refrigerant leakage during use of the refrigeration / air-conditioning system or a malfunction during the charging of the refrigerant, the circulating composition in the cycle is changed. This has the effect of obtaining a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant capable of accurately detecting the temperature.

【0070】請求項3の発明によれば、複数個の温度検
出器と圧力検出器で検出した信号から、冷凍サイクル内
を循環する冷媒組成を演算するように構成したので、冷
凍空調装置の運転条件や負荷条件の変化により循環組成
が変化した場合や、あるいは冷凍空調装置使用中の冷媒
漏れや、冷媒充填時の誤動作で循環組成が変化した場合
でも、サイクル内の循環組成を正確に検知することがで
きる非共沸混合冷媒を用いた冷凍空調装置が得られる効
果がある。
According to the third aspect of the present invention, the composition of the refrigerant circulating in the refrigeration cycle is calculated from the signals detected by the plurality of temperature detectors and the pressure detectors. Even if the circulating composition changes due to changes in conditions or load conditions, or if the circulating composition changes due to a refrigerant leak during use of a refrigeration / air-conditioning device or a malfunction when filling the refrigerant, the circulating composition in the cycle is accurately detected. There is an effect that a refrigeration air conditioner using a non-azeotropic mixed refrigerant which can be obtained.

【0071】請求項4の発明によれば、バイパス配管の
冷却の方法として高圧側と低圧側との間で熱交換させる
ように構成したので、冷凍空調装置の構造をコンパクト
にできる非共沸混合冷媒を用いた冷凍空調装置が得られ
る効果がある。
According to the fourth aspect of the present invention, since the heat is exchanged between the high-pressure side and the low-pressure side as a method of cooling the bypass pipe, the structure of the refrigeration / air-conditioning apparatus can be made compact and non-azeotropic. There is an effect that a refrigerating air conditioner using a refrigerant can be obtained.

【0072】請求項5の発明によれば、低圧側冷媒の温
度を検出する複数個の温度検出器と圧力検出器で検出し
た信号から、冷凍サイクル内を循環する冷媒組成を演算
するように構成したので、冷凍空調装置の運転条件や負
荷条件の変化により循環組成が変化した場合や、あるい
は冷凍空調装置使用中の冷媒漏れや、冷媒充填時の誤動
作で循環組成が変化した場合でも、サイクル内の循環組
成を正確に検知することができる非共沸混合冷媒を用い
た冷凍空調装置が得られる効果がある。
According to the present invention, the composition of the refrigerant circulating in the refrigeration cycle is calculated from a plurality of temperature detectors for detecting the temperature of the low-pressure side refrigerant and signals detected by the pressure detectors. Therefore, even if the circulating composition changes due to changes in the operating conditions or load conditions of the refrigeration / air-conditioning system, or if the circulating composition changes due to refrigerant leakage during use of the refrigeration / air-conditioning device or malfunction during filling of the refrigerant, the cycle This has the effect of obtaining a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant capable of accurately detecting the circulating composition of the air.

【0073】請求項6の発明によれば、組成演算器によ
り検出された冷媒組成に応じて圧縮機、第1減圧装置な
どを制御するように構成したので、冷凍空調装置の運転
条件や負荷条件の変化により循環組成が変化した場合
や、あるいは冷凍空調装置使用中の冷媒漏れや、冷媒充
填時の誤動作で循環組成が変化した場合でも最適運転が
可能となる非共沸混合冷媒を用いた冷凍空調装置が得ら
れる効果がある。
According to the sixth aspect of the present invention, the compressor, the first pressure reducing device, and the like are controlled in accordance with the refrigerant composition detected by the composition computing unit. Refrigeration using a non-azeotropic mixed refrigerant that enables optimal operation even if the circulation composition changes due to changes in the refrigerant, or if the circulation composition changes due to refrigerant leakage during use of the refrigeration air conditioner or malfunctions when charging the refrigerant. There is an effect that an air conditioner can be obtained.

【0074】請求項7の発明によれば、循環組成が所定
範囲から外れた場合に警告信号によって警報装置を動作
させるように構成したので、非共沸混合冷媒の循環組成
が使用中に冷媒漏れによって変化したり、冷媒充填時の
誤動作で循環組成が変化したことを確実に検知でき、安
全性や信頼性の高い非共沸混合冷媒を用いた冷凍空調装
置が得られる効果がある。
According to the seventh aspect of the present invention, when the circulating composition is out of the predetermined range, the alarm device is activated by a warning signal. Or a change in the circulation composition due to a malfunction at the time of charging the refrigerant, and it is possible to obtain a refrigeration and air-conditioning system using a non-azeotropic mixed refrigerant with high safety and reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施例1による非共沸混合冷媒を
用いた冷凍空調装置を示す冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention.

