JP2943613B2 - Refrigeration air conditioner using non-azeotropic mixed refrigerant - Google Patents

Refrigeration air conditioner using non-azeotropic mixed refrigerant

Info

Publication number
JP2943613B2
JP2943613B2 JP16957094A JP16957094A JP2943613B2 JP 2943613 B2 JP2943613 B2 JP 2943613B2 JP 16957094 A JP16957094 A JP 16957094A JP 16957094 A JP16957094 A JP 16957094A JP 2943613 B2 JP2943613 B2 JP 2943613B2
Authority
JP
Japan
Prior art keywords
refrigerant
composition
temperature
pressure
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16957094A
Other languages
Japanese (ja)
Other versions
JPH0835725A (en
Inventor
嘉裕 隅田
多佳志 岡崎
修 森本
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP16957094A priority Critical patent/JP2943613B2/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to DE69526980T priority patent/DE69526980T2/en
Priority to EP95304838A priority patent/EP0693663B1/en
Priority to ES98107194T priority patent/ES2176849T3/en
Priority to DE69527095T priority patent/DE69527095T2/en
Priority to EP98107191A priority patent/EP0854329B1/en
Priority to EP98107195A priority patent/EP0853222B1/en
Priority to ES95304838T priority patent/ES2148441T3/en
Priority to ES98107195T priority patent/ES2178070T3/en
Priority to PT95304838T priority patent/PT693663E/en
Priority to PT98107192T priority patent/PT853221E/en
Priority to ES98107191T priority patent/ES2178068T3/en
Priority to EP98107194A priority patent/EP0854331B1/en
Priority to EP98107193A priority patent/EP0854330B1/en
Priority to ES98107196T priority patent/ES2176850T3/en
Priority to DE69526982T priority patent/DE69526982T2/en
Priority to DE69532003T priority patent/DE69532003T2/en
Priority to DE69527092T priority patent/DE69527092T2/en
Priority to ES98107193T priority patent/ES2178069T3/en
Priority to DE69517099T priority patent/DE69517099T2/en
Priority to EP98107192A priority patent/EP0853221B1/en
Priority to ES98107192T priority patent/ES2208995T3/en
Priority to EP98107196A priority patent/EP0854332B1/en
Priority to DE69526979T priority patent/DE69526979T2/en
Priority to US08/500,551 priority patent/US5626026A/en
Priority to AU25041/95A priority patent/AU683385B2/en
Priority to CN95108967A priority patent/CN1067154C/en
Priority to TW084107907A priority patent/TW289079B/zh
Publication of JPH0835725A publication Critical patent/JPH0835725A/en
Priority to US08/779,851 priority patent/US5735132A/en
Priority to US09/005,813 priority patent/US5941084A/en
Priority to HK98100593A priority patent/HK1001659A1/en
Priority to KR2019980010044U priority patent/KR200145320Y1/en
Application granted granted Critical
Publication of JP2943613B2 publication Critical patent/JP2943613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は非共沸混合冷媒を用いた
冷凍空調装置に関し、特に冷媒循環組成が初期充填組成
と異なった場合でも、信頼性が高く、かつ効率良く運転
を行う冷凍空調装置の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture, and more particularly to a refrigeration / air-conditioning system which operates with high reliability and efficiency even when the refrigerant circulation composition is different from the initial charging composition. It relates to the configuration of the device.

【0002】[0002]

【従来の技術】図22は特開昭61ー6546号公報に
示された従来の非共沸混合冷媒を用いた冷凍空調装置の
構成を示すものである。図において、1は圧縮機、2は
凝縮器、3は膨張弁、4は蒸発器、5はアキュムレータ
であり、これらは配管により直列に接続されて冷凍空調
装置を構成し、高沸点成分と低沸点成分とからなる非共
沸混合冷媒を用いている。
2. Description of the Related Art FIG. 22 shows the structure of a conventional refrigeration and air conditioning system using a non-azeotropic mixed refrigerant disclosed in Japanese Patent Application Laid-Open No. 61-6546. In the figure, 1 is a compressor, 2 is a condenser, 3 is an expansion valve, 4 is an evaporator, and 5 is an accumulator, which are connected in series by piping to form a refrigeration and air-conditioning system. A non-azeotropic mixed refrigerant comprising a boiling point component is used.

【0003】上記のように構成された冷凍空調装置にお
いて、圧縮機1で圧縮された高温高圧の冷媒ガスは凝縮
器2で凝縮液化し、膨張弁3で減圧されて低圧の気液二
相冷媒となって蒸発器4に流入する。この冷媒は、蒸発
器4で蒸発し、アキュムレータ5を経て圧縮機1に戻
り、再び圧縮されて凝縮器2へ送り込まれる。またアキ
ュムレータ5は、冷凍空調装置の運転条件や負荷条件に
よって発生した余剰な冷媒を溜めることにより、圧縮機
1への液戻りを防止している。
In the refrigeration and air-conditioning system configured as described above, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is condensed and liquefied by the condenser 2 and decompressed by the expansion valve 3 to be a low-pressure gas-liquid two-phase refrigerant. And flows into the evaporator 4. This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Further, the accumulator 5 prevents the liquid from returning to the compressor 1 by storing excess refrigerant generated by operating conditions and load conditions of the refrigerating air conditioner.

【0004】このような冷凍空調装置では、冷媒として
目的に合わせた非共沸混合冷媒を使用することにより、
単一冷媒では得られなかったより低い蒸発温度、あるい
はより高い凝縮温度が得られたり、あるいはサイクル効
率がより向上するなどの利点が得られることは従来から
知られている。また、従来から広く用いられているR1
2やR22などの冷媒は、オゾン層破壊の原因となるた
め、これらの代替冷媒として非共沸混合冷媒が提案され
ている。
[0004] In such a refrigeration / air-conditioning system, a non-azeotropic mixed refrigerant is used as a refrigerant.
It is conventionally known that advantages such as a lower evaporation temperature or a higher condensing temperature that could not be obtained with a single refrigerant and a higher cycle efficiency can be obtained. In addition, R1 which has been widely used
Since refrigerants such as 2 and R22 cause ozone layer depletion, non-azeotropic mixed refrigerants have been proposed as substitutes for these refrigerants.

【0005】[0005]

【発明が解決しようとする課題】従来の非共沸混合冷媒
を用いた冷凍空調装置は以上のように構成されているの
で、冷凍空調装置の運転条件や負荷条件が一定であれ
ば、冷凍サイクル内を循環する冷媒組成は一定であり、
上述のような効率の良い冷凍サイクルを構成する。とこ
ろが運転条件や負荷条件が変化し、特にアキュムレータ
内に貯溜される冷媒量が変化すると、冷凍サイクル内を
循環する冷媒組成が変化し、この循環冷媒組成に応じた
冷凍サイクルの制御、すなわち圧縮機の回転数制御や膨
張弁の開度制御等による冷媒流量の調整が必要となる。
しかし、従来の冷凍空調装置では、この循環冷媒組成を
検知する手段を設けていないため、循環冷媒組成に応じ
た最適な運転が維持できないという問題点があった。ま
た冷凍サイクルの使用中の冷媒漏れや、あるいは冷媒充
填時の誤動作で循環冷媒組成が変化した場合にも、この
循環冷媒組成の異常を検知できず、安全性、及び信頼性
の高い冷凍空調装置が得られないという問題点があっ
た。
The conventional refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture is constructed as described above. Therefore, if the operating conditions and load conditions of the refrigeration / air-conditioning system are constant, the refrigeration cycle The composition of the refrigerant circulating inside is constant,
An efficient refrigeration cycle as described above is configured. However, when operating conditions and load conditions change, especially when the amount of refrigerant stored in the accumulator changes, the composition of the refrigerant circulating in the refrigeration cycle changes, and control of the refrigeration cycle according to the circulating refrigerant composition, that is, the compressor It is necessary to adjust the flow rate of the refrigerant by controlling the number of revolutions and controlling the opening of the expansion valve.
However, the conventional refrigeration / air-conditioning apparatus does not include a means for detecting the circulating refrigerant composition, and thus has a problem that an optimal operation according to the circulating refrigerant composition cannot be maintained. Also, even when the circulating refrigerant composition changes due to a refrigerant leak during use of the refrigeration cycle or a malfunction at the time of filling the refrigerant, the abnormality of the circulating refrigerant composition cannot be detected, and a safe and reliable refrigeration / air-conditioning apparatus. There was a problem that was not obtained.

