WO2020066000A1 - Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device - Google Patents

Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device Download PDF

Info

Publication number
WO2020066000A1
WO2020066000A1 PCT/JP2018/036525 JP2018036525W WO2020066000A1 WO 2020066000 A1 WO2020066000 A1 WO 2020066000A1 JP 2018036525 W JP2018036525 W JP 2018036525W WO 2020066000 A1 WO2020066000 A1 WO 2020066000A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
temperature
outdoor unit
refrigeration cycle
Prior art date
Application number
PCT/JP2018/036525
Other languages
French (fr)
Japanese (ja)
Inventor
智隆 石川
悠介 有井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/036525 priority Critical patent/WO2020066000A1/en
Priority to JP2020547863A priority patent/JP6972369B2/en
Priority to CN201880097229.8A priority patent/CN112739961B/en
Publication of WO2020066000A1 publication Critical patent/WO2020066000A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present disclosure relates to an outdoor unit of a refrigeration cycle device, a refrigeration cycle device, and an air conditioner.
  • Refrigeration cycle devices using non-azeotropic refrigerants with low GWP have attracted attention in consideration of their impact on global warming.
  • Japanese Patent Application Laid-Open No. 8-75280 discloses a refrigerating air conditioner using a non-azeotropic refrigerant mixture.
  • the rotation speed of the fan of the outdoor unit is controlled so that the evaporation pressure of the evaporator matches the target value.
  • the target value of the evaporation pressure is set as a pressure at which the evaporation temperature becomes 0 ° C.
  • the non-azeotropic refrigerant mixture has a gradient of saturation temperature (evaporation temperature) according to the dryness of the refrigerant under a constant pressure. Therefore, in this refrigerating air conditioner, the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated gas temperature and the saturated liquid temperature, and the evaporation pressure is controlled to a pressure target value at which the evaporation temperature becomes 0 ° C. (See Patent Document 1).
  • the evaporation temperature is represented by the average value of the saturated gas temperature and the saturated liquid temperature.
  • the saturated liquid temperature and the refrigerant temperature on the evaporator inlet side deviate, the above described The difference between the average value and the actual evaporation temperature increases, and the accuracy of the control of the evaporation temperature decreases.
  • the present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to realize, at low cost, improved accuracy of control of the evaporation temperature when a non-azeotropic refrigerant is used in a refrigeration cycle device. That is.
  • the outdoor unit of the present disclosure is an outdoor unit of a refrigeration cycle device, and includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant output from the compressor, a control device, and a supercooler.
  • the control device controls the pressure of the refrigerant flowing through the evaporator to a target pressure based on the evaporation temperature set for the evaporator of the indoor unit connected to the outdoor unit.
  • the controller uses the relationship between the refrigerant pressure and the dew-boiling average temperature indicating the average of the saturated liquid temperature and the saturated gas temperature of the refrigerant at that pressure to determine the pressure when the dew-boiling average temperature is the set evaporation temperature. Is set as the target pressure.
  • the subcooler is provided on the outlet side of the condenser, and is configured to cool the refrigerant output from the condenser.
  • the pressure when the average dew-boiling temperature is the set evaporation temperature is set as the target pressure, and the pressure of the refrigerant flowing through the evaporator is controlled to the target pressure. Accordingly, even when a non-azeotropic refrigerant having a gradient of the evaporation temperature according to the dryness of the refrigerant under a constant pressure is used, the evaporation temperature can be controlled.
  • the refrigerant on the evaporator inlet side is usually in a gas-liquid two-phase state, and the refrigerant on the evaporator inlet side is higher than the saturated liquid temperature.
  • the temperature of the refrigerant at the evaporator inlet side deviates from the temperature of the saturated liquid, the accuracy of the control of the evaporating temperature decreases as described above. Therefore, in this outdoor unit, a subcooler is provided on the outlet side of the condenser. By providing the subcooler, the temperature of the refrigerant at the evaporator inlet side can be reduced to approach the saturated liquid temperature.
  • the difference between the refrigerant temperature on the evaporator inlet side and the saturated liquid temperature can be suppressed, and the accuracy of evaporating temperature control can be improved.
  • this outdoor unit there is no need to provide a temperature sensor for detecting the refrigerant temperature on the evaporator inlet side, and therefore, the cost of the apparatus is also reduced.
  • the outdoor unit, the refrigeration cycle device, and the air conditioner of the present disclosure when a non-azeotropic refrigerant is used, it is possible to improve the accuracy of controlling the evaporation temperature at low cost.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. It is a ph diagram explaining the property of an azeotropic refrigerant. It is a ph diagram explaining the property of a non-azeotropic refrigerant.
  • FIG. 3 is a ph diagram showing a state of the refrigerant when a non-azeotropic refrigerant is used in the refrigeration apparatus of the present disclosure. 3 is a flowchart illustrating an example of a processing procedure of evaporating temperature control executed by the control device illustrated in FIG. 1.
  • FIG. 4 is a diagram showing an example of a pressure-dew-boiling average temperature map.
  • FIG. 9 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to a second embodiment.
  • 1 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit according to Embodiment 1 is used.
  • FIG. 13 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit according to Embodiment 2 is used.
  • FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure.
  • a refrigeration apparatus 1 includes an outdoor unit 2 and an indoor unit 3.
  • the outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, a subcooler 40, a fan 42, pipes 80, 81, 83, 85, a pressure sensor 90, and a control device 100.
  • the indoor unit 3 includes an expansion valve 50, an evaporator 60, a fan 62, and a pipe 84.
  • the indoor unit 3 is connected to the outdoor unit 2 through pipes 83 and 85.
  • the pipe 80 connects the discharge port of the compressor 10 and the condenser 20.
  • the pipe 81 connects the condenser 20 and the subcooler 40.
  • the pipe 83 connects the subcooler 40 and the expansion valve 50.
  • the pipe 84 connects the expansion valve 50 and the evaporator 60.
  • the pipe 85 connects the evaporator 60 and the suction port of the compressor 10.
  • the compressor 10 compresses the refrigerant sucked from the pipe 85 and outputs the compressed refrigerant to the pipe 80.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration apparatus 1 can be adjusted. As described later, in the first embodiment, by adjusting the rotation speed of the compressor 10, the low pressure side pressure of the refrigeration system 1 (the refrigerant pressure from the outlet side of the expansion valve 50 to the inlet side of the compressor 10) is adjusted. ) Is controlled.
  • Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
  • the condenser 20 condenses the refrigerant output from the compressor 10 to the pipe 80 and outputs the refrigerant to the pipe 81.
  • the condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant output from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase.
  • the fan 22 supplies the outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high-pressure side pressure) on the outlet side of the compressor 10 can be adjusted.
  • the subcooler 40 is configured such that the liquid refrigerant output from the condenser 20 to the pipe 81 further performs heat exchange (radiation) with the outside air.
  • the refrigerant becomes a liquid refrigerant whose subcooling degree is further increased by passing through the subcooler 40.
  • the fan 42 supplies the outside air in which the refrigerant performs heat exchange in the subcooler 40 to the subcooler 40.
  • the supercooler 40 is not limited to the air-cooled type using the fan 42 as described above, but may be a water-cooled type or a type using a refrigerant cooled by another refrigeration cycle. Is also good. Note that a liquid reservoir for temporarily storing the liquid refrigerant output from the condenser 20 may be provided between the condenser 20 and the subcooler 40.
  • the expansion valve 50 decompresses the refrigerant output from the subcooler 40 to the pipe 83 and outputs it to the pipe 84.
  • the opening degree of the expansion valve 50 is changed in the closing direction, the refrigerant pressure on the exit side of the expansion valve 50 decreases, and the dryness of the refrigerant increases.
  • the opening of the expansion valve 50 is changed in the opening direction, the refrigerant pressure on the outlet side of the expansion valve 50 increases, and the dryness of the refrigerant decreases.
  • the evaporator 60 evaporates the refrigerant output from the expansion valve 50 to the pipe 84 and outputs the refrigerant to the pipe 85.
  • the evaporator 60 is configured such that the refrigerant decompressed by the expansion valve 50 performs heat exchange (heat absorption) with the air in the indoor unit 3.
  • the refrigerant evaporates by passing through the evaporator 60 to become superheated steam.
  • the fan 62 supplies to the evaporator 60 external air in which the refrigerant performs heat exchange in the evaporator 60.
  • Pressure sensor 90 detects refrigerant pressure (low pressure side pressure) LP on the suction side of compressor 10 and outputs the detected value to control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting and outputting various signals, and the like. It is comprised including.
  • the CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 controls each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the refrigeration apparatus 1 in the present disclosure is configured to operate using either an azeotropic refrigerant or a non-azeotropic refrigerant.
  • the azeotropic refrigerant may be a single refrigerant (single refrigerant) or a refrigerant in which a plurality of refrigerants are mixed (mixed refrigerant).
  • the azeotropic refrigerant is, for example, R410A, R404A, etc., but is not limited thereto.
  • the non-azeotropic refrigerant is a mixed refrigerant, and has a gradient of a saturation temperature according to the dryness (wetness) of the refrigerant under a certain pressure. Specifically, under a certain pressure, the drying temperature increases and the evaporation temperature increases.
  • Non-azeotropic refrigerants include, for example, R407C, R448A, R463A, etc., but are not limited thereto.
  • FIG. 2 is a ph diagram explaining the properties of the azeotropic refrigerant.
  • the vertical axis indicates the pressure p
  • the horizontal axis indicates the specific enthalpy h (kJ / kg) (hereinafter, simply referred to as “enthalpy”).
  • FIG. 2 does not show the state of the refrigerant in the refrigeration apparatus 1 of the present disclosure, but illustrates the state of the refrigerant in a general refrigeration apparatus using an azeotropic refrigerant.
  • a solid line connecting points P11 to P14 indicates a change in pressure and enthalpy of the refrigerant circulating in the refrigerant device.
  • Point P14 ⁇ point P11 indicates compression of the refrigerant in the compressor (isentropic change), and point P11 ⁇ point P12 indicates equal pressure cooling in the condenser.
  • a point P12 ⁇ point P13 indicates pressure reduction in the expansion valve, and a point P13 ⁇ point P14 indicates equal pressure heating in the evaporator.
  • the dotted line indicates the isotherm of the refrigerant, and the lower the pressure, the lower the temperature.
  • the azeotropic refrigerant has a constant saturation temperature during a phase change of the refrigerant under a constant pressure.
  • the evaporation temperature becomes a constant temperature Te during the phase change of the refrigerant regardless of the dryness of the refrigerant.
  • FIG. 3 is a ph diagram explaining the properties of the non-azeotropic refrigerant.
  • FIG. 3 also does not show the state of the refrigerant in the refrigeration apparatus 1 of the present disclosure, but illustrates the state of the refrigerant in a general refrigeration apparatus using a non-azeotropic refrigerant.
  • Non-azeotropic refrigerants have a gradient of saturation temperature according to the dryness (wetness) of the refrigerant during a phase change of the refrigerant under a constant pressure.
  • the saturated liquid temperature TL and the saturated gas temperature TG are different from each other when the low-pressure side pressure (evaporation pressure) of the refrigerating apparatus is constant at a pe, and the saturated gas temperature TG is the saturated liquid temperature.
  • TL low-pressure side pressure
  • the saturated gas temperature TG is the saturated liquid temperature.
  • the temperature Ti of the refrigerant on the evaporator inlet side and the temperature To of the refrigerant on the outlet side are different from each other. Even if the degree of superheat on the evaporator outlet side is 0, the temperature To is higher than the temperature Ti.
  • a target value of the evaporation temperature (saturation temperature on the low pressure side) of the evaporator is set according to the required refrigeration capacity, and the low pressure side pressure (flow through the evaporator) is adjusted so that the evaporation temperature matches the target value. (Pressure of the refrigerant). More specifically, the target pressure corresponding to the target value of the evaporation temperature is determined, and the rotation speed of the compressor and the like are adjusted such that the low-pressure side pressure matches the target pressure.
  • the target pressure corresponding to the target value of the evaporation temperature becomes a constant value, and the feedback control is performed based on the pressure deviation from the target pressure.