【図2】 この発明の実施例1による冷媒の状態変化を
圧力−エンタルピー線図上に示す図である。
FIG. 2 is a diagram showing a state change of a refrigerant according to a first embodiment of the present invention on a pressure-enthalpy diagram.

【図3】 この発明の実施例1による非共沸混合冷媒の
温度と組成の関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a temperature and a composition of a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention.

【図4】 この発明の実施例1による非共沸混合冷媒の
飽和液温度と循環組成との関係を示す線図である。
FIG. 4 is a diagram showing a relationship between a saturated liquid temperature and a circulation composition of a non-azeotropic refrigerant mixture according to Embodiment 1 of the present invention.

【図5】 この発明の実施例1による非共沸混合冷媒の
温度と乾き度の関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the temperature and the dryness of the non-azeotropic refrigerant mixture according to Embodiment 1 of the present invention.

【図6】 この発明の実施例2による非共沸混合冷媒を
用いた冷凍空調装置を示す冷媒回路図である。
FIG. 6 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention.

【図7】 この発明の実施例2による冷媒の状態変化を
圧力−エンタルピー線図上に示す図である。
FIG. 7 is a diagram showing a state change of a refrigerant according to a second embodiment of the present invention on a pressure-enthalpy diagram.

【図8】 この発明の実施例2による組成演算器の動作
を示すフローチャート図である。
FIG. 8 is a flowchart showing the operation of the composition calculator according to Embodiment 2 of the present invention.

【図9】 この発明の実施例2による非共沸混合冷媒の
乾き度と温度と圧力の関係を示す線図である。
FIG. 9 is a diagram showing a relationship between dryness, temperature and pressure of a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention.

【図10】 この発明の実施例2による非共沸混合冷媒
の気液二相乾き度Xにおける温度を示す線図である。
FIG. 10 is a graph showing a temperature at a gas-liquid two-phase dryness X of a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention.

【図11】 この発明の実施例2による非共沸混合冷媒
の気液二相乾き度Xにおける温度と循環組成を示す線図
である。
FIG. 11 is a diagram showing a temperature and a circulation composition at a gas-liquid two-phase dryness X of a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention.

【図12】 この発明の実施例3による非共沸混合冷媒
を用いた冷凍空調装置を示す冷媒回路図である。
FIG. 12 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 3 of the present invention.

【図13】 この発明の実施例4による非共沸混合冷媒
を用いた冷凍空調装置を示す冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 4 of the present invention.

【図14】 この発明の実施例5による非共沸混合冷媒
を用いた冷凍空調装置の冷媒回路図である。
FIG. 14 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 5 of the present invention.

【図15】 この発明の実施例6による非共沸混合冷媒
を用いた冷凍空調装置の冷媒回路図である。
FIG. 15 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 6 of the present invention.

【図16】 この発明の実施例6による二重管熱交換器
の温度変化を表す図である。
FIG. 16 is a diagram illustrating a temperature change of a double-pipe heat exchanger according to Embodiment 6 of the present invention.

【図17】 この発明の実施例6による非共沸混合冷媒
の温度と循環組成との関係を示す線図である。
FIG. 17 is a diagram showing a relationship between a temperature of a non-azeotropic refrigerant mixture and a circulation composition according to Embodiment 6 of the present invention.

【図18】 この発明の実施例7による非共沸混合冷媒
を用いた冷凍空調装置を示す冷媒回路図である。
FIG. 18 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 7 of the present invention.

【図19】 この発明の実施例7による熱交換器の温度
変化を表す図である。
FIG. 19 is a diagram illustrating a temperature change of a heat exchanger according to Embodiment 7 of the present invention.

【図20】 この発明の実施例7による非共沸混合冷媒
の温度と循環組成との関係を示す線図である。
FIG. 20 is a diagram showing a relationship between a temperature of a non-azeotropic refrigerant mixture and a circulation composition according to Embodiment 7 of the present invention.

【図21】 この発明の実施例8による非共沸混合冷媒
を用いた冷凍空調装置を示す冷媒回路図である。
FIG. 21 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 8 of the present invention.