【0006】本発明は上記のような問題点を解消するた
めになされたもので、冷凍サイクル内を循環する冷媒組
成が変化しても常に最適な冷凍サイクルの運転を可能に
した冷凍空調装置を得ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a refrigeration / air-conditioning apparatus which can always operate the refrigeration cycle optimally even if the composition of the refrigerant circulating in the refrigeration cycle changes. The purpose is to get.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
非共沸混合冷媒を用いた冷凍空調装置は、冷媒として非
共沸混合冷媒を用い、圧縮機、凝縮器、膨張弁、及び蒸
発器を連結して冷凍サイクルを構成するものにおいて、
蒸発器入口部の冷媒温度を検出する第1温度検出器、上
記蒸発器入口部の冷媒圧力を検出する圧力検出器、凝縮
器出口部の冷媒温度を検出する第2温度検出器、第1温
度検出器と上記圧力検出器と第2温度検出器で検出した
信号から、冷媒の乾き度、温度及び圧力に基づいてサイ
クル内を循環する冷媒組成を演算する組成演算器、及び
この組成演算器により検出された冷媒組成に応じて上記
冷凍サイクルの運転制御を行う制御装置を備えたもので
ある。
According to a first aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, wherein the non-azeotropic mixed refrigerant is used as a refrigerant, and a compressor, a condenser, an expansion valve, and In what constitutes a refrigeration cycle by connecting evaporators,
A first temperature detector for detecting a refrigerant temperature at an evaporator inlet, a pressure detector for detecting a refrigerant pressure at the evaporator inlet, a second temperature detector for detecting a refrigerant temperature at a condenser outlet, a first temperature From the signals detected by the detector, the pressure detector, and the second temperature detector, a composition calculator for calculating a refrigerant composition circulating in the cycle based on the dryness of the refrigerant, the temperature and the pressure, and the composition calculator A control device for controlling the operation of the refrigeration cycle according to the detected refrigerant composition is provided.

【0008】本発明の請求項2に係る非共沸混合冷媒を
用いた冷凍空調装置は、冷媒として非共沸混合冷媒を用
い、圧縮機、凝縮器、膨張弁、及び蒸発器を連結して冷
凍サイクルを構成するものにおいて、蒸発器入口部の冷
媒温度を検出する温度検出器、上記蒸発器入口部の冷媒
圧力を検出する圧力検出器、上記温度検出器と上記圧力
検出器で検出した信号から、冷媒の乾き度、温度及び圧
力に基づいてサイクル内を循環する冷媒組成を演算する
組成演算器、及びこの組成演算器により検出された冷媒
組成に応じて上記冷凍サイクルの運転制御を行う制御装
置を備えたものである。
A refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to a second aspect of the present invention uses a non-azeotropic mixed refrigerant as a refrigerant and connects a compressor, a condenser, an expansion valve, and an evaporator. In what constitutes a refrigeration cycle, a temperature detector for detecting the refrigerant temperature at the evaporator inlet, a pressure detector for detecting the refrigerant pressure at the evaporator inlet, a signal detected by the temperature detector and the pressure detector A composition calculator for calculating the composition of the refrigerant circulating in the cycle based on the dryness, temperature and pressure of the refrigerant, and control for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator. It is equipped with a device.

【0009】本発明の請求項3に係る非共沸混合冷媒を
用いた冷凍空調装置は、冷媒として非共沸混合冷媒を用
い、圧縮機、凝縮器、膨張弁、蒸発器、及びアキュムレ
ータを連結して冷凍サイクルを構成するものにおいて、
アキュムレータ内、または上記アキュムレータと圧縮機
吸入配管との間の冷媒温度を検出する温度検出器、上記
アキュムレータ内、または上記アキュムレータと圧縮機
吸入配管との間の冷媒圧力を検出する圧力検出器、上記
温度検出器と上記圧力検出器で検出した信号から、冷媒
の乾き度、温度及び圧力に基づいてサイクル内を循環す
る冷媒組成を演算する組成演算器、及びこの組成演算器
により検出された冷媒組成に応じて上記冷凍サイクルの
運転制御を行う制御装置を備えたものである。
A refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant according to claim 3 of the present invention uses a non-azeotropic mixed refrigerant as a refrigerant and connects a compressor, a condenser, an expansion valve, an evaporator, and an accumulator. To constitute a refrigeration cycle,
A temperature detector for detecting a refrigerant temperature in the accumulator, or between the accumulator and the compressor suction pipe, a pressure detector for detecting a refrigerant pressure in the accumulator, or between the accumulator and the compressor suction pipe, From a signal detected by the temperature detector and the pressure detector, a composition calculator for calculating a refrigerant composition circulating in the cycle based on the dryness of the refrigerant, the temperature and the pressure, and a refrigerant composition detected by the composition calculator And a control device for controlling the operation of the refrigeration cycle according to the above.

【0010】本発明の請求項4に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、凝縮器、膨張弁、蒸発
器、及びアキュムレータを連結して冷凍サイクルを構成
するものにおいて、アキュムレータの液面を検出してサ
イクル内を循環する冷媒組成を演算する組成演算器を設
けると共に、この組成演算器により検出された循環組成
に応じて冷凍サイクルの運転制御を行う制御装置を設け
たものである。
According to a fourth aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, wherein a refrigeration cycle is constituted by connecting a compressor, a condenser, an expansion valve, an evaporator, and an accumulator. A composition calculator for detecting the liquid level of the accumulator and calculating the composition of the refrigerant circulating in the cycle is provided, and a control device for controlling the operation of the refrigeration cycle in accordance with the circulation composition detected by the composition calculator is provided. Things.

【0011】本発明の請求項5に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、四方弁、第1熱交換
器、第1膨張弁、及び第2熱交換器を連結して冷凍サイ
クルを構成するものにおいて、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力、及び第2膨張弁の入口部の冷媒温度を検
出して、サイクル内を循環する冷媒組成を演算する組成
演算器を設けると共に、この組成演算器により検出され
た循環組成に応じて冷凍サイクルの運転制御を行う制御
装置を設けたものである。
According to a fifth aspect of the present invention, there is provided a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant, comprising a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger. A refrigeration cycle, wherein a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected by a bypass pipe via a second expansion valve, A composition calculator for detecting the temperature and pressure of the refrigerant at the outlet portion and the refrigerant temperature at the inlet portion of the second expansion valve to calculate the composition of the refrigerant circulating in the cycle is provided. A control device for controlling the operation of the refrigeration cycle according to the circulation composition is provided.

【0012】本発明の請求項6に係る非共沸混合冷媒を
用いた冷凍空調装置は、圧縮機、四方弁、第1熱交換
器、第1膨張弁、及び第2熱交換器を連結して冷凍サイ
クルを構成するものにおいて、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力を検出して、サイクル内を循環する冷媒組
成を演算する組成演算器を設けると共に、この組成演算
器により検出された循環組成に応じて冷凍サイクルの運
転制御を行う制御装置を設けたものである。
According to a sixth aspect of the present invention, there is provided a refrigeration / air-conditioning system using a non-azeotropic mixed refrigerant, comprising a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger. A refrigeration cycle, wherein a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected by a bypass pipe via a second expansion valve, A composition calculator for detecting the temperature and pressure of the refrigerant at the outlet and calculating the composition of the refrigerant circulating in the cycle is provided, and the operation of the refrigeration cycle is controlled according to the circulation composition detected by the composition calculator. A control device is provided.

【0013】本発明の請求項7に係る非共沸混合冷媒を
用いた冷凍空調装置は、請求項5または6の冷凍空調装
置におけるバイパス配管に、第1熱交換器と第1膨張弁
の間の配管とで熱交換を行う熱交換部を設けたものであ
る。
According to a seventh aspect of the present invention, there is provided a refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture, wherein a bypass pipe in the refrigeration / air-conditioning system according to the fifth or sixth aspect is provided between the first heat exchanger and the first expansion valve. And a heat exchange unit for exchanging heat with the pipes.

【0014】本発明の請求項8に係る非共沸混合冷媒を
用いた冷凍空調装置は、上記各冷凍空調装置に対して、
組成演算器で検出された循環組成が所定範囲から外れた
場合に警告信号を発する比較演算手段と、この比較演算
手段が発する警報信号によって動作する警報手段を設け
たものである。
A refrigeration / air-conditioning system using a non-azeotropic refrigerant mixture according to claim 8 of the present invention is characterized in that:
A comparison operation means for issuing a warning signal when the circulating composition detected by the composition operation unit is out of a predetermined range, and an alarm means operated by an alarm signal issued by the comparison operation means are provided.