  • the evaporation temperature is controlled to the target value (hereinafter, such control of the evaporation temperature is referred to as “evaporation temperature control”).
  • the evaporation temperature has a gradient according to the dryness of the refrigerant during the phase change of the refrigerant under a constant pressure.
  • the target pressure corresponding to the target value of the evaporation temperature changes. Specifically, the target pressure decreases as the dryness of the refrigerant increases.
  • the evaporation temperature at a certain pressure is represented by the dew-boiling average temperature indicating the average of the saturated liquid temperature and the saturated gas temperature of the refrigerant at a certain pressure. Then, a pressure at which the dew-boiling average temperature becomes a target value of the evaporation temperature is set as a target pressure, and feedback control is performed based on a pressure deviation from the target pressure.
  • the above-described evaporation temperature control performed when using the azeotropic refrigerant can be applied also when using the non-azeotropic refrigerant.
  • the accuracy of the evaporation temperature control is reduced.
  • the refrigerant on the evaporator inlet side is in a gas-liquid two-phase state by passing through the expansion valve, and the refrigerant temperature on the evaporator inlet side is higher than the saturated liquid temperature. If the refrigerant temperature on the evaporator inlet side deviates from the saturated liquid temperature, the departure between the dew-boiling average temperature and the actual evaporating temperature increases, and the accuracy of evaporating temperature control decreases.
  • the temperature of the refrigerant at the evaporator inlet side is detected by a temperature sensor and the detected value of the temperature sensor is used instead of the saturated liquid temperature. Increases costs.
  • the subcooler 40 is provided on the outlet side of the condenser 20, and the degree of subcooling of the refrigerant supplied to the indoor unit 3 is increased.
  • the temperature of the refrigerant on the inlet side of the evaporator 60 decreases, and approaches the saturated liquid temperature. Therefore, the difference between the refrigerant temperature on the inlet side of the evaporator and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control is improved. Further, since there is no need to provide a temperature sensor for detecting the temperature of the refrigerant on the inlet side of the evaporator 60, the cost of the apparatus is also reduced.
  • FIG. 4 is a ph diagram showing a state of the refrigerant when a non-azeotropic refrigerant is used in the refrigeration apparatus 1 according to the first embodiment.
  • a solid line connecting points P21 to P25 indicates a change in pressure and enthalpy of the refrigerant circulating in refrigerant device 1.
  • Point P25 ⁇ point P21 indicates compression of the refrigerant in the compressor 10 (isentropic change), and point P21 ⁇ point P22 indicates equal pressure cooling in the condenser 20.
  • Point P22 ⁇ point P23 indicates equal pressure cooling in the subcooler 40.
  • the point P23 ⁇ point P24 indicates the pressure reduction in the expansion valve 50, and the point P24 ⁇ point P25 indicates the equal pressure heating in the evaporator 60.
  • the supercooler 40 is provided, so that the degree of supercooling SC of the refrigerant increases, and as a result, the refrigerant temperature Ti (point P24) on the inlet side of the evaporator 60 approaches the saturated liquid temperature TL. I can do it.
  • the dew-boiling average temperature Te indicating the average of the saturated liquid temperature TL and the saturated gas temperature TG becomes the temperature of the refrigerant flowing through the evaporator 60. It approaches the average value (the average of the inlet temperature Ti and the outlet temperature To). Therefore, in the refrigerating apparatus 1, it can be said that the temperature of the refrigerant flowing through the evaporator 60 can be accurately represented by the average dew-boiling temperature Te.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure of the evaporation temperature control performed by the control device 100 illustrated in FIG. A series of processes shown in this flowchart is repeatedly executed during the operation of the refrigeration apparatus 1.
  • control device 100 acquires the set evaporation temperature (step S10).
  • the evaporation temperature may be directly set by the user of the refrigeration apparatus 1 or set based on a temperature setting set by the user (for example, a temperature setting in a warehouse where the refrigeration apparatus 1 is installed). May be used or may be set in advance.
  • the control device 100 reads the pressure-dew-boiling average temperature map of the refrigerant used in the refrigerating device 1 (step S20).
  • This map is a list showing the relationship between the pressure of the refrigerant being used and the average dew-boiling temperature at that pressure. Using this map, a pressure corresponding to a certain dew-boiling average temperature can be obtained. .
  • a map is prepared in advance for each refrigerant (including both an azeotropic refrigerant and a non-azeotropic refrigerant) that can be used in the refrigeration apparatus 1 and stored in the ROM of the memory 104.
  • FIG. 6 is a diagram showing an example of a pressure-dew-boiling average temperature map.
  • saturated liquid temperature TL and saturated gas temperature TG are physical values uniquely determined by pressure pe.
  • the average dew-boiling temperature Te is an average value of the saturated liquid temperature TL and the saturated gas temperature TG, and the average dew-boiling temperature Te is also uniquely determined by the pressure pe.
  • the dew-boiling average temperature Te is associated with each pressure Pe.
  • Such a pressure-dew-boiling average temperature map is prepared in advance for each refrigerant usable in the refrigeration apparatus 1.
  • control device 100 uses the pressure-dew / boiling average temperature map read in step S20 to determine the pressure corresponding to the dew / boiling average temperature corresponding to the set evaporation temperature acquired in step S10. Is determined as the target pressure for the evaporation temperature control (step S30). If the dew-boiling average temperature that matches the set evaporation temperature obtained in step S10 is not shown in the map, control device 100 performs interpolation calculation using the dew-boiling average temperature close to the set evaporation temperature. To determine the target pressure.
  • control device 100 acquires a detection value of pressure LP from pressure sensor 90 (step S40). Then, control device 100 determines whether or not the acquired detected value of pressure LP is higher than the target pressure determined in step S30 (step S50).
  • control device 100 controls compressor 10 to increase the rotation speed of compressor 10 (step S60). On the other hand, if it is determined in step S50 that pressure LP is equal to or lower than the target pressure (NO in step S50), control device 100 controls compressor 10 so as to reduce the rotation speed of compressor 10 (step S70). .
  • the amount of change in the rotation speed of the compressor 10 may be variable according to the amount of deviation between the pressure LP and the target pressure. As described above, by adjusting the rotation speed of the compressor 10 based on the deviation between the pressure LP and the target pressure, the pressure LP is adjusted near the target pressure. As a result, the evaporation temperature represented by the dew-boiling average temperature is controlled to the set evaporation temperature.
  • the pressure LP is adjusted by adjusting the rotation speed of the compressor 10.
  • the rotation speed of the fan 62 of the evaporator 60 or the expansion valve 50 is replaced with the rotation speed of the compressor 10.
  • the pressure LP may be adjusted by adjusting the opening degree.
  • the refrigerant used in the refrigeration apparatus 1 is a non-azeotropic refrigerant or an azeotropic refrigerant.
  • the refrigerant is an azeotropic refrigerant
  • the average dew-boiling temperature is the evaporation temperature itself, so this flowchart can be applied to the case where an azeotropic refrigerant is used.
  • the dew-boiling average temperature at a certain pressure represents the evaporation temperature at that pressure. Then, a pressure at which the dew-boiling average temperature reaches the set evaporation temperature is set as a target pressure, and feedback control based on a pressure deviation from the target pressure is performed. Thereby, the evaporation temperature control performed when using the azeotropic refrigerant can be applied even when using the non-azeotropic refrigerant.
  • the subcooler 40 is provided on the outlet side of the condenser 20 to increase the degree of supercooling of the refrigerant.
  • the difference between the refrigerant temperature on the inlet side of the evaporator 60 and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control is improved.
  • the cost of the apparatus is also reduced.
  • the pressure-dew-boiling average temperature map is used even when the azeotropic refrigerant is used without discriminating whether the refrigerant used is an azeotropic refrigerant or a non-azeotropic refrigerant.
  • the target pressure was determined.
  • a pressure evaporation pressure
  • FIG. 7 is a flowchart illustrating an example of a processing procedure of evaporating temperature control in a modification. This flowchart corresponds to the flowchart of FIG. 5, and a series of processes shown in this flowchart is also repeatedly executed during the operation of the refrigeration apparatus 1.
  • control device 100 determines whether or not the refrigerant used in refrigerating device 1 is a non-azeotropic refrigerant (step S120). Whether or not the refrigerant is a non-azeotropic refrigerant can be determined, for example, based on the type of refrigerant used by the user.
  • control device 100 sets target pressure based on the set evaporation temperature. Is set (step S130).
  • the relationship between pressure and evaporation temperature is one-to-one, and the target pressure can be determined based on the set evaporation temperature.
  • the relationship between the pressure and the evaporation temperature is stored in the ROM of the memory 104 as a map. Then, after execution of step S130, control device 100 shifts the processing to step S160, and acquires a detection value of pressure LP from pressure sensor 90.
  • control device 100 shifts the processing to step S140 and sets the pressure of the used refrigerant. Reading the dew-boiling average temperature map from the memory 104; The processing after step S150 is the same as the processing after step S30 in the flowchart shown in FIG. 5, and thus the description will not be repeated.
  • Embodiment 2 differs from the first embodiment in the configuration of the subcooler.
  • FIG. 8 is an overall configuration diagram of a refrigerating apparatus using the outdoor unit according to the second embodiment.
  • this refrigeration apparatus 1A includes an outdoor unit 2A and an indoor unit 3.
  • the outdoor unit 2A includes a subcooler 40A and a compressor 10A instead of the subcooler 40 and the compressor 10 in the outdoor unit 2 of the first embodiment shown in FIG. And a bypass circuit for returning the refrigerant to the compressor 10A.
  • the subcooler 40A includes an internal heat exchanger 44 and an expansion valve 46.
  • the internal heat exchanger 44 is configured to exchange heat between the refrigerant flowing through the pipe 81 on the outlet side of the condenser 20 and the refrigerant flowing through the pipe 87 forming the bypass circuit.
  • the expansion valve 46 reduces the pressure of the refrigerant flowing through the pipe 86 branched from the pipe 83 and outputs the reduced pressure to the pipe 87.
  • the refrigerant that has passed through the expansion valve 46 is decompressed by the expansion valve 46 and has a reduced temperature. Accordingly, in the subcooler 40A, the refrigerant output from the condenser 20 can be further cooled by the refrigerant flowing through the pipe 87. That is, the degree of supercooling of the refrigerant output from the condenser 20 to the pipe 81 is increased by passing through the subcooler 40A.
  • the compressor 10A has an injection port. By connecting the pipe 87 to the injection port and returning the refrigerant flowing through the bypass circuit to the injection port, the temperature of the refrigerant discharged from the compressor 10A can be reduced. In this example, in order to obtain the effect of injection, the refrigerant flows through the bypass circuit even when using an azeotropic refrigerant that does not require supercooling of the refrigerant.
  • the configurations of the outdoor unit 2A according to the second embodiment and the refrigeration apparatus 1A using the same are the same as the configuration shown in FIG. 1 except for the configuration described above.
  • the processing procedure of the evaporating temperature control executed by the control device 100 is the same as the flowchart shown in FIG. 5, and the flowchart shown in FIG. 7 can be adopted as a modification.
  • the refrigerant flowing through the bypass circuit is returned to the injection port of the compressor 10A.
  • a compressor 10 having no injection port is employed, and the bypass circuit is used.
  • the flowing refrigerant may be returned to the pipe 85 on the suction side of the compressor 10.
  • the expansion valve 46 is fully closed to shut off the bypass circuit, and when the non-azeotropic refrigerant is used, the expansion valve 46 is opened (with the throttle) and the bypass circuit and The supercooler 40A may function.
  • the subcooler 40A can be configured by the internal heat exchanger 44, the supercooling of the refrigerant can be performed without separately providing a configuration for using an external heat source. Can be enlarged. By providing such a supercooler 40A, the difference between the refrigerant temperature on the inlet side of the evaporator 60 and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control can be improved.
  • the outdoor unit and the refrigeration apparatus mainly used for a warehouse, a showcase, and the like have been representatively described.
  • the outdoor unit according to the present disclosure is shown in FIGS.
  • the present invention is also applicable to the air conditioners 200 and 200A using the refrigeration cycle.