【図22】 この発明の実施例8による非共沸混合冷媒
を用いた冷凍空調装置の制御ブロック図である。
FIG. 22 is a control block diagram of a refrigeration and air-conditioning system using a non-azeotropic refrigerant mixture according to Embodiment 8 of the present invention.

【図23】 この発明の実施例8による非共沸混合冷媒
の凝縮圧力と循環組成との関係を示す線図である。
FIG. 23 is a diagram showing a relationship between a condensing pressure of a non-azeotropic refrigerant mixture and a circulation composition according to Embodiment 8 of the present invention.

【図24】 この発明の実施例8による非共沸混合冷媒
の蒸発圧力と循環組成との関係を示す線図である。
FIG. 24 is a diagram showing a relationship between an evaporation pressure of a non-azeotropic mixed refrigerant and a circulation composition according to Embodiment 8 of the present invention.

【図25】 この発明の実施例8による非共沸混合冷媒
の飽和液温度と圧力と循環組成との関係を示す線図であ
る。
FIG. 25 is a diagram showing a relationship among a saturated liquid temperature, a pressure, and a circulation composition of a non-azeotropic refrigerant mixture according to Embodiment 8 of the present invention.

【図26】 この発明の実施例8による非共沸混合冷媒
の飽和蒸気温度と圧力と循環組成との関係を示す線図で
ある。
FIG. 26 is a diagram showing a relationship between a saturated vapor temperature, a pressure, and a circulation composition of a non-azeotropic refrigerant mixture according to Embodiment 8 of the present invention.

【図27】 従来の非共沸混合冷媒を用いた冷凍空調装
置の構成を示す構成図である。
FIG. 27 is a configuration diagram showing a configuration of a conventional refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 凝縮器、3 第1減圧装置、4 蒸発
器、11 バイパス配管、12 第2毛細管(第2減圧
装置)、13 二重管熱交換器(冷却手段)、21 第
1温度検出器(温度検出器)、22 第1圧力検出器
(圧力検出器)、24 第2温度検出器、25a,25
b,25c,25d,25e 温度検出器、26 第2
圧力検出器(圧力検出器)、30 組成演算器、40
制御装置、41 比較演算器(比較演算手段)、42
警報装置、120 電気式膨脹弁(第2減圧装置)。
REFERENCE SIGNS LIST 1 compressor, 2 condenser, 3 first decompression device, 4 evaporator, 11 bypass pipe, 12 second capillary tube (second decompression device), 13 double-tube heat exchanger (cooling means), 21 first temperature detection (Temperature detector), 22 first pressure detector (pressure detector), 24 second temperature detector, 25a, 25
b, 25c, 25d, 25e Temperature detector, 26 second
Pressure detector (pressure detector), 30 Composition calculator, 40
Control device, 41 comparison operation unit (comparison operation means), 42
Alarm device, 120 electric expansion valve (second pressure reducing device).