【0015】[0015]

【作用】本発明の請求項1においては、圧縮機、凝縮
器、膨張弁、及び蒸発器を連結した冷凍サイクル内を循
環する冷媒組成を、蒸発器入口部の冷媒の温度と圧力、
及び凝縮器出口部の冷媒温度を検出して、検出値を組成
演算器に入力し、演算する。組成演算器が検出した冷媒
循環組成は制御装置に入力され、冷媒循環組成に応じた
圧縮機や膨張弁などの制御値が決定されるため、冷凍空
調装置の運転条件や負荷条件の変化により循環組成が変
化した場合や、あるいは冷凍空調装置使用中の冷媒漏れ
や、冷媒充填時の誤動作で循環組成が変化した場合でも
冷凍空調装置の最適運転を可能にすることができる。
In the first aspect of the present invention, the composition of the refrigerant circulating in the refrigeration cycle connecting the compressor, the condenser, the expansion valve, and the evaporator is determined by the temperature and pressure of the refrigerant at the inlet of the evaporator.
And the temperature of the refrigerant at the outlet of the condenser is detected, and the detected value is input to the composition calculator for calculation. The refrigerant circulation composition detected by the composition calculator is input to the control device, and control values for the compressor and the expansion valve are determined according to the refrigerant circulation composition. The optimum operation of the refrigeration / air-conditioning apparatus can be enabled even when the composition changes, or when the circulating composition changes due to a refrigerant leak during use of the refrigeration / air-conditioning apparatus or a malfunction at the time of charging the refrigerant.

【0016】本発明の請求項2においては、上記冷凍サ
イクルにおける蒸発器入口部の冷媒の温度と圧力のみを
組成演算器に入力し、組成演算器では蒸発器へ流入する
冷媒の乾き度が所定の値と仮定して冷媒組成を演算す
る。従って、簡単な装置構成で、上記装置と同様のもの
が実現する。
According to a second aspect of the present invention, only the temperature and pressure of the refrigerant at the inlet of the evaporator in the refrigerating cycle are input to the composition calculator, and the composition calculator determines the degree of dryness of the refrigerant flowing into the evaporator. Is calculated assuming the value of Therefore, a device similar to the above device is realized with a simple device configuration.

【0017】本発明の請求項3においては、圧縮機、凝
縮器、膨張弁、蒸発器、及びアキュムレータを連結した
冷凍サイクルにおいて、アキュムレータ内、または上記
アキュムレータと圧縮機吸入配管との間の冷媒温度と圧
力を検出して、検出値を組成演算器に入力し、組成演算
器ではアキュムレータへ流入する冷媒の乾き度が所定の
値と仮定して冷媒組成を演算する。従って、上記装置と
同様、簡単な装置構成で、循環組成が変化した場合でも
冷凍空調装置の最適運転を可能にすることができる。
According to a third aspect of the present invention, in a refrigeration cycle in which a compressor, a condenser, an expansion valve, an evaporator, and an accumulator are connected, the refrigerant temperature in the accumulator or between the accumulator and the compressor suction pipe is determined. And the pressure are detected, and the detected value is input to the composition calculator. The composition calculator calculates the refrigerant composition assuming that the dryness of the refrigerant flowing into the accumulator is a predetermined value. Therefore, the optimum operation of the refrigeration / air-conditioning apparatus can be achieved with a simple apparatus configuration even when the circulation composition changes, as in the above apparatus.

【0018】本発明の請求項4においては、アキュムレ
ータの液面を検知し、検知信号を組成演算器に入力す
る、組成演算器では予め調べておいた液面の高さと循環
組成の関係から、冷媒組成を演算する。従って、上記装
置と同様、簡単な装置構成で、循環組成が変化した場合
でも冷凍空調装置の最適運転を可能にすることができ
る。
According to a fourth aspect of the present invention, the liquid level of the accumulator is detected, and a detection signal is input to a composition calculator. Calculate the refrigerant composition. Therefore, the optimum operation of the refrigeration / air-conditioning apparatus can be achieved with a simple apparatus configuration even when the circulation composition changes, as in the above apparatus.

【0019】本発明の請求項5、及び6においては、圧
縮機、四方弁、第1熱交換器、第1膨張弁、及び第2熱
交換器を連結した冷凍サイクルにおいて、第1熱交換器
と第1膨張弁の間の配管と、上記圧縮機の吸入配管とを
第2膨張弁を介して接続するバイパス配管を設け、ここ
に温度検出器と圧力検出器を設けて冷媒組成を演算す
る。この様な構成では、第2膨張弁の下流側が常に低圧
の二相状態になるので、冷房、暖房にかかわらず、同一
の検出器で検出された温度、及び圧力から冷媒組成がわ
かる。
According to claims 5 and 6 of the present invention, in a refrigeration cycle in which a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger are connected, the first heat exchanger is provided. A bypass pipe connecting the pipe between the first expansion valve and the suction pipe of the compressor via a second expansion valve is provided, and a temperature detector and a pressure detector are provided here to calculate a refrigerant composition. . In such a configuration, since the downstream side of the second expansion valve is always in a low-pressure two-phase state, the refrigerant composition can be determined from the temperature and pressure detected by the same detector regardless of cooling or heating.

【0020】本発明の請求項7においては、バイパス配
管に熱交換部を設け、バイパス配管を流れる冷媒の持つ
エンタルピーを主配管を流れる冷媒へ伝達し、エネルギ
ーロスを防ぐ。
According to a seventh aspect of the present invention, a heat exchanger is provided in the bypass pipe to transmit enthalpy of the refrigerant flowing in the bypass pipe to the refrigerant flowing in the main pipe, thereby preventing energy loss.

【0021】本発明の請求項8においては、組成演算器
が検出した冷媒循環組成が、予め定めた所定範囲から外
れた場合には、これを比較演算手段によって判断し、警
報手段を作動させるため、非共沸混合冷媒の循環組成が
使用中に冷媒漏れによって変化したり、冷媒充填時の誤
動作で循環組成が変化したことを確実に検知でき、安全
性や信頼性の高い冷凍空調装置の提供が可能となる。
In the present invention, when the refrigerant circulation composition detected by the composition calculator deviates from a predetermined range, the refrigerant circulation composition is determined by the comparison calculation means and the alarm means is activated. Providing a safe and reliable refrigeration and air-conditioning system that can reliably detect that the circulating composition of a non-azeotropic mixed refrigerant has changed due to refrigerant leakage during use, or that the circulating composition has changed due to malfunctions when charging the refrigerant. Becomes possible.

【0022】[0022]

【実施例】【Example】

実施例1.以下、本発明の実施例を図について説明す
る。図1は本発明に係わる冷凍空調装置の第1の実施例
を示すもので、1は圧縮機、2は凝縮器、3は電気式膨
張弁、4は蒸発器、5はアキュムレータであり、これら
を配管により直列に接続することにより冷凍サイクルを
構成しており、電気式膨張弁3の開度は制御装置21の
出力信号により制御される。この冷凍サイクルには、例
えば高沸点成分R134aと低沸点成分R32からなる
非共沸混合冷媒が充填されている。
Embodiment 1 FIG. Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of a refrigeration / air-conditioning apparatus according to the present invention, wherein 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, 4 is an evaporator, and 5 is an accumulator. Are connected in series by piping to form a refrigeration cycle, and the opening of the electric expansion valve 3 is controlled by an output signal of the control device 21. This refrigeration cycle is filled with a non-azeotropic mixed refrigerant composed of, for example, a high-boiling component R134a and a low-boiling component R32.

【0023】蒸発器4の入口部には、その冷媒温度T1
を検出する第1温度検出器11と冷媒圧力P1 を検出す
る第1圧力検出器12がそれぞれ設けられており、また
凝縮器2の出口部には、その冷媒温度T2 を検出する第
2温度検出器13が設けられており、これら検出器1
1、12、13の検出信号は組成演算器20に入力され
る。また、圧縮機1の吐出配管にはその冷媒圧力を検出
する第2圧力検出器14が設けられており、この検出器
14の検出信号は、検出器13の検出信号とともに制御
装置21に入力される。
At the inlet of the evaporator 4, its refrigerant temperature T1
A first temperature detector 11 for detecting the refrigerant pressure P1 and a first pressure detector 12 for detecting the refrigerant pressure P1 are provided at the outlet of the condenser 2 and a second temperature detector 11 for detecting the refrigerant temperature T2. A detector 13 is provided.
The detection signals of 1, 12, and 13 are input to the composition calculator 20. The discharge pipe of the compressor 1 is provided with a second pressure detector 14 for detecting the refrigerant pressure, and the detection signal of the detector 14 is input to the control device 21 together with the detection signal of the detector 13. You.

【0024】組成演算器20は、検出器11、12、1
3が検出する温度T1 、圧力P1 、温度T2 に基づいて
非共沸混合冷媒の循環組成αを演算する機能を有してお
り、この循環組成αの演算値は制御装置21に入力され
る。また制御装置21は、循環組成αと検出器14が検
出する圧力P2 から凝縮圧力における飽和液温度TLを
演算する機能と、この飽和液温度TL と検出器13が検
出する温度T2 から凝縮器2の出口部における過冷却度
を演算する機能と、この過冷却度が所定の値となるよう
に電気式膨張弁3の開度を制御する機能を有している。
The composition calculator 20 includes detectors 11, 12, 1
3 has a function of calculating the circulating composition α of the non-azeotropic refrigerant mixture based on the detected temperature T1, pressure P1, and temperature T2. The calculated value of the circulating composition α is input to the controller 21. The control device 21 has a function of calculating the saturated liquid temperature TL at the condensing pressure from the circulation composition α and the pressure P2 detected by the detector 14, and a function of the condenser 2 based on the saturated liquid temperature TL and the temperature T2 detected by the detector 13. And a function of controlling the opening degree of the electric expansion valve 3 so that the degree of supercooling becomes a predetermined value.