Abstract

An outdoor unit (2) comprises a compressor (10), a condenser (20), a control device (100), and a sub cooler (40). The control device (100) controls, on the basis of an evaporation temperature to be set for an indoor unit (3) evaporator (60), the pressure of a refrigerant flowing in the evaporator so as to be a target pressure. Using the relationship between the refrigerant pressure and a dew point-boiling point average temperature, which indicates the average of the saturated liquid temperature and saturated gas temperature for the refrigerant at that pressure, the control device (100) sets, as the target pressure, the pressure at which the dew point-boiling point average temperature is a set evaporation temperature. The sub cooler (40) is provided on the outlet side of the condenser (20) and is configured so as to cool the refrigerant output from the condenser (20).

Description

冷凍サイクル装置の室外機、冷凍サイクル装置、及び空気調和装置Outdoor unit of refrigeration cycle device, refrigeration cycle device, and air conditioner
 本開示は、冷凍サイクル装置の室外機、冷凍サイクル装置、及び空気調和装置に関する。 The present disclosure relates to an outdoor unit of a refrigeration cycle device, a refrigeration cycle device, and an air conditioner.
 地球温暖化への影響に配慮して、低GWP(Global Warming Potential:地球温暖化係数)の非共沸冷媒を用いる冷凍サイクル装置が注目されている。たとえば、特開平8-75280号公報には、非共沸混合冷媒を用いた冷凍空調装置が開示されている。この冷凍空調装置では、蒸発器の蒸発圧力が目標値に一致するように、室外機のファンの回転数が制御される。蒸発圧力の目標値は、蒸発温度が0℃となる圧力として設定される。 冷凍 Refrigeration cycle devices using non-azeotropic refrigerants with low GWP (Global Warming Potential) have attracted attention in consideration of their impact on global warming. For example, Japanese Patent Application Laid-Open No. 8-75280 discloses a refrigerating air conditioner using a non-azeotropic refrigerant mixture. In this refrigerating air conditioner, the rotation speed of the fan of the outdoor unit is controlled so that the evaporation pressure of the evaporator matches the target value. The target value of the evaporation pressure is set as a pressure at which the evaporation temperature becomes 0 ° C.
 非共沸混合冷媒は、圧力一定の下で、冷媒の乾き度に応じて飽和温度(蒸発温度)が勾配を有する。そこで、この冷凍空調装置では、非共沸混合冷媒の蒸発温度を、飽和ガス温度と飽和液温度との平均値として定義し、この蒸発温度が0℃となる圧力目標値に蒸発圧力が制御される(特許文献1参照)。 The non-azeotropic refrigerant mixture has a gradient of saturation temperature (evaporation temperature) according to the dryness of the refrigerant under a constant pressure. Therefore, in this refrigerating air conditioner, the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated gas temperature and the saturated liquid temperature, and the evaporation pressure is controlled to a pressure target value at which the evaporation temperature becomes 0 ° C. (See Patent Document 1).
特開平8-75280号公報JP-A-8-75280
 特許文献1に記載の冷凍空調装置では、飽和ガス温度と飽和液温度との平均値で蒸発温度を代表しているが、飽和液温度と蒸発器入側の冷媒温度とが乖離すると、上記の平均値と実際の蒸発温度との乖離が大きくなり、蒸発温度の制御の精度が低下する。この場合に、たとえば、蒸発器入側の冷媒温度を温度センサで検出し、当該温度センサの検出値を飽和液温度に代えて用いることも考えられるが、そのような温度センサを設けることは、装置のコスト増を招く。 In the refrigerating and air-conditioning apparatus described in Patent Literature 1, the evaporation temperature is represented by the average value of the saturated gas temperature and the saturated liquid temperature. However, when the saturated liquid temperature and the refrigerant temperature on the evaporator inlet side deviate, the above described The difference between the average value and the actual evaporation temperature increases, and the accuracy of the control of the evaporation temperature decreases. In this case, for example, it is conceivable to detect the refrigerant temperature on the evaporator inlet side with a temperature sensor and use the detected value of the temperature sensor in place of the saturated liquid temperature. This leads to an increase in the cost of the device.
 本開示は、かかる問題を解決するためになされたものであり、本開示の目的は、冷凍サイクル装置において非共沸冷媒が用いられる場合に、蒸発温度の制御の精度向上を低コストで実現することである。 The present disclosure has been made in order to solve such a problem, and an object of the present disclosure is to realize, at low cost, improved accuracy of control of the evaporation temperature when a non-azeotropic refrigerant is used in a refrigeration cycle device. That is.
 本開示の室外機は、冷凍サイクル装置の室外機であって、冷媒を圧縮する圧縮機と、圧縮機から出力される冷媒を凝縮する凝縮器と、制御装置と、過冷却器とを備える。制御装置は、室外機に接続される室内機の蒸発器に対して設定される蒸発温度に基づいて、蒸発器を流れる冷媒の圧力を目標圧力に制御する。制御装置は、冷媒の圧力と、その圧力における冷媒の飽和液温度と飽和ガス温度との平均を示す露沸平均温度との関係を用いて、露沸平均温度が設定蒸発温度であるときの圧力を目標圧力として設定する。過冷却器は、凝縮器の出側に設けられ、凝縮器から出力される冷媒を冷却するように構成される。 The outdoor unit of the present disclosure is an outdoor unit of a refrigeration cycle device, and includes a compressor that compresses a refrigerant, a condenser that condenses the refrigerant output from the compressor, a control device, and a supercooler. The control device controls the pressure of the refrigerant flowing through the evaporator to a target pressure based on the evaporation temperature set for the evaporator of the indoor unit connected to the outdoor unit. The controller uses the relationship between the refrigerant pressure and the dew-boiling average temperature indicating the average of the saturated liquid temperature and the saturated gas temperature of the refrigerant at that pressure to determine the pressure when the dew-boiling average temperature is the set evaporation temperature. Is set as the target pressure. The subcooler is provided on the outlet side of the condenser, and is configured to cool the refrigerant output from the condenser.
 この室外機においては、露沸平均温度が設定蒸発温度であるときの圧力が目標圧力として設定され、蒸発器を流れる冷媒の圧力がその目標圧力に制御される。これにより、圧力一定の下で冷媒の乾き度に応じて蒸発温度が勾配を有する非共沸冷媒が用いられる場合においても、蒸発温度の制御を行なうことができる。 In this outdoor unit, the pressure when the average dew-boiling temperature is the set evaporation temperature is set as the target pressure, and the pressure of the refrigerant flowing through the evaporator is controlled to the target pressure. Accordingly, even when a non-azeotropic refrigerant having a gradient of the evaporation temperature according to the dryness of the refrigerant under a constant pressure is used, the evaporation temperature can be controlled.
 ここで、蒸発器入側の冷媒は、通常、気液二相状態となっており、蒸発器入側の冷媒は、飽和液温度よりも高い。そして、蒸発器入側の冷媒温度と飽和液温度とが乖離すると、上述のように蒸発温度の制御の精度が低下する。そこで、この室外機では、凝縮器の出側に過冷却器が設けられる。過冷却器を設けることによって、蒸発器入側の冷媒温度を低下させて飽和液温度に近づけることができる。これにより、蒸発器入側の冷媒温度と飽和液温度との乖離を抑制し、蒸発温度の制御の精度向上を図ることができる。また、この室外機によれば、蒸発器入側の冷媒温度を検出する温度センサを設ける必要がないので、装置のコストも抑制される。 Here, the refrigerant on the evaporator inlet side is usually in a gas-liquid two-phase state, and the refrigerant on the evaporator inlet side is higher than the saturated liquid temperature. When the temperature of the refrigerant at the evaporator inlet side deviates from the temperature of the saturated liquid, the accuracy of the control of the evaporating temperature decreases as described above. Therefore, in this outdoor unit, a subcooler is provided on the outlet side of the condenser. By providing the subcooler, the temperature of the refrigerant at the evaporator inlet side can be reduced to approach the saturated liquid temperature. As a result, the difference between the refrigerant temperature on the evaporator inlet side and the saturated liquid temperature can be suppressed, and the accuracy of evaporating temperature control can be improved. Further, according to this outdoor unit, there is no need to provide a temperature sensor for detecting the refrigerant temperature on the evaporator inlet side, and therefore, the cost of the apparatus is also reduced.
 本開示の室外機、冷凍サイクル装置、及び空気調和装置によれば、非共沸冷媒が用いられる場合に、蒸発温度の制御の精度向上を低コストで実現することができる。 According to the outdoor unit, the refrigeration cycle device, and the air conditioner of the present disclosure, when a non-azeotropic refrigerant is used, it is possible to improve the accuracy of controlling the evaporation temperature at low cost.
本開示の実施の形態1に従う室外機が用いられる冷凍装置の全体構成図である。1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. 共沸冷媒の性質を説明するp-h線図である。It is a ph diagram explaining the property of an azeotropic refrigerant. 非共沸冷媒の性質を説明するp-h線図である。It is a ph diagram explaining the property of a non-azeotropic refrigerant. 本開示の冷凍装置において、非共沸冷媒が用いられる場合の冷媒の状態を示すp-h線図である。FIG. 3 is a ph diagram showing a state of the refrigerant when a non-azeotropic refrigerant is used in the refrigeration apparatus of the present disclosure. 図1に示す制御装置により実行される蒸発温度制御の処理手順の一例を示すフローチャートである。3 is a flowchart illustrating an example of a processing procedure of evaporating temperature control executed by the control device illustrated in FIG. 1. 圧力-露沸平均温度マップの一例を示す図である。FIG. 4 is a diagram showing an example of a pressure-dew-boiling average temperature map. 変形例における蒸発温度制御の処理手順の一例を示すフローチャートである。It is a flow chart which shows an example of the processing procedure of evaporation temperature control in a modification. 実施の形態2に従う室外機が用いられる冷凍装置の全体構成図である。FIG. 9 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to a second embodiment. 実施の形態1に従う室外機が用いられる冷凍サイクルを備える空気調和装置の全体構成図である。1 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit according to Embodiment 1 is used. 実施の形態2に従う室外機が用いられる冷凍サイクルを備える空気調和装置の全体構成図である。FIG. 13 is an overall configuration diagram of an air conditioner including a refrigeration cycle in which an outdoor unit according to Embodiment 2 is used.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding portions have the same reference characters allotted, and description thereof will not be repeated.
 実施の形態1.
 図1は、本開示の実施の形態1に従う室外機が用いられる冷凍装置の全体構成図である。図1を参照して、冷凍装置1は、室外機2と、室内機3とを備える。室外機2は、圧縮機10と、凝縮器20と、ファン22と、過冷却器40と、ファン42と、配管80,81,83,85と、圧力センサ90と、制御装置100とを含む。室内機3は、膨張弁50と、蒸発器60と、ファン62と、配管84とを含む。室内機3は、配管83,85を通じて室外機2に接続されている。
Embodiment 1 FIG.
FIG. 1 is an overall configuration diagram of a refrigeration apparatus using an outdoor unit according to Embodiment 1 of the present disclosure. Referring to FIG. 1, a refrigeration apparatus 1 includes an outdoor unit 2 and an indoor unit 3. The outdoor unit 2 includes a compressor 10, a condenser 20, a fan 22, a subcooler 40, a fan 42, pipes 80, 81, 83, 85, a pressure sensor 90, and a control device 100. . The indoor unit 3 includes an expansion valve 50, an evaporator 60, a fan 62, and a pipe 84. The indoor unit 3 is connected to the outdoor unit 2 through pipes 83 and 85.
 配管80は、圧縮機10の吐出ポートと凝縮器20とを接続する。配管81は、凝縮器20と過冷却器40とを接続する。配管83は、過冷却器40と膨張弁50とを接続する。配管84は、膨張弁50と蒸発器60とを接続する。配管85は、蒸発器60と圧縮機10の吸入ポートとを接続する。 The pipe 80 connects the discharge port of the compressor 10 and the condenser 20. The pipe 81 connects the condenser 20 and the subcooler 40. The pipe 83 connects the subcooler 40 and the expansion valve 50. The pipe 84 connects the expansion valve 50 and the evaporator 60. The pipe 85 connects the evaporator 60 and the suction port of the compressor 10.
 圧縮機10は、配管85から吸入される冷媒を圧縮して配管80へ出力する。圧縮機10は、制御装置100からの制御信号に従って回転数を調整するように構成される。圧縮機10の回転数を調整することで冷媒の循環量が調整され、冷凍装置1の能力を調整することができる。なお、後述のように、この実施の形態1では、圧縮機10の回転数を調整することで、冷凍装置1の低圧側圧力(膨張弁50の出側から圧縮機10の入側の冷媒圧力)が制御される。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 compresses the refrigerant sucked from the pipe 85 and outputs the compressed refrigerant to the pipe 80. The compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigeration apparatus 1 can be adjusted. As described later, in the first embodiment, by adjusting the rotation speed of the compressor 10, the low pressure side pressure of the refrigeration system 1 (the refrigerant pressure from the outlet side of the expansion valve 50 to the inlet side of the compressor 10) is adjusted. ) Is controlled. Various types can be used for the compressor 10, and for example, a scroll type, a rotary type, a screw type, and the like can be used.