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機,凝縮器,第1減圧装置,および
蒸発器を、冷媒として非共沸混合冷媒を用いて流通させ
る冷媒配管により順次連結してなる冷凍サイクルと、前
記圧縮機の出口から前記第1減圧装置までの高圧側と前
記第1減圧装置から前記圧縮機入口までの低圧側とを第
2減圧装置を介して連結接続するバイパス配管と、前記
バイパス配管の高圧側から前記第2減圧装置へ流入する
前記非共沸混合冷媒を冷却する冷却手段と、前記第2減
圧装置の出口部における低圧側冷媒の温度ならびに低圧
側冷媒の圧力を検出する温度検出器ならびに圧力検出器
と、前記温度検出器ならびに前記圧力検出器で検出した
信号から、前記冷凍サイクルの内部を循環する冷媒組成
を演算する組成演算器とを備えた非共沸混合冷媒を用い
た冷凍空調装置。
1. A refrigeration cycle in which a compressor, a condenser, a first decompression device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a non-azeotropic mixed refrigerant as a refrigerant, and an outlet of the compressor. And a bypass pipe connecting and connecting a high-pressure side from the first pressure-reducing device to a low-pressure side from the first pressure-reducing device to the compressor inlet via a second pressure-reducing device; (2) cooling means for cooling the non-azeotropic mixed refrigerant flowing into the pressure reducing device; a temperature detector and a pressure detector for detecting the temperature of the low pressure side refrigerant and the pressure of the low pressure side refrigerant at the outlet of the second pressure reducing device; A refrigeration air conditioner using a non-azeotropic mixed refrigerant, comprising: a composition calculator for calculating a composition of a refrigerant circulating in the refrigeration cycle from signals detected by the temperature detector and the pressure detector.
【請求項2】 圧縮機,凝縮器,第1減圧装置,および
蒸発器を、冷媒として非共沸混合冷媒を用いて流通させ
る冷媒配管により順次連結してなる冷凍サイクルと、前
記圧縮機の出口から前記第1減圧装置までの高圧側と前
記第1減圧装置から前記圧縮機入口までの低圧側とを第
2減圧装置を介して連結接続するバイパス配管と、前記
バイパス配管の高圧側から前記第2減圧装置へ流入する
前記非共沸混合冷媒を冷却する冷却手段と、前記第2減
圧装置の出口部における低圧側冷媒の温度ならびに低圧
側冷媒の圧力を検出する第1温度検出器ならびに圧力検
出器と、前記第2減圧装置の入口部における高圧側冷媒
の温度を検出する第2温度検出器と、前記第1温度検出
器ならびに前記圧力検出器および前記第2温度検出器に
よって検出した信号から、前記冷凍サイクルの内部を循
環する冷媒組成を演算する組成演算器とを備えた非共沸
混合冷媒を用いた冷凍空調装置。
2. A refrigeration cycle in which a compressor, a condenser, a first decompression device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a non-azeotropic mixed refrigerant as a refrigerant, and an outlet of the compressor. And a bypass pipe connecting and connecting a high-pressure side from the first pressure-reducing device to a low-pressure side from the first pressure-reducing device to the compressor inlet via a second pressure-reducing device; (2) cooling means for cooling the non-azeotropic mixed refrigerant flowing into the pressure reducing device, a first temperature detector and a pressure detector for detecting the temperature of the low pressure side refrigerant and the pressure of the low pressure side refrigerant at the outlet of the second pressure reducing device Detector, a second temperature detector for detecting the temperature of the high-pressure side refrigerant at the inlet of the second pressure reducing device, and a signal detected by the first temperature detector and the pressure detector and the second temperature detector. And a composition calculator for calculating the composition of the refrigerant circulating in the refrigeration cycle.
【請求項3】 圧縮機,凝縮器,第1減圧装置,および
蒸発器を、冷媒として非共沸混合冷媒を用いて流通させ
る冷媒配管により順次連結してなる冷凍サイクルと、前
記圧縮機の出口から前記第1減圧装置までの高圧側と前
記第1減圧装置から前記圧縮機入口までの低圧側とを第
2減圧装置を介して連結接続するバイパス配管と、前記
バイパス配管の高圧側から前記第2減圧装置へ流入する
前記非共沸混合冷媒を冷却する冷却手段と、前記バイパ
ス配管における高圧側冷媒の温度を検出する3個以上の
温度検出器ならびに前記バイパス配管における高圧側冷
媒の圧力を検出する圧力検出器と、3個以上の前記温度
検出器ならびに前記圧力検出器によって検出した信号か
ら、前記冷凍サイクルの内部を循環する冷媒組成を演算
する組成演算器とを備えた非共沸混合冷媒を用いた冷凍
空調装置。
3. A refrigeration cycle in which a compressor, a condenser, a first decompression device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a non-azeotropic mixed refrigerant as a refrigerant, and an outlet of the compressor. And a bypass pipe connecting and connecting a high-pressure side from the first pressure-reducing device to a low-pressure side from the first pressure-reducing device to the compressor inlet via a second pressure-reducing device; (2) cooling means for cooling the non-azeotropic mixed refrigerant flowing into the pressure reducing device, three or more temperature detectors for detecting the temperature of the high-pressure side refrigerant in the bypass pipe, and detecting the pressure of the high-pressure side refrigerant in the bypass pipe And a composition calculator for calculating the composition of the refrigerant circulating inside the refrigeration cycle from signals detected by the three or more temperature detectors and the pressure detector. Refrigeration air conditioner using a non-azeotropic mixed refrigerant provided.
【請求項4】 前記冷却手段は前記バイパス配管の高圧
側と低圧側との間で熱交換させるように構成したことを
特徴とする請求項1乃至請求項3のうちいずれか1項に
記載の非共沸混合冷媒を用いた冷凍空調装置。
4. The cooling device according to claim 1, wherein the cooling unit is configured to exchange heat between a high pressure side and a low pressure side of the bypass pipe. A refrigeration air conditioner using a non-azeotropic mixed refrigerant.
【請求項5】 圧縮機,凝縮器,第1減圧装置,および
蒸発器を、冷媒として非共沸混合冷媒を用いて流通させ
る冷媒配管により順次連結してなる冷凍サイクルと、前
記圧縮機の出口から前記第1減圧装置までの高圧側と前
記第1減圧装置から前記圧縮機入口までの低圧側とを第
2減圧装置を介して連結接続するバイパス配管と、前記
バイパス配管における高圧側と低圧側との間で熱交換を
行う熱交換部、前記バイパス配管における低圧側冷媒の
温度を検出する3個以上の温度検出器ならびに前記バイ
パス配管おける低圧側冷媒の圧力を検出する圧力検出器
と、3個以上の前記温度検出器ならびに前記圧力検出器
で検出した信号から、前記冷凍サイクルの内部を循環す
る冷媒組成を演算する組成演算器とを備えた非共沸混合
冷媒を用いた冷凍空調装置。