【0025】次に、上記のように構成された本実施例の
動作について説明する。圧縮機1で圧縮された高温高圧
の冷媒ガスは凝縮器2で凝縮液化し、膨張弁3で減圧さ
れ、低圧の気液二相冷媒となって蒸発器4に流入する。
この冷媒は、蒸発器4で蒸発し、アキュムレータ5を経
て圧縮機1に戻り、再び圧縮されて凝縮器2へ送り込ま
れる。冷凍空調装置の運転条件や負荷条件によって発生
した余剰な冷媒は、アキュムレータ5内に溜る。
Next, the operation of the present embodiment configured as described above will be described. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 is condensed and liquefied in the condenser 2, decompressed by the expansion valve 3, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 4.
This refrigerant evaporates in the evaporator 4, returns to the compressor 1 via the accumulator 5, is compressed again, and is sent to the condenser 2. Excess refrigerant generated by operating conditions and load conditions of the refrigeration / air-conditioning device accumulates in the accumulator 5.

【0026】次に、組成演算器20の動作を図2に示す
フローチャート、及び図3に示す冷凍サイクルの圧力−
エンタルピー線図、図4の非共沸混合冷媒の気液平衡線
図に基づいて説明する。なお、図3において、実線Aは
循環組成αに対する飽和液曲線、実線Bは循環組成αに
対する飽和蒸気曲線、実線Cはサイクル動作線、一点鎖
線は等温線である。また、図4において、横軸は低沸点
成分の重量分率、縦軸は温度、点線は蒸発器4の入口部
の圧力がP1 の時の飽和蒸気温度(X=1)、一点鎖線
は飽和液温度(X=0)、実線は乾き度Xにおける温度
(0〈X〈1)である。組成演算器20の動作が開始さ
れると、まずステップS1では、検出器11、12、1
3で検出された蒸発器4の入口部の冷媒温度T1 と圧力
P1 、及び凝縮器2の出口部の温度T2 を組成演算器2
0に取り込む。次にステップS2では、冷凍サイクル内
の循環組成αを仮定し、ステップS3では、この仮定の
下で、蒸発器4へ流入する冷媒の乾き度Xを計算する。
すなわち図3に示すように仮定した循環組成αの下で
は、凝縮器2の出口部の温度T2 からエンタルピーHが
求まり、蒸発器4の入口部の圧力P1 よりHL が得ら
れ、蒸発器4の入口部の乾き度Xが近似的に次式により
一義的に定まる。
Next, the operation of the composition calculator 20 will be described with reference to the flow chart shown in FIG. 2 and the pressure of the refrigeration cycle shown in FIG.
The description will be made based on the enthalpy diagram and the vapor-liquid equilibrium diagram of the non-azeotropic refrigerant mixture shown in FIG. In FIG. 3, a solid line A is a saturated liquid curve for the circulating composition α, a solid line B is a saturated vapor curve for the circulating composition α, a solid line C is a cycle operation line, and an alternate long and short dash line is an isotherm line. In FIG. 4, the horizontal axis represents the weight fraction of the low boiling point component, the vertical axis represents the temperature, the dotted line represents the saturated steam temperature (X = 1) when the pressure at the inlet of the evaporator 4 is P1, and the one-dot chain line represents the saturation. The liquid temperature (X = 0), and the solid line is the temperature (0 <X <1) at the dryness X. When the operation of the composition calculator 20 is started, first, in step S1, the detectors 11, 12, 1
The refrigerant temperature T1 and pressure P1 at the inlet of the evaporator 4 detected at 3 and the temperature T2 at the outlet of the condenser 2 are calculated by the composition calculator 2
Capture to 0. Next, in step S2, the circulation composition α in the refrigeration cycle is assumed, and in step S3, the dryness X of the refrigerant flowing into the evaporator 4 is calculated under this assumption.
That is, under the assumed circulation composition α as shown in FIG. 3, the enthalpy H is obtained from the temperature T2 at the outlet of the condenser 2 and HL is obtained from the pressure P1 at the inlet of the evaporator 4, and HL is obtained. , The dryness X at the inlet portion is uniquely determined approximately by the following equation.

【0027】[0027]

【数1】 (Equation 1)

【0028】ここでHV は飽和蒸気曲線とサイクル動作
線が交わる点のエンタルピーである。実際には乾き度X
と温度T2 、及び圧力P1 との関係を予め組成演算器2
0内に記憶しておき、温度T2 、圧力P1 の値を用い
て、乾き度Xを算出する。さらにステップS4では、こ
の蒸発器4の入口部の乾き度Xと蒸発器4の入口部の冷
媒温度T1 、及び圧力P1 より循環組成α* を計算す
る。すなわち乾き度がXである気液二相状態の非共沸混
合冷媒の温度と圧力は、図4に示すように冷凍サイクル
内を流れる循環組成によって定まる。したがって図4中
実線で示した特性を用いることにより、循環組成α*
計算することができる。ステップS5では、この循環組
成α* と最初に仮定した循環組成αを比較し、両者が一
致していれば、循環組成はαとして求まる。両者が一致
していなければ、ステップS2に戻り、再び循環組成α
を仮定し直し、両者が一致するまで計算を続行する。
[0028] Here, H V is the enthalpy of points saturated vapor curve and the cycle operation line intersects. Actually dryness X
The relationship between the temperature, the temperature T2, and the pressure P1 is determined in advance by the composition calculator 2.
The dryness X is calculated using the values of the temperature T2 and the pressure P1. Further, in step S4, the circulation composition α * is calculated from the dryness X at the inlet of the evaporator 4, the refrigerant temperature T1 at the inlet of the evaporator 4, and the pressure P1. That is, the temperature and pressure of the non-azeotropic mixed refrigerant in the gas-liquid two-phase state having the dryness X are determined by the circulation composition flowing in the refrigeration cycle as shown in FIG. Therefore, the circulation composition α * can be calculated by using the characteristics shown by the solid line in FIG. In step S5, the circulating composition α * is compared with the initially assumed circulating composition α, and if they match, the circulating composition is obtained as α. If they do not match, the process returns to step S2, and again the circulation composition α
And continue the calculation until they match.

【0029】次に、制御装置21の動作を図5に示すフ
ローチャートを用いて説明する。制御装置21の動作が
開始されると、まずステップS1では、凝縮器2の出口
部の温度T2 と凝縮圧力P2 を検出する。次にステップ
S2では、組成演算器20より循環組成αを取り込み、
ステップS3では、凝縮圧力P2 と循環組成αから、圧
力P2 における飽和液温度TL を計算する。この飽和液
温度TL は、循環組成αが定まっているため、圧力P2
より一義的に定まる(図3参照)。さらにステップS4
では、T2 とTL から凝縮器2の出口部の冷媒過冷却度
SCを計算する(SC=TL −T2 )。ステップS5で
は、この過冷却度SCが所定の値、例えば5℃と一致し
ているか否かを判定し、所定の値と一致していると判断
されたときには、終了ステップへ移行する。また所定の
の値と一致していないと判断された場合には、ステップ
S6へ移行して電気式膨張弁3の開度変更処理を実行す
る。
Next, the operation of the control device 21 will be described with reference to the flowchart shown in FIG. When the operation of the control device 21 is started, first, in step S1, the temperature T2 and the condensing pressure P2 at the outlet of the condenser 2 are detected. Next, in step S2, the circulating composition α is fetched from the composition calculator 20,
In step S3, the saturated liquid temperature TL at the pressure P2 is calculated from the condensing pressure P2 and the circulation composition α. The saturated liquid temperature TL is determined by the pressure P2
It is determined more uniquely (see FIG. 3). Step S4
Then, the refrigerant supercooling degree SC at the outlet of the condenser 2 is calculated from T2 and TL (SC = TL-T2). In step S5, it is determined whether or not the degree of supercooling SC is equal to a predetermined value, for example, 5 ° C., and if it is determined that it is equal to the predetermined value, the process proceeds to an end step. When it is determined that the value does not match the predetermined value, the process proceeds to step S6, and the opening degree change process of the electric expansion valve 3 is executed.