 凝縮器20は、圧縮機10から配管80に出力された冷媒を凝縮して配管81へ出力する。凝縮器20は、圧縮機10から出力された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転数を調整することにより、圧縮機10出側の冷媒圧力(高圧側圧力)を調整することができる。 The condenser 20 condenses the refrigerant output from the compressor 10 to the pipe 80 and outputs the refrigerant to the pipe 81. The condenser 20 is configured such that the high-temperature and high-pressure gas refrigerant output from the compressor 10 performs heat exchange (radiation) with the outside air. By this heat exchange, the refrigerant is condensed and changes to a liquid phase. The fan 22 supplies the outside air to the condenser 20 where the refrigerant performs heat exchange in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high-pressure side pressure) on the outlet side of the compressor 10 can be adjusted.
 過冷却器40は、凝縮器20から配管81に出力された液冷媒がさらに外気と熱交換(放熱)を行なうように構成される。冷媒は、過冷却器40を通過することによって、過冷却度がさらに高められた液冷媒となる。ファン42は、過冷却器40において冷媒が熱交換を行なう外気を過冷却器40に供給する。過冷却器40が設けられることにより、室内機3に供給される冷媒の温度を低下させ、蒸発器60の入側の冷媒温度を飽和液温度に近づけることができる。 The subcooler 40 is configured such that the liquid refrigerant output from the condenser 20 to the pipe 81 further performs heat exchange (radiation) with the outside air. The refrigerant becomes a liquid refrigerant whose subcooling degree is further increased by passing through the subcooler 40. The fan 42 supplies the outside air in which the refrigerant performs heat exchange in the subcooler 40 to the subcooler 40. By providing the subcooler 40, the temperature of the refrigerant supplied to the indoor unit 3 can be reduced, and the temperature of the refrigerant on the inlet side of the evaporator 60 can be made closer to the saturated liquid temperature.
 なお、過冷却器40は、上記のようなファン42を用いた空冷のものに限定されず、水冷のものであってもよいし、別の冷凍サイクルによって冷却された冷媒を用いるものであってもよい。なお、凝縮器20と過冷却器40との間に、凝縮器20から出力された液冷媒を一時的に貯留する液溜器を設けてもよい。 The supercooler 40 is not limited to the air-cooled type using the fan 42 as described above, but may be a water-cooled type or a type using a refrigerant cooled by another refrigeration cycle. Is also good. Note that a liquid reservoir for temporarily storing the liquid refrigerant output from the condenser 20 may be provided between the condenser 20 and the subcooler 40.
 膨張弁50は、過冷却器40から配管83へ出力された冷媒を減圧して配管84へ出力する。膨張弁50の開度を閉方向に変化させると、膨張弁50出側の冷媒圧力は低下し、冷媒の乾き度は上昇する。膨張弁50の開度を開方向に変化させると、膨張弁50出側の冷媒圧力は上昇し、冷媒の乾き度は低下する。 (4) The expansion valve 50 decompresses the refrigerant output from the subcooler 40 to the pipe 83 and outputs it to the pipe 84. When the opening degree of the expansion valve 50 is changed in the closing direction, the refrigerant pressure on the exit side of the expansion valve 50 decreases, and the dryness of the refrigerant increases. When the opening of the expansion valve 50 is changed in the opening direction, the refrigerant pressure on the outlet side of the expansion valve 50 increases, and the dryness of the refrigerant decreases.
 蒸発器60は、膨張弁50から配管84へ出力された冷媒を蒸発させて配管85へ出力する。蒸発器60は、膨張弁50により減圧された冷媒が室内機3内の空気と熱交換(吸熱)を行なうように構成される。冷媒は、蒸発器60を通過することにより蒸発して過熱蒸気となる。ファン62は、蒸発器60において冷媒が熱交換を行なう外気を蒸発器60に供給する。圧力センサ90は、圧縮機10の吸入側の冷媒圧力(低圧側圧力)LPを検出し、その検出値を制御装置100へ出力する。 The evaporator 60 evaporates the refrigerant output from the expansion valve 50 to the pipe 84 and outputs the refrigerant to the pipe 85. The evaporator 60 is configured such that the refrigerant decompressed by the expansion valve 50 performs heat exchange (heat absorption) with the air in the indoor unit 3. The refrigerant evaporates by passing through the evaporator 60 to become superheated steam. The fan 62 supplies to the evaporator 60 external air in which the refrigerant performs heat exchange in the evaporator 60. Pressure sensor 90 detects refrigerant pressure (low pressure side pressure) LP on the suction side of compressor 10 and outputs the detected value to control device 100.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)及びRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外機2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting and outputting various signals, and the like. It is comprised including. The CPU 102 executes a program stored in the ROM by expanding the program in the RAM or the like. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 controls each device in the outdoor unit 2 according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 <共沸冷媒と非共沸冷媒の説明>
 本開示における冷凍装置1は、共沸冷媒と非共沸冷媒とのいずれを用いても動作するように構成される。共沸冷媒は、組成が単一の冷媒(単一冷媒)であってもよいし、複数の冷媒を混合した冷媒(混合冷媒)であってもよい。共沸冷媒は、たとえばR410A、R404A等であるが、これらに限定されるものではない。
<Description of azeotropic refrigerant and non-azeotropic refrigerant>
The refrigeration apparatus 1 in the present disclosure is configured to operate using either an azeotropic refrigerant or a non-azeotropic refrigerant. The azeotropic refrigerant may be a single refrigerant (single refrigerant) or a refrigerant in which a plurality of refrigerants are mixed (mixed refrigerant). The azeotropic refrigerant is, for example, R410A, R404A, etc., but is not limited thereto.
 非共沸冷媒は、混合冷媒であり、一定の圧力の下で、冷媒の乾き度(湿り度)に応じて飽和温度が勾配を有する。具体的には、一定の圧力の下で、乾き度が増加するとともに蒸発温度が上昇する。非共沸冷媒は、たとえば、R407C、R448A、R463A等であるが、これらに限定されるものではない。 The non-azeotropic refrigerant is a mixed refrigerant, and has a gradient of a saturation temperature according to the dryness (wetness) of the refrigerant under a certain pressure. Specifically, under a certain pressure, the drying temperature increases and the evaporation temperature increases. Non-azeotropic refrigerants include, for example, R407C, R448A, R463A, etc., but are not limited thereto.
 図2は、共沸冷媒の性質を説明するp-h線図である。図2において、縦軸は圧力pを示し、横軸は比エンタルピh(kJ/kg)(以下、単に「エンタルピ」と称する。)を示す。なお、この図2は、本開示の冷凍装置1における冷媒の状態を示すものではなく、共沸冷媒が用いられた一般的な冷凍装置における冷媒の状態を説明するものである。 FIG. 2 is a ph diagram explaining the properties of the azeotropic refrigerant. In FIG. 2, the vertical axis indicates the pressure p, and the horizontal axis indicates the specific enthalpy h (kJ / kg) (hereinafter, simply referred to as “enthalpy”). FIG. 2 does not show the state of the refrigerant in the refrigeration apparatus 1 of the present disclosure, but illustrates the state of the refrigerant in a general refrigeration apparatus using an azeotropic refrigerant.
 図2を参照して、点P11~P14を結ぶ実線は、冷媒装置を循環する冷媒の圧力及びエンタルピの変化を示す。点P14→点P11は、圧縮機における冷媒の圧縮を示し(等エントロピ変化)、点P11→点P12は、凝縮器における等圧冷却を示す。また、点P12→点P13は、膨張弁における減圧を示し、点P13→点P14は、蒸発器における等圧加熱を示す。点線は、冷媒の等温線を示し、圧力が低いほど温度は低い。 Referring to FIG. 2, a solid line connecting points P11 to P14 indicates a change in pressure and enthalpy of the refrigerant circulating in the refrigerant device. Point P14 → point P11 indicates compression of the refrigerant in the compressor (isentropic change), and point P11 → point P12 indicates equal pressure cooling in the condenser. Further, a point P12 → point P13 indicates pressure reduction in the expansion valve, and a point P13 → point P14 indicates equal pressure heating in the evaporator. The dotted line indicates the isotherm of the refrigerant, and the lower the pressure, the lower the temperature.
 共沸冷媒は、圧力一定の下で、冷媒の相変化の間、飽和温度が一定となる。たとえば、図示されるように、冷凍装置の低圧側圧力(蒸発圧力)が一定の圧力peの下では、蒸発温度は、冷媒の相変化の間、冷媒の乾き度に拘わらず一定の温度Teとなる。 The azeotropic refrigerant has a constant saturation temperature during a phase change of the refrigerant under a constant pressure. For example, as shown in the drawing, when the low pressure side (evaporation pressure) of the refrigerating apparatus is under a constant pressure pe, the evaporation temperature becomes a constant temperature Te during the phase change of the refrigerant regardless of the dryness of the refrigerant. Become.
 図3は、非共沸冷媒の性質を説明するp-h線図である。この図3も、本開示の冷凍装置1における冷媒の状態を示すものではなく、非共沸冷媒が用いられた一般的な冷凍装置における冷媒の状態を説明するものである。 FIG. 3 is a ph diagram explaining the properties of the non-azeotropic refrigerant. FIG. 3 also does not show the state of the refrigerant in the refrigeration apparatus 1 of the present disclosure, but illustrates the state of the refrigerant in a general refrigeration apparatus using a non-azeotropic refrigerant.
 図3を参照して、点P11~P14を結ぶ実線は、図2に示したものと同じである。非共沸冷媒は、圧力一定の下で、冷媒の相変化の間、冷媒の乾き度(湿り度)に応じて飽和温度が勾配を有する。たとえば、図示されるように、冷凍装置の低圧側圧力(蒸発圧力)が一定の圧力peの下で、飽和液温度TLと飽和ガス温度TGとは互いに異なり、飽和ガス温度TGは、飽和液温度TLよりも高い。蒸発器入側の冷媒の温度Tiと、出側の冷媒の温度Toとも互いに異なり、蒸発器出側の過熱度が0であったとしても、温度Toは温度Tiよりも高くなる。 を Referring to FIG. 3, the solid line connecting points P11 to P14 is the same as that shown in FIG. Non-azeotropic refrigerants have a gradient of saturation temperature according to the dryness (wetness) of the refrigerant during a phase change of the refrigerant under a constant pressure. For example, as shown in the drawing, the saturated liquid temperature TL and the saturated gas temperature TG are different from each other when the low-pressure side pressure (evaporation pressure) of the refrigerating apparatus is constant at a pe, and the saturated gas temperature TG is the saturated liquid temperature. Higher than TL. The temperature Ti of the refrigerant on the evaporator inlet side and the temperature To of the refrigerant on the outlet side are different from each other. Even if the degree of superheat on the evaporator outlet side is 0, the temperature To is higher than the temperature Ti.
 <蒸発温度制御の説明>
 冷凍装置においては、要求される冷凍能力に応じて蒸発器の蒸発温度(低圧側の飽和温度)の目標値が設定され、蒸発温度が目標値に一致するように低圧側圧力(蒸発器を流れる冷媒の圧力)が制御される。より詳しくは、蒸発温度の目標値に対応する目標圧力が決定され、低圧側圧力が目標圧力に一致するように、圧縮機の回転数等が調整される。
<Explanation of evaporation temperature control>
In the refrigeration system, a target value of the evaporation temperature (saturation temperature on the low pressure side) of the evaporator is set according to the required refrigeration capacity, and the low pressure side pressure (flow through the evaporator) is adjusted so that the evaporation temperature matches the target value. (Pressure of the refrigerant). More specifically, the target pressure corresponding to the target value of the evaporation temperature is determined, and the rotation speed of the compressor and the like are adjusted such that the low-pressure side pressure matches the target pressure.
 共沸冷媒が用いられる場合は、蒸発温度の目標値に対応する目標圧力は一定値となり、その目標圧力からの圧力偏差に基づくフィードバック制御が行なわれる。低圧側圧力が目標圧力に制御されることにより、蒸発温度が目標値に制御される(以下では、このような蒸発温度の制御を「蒸発温度制御」と称する。)。 When the azeotropic refrigerant is used, the target pressure corresponding to the target value of the evaporation temperature becomes a constant value, and the feedback control is performed based on the pressure deviation from the target pressure. By controlling the low pressure side pressure to the target pressure, the evaporation temperature is controlled to the target value (hereinafter, such control of the evaporation temperature is referred to as “evaporation temperature control”).
 一方、非共沸冷媒が用いられる場合は、上述のように、一定の圧力の下で、冷媒の相変化の間、冷媒の乾き度に応じて蒸発温度が勾配を有する。言い換えると、冷媒の相変化の間、蒸発温度の目標値に対応する目標圧力が変化する。具体的には、冷媒の乾き度が高くなるにつれて目標圧力は低下する。 On the other hand, when a non-azeotropic refrigerant is used, as described above, the evaporation temperature has a gradient according to the dryness of the refrigerant during the phase change of the refrigerant under a constant pressure. In other words, during the phase change of the refrigerant, the target pressure corresponding to the target value of the evaporation temperature changes. Specifically, the target pressure decreases as the dryness of the refrigerant increases.
 このような圧力変化を考慮して、蒸発器での蒸発過程において冷媒に圧力損失を与えることで蒸発温度を維持することも考えられる。しかしながら、このような構成は、圧縮機の吸入圧を低下させるため、圧縮機の負荷が増大し、冷凍装置の性能が低下する。 し て In consideration of such a pressure change, it is conceivable to maintain the evaporation temperature by giving a pressure loss to the refrigerant during the evaporation process in the evaporator. However, such a configuration reduces the suction pressure of the compressor, so that the load on the compressor increases and the performance of the refrigeration system decreases.