5. A refrigeration cycle in which a compressor, a condenser, a first decompression device, and an evaporator are sequentially connected by a refrigerant pipe that circulates using a non-azeotropic mixed refrigerant as a refrigerant, and an outlet of the compressor. A bypass pipe connecting and connecting a high-pressure side from the first pressure-reducing apparatus to a low-pressure side from the first pressure-reducing apparatus to the compressor inlet via a second pressure-reducing apparatus; and a high-pressure side and a low-pressure side of the bypass pipe. A heat exchange unit for exchanging heat between the bypass pipe, three or more temperature detectors for detecting the temperature of the low-pressure refrigerant in the bypass pipe, and a pressure detector for detecting the pressure of the low-pressure refrigerant in the bypass pipe; Refrigeration air using a non-azeotropic mixed refrigerant, comprising: a composition calculator for calculating the composition of a refrigerant circulating inside the refrigeration cycle from signals detected by the temperature detectors and the pressure detectors. Control device.
【請求項6】 前記冷凍サイクルの各手段の動作を制御
する制御装置を設け、前記組成演算器によって検出され
た冷媒組成に応じ前記制御装置によって前記冷凍サイク
ルの運転制御を行うことを特徴とする請求項1乃至請求
項5のうちいずれか1項に記載の非共沸混合冷媒を用い
た冷凍空調装置。
6. A refrigeration cycle, comprising a control device for controlling the operation of each means of the refrigeration cycle, wherein the control device controls the operation of the refrigeration cycle in accordance with the refrigerant composition detected by the composition calculator. A refrigeration / air-conditioning apparatus using the non-azeotropic mixed refrigerant according to any one of claims 1 to 5.
【請求項7】 前記組成演算器によって検出された冷媒
組成が所定範囲から外れた場合に警告信号を発する比較
演算手段と、前記比較演算手段が発する前記警報信号に
よって動作する警報装置とを設けたことを特徴とする請
求項1乃至請求項6のうちいずれか1項に記載の非共沸
混合冷媒を用いた冷凍空調装置。
7. A comparison operation means for issuing a warning signal when the refrigerant composition detected by the composition operation unit is out of a predetermined range, and an alarm device operated by the alarm signal issued by the comparison operation means. A refrigeration and air-conditioning system using the non-azeotropic mixed refrigerant according to any one of claims 1 to 6.
JP6207457A 1994-07-21 1994-08-31 Refrigeration air conditioner using non-azeotropic mixed refrigerant Expired - Lifetime JP2948105B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP6207457A JP2948105B2 (en) 1994-08-31 1994-08-31 Refrigeration air conditioner using non-azeotropic mixed refrigerant
EP98107194A EP0854331B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
EP98107192A EP0853221B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107196T ES2176850T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
DE69517099T DE69517099T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and calculator to determine its composition
EP98107191A EP0854329B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
US08/500,551 US5626026A (en) 1994-07-21 1995-07-11 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
EP98107193A EP0854330B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107194T ES2176849T3 (en) 1994-07-21 1995-07-11 REFRIGERATION AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
PT95304838T PT693663E (en) 1994-07-21 1995-07-11 DEVICE FOR DETECTING CONTROL INFORMATION FOR A FRIGORIFIED AIR CONDITIONING APPLIANCE USING A COOLANT NOT A AZEOTROPE
ES98107193T ES2178069T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
ES98107192T ES2208995T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR APPARATUS.
EP95304838A EP0693663B1 (en) 1994-07-21 1995-07-11 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
DE69526980T DE69526980T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
ES98107195T ES2178070T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
EP98107196A EP0854332B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107191T ES2178068T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER WITH A NON-AZEOTROPIC REFRIGERANT AND HAS A CONTROL INFORMATION DETECTION DEVICE.
DE69532003T DE69532003T2 (en) 1994-07-21 1995-07-11 Cooling air conditioner with non-azeotropic refrigerant and a control information acquisition device
EP98107195A EP0853222B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
PT98107192T PT853221E (en) 1994-07-21 1995-07-11 CONTROL DETECTION APPARATUS FOR A REFRIGERATION CONDITIONING APPLIANCE USING A REFRIGERANT NOT AZEOTROPE
DE69527095T DE69527095T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
DE69526979T DE69526979T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
ES95304838T ES2148441T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A COMPOSITION CALCULATION UNIT.
DE69526982T DE69526982T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
DE69527092T DE69527092T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
AU25041/95A AU683385B2 (en) 1994-07-21 1995-07-18 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
CN95108967A CN1067154C (en) 1994-07-21 1995-07-21 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
TW084107907A TW289079B (en) 1994-07-21 1995-07-28
US08/779,851 US5735132A (en) 1994-07-21 1997-01-07 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
US09/005,813 US5941084A (en) 1994-07-21 1998-01-12 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
HK98100593A HK1001659A1 (en) 1994-07-21 1998-01-22 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
KR2019980010044U KR200145320Y1 (en) 1994-07-21 1998-06-12 Control information detecting apparatus using non-azeotropic mixed refrigerant for a refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6207457A JP2948105B2 (en) 1994-08-31 1994-08-31 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Publications (2)