【0030】上記の動作を繰り返すことにより、冷凍空
調装置の運転条件や負荷条件の変化により冷凍サイクル
内の循環組成が変化した場合や、あるいは冷凍空調装置
使用中の冷媒漏れや、冷媒充填時の誤動作で循環組成が
変化した場合でも、凝縮器2の出口部の過冷却度は適正
値に保たれ、常に最適な運転が可能となる。
By repeating the above operation, when the circulating composition in the refrigeration cycle changes due to changes in the operating conditions and load conditions of the refrigeration / air-conditioning system, or when a refrigerant leaks during use of the refrigeration / air-conditioning system or when the refrigerant is charged. Even if the circulation composition changes due to a malfunction, the degree of supercooling at the outlet of the condenser 2 is kept at an appropriate value, and an optimal operation is always possible.

【0031】なお、本実施例としては、混合冷媒として
二成分系を対象として説明したが、三成分系など多成分
系の場合においても同様の効果を得ることができる。
Although the present embodiment has been described with reference to a two-component system as a mixed refrigerant, similar effects can be obtained in the case of a multi-component system such as a three-component system.

【0032】また本実施例の制御装置21では、サイク
ル内の循環組成が変化しても、凝縮器2の出口部の過冷
却度を一定に保つように電気式膨張弁3の開度を制御す
るものについて説明したが、蒸発器4の出口部の温度を
検出して、循環組成αと蒸発圧力P1 から圧力P1 にお
ける飽和蒸気温度Tvを計算し(図3参照)、蒸発器4
の出口部の過熱度が一定となるように制御するものであ
っても、上記と同様、冷凍空調装置の最適運転を可能に
することができる。
The controller 21 of this embodiment controls the opening of the electric expansion valve 3 so as to keep the degree of supercooling at the outlet of the condenser 2 constant even if the circulation composition in the cycle changes. Although the temperature at the outlet of the evaporator 4 is detected, the saturated steam temperature Tv at the pressure P1 is calculated from the circulation composition α and the evaporation pressure P1 (see FIG. 3).
Even if the superheat degree at the outlet of the air conditioner is controlled to be constant, the optimal operation of the refrigeration / air-conditioning apparatus can be enabled in the same manner as described above.

【0033】さらに本実施例では、制御装置21は、サ
イクル内の循環組成が変化しても電気式膨張弁3の開度
を最適に制御するものについて説明したが、圧縮機1の
回転数を循環組成に応じて制御するものであっても、同
様の効果を得ることができる。
Further, in this embodiment, the control device 21 has been described in which the opening degree of the electric expansion valve 3 is controlled optimally even if the circulation composition in the cycle changes. The same effect can be obtained even if the control is performed according to the circulation composition.

【0034】実施例2.図6は本発明に係わる冷凍空調
装置の第2の実施例を示すもので、蒸発器4の入口部に
は、その冷媒温度T1 を検出する第1温度検出器11と
第1冷媒圧力P1 を検出する第1圧力検出器12がそれ
ぞれ設けられており、これら検出器11、12検出信号
は組成演算器20に入力される。また凝縮器2の出口部
には、その冷媒温度T2 を検出する第2温度検出器13
が設けられており、また圧縮機1の吐出配管にはその冷
媒圧力を検出する第2圧力検出器14が設けられてお
り、これら検出器13、14の検出信号は、制御装置2
1に入力される。
Embodiment 2 FIG. FIG. 6 shows a second embodiment of the refrigeration / air-conditioning apparatus according to the present invention. A first temperature detector 11 for detecting the refrigerant temperature T1 and a first refrigerant pressure P1 are provided at the inlet of the evaporator 4. First pressure detectors 12 for detection are provided, and detection signals of these detectors 11 and 12 are input to a composition calculator 20. A second temperature detector 13 for detecting the refrigerant temperature T2 is provided at the outlet of the condenser 2.
Is provided in a discharge pipe of the compressor 1, and a second pressure detector 14 for detecting a refrigerant pressure of the compressor 1 is provided.
1 is input.

【0035】組成演算器20は、検出器11、12、が
検出する温度T1 、及び圧力P1 に基づいて非共沸混合
冷媒の循環組成αを演算する機能を有しており、この循
環組成αの演算値は制御装置21に入力される。また制
御装置21は、循環組成αと検出器14が検出する圧力
P2 から凝縮圧力における飽和液温度TL を演算する機
能と、この飽和液温度TL と検出器13が検出する温度
T2 から凝縮器2の出口部の過冷却度を演算する機能
と、この過冷却度が所定の値となるように電気式膨張弁
3の開度を制御する機能を有している。
The composition calculator 20 has a function of calculating the circulating composition α of the non-azeotropic mixed refrigerant based on the temperature T1 and the pressure P1 detected by the detectors 11 and 12. Is input to the control device 21. The control device 21 has a function of calculating a saturated liquid temperature TL at the condensing pressure from the circulation composition α and the pressure P2 detected by the detector 14, and a function of the condenser 2 based on the saturated liquid temperature TL and the temperature T2 detected by the detector 13. And a function of controlling the degree of opening of the electric expansion valve 3 so that the degree of supercooling becomes a predetermined value.

【0036】次に、本実施例の組成演算器20の動作を
説明する。組成演算器20では、まず蒸発器4の入口部
の温度T1 と圧力P1 を取り込む。蒸発器4へ流入する
冷媒は、通常乾き度が0.1から0.3程度の気液二状
態となっており、この乾き度を例えば0.2と仮定する
ことにより、温度T1 と圧力P1 の情報のみで、循環組
成αを推定することができる。すなわち、図4中に実線
で示した特性を用いることにより、温度T1 と圧力P1
から循環組成αを計算することができる。
Next, the operation of the composition calculator 20 of this embodiment will be described. The composition calculator 20 first takes in the temperature T1 and the pressure P1 at the inlet of the evaporator 4. The refrigerant flowing into the evaporator 4 is usually in a gas-liquid two state with a dryness of about 0.1 to 0.3. Assuming that the dryness is, for example, 0.2, the temperature T1 and the pressure P1 Circulating composition α can be estimated only by the information of That is, by using the characteristics shown by the solid line in FIG.
Can be used to calculate the circulation composition α.

【0037】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例では蒸発
器4の入口部の温度と圧力のみにより、冷凍サイクル内
の循環組成を検出することができ、循環組成が変化して
も凝縮器2の出口部の過冷却度は適正値に保たれ、常に
最適な運転が可能となる。
The operation of the control device 21 is the same as that of the first embodiment, and the description is omitted. However, in this embodiment, the circulation composition in the refrigeration cycle is determined only by the temperature and pressure at the inlet of the evaporator 4. Can be detected, and even if the circulating composition changes, the degree of supercooling at the outlet of the condenser 2 is maintained at an appropriate value, and an optimal operation can always be performed.

【0038】なお、乾き度Xの設定値は上記実施例では
0.1から0.3程度としたが、上記値に限定しない。
Although the set value of the dryness X is set to about 0.1 to 0.3 in the above embodiment, it is not limited to the above value.

【0039】このように構成することにより、組成演算
器20での演算が簡単になり、簡単な装置構成で上記と
同様の装置が実現でき、安価となる。
With this configuration, the calculation by the composition calculator 20 is simplified, and the same device as described above can be realized with a simple device configuration, and the cost is reduced.

【0040】実施例3.図7は本発明に係わる冷凍空調
装置の第3の実施例を示すものであり、アキュムレータ
5内には、その冷媒温度T1 を検出する第1温度検出器
11と冷媒圧力P1 を検出する圧力検出器12がそれぞ
れ設けられており、これら検出器11、12の検出信号
は組成演算器20に入力される。組成演算器20は、検
出器11、12、が検出するアキュムレータ5内の温度
T1 、及び圧力P1 に基づいて非共沸混合冷媒の循環組
成αを演算する機能を有しており、以下、この組成演算
器20の動作について説明する。
Embodiment 3 FIG. FIG. 7 shows a third embodiment of a refrigeration / air-conditioning apparatus according to the present invention. In the accumulator 5, a first temperature detector 11 for detecting the refrigerant temperature T1 and a pressure detection for detecting the refrigerant pressure P1 are provided. The detectors 12 are provided, respectively, and the detection signals of these detectors 11 and 12 are input to the composition calculator 20. The composition calculator 20 has a function of calculating the circulation composition α of the non-azeotropic mixed refrigerant based on the temperature T1 and the pressure P1 in the accumulator 5 detected by the detectors 11 and 12. The operation of the composition calculator 20 will be described.