 そこで、この実施の形態1に従う冷凍装置1では、ある圧力における冷媒の飽和液温度と飽和ガス温度との平均を示す露沸平均温度で、その圧力における蒸発温度を代表する。そして、露沸平均温度が蒸発温度の目標値となる圧力を目標圧力とし、その目標圧力からの圧力偏差に基づくフィードバック制御が行なわれる。これにより、共沸冷媒の使用時に行なわれる上記の蒸発温度制御を非共沸冷媒の使用時にも適用することができる。 Therefore, in the refrigeration apparatus 1 according to the first embodiment, the evaporation temperature at a certain pressure is represented by the dew-boiling average temperature indicating the average of the saturated liquid temperature and the saturated gas temperature of the refrigerant at a certain pressure. Then, a pressure at which the dew-boiling average temperature becomes a target value of the evaporation temperature is set as a target pressure, and feedback control is performed based on a pressure deviation from the target pressure. Thus, the above-described evaporation temperature control performed when using the azeotropic refrigerant can be applied also when using the non-azeotropic refrigerant.
 しかしながら、冷媒の飽和液温度と蒸発器入側の冷媒温度とが乖離していると、蒸発温度制御の精度が低下する。蒸発器入側の冷媒は、膨張弁を通過することで気液二相状態となっており、蒸発器入側の冷媒温度は、飽和液温度よりも高い。そして、蒸発器入側の冷媒温度が飽和液温度と乖離していると、露沸平均温度と実際の蒸発温度との乖離が大きくなり、蒸発温度制御の精度が低下する。 However, when the saturated liquid temperature of the refrigerant is different from the refrigerant temperature on the evaporator inlet side, the accuracy of the evaporation temperature control is reduced. The refrigerant on the evaporator inlet side is in a gas-liquid two-phase state by passing through the expansion valve, and the refrigerant temperature on the evaporator inlet side is higher than the saturated liquid temperature. If the refrigerant temperature on the evaporator inlet side deviates from the saturated liquid temperature, the departure between the dew-boiling average temperature and the actual evaporating temperature increases, and the accuracy of evaporating temperature control decreases.
 この場合に、蒸発器入側の冷媒温度を温度センサで検出し、当該温度センサの検出値を飽和液温度に代えて用いることも考えられるが、そのような温度センサを設けることは、装置のコスト増を招く。 In this case, it is conceivable that the temperature of the refrigerant at the evaporator inlet side is detected by a temperature sensor and the detected value of the temperature sensor is used instead of the saturated liquid temperature. Increases costs.
 そこで、この実施の形態1に従う冷凍装置1では、凝縮器20の出側に過冷却器40が設けられており、室内機3に供給される冷媒の過冷却度が高められている。これにより、蒸発器60の入側の冷媒温度が低下し、飽和液温度に近づく。したがって、蒸発器入側の冷媒温度と飽和液温度との乖離が抑制され、蒸発温度制御の精度が向上する。また、蒸発器60の入側の冷媒温度を検出する温度センサを設ける必要がないので、装置のコストも抑制される。 Therefore, in the refrigerating apparatus 1 according to the first embodiment, the subcooler 40 is provided on the outlet side of the condenser 20, and the degree of subcooling of the refrigerant supplied to the indoor unit 3 is increased. As a result, the temperature of the refrigerant on the inlet side of the evaporator 60 decreases, and approaches the saturated liquid temperature. Therefore, the difference between the refrigerant temperature on the inlet side of the evaporator and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control is improved. Further, since there is no need to provide a temperature sensor for detecting the temperature of the refrigerant on the inlet side of the evaporator 60, the cost of the apparatus is also reduced.
 図4は、本実施の形態1における冷凍装置1において非共沸冷媒が用いられる場合の冷媒の状態を示すp-h線図である。図4を参照して、点P21~P25を結ぶ実線は、冷媒装置1を循環する冷媒の圧力及びエンタルピの変化を示す。点P25→点P21は、圧縮機10における冷媒の圧縮を示し(等エントロピ変化)、点P21→点P22は、凝縮器20における等圧冷却を示す。点P22→点P23は、過冷却器40における等圧冷却を示す。点P23→点P24は、膨張弁50における減圧を示し、点P24→点P25は、蒸発器60における等圧加熱を示す。 FIG. 4 is a ph diagram showing a state of the refrigerant when a non-azeotropic refrigerant is used in the refrigeration apparatus 1 according to the first embodiment. Referring to FIG. 4, a solid line connecting points P21 to P25 indicates a change in pressure and enthalpy of the refrigerant circulating in refrigerant device 1. Point P25 → point P21 indicates compression of the refrigerant in the compressor 10 (isentropic change), and point P21 → point P22 indicates equal pressure cooling in the condenser 20. Point P22 → point P23 indicates equal pressure cooling in the subcooler 40. The point P23 → point P24 indicates the pressure reduction in the expansion valve 50, and the point P24 → point P25 indicates the equal pressure heating in the evaporator 60.
 この冷凍装置1では、過冷却器40が設けられることにより、冷媒の過冷却度SCが増加し、その結果、蒸発器60の入側の冷媒温度Ti(点P24)を飽和液温度TLに近づけることができている。蒸発器60の入側の冷媒温度Tiが飽和液温度TLに近づくことで、飽和液温度TLと飽和ガス温度TGとの平均を示す露沸平均温度Teは、蒸発器60を流れる冷媒の温度の平均値(入側温度Tiと出側温度Toとの平均)に近づく。したがって、この冷凍装置1では、露沸平均温度Teによって、蒸発器60を流れる冷媒の温度を精度良く代表することができているといえる。 In this refrigerating apparatus 1, the supercooler 40 is provided, so that the degree of supercooling SC of the refrigerant increases, and as a result, the refrigerant temperature Ti (point P24) on the inlet side of the evaporator 60 approaches the saturated liquid temperature TL. I can do it. As the refrigerant temperature Ti on the inlet side of the evaporator 60 approaches the saturated liquid temperature TL, the dew-boiling average temperature Te indicating the average of the saturated liquid temperature TL and the saturated gas temperature TG becomes the temperature of the refrigerant flowing through the evaporator 60. It approaches the average value (the average of the inlet temperature Ti and the outlet temperature To). Therefore, in the refrigerating apparatus 1, it can be said that the temperature of the refrigerant flowing through the evaporator 60 can be accurately represented by the average dew-boiling temperature Te.
 図5は、図1に示した制御装置100により実行される蒸発温度制御の処理手順の一例を示すフローチャートである。このフローチャートに示される一連の処理は、冷凍装置1の運転中、繰り返し実行される。 FIG. 5 is a flowchart illustrating an example of a processing procedure of the evaporation temperature control performed by the control device 100 illustrated in FIG. A series of processes shown in this flowchart is repeatedly executed during the operation of the refrigeration apparatus 1.
 図5を参照して、制御装置100は、設定された蒸発温度を取得する(ステップS10)。この蒸発温度は、冷凍装置1のユーザが直接設定するものであってもよいし、ユーザが設定した温度設定(たとえば、冷凍装置1が設置される倉庫内の温度設定)に基づいて設定されるものであってもよいし、予め設定されているものであってもよい。 参照 Referring to FIG. 5, control device 100 acquires the set evaporation temperature (step S10). The evaporation temperature may be directly set by the user of the refrigeration apparatus 1 or set based on a temperature setting set by the user (for example, a temperature setting in a warehouse where the refrigeration apparatus 1 is installed). May be used or may be set in advance.
 次いで、制御装置100は、冷凍装置1で使用されている冷媒の圧力-露沸平均温度マップを読込む(ステップS20)。このマップは、使用されている冷媒の圧力とその圧力における露沸平均温度との関係を示す一覧表であり、このマップを用いて、ある露沸平均温度に対応する圧力を取得することができる。冷凍装置1において使用可能な冷媒(共沸冷媒及び非共沸冷媒の双方を含む)毎に、マップが予め準備されてメモリ104のROMに記憶されている。 Next, the control device 100 reads the pressure-dew-boiling average temperature map of the refrigerant used in the refrigerating device 1 (step S20). This map is a list showing the relationship between the pressure of the refrigerant being used and the average dew-boiling temperature at that pressure. Using this map, a pressure corresponding to a certain dew-boiling average temperature can be obtained. . A map is prepared in advance for each refrigerant (including both an azeotropic refrigerant and a non-azeotropic refrigerant) that can be used in the refrigeration apparatus 1 and stored in the ROM of the memory 104.
 図6は、圧力-露沸平均温度マップの一例を示す図である。図6を参照して、ある冷媒について、飽和液温度TL及び飽和ガス温度TGは、圧力peによって一意に定まる物性値である。露沸平均温度Teは、飽和液温度TLと飽和ガス温度TGとの平均値であり、この露沸平均温度Teも、圧力peによって一意に定まる。圧力-露沸平均温度マップでは、圧力Pe毎に露沸平均温度Teが対応付けられている。このような圧力-露沸平均温度マップが、冷凍装置1において使用可能な冷媒毎に予め準備されている。 FIG. 6 is a diagram showing an example of a pressure-dew-boiling average temperature map. Referring to FIG. 6, for a certain refrigerant, saturated liquid temperature TL and saturated gas temperature TG are physical values uniquely determined by pressure pe. The average dew-boiling temperature Te is an average value of the saturated liquid temperature TL and the saturated gas temperature TG, and the average dew-boiling temperature Te is also uniquely determined by the pressure pe. In the pressure-dew-boiling average temperature map, the dew-boiling average temperature Te is associated with each pressure Pe. Such a pressure-dew-boiling average temperature map is prepared in advance for each refrigerant usable in the refrigeration apparatus 1.
 再び図5を参照して、制御装置100は、ステップS20において読込まれた圧力-露沸平均温度マップを用いて、ステップS10において取得された設定蒸発温度に相当する露沸平均温度に対応する圧力を、蒸発温度制御の目標圧力として決定する(ステップS30)。なお、ステップS10において取得された設定蒸発温度に一致する露沸平均温度がマップに示されていない場合は、制御装置100は、設定蒸発温度に近い露沸平均温度を用いて補間計算を行なうことにより、目標圧力を決定する。 Referring to FIG. 5 again, control device 100 uses the pressure-dew / boiling average temperature map read in step S20 to determine the pressure corresponding to the dew / boiling average temperature corresponding to the set evaporation temperature acquired in step S10. Is determined as the target pressure for the evaporation temperature control (step S30). If the dew-boiling average temperature that matches the set evaporation temperature obtained in step S10 is not shown in the map, control device 100 performs interpolation calculation using the dew-boiling average temperature close to the set evaporation temperature. To determine the target pressure.
 次いで、制御装置100は、圧力センサ90から圧力LPの検出値を取得する(ステップS40)。そして、制御装置100は、取得された圧力LPの検出値が、ステップS30において決定された目標圧力よりも高いか否かを判定する(ステップS50)。 Next, control device 100 acquires a detection value of pressure LP from pressure sensor 90 (step S40). Then, control device 100 determines whether or not the acquired detected value of pressure LP is higher than the target pressure determined in step S30 (step S50).
 圧力LPが目標圧力よりも高ければ(ステップS50においてYES)、制御装置100は、圧縮機10の回転数を上げるように圧縮機10を制御する(ステップS60)。一方、ステップS50において圧力LPが目標圧力以下であると判定されると(ステップS50においてNO)、制御装置100は、圧縮機10の回転数を下げるように圧縮機10を制御する(ステップS70)。 If the pressure LP is higher than the target pressure (YES in step S50), control device 100 controls compressor 10 to increase the rotation speed of compressor 10 (step S60). On the other hand, if it is determined in step S50 that pressure LP is equal to or lower than the target pressure (NO in step S50), control device 100 controls compressor 10 so as to reduce the rotation speed of compressor 10 (step S70). .
 なお、圧力LPと目標圧力との偏差量に応じて圧縮機10の回転数の変更量を可変としてもよい。このように、圧力LPと目標圧力との偏差に基づいて圧縮機10の回転数を調整することにより、圧力LPが目標圧力近傍に調整される。その結果、露沸平均温度で代表される蒸発温度が設定蒸発温度に制御される。 The amount of change in the rotation speed of the compressor 10 may be variable according to the amount of deviation between the pressure LP and the target pressure. As described above, by adjusting the rotation speed of the compressor 10 based on the deviation between the pressure LP and the target pressure, the pressure LP is adjusted near the target pressure. As a result, the evaporation temperature represented by the dew-boiling average temperature is controlled to the set evaporation temperature.
 なお、上記では、圧縮機10の回転数を調整することにより圧力LPを調整するものとしたが、圧縮機10の回転数に代えて、蒸発器60のファン62の回転数、或いは膨張弁50の開度を調整することにより、圧力LPを調整してもよい。なお、蒸発器60のファン62の回転数、或いは膨張弁50の開度を調整する場合には、制御装置100が設けられる室外機2と、ファン62及び膨張弁50が設けられる室内機3との間で通信を行なう必要がある。 In the above description, the pressure LP is adjusted by adjusting the rotation speed of the compressor 10. However, the rotation speed of the fan 62 of the evaporator 60 or the expansion valve 50 is replaced with the rotation speed of the compressor 10. The pressure LP may be adjusted by adjusting the opening degree. When adjusting the rotation speed of the fan 62 of the evaporator 60 or the opening degree of the expansion valve 50, the outdoor unit 2 provided with the control device 100 and the indoor unit 3 provided with the fan 62 and the expansion valve 50 It is necessary to communicate between