Publication Number Publication Date
JPH0875280A JPH0875280A (en) 1996-03-19
JP2948105B2 true JP2948105B2 (en) 1999-09-13

Family

ID=16540094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6207457A Expired - Lifetime JP2948105B2 (en) 1994-07-21 1994-08-31 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Country Status (1)

Country Link
JP (1) JP2948105B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185722B2 (en) * 1997-08-20 2001-07-11 三菱電機株式会社 Refrigeration air conditioner and method for determining refrigerant composition of refrigeration air conditioner
JP4200532B2 (en) * 1997-12-25 2008-12-24 三菱電機株式会社 Refrigeration equipment
GB2508725B (en) 2011-06-14 2016-06-15 Mitsubishi Electric Corp Air-conditioning apparatus
US9857113B2 (en) 2011-06-16 2018-01-02 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013027232A1 (en) 2011-08-19 2013-02-28 三菱電機株式会社 Refrigeration cycle device
CN103733005B (en) 2011-09-30 2016-04-06 三菱电机株式会社 Aircondition
WO2013093977A1 (en) 2011-12-22 2013-06-27 三菱電機株式会社 Air conditioning device
US10001308B2 (en) 2011-12-22 2018-06-19 Mitsubishi Electric Corporation Refrigeration cycle device
EP2889552A4 (en) * 2012-08-23 2016-04-20 Mitsubishi Electric Corp Refrigeration device
WO2021048897A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPH0875280A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
EP0693663B1 (en) Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
JP3185722B2 (en) Refrigeration air conditioner and method for determining refrigerant composition of refrigeration air conditioner
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
WO2009150761A1 (en) Refrigeration cycle device and control method therefor
JPH11182951A (en) Refrigerating device
JP2001221526A (en) Refrigerative air conditioner
JP5808410B2 (en) Refrigeration cycle equipment
US20190011159A1 (en) Air conditioning device using vapor injection cycle and method for controlling the device
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
US20150075194A1 (en) Air-conditioning apparatus
JP6739664B2 (en) Refrigeration air conditioner and control device
KR20180065198A (en) Testing apparatus of compressor and test method of compressor using the same
WO2020066000A1 (en) Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device
JP2003314914A (en) Refrigerant circulating system
WO2020066001A1 (en) Refrigeration cycle device
JP6762422B2 (en) Refrigeration cycle equipment
JPH11316057A (en) Refrigerating/air conditioning apparatus
US20220252311A1 (en) Heat exchanger for mixed refrigerant systems
JP7341337B2 (en) Cold heat source unit, refrigeration cycle equipment, and refrigerator
WO2020255355A1 (en) Outdoor unit, refrigeration cycle device, and refrigerator
JP2023062750A (en) air conditioner
JP2017194222A (en) Air conditioner and refrigerant quantity determination method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

EXPY Cancellation because of completion of term