【0041】演算制御器20では、まず検出器11、1
2で検出されたアキュムレータ5内の冷媒温度T1 と圧
力P1 を取り込む。アキュムレータ5へ流入する冷媒
は、通常乾き度が0.8〜1.0程度の気液二相状態と
なっているが、近似的に乾き度を例えば0.9と見なす
ことができる。この状態の冷媒の温度と圧力は、図8に
示すように冷凍サイクル内を流れる非共沸混合冷媒の循
環組成によって定まる。したがって図8中実線で示した
特性を用いることによりアキュムレータ5内の温度T1
、及び圧力P1 のみで、循環組成αを演算することが
できる。
In the arithmetic and control unit 20, first, the detectors 11, 1
The refrigerant temperature T1 and pressure P1 in the accumulator 5 detected in step 2 are taken. The refrigerant flowing into the accumulator 5 is usually in a gas-liquid two-phase state with a dryness of about 0.8 to 1.0, but the dryness can be approximately regarded as, for example, 0.9. The temperature and pressure of the refrigerant in this state are determined by the circulation composition of the non-azeotropic mixed refrigerant flowing in the refrigeration cycle as shown in FIG. Therefore, by using the characteristic shown by the solid line in FIG.
, And the pressure P1 alone, the circulation composition α can be calculated.

【0042】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例ではアキ
ュムレータ5内の温度と圧力のみにより、冷凍サイクル
内の循環組成を検出することができ、実施例2と同様、
組成演算器20での演算が簡単になり、簡単な装置構成
で、実施例1と同様の装置が、安価に得られる。
The operation of the control device 21 is the same as that of the first embodiment, and the description is omitted. In this embodiment, the circulation composition in the refrigeration cycle is detected only by the temperature and pressure in the accumulator 5. And as in Example 2,
The calculation in the composition calculator 20 is simplified, and a device similar to that of the first embodiment can be obtained at a low cost with a simple device configuration.

【0043】なお、本実施例ではアキュムレータ5内の
温度と圧力を測定するものを示したが、アキュムレータ
5と圧縮機1の吸入配管との間に第1温度検出器11と
圧力検出器12を設けてもよい。また、乾き度Xの設定
値は上記実施例では0.8から1.0程度としたが、上
記値に限定しない。
In this embodiment, the temperature and pressure in the accumulator 5 are measured. However, the first temperature detector 11 and the pressure detector 12 are connected between the accumulator 5 and the suction pipe of the compressor 1. It may be provided. The set value of the dryness X is set to about 0.8 to 1.0 in the above embodiment, but is not limited to the above value.

【0044】実施例4.図9は本発明に係わる冷凍空調
装置の第4の実施例を示すもので、アキュムレータ5に
は、その内部の冷媒液面を検出する液面検出器15が設
けられており、さらにこの液面検出器15の信号は、組
成演算器20に入力される。この液面検出器15として
は、例えば超音波式液面計や静電容量式液面計など公知
の液面計が用いられる。組成演算器20は、検出器15
が検出するアキュムレータ5内の冷媒液面高さhに基づ
いて、非共沸混合冷媒の循環組成αを演算する機能を有
しており、以下、この組成演算器20の動作について説
明する。
Embodiment 4 FIG. FIG. 9 shows a fourth embodiment of a refrigeration / air-conditioning apparatus according to the present invention. The accumulator 5 is provided with a liquid level detector 15 for detecting a refrigerant liquid level inside the accumulator 5, and furthermore, this liquid level The signal of the detector 15 is input to the composition calculator 20. As the liquid level detector 15, a known liquid level meter such as an ultrasonic type liquid level meter or a capacitance type liquid level meter is used. The composition calculator 20 includes the detector 15
Has the function of calculating the circulating composition α of the non-azeotropic refrigerant mixture based on the detected refrigerant liquid level h in the accumulator 5. Hereinafter, the operation of the composition calculator 20 will be described.

【0045】組成演算器20の動作が開始されると、ま
ず液面検出器15で検出されたアキュムレータ5内の冷
媒液面高さhを取り込む。一般に、非共沸混合冷媒を用
いた冷凍サイクルのアキュムレータ内の冷媒は、高沸点
成分に富んだ液相と、低沸点成分に富んだ気相に分離さ
れ、高沸点成分に富んだ液相はアキュムレータ内に貯溜
される。このためアキュムレータ内に液冷媒が存在する
と、冷凍サイクル内を循環する冷媒組成は低沸点成分が
多くなる(循環組成が増加する)傾向を示す。図10は
このアキュムレータ内の冷媒液面高さhと循環組成αの
関係を示したもので、アキュムレータ内の冷媒液面高さ
が増加する、すなわちアキュムレータ内の液冷媒量が増
加する程、循環組成は増加する。したがって、この図1
0に示した関係を予め実験などによって調べておけば、
液面検出器15で検出されたアキュムレータ5内の冷媒
液面高さhから循環組成αを演算することができる。
When the operation of the composition calculator 20 is started, first, the refrigerant liquid level height h in the accumulator 5 detected by the liquid level detector 15 is taken. Generally, the refrigerant in the accumulator of a refrigeration cycle using a non-azeotropic mixed refrigerant is separated into a liquid phase rich in high-boiling components and a gas phase rich in low-boiling components. It is stored in the accumulator. For this reason, when the liquid refrigerant is present in the accumulator, the refrigerant composition circulating in the refrigeration cycle tends to have many low-boiling components (the circulation composition increases). FIG. 10 shows the relationship between the refrigerant liquid level height h in the accumulator and the circulation composition α. As the refrigerant liquid level height in the accumulator increases, that is, as the amount of liquid refrigerant in the accumulator increases, the circulation increases. The composition increases. Therefore, this FIG.
If the relationship shown in FIG.
The circulation composition α can be calculated from the refrigerant liquid level height h in the accumulator 5 detected by the liquid level detector 15.

【0046】なお、制御装置21の動作は、実施例1と
同様であるため、説明は省略するが、本実施例ではアキ
ュムレータ5内の冷媒液面高さのみにより、冷凍サイク
ル内の循環組成を検出することができ、装置構成が簡単
で、かつ循環組成が変化しても凝縮器2の出口部の過冷
却度は適正値に保たれ、常に最適な運転が可能となる。
The operation of the control device 21 is the same as that of the first embodiment, and therefore the description is omitted. In this embodiment, the circulation composition in the refrigeration cycle is determined only by the refrigerant liquid level in the accumulator 5. The supercooling degree at the outlet of the condenser 2 is maintained at an appropriate value even if the circulation composition changes, and the optimum operation can always be performed.

【0047】なお、上記実施例では、液面検知手段15
として超音波式や静電容量式などの液面計を用いた場合
について説明したが、冷凍サイクルの運転条件や負荷条
件に基づいてサイクル内の余剰な冷媒量を演算し、アキ
ュムレータ5内の液面高さを検出しても同様の効果を発
揮する。例えば、冷房運転時は余剰冷媒は発生せず、暖
房運転時にはある量の余剰冷媒が発生することを、予め
実験などによって調べておき、予め計測されたこの運転
条件と余剰冷媒量の関係から、アキュムレータ5内の液
面高さを演算で検出しても良い。またこの際、冷暖房運
転時の室内空気温度や室外空気温度などの情報を付加し
て、アキュムレータ内の液面検出精度を向上させても良
い。
In the above embodiment, the liquid level detecting means 15
As described above, the case where a liquid level meter such as an ultrasonic type or a capacitance type is used has been described. However, the amount of excess refrigerant in the cycle is calculated based on the operating conditions and load conditions of the refrigeration cycle, and the liquid in the accumulator 5 is calculated. The same effect is exhibited even if the surface height is detected. For example, surplus refrigerant is not generated during cooling operation, and that a certain amount of surplus refrigerant is generated during heating operation, it is checked in advance through experiments and the like, and from the relationship between this operating condition and the surplus refrigerant amount measured in advance, The liquid level in the accumulator 5 may be detected by calculation. At this time, information such as the indoor air temperature and the outdoor air temperature during the cooling / heating operation may be added to improve the accuracy of detecting the liquid level in the accumulator.