 なお、上記のフローチャートでは、冷凍装置1に使用される冷媒が非共沸冷媒であるか共沸冷媒であるかの判断を行なっていない。冷媒が共沸冷媒の場合には、露沸平均温度は蒸発温度そのものであるので、このフローチャートは、共沸冷媒が用いられる場合にもそのまま適用することができる。 In the above flowchart, it is not determined whether the refrigerant used in the refrigeration apparatus 1 is a non-azeotropic refrigerant or an azeotropic refrigerant. When the refrigerant is an azeotropic refrigerant, the average dew-boiling temperature is the evaporation temperature itself, so this flowchart can be applied to the case where an azeotropic refrigerant is used.
 以上のように、この実施の形態1においては、ある圧力における露沸平均温度で、その圧力における蒸発温度を代表する。そして、露沸平均温度が設定蒸発温度となる圧力を目標圧力とし、その目標圧力からの圧力偏差に基づくフィードバック制御が行なわれる。これにより、共沸冷媒の使用時に行なわれる蒸発温度制御を非共沸冷媒の使用時にも適用することができる。 As described above, in the first embodiment, the dew-boiling average temperature at a certain pressure represents the evaporation temperature at that pressure. Then, a pressure at which the dew-boiling average temperature reaches the set evaporation temperature is set as a target pressure, and feedback control based on a pressure deviation from the target pressure is performed. Thereby, the evaporation temperature control performed when using the azeotropic refrigerant can be applied even when using the non-azeotropic refrigerant.
 そして、この実施の形態1では、凝縮器20の出側に過冷却器40が設けられ、冷媒の過冷却度が高められている。これにより、蒸発器60の入側の冷媒温度と飽和液温度との乖離が抑制され、蒸発温度制御の精度を向上させている。また、蒸発器60の入側の冷媒温度を検出する温度センサを設ける必要がないので、装置のコストも抑制される。 In the first embodiment, the subcooler 40 is provided on the outlet side of the condenser 20 to increase the degree of supercooling of the refrigerant. Thus, the difference between the refrigerant temperature on the inlet side of the evaporator 60 and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control is improved. Further, since there is no need to provide a temperature sensor for detecting the temperature of the refrigerant on the inlet side of the evaporator 60, the cost of the apparatus is also reduced.
 変形例.
 上記の実施の形態1では、使用されている冷媒が共沸冷媒であるか非共沸冷媒であるかを判別することなく、共沸冷媒の使用時も圧力-露沸平均温度マップを用いて目標圧力を決定するものとした。この変形例では、冷媒が共沸冷媒であるか非共沸冷媒であるかが判別され、共沸冷媒の使用時は、設定された蒸発温度から一意に定まる圧力(蒸発圧力)が目標圧力として設定される。
Modified example.
In the first embodiment, the pressure-dew-boiling average temperature map is used even when the azeotropic refrigerant is used without discriminating whether the refrigerant used is an azeotropic refrigerant or a non-azeotropic refrigerant. The target pressure was determined. In this modification, it is determined whether the refrigerant is an azeotropic refrigerant or a non-azeotropic refrigerant. When the azeotropic refrigerant is used, a pressure (evaporation pressure) uniquely determined from the set evaporation temperature is set as the target pressure. Is set.
 図7は、変形例における蒸発温度制御の処理手順の一例を示すフローチャートである。このフローチャートは、図5のフローチャートに対応するものであり、このフローチャートに示される一連の処理も、冷凍装置1の運転中、繰り返し実行される。 FIG. 7 is a flowchart illustrating an example of a processing procedure of evaporating temperature control in a modification. This flowchart corresponds to the flowchart of FIG. 5, and a series of processes shown in this flowchart is also repeatedly executed during the operation of the refrigeration apparatus 1.
 図7を参照して、ステップS110,S140~S190の処理は、それぞれ図5に示したステップS10~S70の処理と同じである。この変形例では、ステップS110において、設定された蒸発温度が取得されると、制御装置100は、冷凍装置1において使用されている冷媒が非共沸冷媒であるか否かを判定する(ステップS120)。冷媒が非共沸冷媒であるか否かは、たとえば、ユーザにより設定される使用冷媒の種類に基づいて判定することができる。 Referring to FIG. 7, the processes in steps S110 and S140 to S190 are the same as the processes in steps S10 to S70 shown in FIG. 5, respectively. In this modification, when the set evaporation temperature is obtained in step S110, control device 100 determines whether or not the refrigerant used in refrigerating device 1 is a non-azeotropic refrigerant (step S120). ). Whether or not the refrigerant is a non-azeotropic refrigerant can be determined, for example, based on the type of refrigerant used by the user.
 ステップS120において、使用されている冷媒は非共沸冷媒ではない、すなわち共沸冷媒であると判定されると(ステップS120においてNO)、制御装置100は、設定された蒸発温度に基づいて目標圧力を設定する(ステップS130)。共沸冷媒では、圧力と蒸発温度との関係は1対1の関係にあり、設定された蒸発温度に基づいて目標圧力を決定することができる。なお、圧力と蒸発温度との関係は、マップとしてメモリ104のROMに記憶されている。そして、ステップS130の実行後、制御装置100は、ステップS160へ処理を移行し、圧力センサ90から圧力LPの検出値を取得する。 If it is determined in step S120 that the used refrigerant is not a non-azeotropic refrigerant, that is, it is an azeotropic refrigerant (NO in step S120), control device 100 sets target pressure based on the set evaporation temperature. Is set (step S130). In an azeotropic refrigerant, the relationship between pressure and evaporation temperature is one-to-one, and the target pressure can be determined based on the set evaporation temperature. The relationship between the pressure and the evaporation temperature is stored in the ROM of the memory 104 as a map. Then, after execution of step S130, control device 100 shifts the processing to step S160, and acquires a detection value of pressure LP from pressure sensor 90.
 一方、ステップS120において、使用されている冷媒は非共沸冷媒であると判定されると(ステップS120においてYES)、制御装置100は、ステップS140へ処理を移行し、使用されている冷媒の圧力-露沸平均温度マップをメモリ104から読込む。ステップS150以降の処理は、図5に示したフローチャートのステップS30以降と同じであるので、説明を繰り返さない。 On the other hand, if it is determined in step S120 that the used refrigerant is a non-azeotropic refrigerant (YES in step S120), control device 100 shifts the processing to step S140 and sets the pressure of the used refrigerant. Reading the dew-boiling average temperature map from the memory 104; The processing after step S150 is the same as the processing after step S30 in the flowchart shown in FIG. 5, and thus the description will not be repeated.
 以上のように、この変形例によっても、実施の形態1と同様の効果が得られる。
 実施の形態2.
 この実施の形態2は、過冷却器の構成が実施の形態1と異なる。
As described above, according to this modified example, the same effect as in the first embodiment can be obtained.
Embodiment 2 FIG.
The second embodiment differs from the first embodiment in the configuration of the subcooler.
 図8は、実施の形態2に従う室外機が用いられる冷凍装置の全体構成図である。図8を参照して、この冷凍装置1Aは、室外機2Aと、室内機3とを備える。室外機2Aは、図1に示した実施の形態1の室外機2において、過冷却器40及び圧縮機10に代えて、それぞれ過冷却器40A及び圧縮機10Aを含むとともに、配管83から分岐して圧縮機10Aに冷媒を戻すバイパス回路をさらに含む。 FIG. 8 is an overall configuration diagram of a refrigerating apparatus using the outdoor unit according to the second embodiment. Referring to FIG. 8, this refrigeration apparatus 1A includes an outdoor unit 2A and an indoor unit 3. The outdoor unit 2A includes a subcooler 40A and a compressor 10A instead of the subcooler 40 and the compressor 10 in the outdoor unit 2 of the first embodiment shown in FIG. And a bypass circuit for returning the refrigerant to the compressor 10A.
 過冷却器40Aは、内部熱交換器44と、膨張弁46とを含む。内部熱交換器44は、凝縮器20の出側の配管81を流れる冷媒と、バイパス回路を構成する配管87を流れる冷媒との間で熱交換を行なうように構成される。 The subcooler 40A includes an internal heat exchanger 44 and an expansion valve 46. The internal heat exchanger 44 is configured to exchange heat between the refrigerant flowing through the pipe 81 on the outlet side of the condenser 20 and the refrigerant flowing through the pipe 87 forming the bypass circuit.
 膨張弁46は、配管83から分岐する配管86を流れる冷媒を減圧して配管87へ出力する。膨張弁46を通過した冷媒は、膨張弁46により減圧されるとともに温度が低下する。これにより、過冷却器40Aにおいて、配管87を流れる冷媒によって、凝縮器20から出力される冷媒をさらに冷却することができる。すなわち、凝縮器20から配管81へ出力された冷媒は、過冷却器40Aを通過することによって、過冷却度が高められる。 The expansion valve 46 reduces the pressure of the refrigerant flowing through the pipe 86 branched from the pipe 83 and outputs the reduced pressure to the pipe 87. The refrigerant that has passed through the expansion valve 46 is decompressed by the expansion valve 46 and has a reduced temperature. Accordingly, in the subcooler 40A, the refrigerant output from the condenser 20 can be further cooled by the refrigerant flowing through the pipe 87. That is, the degree of supercooling of the refrigerant output from the condenser 20 to the pipe 81 is increased by passing through the subcooler 40A.
 圧縮機10Aは、インジェクションポートを有する。配管87をインジェクションポートに接続してバイパス回路を流れる冷媒をインジェクションポートに戻すことにより、圧縮機10Aから吐出される冷媒の温度を下げることができる。なお、この例では、インジェクションの効果を得るために、冷媒の過冷却を必要としない共沸冷媒の使用時においても、バイパス回路に冷媒が流される。 The compressor 10A has an injection port. By connecting the pipe 87 to the injection port and returning the refrigerant flowing through the bypass circuit to the injection port, the temperature of the refrigerant discharged from the compressor 10A can be reduced. In this example, in order to obtain the effect of injection, the refrigerant flows through the bypass circuit even when using an azeotropic refrigerant that does not require supercooling of the refrigerant.
 なお、この実施の形態2に従う室外機2A及びそれが用いられる冷凍装置1Aの構成は、上述した構成を除いて、図1に示した構成と同じである。制御装置100により実行される蒸発温度制御の処理手順についても、図5に示したフローチャートと同じであり、変形例として、図7に示したフローチャートを採用することもできる。 The configurations of the outdoor unit 2A according to the second embodiment and the refrigeration apparatus 1A using the same are the same as the configuration shown in FIG. 1 except for the configuration described above. The processing procedure of the evaporating temperature control executed by the control device 100 is the same as the flowchart shown in FIG. 5, and the flowchart shown in FIG. 7 can be adopted as a modification.
 なお、上記においては、バイパス回路を流れる冷媒は、圧縮機10Aのインジェクションポートに戻されるものとしたが、圧縮機10Aに代えて、インジェクションポートを有さない圧縮機10を採用し、バイパス回路を流れる冷媒を圧縮機10の吸入側の配管85に戻してもよい。この場合、共沸冷媒が用いられるときは、膨張弁46を全閉にしてバイパス回路を遮断し、非共沸冷媒が用いられるときは、膨張弁46を開にして(絞り有)バイパス回路及び過冷却器40Aを機能させるようにしてもよい。 In the above description, the refrigerant flowing through the bypass circuit is returned to the injection port of the compressor 10A. However, instead of the compressor 10A, a compressor 10 having no injection port is employed, and the bypass circuit is used. The flowing refrigerant may be returned to the pipe 85 on the suction side of the compressor 10. In this case, when the azeotropic refrigerant is used, the expansion valve 46 is fully closed to shut off the bypass circuit, and when the non-azeotropic refrigerant is used, the expansion valve 46 is opened (with the throttle) and the bypass circuit and The supercooler 40A may function.
 以上のように、この実施の形態2によれば、内部熱交換器44によって過冷却器40Aを構成することができるので、外部熱源を用いるための構成を別途設けることなく、冷媒の過冷却を拡大させることができる。そして、このような過冷却器40Aが設けられることによって、蒸発器60の入側の冷媒温度と飽和液温度との乖離が抑制され、蒸発温度制御の精度を向上させることができる。 As described above, according to the second embodiment, since the subcooler 40A can be configured by the internal heat exchanger 44, the supercooling of the refrigerant can be performed without separately providing a configuration for using an external heat source. Can be enlarged. By providing such a supercooler 40A, the difference between the refrigerant temperature on the inlet side of the evaporator 60 and the saturated liquid temperature is suppressed, and the accuracy of the evaporation temperature control can be improved.
 上記の実施の形態1,2及び変形例では、倉庫やショーケース等に主に用いられる室外機及び冷凍装置について代表的に説明したが、本開示に従う室外機は、図9,10に示されるように、冷凍サイクルを用いた空気調和装置200,200Aにも適用可能である。 In the above first and second embodiments and the modifications, the outdoor unit and the refrigeration apparatus mainly used for a warehouse, a showcase, and the like have been representatively described. However, the outdoor unit according to the present disclosure is shown in FIGS. As described above, the present invention is also applicable to the air conditioners 200 and 200A using the refrigeration cycle.
 今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,1A 冷凍装置、2,2A 室外機、3 室内機、10,10A 圧縮機、20 凝縮器、22,42,62 ファン、40,40A 過冷却器、44 内部熱交換器、46,50 膨張弁、60 蒸発器、80~87 配管、90 圧力センサ、100 制御装置、102 CPU、104 メモリ、200,200A 空気調和装置。 1,1A refrigerator, 2,2A outdoor unit, 3 indoor unit, 10,10A compressor, 20 condenser, 22,42,62 fan, 40,40A subcooler, 44 internal heat exchanger, 46,50 expansion Valve, 60 evaporator, 80-87 pipe, 90 pressure sensor, 100 control device, 102 CPU, 104 memory, 200, 200A air conditioner.

Claims (6)

  1.  冷凍サイクル装置の室外機であって、
     冷媒を圧縮する圧縮機と、
     前記圧縮機から出力される冷媒を凝縮する凝縮器と、
     前記室外機に接続される室内機の蒸発器に対して設定される蒸発温度に基づいて、前記蒸発器を流れる冷媒の圧力を目標圧力に制御する制御装置とを備え、
     前記制御装置は、前記圧力と、前記圧力における冷媒の飽和液温度と飽和ガス温度との平均を示す露沸平均温度との関係を用いて、前記露沸平均温度が前記蒸発温度であるときの前記圧力を前記目標圧力として設定し、さらに、
     前記凝縮器の出側に設けられ、前記凝縮器から出力される冷媒を冷却するように構成された過冷却器を備える、冷凍サイクル装置の室外機。
    An outdoor unit of a refrigeration cycle device,
    A compressor for compressing the refrigerant,
    A condenser for condensing the refrigerant output from the compressor,
    A control device that controls the pressure of the refrigerant flowing through the evaporator to a target pressure, based on an evaporation temperature set for the evaporator of the indoor unit connected to the outdoor unit,
    The controller, the pressure, using the relationship between the dew-boiling average temperature indicating the average of the saturated liquid temperature and the saturated gas temperature of the refrigerant at the pressure, when the dew-boiling average temperature is the evaporation temperature Setting the pressure as the target pressure,
    An outdoor unit of a refrigeration cycle device, comprising: a supercooler provided on an outlet side of the condenser and configured to cool a refrigerant output from the condenser.
  2.  前記制御装置は、冷媒が共沸冷媒であるか非共沸冷媒であるかに拘わらず、前記露沸平均温度が前記蒸発温度であるときの前記圧力を前記目標圧力として設定する、請求項1に記載の冷凍サイクル装置の室外機。 The control device sets the pressure when the dew-boiling average temperature is the evaporation temperature as the target pressure regardless of whether the refrigerant is an azeotropic refrigerant or a non-azeotropic refrigerant. An outdoor unit of the refrigeration cycle apparatus according to item 1.
  3.  前記制御装置は、
     冷媒が非共沸冷媒である場合は、前記露沸平均温度が前記蒸発温度であるときの前記圧力を前記目標圧力として設定し、
     冷媒が共沸冷媒である場合は、前記蒸発温度に対応する前記圧力を前記目標圧力として設定する、請求項1に記載の冷凍サイクル装置の室外機。
    The control device includes:
    If the refrigerant is a non-azeotropic refrigerant, the pressure when the dew-boiling average temperature is the evaporation temperature is set as the target pressure,
    The outdoor unit of the refrigeration cycle device according to claim 1, wherein when the refrigerant is an azeotropic refrigerant, the pressure corresponding to the evaporation temperature is set as the target pressure.
  4.  前記過冷却器は、
     前記過冷却器の出側の冷媒の一部を、前記室内機を通過することなく前記圧縮機へ戻すように構成されたバイパス回路と、
     前記バイパス回路に設けられる膨張弁と、
     前記膨張弁から出力される冷媒と前記凝縮器から出力される冷媒との間で熱交換を行なうように構成された内部熱交換器とを含む、請求項1から請求項3のいずれか1項に記載の冷凍サイクル装置の室外機。
    The subcooler is
    A bypass circuit configured to return a part of the refrigerant on the outlet side of the subcooler to the compressor without passing through the indoor unit,
    An expansion valve provided in the bypass circuit;
    4. The internal heat exchanger according to claim 1, further comprising an internal heat exchanger configured to perform heat exchange between the refrigerant output from the expansion valve and the refrigerant output from the condenser. 5. An outdoor unit of the refrigeration cycle apparatus according to item 1.
  5.  請求項1から請求項4のいずれか1項に記載の室外機と、
     前記室外機に接続される室内機とを備える冷凍サイクル装置。
    An outdoor unit according to any one of claims 1 to 4,
    A refrigeration cycle device comprising: an indoor unit connected to the outdoor unit.
  6.  請求項5に記載の冷凍サイクル装置を備える空気調和装置。 An air conditioner comprising the refrigeration cycle device according to claim 5.
PCT/JP2018/036525 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device WO2020066000A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/036525 WO2020066000A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device
JP2020547863A JP6972369B2 (en) 2018-09-28 2018-09-28 Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner
CN201880097229.8A CN112739961B (en) 2018-09-28 2018-09-28 Outdoor unit of refrigeration cycle device, and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036525 WO2020066000A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2020066000A1 true WO2020066000A1 (en) 2020-04-02