【0048】実施例5.図11は本発明に係わる冷凍空
調装置の第5の実施例を示すものであり、1台の室外機
に2台の室内機を接続してなる冷凍空調装置を示してい
る。図11において、30は室外機で、圧縮機1、及び
四方弁31、室外熱交換器(第1熱交換器)32、室外
送風機33、アキュムレータ5で構成されており、圧縮
機1の吐出側の配管には第2圧力検出器14が設けられ
ている。40a、40b(以下、総称する時は40)は
各々室内機で、室内熱交換器(第2熱交換器)41a、
または41b(以下、総称する時は41)と、第1膨張
弁である電気式膨張弁3a、または3b(以下、総称す
る時は3)で構成されており、室内熱交換機41の出入
口部には、各々第3温度検出器42a、42b(以下、
総称する時は42)、及び第4温度検出器43a、43
b(以下、総称する時は43)が設けられている。また
室外熱交換器32と室内機40内の電気式膨張弁3を接
続する配管の途中には、この配管とアキュムレータ5を
接続するバイパス配管50が設けられており、このバイ
パス配管50の途中には第2膨張弁である毛細管51が
設けられている。また、バイパス配管50には、毛細管
51の出口部に第1温度検出器11と第1圧力検出器1
2が設けられており、また毛細管51の入口部には第2
温度検出器13が設けられている。なお、室内送風機は
省略している。
Embodiment 5 FIG. FIG. 11 shows a fifth embodiment of the refrigeration / air-conditioning apparatus according to the present invention, and shows a refrigeration / air-conditioning apparatus in which one outdoor unit is connected to two indoor units. In FIG. 11, reference numeral 30 denotes an outdoor unit, which includes a compressor 1, a four-way valve 31, an outdoor heat exchanger (first heat exchanger) 32, an outdoor blower 33, and an accumulator 5, and a discharge side of the compressor 1. A second pressure detector 14 is provided in the pipe. 40a and 40b (hereinafter, collectively referred to as 40) are indoor units, respectively, and an indoor heat exchanger (second heat exchanger) 41a,
Or 41b (hereinafter, generally referred to as 41) and an electric expansion valve 3a or 3b (hereinafter, generally referred to as 3) as a first expansion valve. Are the third temperature detectors 42a and 42b (hereinafter, referred to as
42), and the fourth temperature detectors 43a, 43
b (hereinafter, collectively referred to as 43) is provided. In the middle of the pipe connecting the outdoor heat exchanger 32 and the electric expansion valve 3 in the indoor unit 40, a bypass pipe 50 connecting the pipe and the accumulator 5 is provided. Is provided with a capillary tube 51 as a second expansion valve. In the bypass pipe 50, the first temperature detector 11 and the first pressure detector 1 are provided at the outlet of the capillary tube 51.
2 is provided at the inlet of the capillary tube 51.
A temperature detector 13 is provided. Note that the indoor blower is omitted.

【0049】20は組成演算器であり、バイパス配管5
0に設けられた第1温度検出器11、第1圧力検出器1
2、第2温度検出器13の信号が入力され、サイクル内
を循環する冷媒組成を演算する。21は制御装置であ
り、組成演算器20からの循環組成信号、及び第1圧力
検出器12、第2圧力検出器14、室内機40内の第3
温度検出器42、第4温度検出器43からの信号が入力
される。制御装置21では、これらの入力信号を下に、
循環組成に応じた圧縮機1の回転数と室外送風機33の
回転数、室内機の電気式膨張弁3の開度を演算し、その
指令を圧縮機1、室外送風機33、電気式膨張弁3にそ
れぞれ送信する。圧縮機1、及び室外送風機33、電気
式膨張弁3では、制御装置21より送られた指令値を受
けて、その回転数や弁開度が駆動される。また、22は
比較演算手段であり、組成演算器20より循環組成信号
が入力され、循環組成が予め定めた所定範囲内に入って
いるか否かを比較演算する。この比較演算手段22に
は、警報装置23が接続されており、循環組成が所定範
囲から外れた場合には、警告信号を警報装置23に送信
する。
Reference numeral 20 denotes a composition calculator, which is a bypass pipe 5
0, the first temperature detector 11 and the first pressure detector 1
2. The signal of the second temperature detector 13 is input, and the composition of the refrigerant circulating in the cycle is calculated. Reference numeral 21 denotes a control device, which controls the circulating composition signal from the composition calculator 20 and the third pressure in the first pressure detector 12, the second pressure detector 14, and the indoor unit 40.
Signals from the temperature detector 42 and the fourth temperature detector 43 are input. In the control device 21, these input signals are
The number of rotations of the compressor 1 and the number of rotations of the outdoor blower 33 according to the circulation composition, and the degree of opening of the electric expansion valve 3 of the indoor unit are calculated, and the command is transmitted to the compressor 1, the outdoor blower 33, and the electric expansion valve 3. Respectively. In the compressor 1, the outdoor blower 33, and the electric expansion valve 3, the rotation speed and the valve opening are driven in response to the command value sent from the control device 21. Reference numeral 22 denotes a comparison operation means, which receives a circulating composition signal from the composition calculator 20 and performs a comparison operation to determine whether the circulating composition is within a predetermined range. An alarm device 23 is connected to the comparison operation means 22, and sends a warning signal to the alarm device 23 when the circulation composition is out of a predetermined range.

【0050】次に、上記のように構成された本実施例の
動作について、図11、及び図12に示す制御ブロック
図を用いて説明する。組成演算器20は、バイパス配管
50に設けた第1温度検出器11、第1圧力検出器1
2、第2温度検出器13からの信号を取り込み、図3、
及び図4に示した関係を用いて、毛細管51の入口部の
冷媒乾き度Xを計算し、サイクル内の循環組成αを演算
する。制御装置21では、この循環組成αに応じた最適
な圧縮機1の回転数指令と室外送風機33の回転数指
令、電気式膨張弁3の開度指令を演算する。
Next, the operation of the present embodiment configured as described above will be described with reference to the control block diagrams shown in FIG. 11 and FIG. The composition calculator 20 includes a first temperature detector 11 and a first pressure detector 1 provided in the bypass pipe 50.
2. The signal from the second temperature detector 13 is fetched, and FIG.
Using the relationship shown in FIG. 4 and the relationship shown in FIG. 4, the dryness X of the refrigerant at the inlet of the capillary tube 51 is calculated, and the circulation composition α in the cycle is calculated. The control device 21 calculates an optimal rotation speed command of the compressor 1, a rotation speed command of the outdoor blower 33, and an opening degree command of the electric expansion valve 3 according to the circulation composition α.

【0051】まず暖房運転について説明する。暖房運転
時には、冷媒は図11中の実線矢印の方向に循環し、室
内熱交換器41が凝縮器となって暖房が行われる。圧縮
機1の回転数は、凝縮圧力が目標値に一致するように制
御され、この凝縮圧力目標値は、例えば凝縮温度Tcが
50℃となる圧力として求まる。非共沸混合冷媒の凝縮
温度を、飽和蒸気温度と飽和液温度の平均値と定義する
と、凝縮温度Tcが50℃となる凝縮圧力目標値Pc
は、図13に示すように、循環組成αにより一義的に定
まる。従って制御装置21では、予め図13の関係式を
記憶させておき、組成演算器20から送信される循環組
成信号を用いて、凝縮圧力目標値が演算される。さらに
制御装置21では、第2圧力検出器14が検出する圧力
と凝縮圧力目標値との差に応じて、PID制御等のフィ
ードバック制御により圧縮機1の回転数の修正値が演算
され、圧縮機回転数指令が圧縮機1に出力される。
First, the heating operation will be described. During the heating operation, the refrigerant circulates in the direction of the solid line arrow in FIG. 11, and the indoor heat exchanger 41 functions as a condenser to perform heating. The rotation speed of the compressor 1 is controlled such that the condensing pressure matches the target value, and the target condensing pressure value is obtained as a pressure at which the condensing temperature Tc becomes 50 ° C., for example. If the condensation temperature of the non-azeotropic refrigerant mixture is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the condensation pressure target value Pc at which the condensation temperature Tc becomes 50 ° C.
Is uniquely determined by the circulation composition α as shown in FIG. Accordingly, the control device 21 stores the relational expression of FIG. 13 in advance, and calculates the condensing pressure target value using the circulating composition signal transmitted from the composition calculator 20. Further, the control device 21 calculates a corrected value of the rotation speed of the compressor 1 by feedback control such as PID control according to the difference between the pressure detected by the second pressure detector 14 and the condensing pressure target value. A rotation speed command is output to the compressor 1.

【0052】室外送風機33の回転数は、蒸発圧力が目
標値に一致するように制御され、この蒸発圧力目標値
は、例えば蒸発温度Teが0℃となる圧力として求ま
る。非共沸混合冷媒の蒸発温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、蒸発温度Teが0℃とな
る蒸発圧力目標値Peは、図14に示すように、循環組
成αにより一義的に定まる。従って制御装置21では、
予め図14の関係式を記憶させておき、組成演算器20
から送信される循環組成信号を用いて、蒸発圧力目標値
が演算される。さらに制御装置21では、第1圧力検出
器12が検出する圧力と蒸発圧力目標値との差に応じ
て、PID制御等のフィードバック制御により室外送風
機33の回転数の修正値が演算され、室外送風機回転数
指令が室外送風機33に出力される。
The number of revolutions of the outdoor blower 33 is controlled so that the evaporation pressure matches the target value, and the target evaporation pressure is determined, for example, as the pressure at which the evaporation temperature Te becomes 0 ° C. If the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average of the saturated vapor temperature and the saturated liquid temperature, the evaporation pressure target value Pe at which the evaporation temperature Te becomes 0 ° C. is determined by the circulation composition α as shown in FIG. Uniquely determined. Therefore, in the control device 21,
The relational expression of FIG.
The evaporating pressure target value is calculated using the circulating composition signal transmitted from. Further, the control device 21 calculates a correction value of the rotation speed of the outdoor blower 33 by feedback control such as PID control according to a difference between the pressure detected by the first pressure detector 12 and the evaporation pressure target value. The rotation speed command is output to the outdoor blower 33.