Family

ID=69949337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036525 WO2020066000A1 (en) 2018-09-28 2018-09-28 Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device

Country Status (3)

Country Link
JP (1) JP6972369B2 (en)
CN (1) CN112739961B (en)
WO (1) WO2020066000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163793A1 (en) * 2021-01-29 2022-08-04 伸和コントロールズ株式会社 Refrigeration device, control method for refrigeration device, and temperature control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757919B (en) * 2021-08-23 2022-11-15 宁波奥克斯电气股份有限公司 Compressor output control method and device of air conditioner and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835725A (en) * 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH11182951A (en) * 1997-12-25 1999-07-06 Mitsubishi Electric Corp Refrigerating device
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device
JP2018021730A (en) * 2016-08-05 2018-02-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69517099T2 (en) * 1994-07-21 2001-02-01 Mitsubishi Electric Corp Air conditioner with non-azeotropic refrigerant and calculator to determine its composition
EP3081879B1 (en) * 2008-06-16 2021-05-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
ES2780181T3 (en) * 2010-10-12 2020-08-24 Mitsubishi Electric Corp Air conditioner
JP5816789B2 (en) * 2011-06-17 2015-11-18 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same
CN105546864B (en) * 2016-01-13 2018-05-18 西安交通大学 A kind of Auto-cascade cycle steam compressed refrigerating circulating system of band evaporation subcooler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835725A (en) * 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH11182951A (en) * 1997-12-25 1999-07-06 Mitsubishi Electric Corp Refrigerating device
JP2013170797A (en) * 2012-02-22 2013-09-02 Hitachi Appliances Inc Refrigeration device
JP2018021730A (en) * 2016-08-05 2018-02-08 日立ジョンソンコントロールズ空調株式会社 Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163793A1 (en) * 2021-01-29 2022-08-04 伸和コントロールズ株式会社 Refrigeration device, control method for refrigeration device, and temperature control system

Also Published As

Publication number Publication date
CN112739961A (en) 2021-04-30
JP6972369B2 (en) 2021-11-24
CN112739961B (en) 2022-05-17
JPWO2020066000A1 (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP6664478B2 (en) Binary refrigeration equipment
WO2007110908A9 (en) Refrigeration air conditioning device
US9863680B2 (en) Heat pump apparatus
JP2006112708A (en) Refrigerating air conditioner
KR101901540B1 (en) Air conditioning device
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
WO2020066000A1 (en) Outdoor unit for refrigeration cycle device, refrigeration cycle device, and air conditioning device
JP6712766B2 (en) Dual refrigeration system
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP4999531B2 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP2003314914A (en) Refrigerant circulating system
JP6739664B2 (en) Refrigeration air conditioner and control device
Santosa et al. Performance analysis of transcritical CO2 refrigeration system for supermarket application
JP2012141070A (en) Refrigerating device
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP2013053849A (en) Heat pump device, and outdoor unit thereof
JPH11316057A (en) Refrigerating/air conditioning apparatus
JP7112057B1 (en) air conditioner
JP7367222B2 (en) Refrigeration cycle equipment
WO2022013981A1 (en) Refrigeration cycle device
JP7341337B2 (en) Cold heat source unit, refrigeration cycle equipment, and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934629

Country of ref document: EP

Kind code of ref document: A1