【0053】電気式膨張弁3の開度は、室内熱交換器4
1の出口部の過冷却度が所定の値、例えば5℃となるよ
うに制御される。この過冷却度は、室内熱交換器41内
の圧力における飽和液温度と室内熱交換器41の出口部
の温度との差として求めることができ、飽和液温度は図
15に示すように圧力と循環組成の関数として求めるこ
とができる。従って制御装置21では、予め図15の関
係式を記憶させておき、組成演算器20から送信される
循環組成信号と第2圧力検出器14から送信される圧力
信号、及び第3温度検出器42から送信される温度信号
を用いて、飽和液温度、及び室内熱交換器41の出口部
過冷却度が演算される。さらに制御装置21では、この
出口部の過冷却度と所定値(5℃)との差に応じて、P
ID制御等のフィードバック制御により電気式膨張弁3
の開度の修正値が演算され、電気式膨張弁開度指令が電
気式膨張弁3に出力される。
The degree of opening of the electric expansion valve 3 depends on the indoor heat exchanger 4.
The supercooling degree at the outlet of the first control unit is controlled to a predetermined value, for example, 5 ° C. The degree of supercooling can be obtained as the difference between the saturated liquid temperature at the pressure inside the indoor heat exchanger 41 and the temperature at the outlet of the indoor heat exchanger 41. It can be determined as a function of the circulation composition. Therefore, the control device 21 stores the relational expression of FIG. 15 in advance, and stores the circulating composition signal transmitted from the composition calculator 20, the pressure signal transmitted from the second pressure detector 14, and the third temperature detector 42. Is used to calculate the saturated liquid temperature and the degree of supercooling at the outlet of the indoor heat exchanger 41. Further, in the control device 21, according to the difference between the degree of supercooling at the outlet and a predetermined value (5 ° C.), P
Electric expansion valve 3 by feedback control such as ID control
Is corrected, and an electric expansion valve opening command is output to the electric expansion valve 3.

【0054】一方、冷房運転時には、冷媒は図11中の
破線矢印の方向に循環し、室内熱交換器41が蒸発器と
なって冷房が行われる。圧縮機1の回転数は、蒸発圧力
が目標値に一致するように制御され、この蒸発圧力目標
値は、例えば蒸発温度Teが0℃となる圧力として求ま
る。非共沸混合冷媒の蒸発温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、蒸発温度Teが0℃とな
る蒸発圧力目標値Peは、図14に示すように、循環組
成αにより一義的に定まる。従って制御装置21では、
予め図14の関係式を記憶させておき、組成演算器20
から送信される循環組成信号を用いて、蒸発圧力目標値
が演算される。さらに制御装置21では、第1圧力検出
器12が検出する圧力と蒸発圧力目標値との差に応じ
て、PID制御等のフィードバック制御により圧縮機1
の回転数の修正値が演算され、圧縮機回転数指令が圧縮
機1に出力される。
On the other hand, during the cooling operation, the refrigerant circulates in the direction of the dashed arrow in FIG. 11, and the indoor heat exchanger 41 functions as an evaporator to perform cooling. The number of revolutions of the compressor 1 is controlled such that the evaporation pressure matches the target value, and the target evaporation pressure is determined, for example, as a pressure at which the evaporation temperature Te becomes 0 ° C. If the evaporation temperature of the non-azeotropic mixed refrigerant is defined as the average of the saturated vapor temperature and the saturated liquid temperature, the evaporation pressure target value Pe at which the evaporation temperature Te becomes 0 ° C. is determined by the circulation composition α as shown in FIG. Uniquely determined. Therefore, in the control device 21,
The relational expression of FIG.
The evaporating pressure target value is calculated using the circulating composition signal transmitted from. Further, the control device 21 performs feedback control such as PID control on the compressor 1 in accordance with a difference between the pressure detected by the first pressure detector 12 and the target evaporating pressure.
Is corrected, and a compressor speed command is output to the compressor 1.

【0055】室外送風機33の回転数は、凝縮圧力が目
標値に一致するように制御され、この凝縮圧力目標値
は、例えば凝縮温度Tcが50℃となる圧力として求ま
る。非共沸混合冷媒の凝縮温度を、飽和蒸気温度と飽和
液温度の平均値と定義すると、凝縮温度Tcが50℃と
なる凝縮圧力目標値Pcは、図13に示すように、循環
組成αにより一義的に定まる。従って制御装置21で
は、予め図13の関係式を記憶させておき、組成演算器
20から送信される循環組成信号を用いて、凝縮圧力目
標値が演算される。さらに制御装置21では、第2圧力
検出器14が検出する圧力と凝縮圧力目標値との差に応
じて、PID制御等のフィードバック制御により室外送
風機33の回転数の修正値が演算され、室外送風機回転
数指令が室外送風機33に出力される。
The number of revolutions of the outdoor blower 33 is controlled so that the condensing pressure matches the target value, and the target condensing pressure value is obtained, for example, as a pressure at which the condensing temperature Tc becomes 50 ° C. If the condensing temperature of the non-azeotropic mixed refrigerant is defined as the average value of the saturated vapor temperature and the saturated liquid temperature, the condensing pressure target value Pc at which the condensing temperature Tc becomes 50 ° C. is, as shown in FIG. Uniquely determined. Accordingly, the control device 21 stores the relational expression of FIG. 13 in advance, and calculates the condensing pressure target value using the circulating composition signal transmitted from the composition calculator 20. Further, the controller 21 calculates a corrected value of the rotation speed of the outdoor blower 33 by feedback control such as PID control according to the difference between the pressure detected by the second pressure detector 14 and the condensing pressure target value. The rotation speed command is output to the outdoor blower 33.

【0056】電気式膨張弁3の開度は、室内熱交換器4
1の出口部の過熱度が所定の値、例えば5℃となるよう
に制御される。この過熱度は、室内熱交換器41内の圧
力における飽和蒸気温度と室内熱交換器41の出口部の
温度との差として求めることができ、飽和蒸気温度は図
15に示した飽和液温度と同様に圧力と循環組成の関数
として求めることができる。従って制御装置21では、
予め飽和蒸気温度と圧力と循環組成の関係式を記憶させ
ておき、組成演算器20から送信される循環組成信号と
第1圧力検出器12から送信される圧力信号、及び第4
温度検出器43から送信される温度信号を用いて、飽和
蒸気温度、及び室内熱交換器41の出口部過熱度が演算
される。さらに制御装置21では、この出口部過熱度と
所定値(5℃)との差に応じて、PID制御等のフィー
ドバック制御により電気式膨張弁3の開度の修正値が演
算され、電気式膨張弁開度指令が電気式膨張弁3に出力
される。
The degree of opening of the electric expansion valve 3 depends on the indoor heat exchanger 4.
The superheat degree at the outlet portion of the first control is controlled to a predetermined value, for example, 5 ° C. The degree of superheat can be obtained as the difference between the saturated steam temperature at the pressure in the indoor heat exchanger 41 and the temperature at the outlet of the indoor heat exchanger 41. The saturated steam temperature is the same as the saturated liquid temperature shown in FIG. Similarly, it can be determined as a function of pressure and circulation composition. Therefore, in the control device 21,
The relational expression between the saturated steam temperature, the pressure, and the circulation composition is stored in advance, and the circulation composition signal transmitted from the composition calculator 20, the pressure signal transmitted from the first pressure detector 12, and the fourth
The saturated steam temperature and the degree of superheat at the outlet of the indoor heat exchanger 41 are calculated using the temperature signal transmitted from the temperature detector 43. Further, the control device 21 calculates a corrected value of the opening degree of the electric expansion valve 3 by feedback control such as PID control according to the difference between the degree of superheat of the outlet portion and a predetermined value (5 ° C.). A valve opening command is output to the electric expansion valve 3.

【0057】次に、比較演算手段22の動作について説
明する。比較演算手段22は、組成演算器20から循環
組成信号を取り込み、この循環組成が、予め記憶された
適正循環組成範囲内であるか否かを判定し、循環組成が
適正循環組成範囲内であれば、そのまま運転は続行され
る。一方、循環組成が使用中に冷媒漏れによって変化し
たり、冷媒充填時の誤動作で循環組成が変化した場合に
は、比較演算手段22では、この循環組成が、予め記憶
された適正循環組成範囲外であると判定すると、警報信
号を警報装置23へ送信する。この警報信号を受けた警
報装置23では、警告を所定時間発信して、冷凍空調装
置の非共沸混合冷媒の循環組成が、適正範囲から外れて
いることを警告する。
Next, the operation of the comparison operation means 22 will be described. The comparison calculating means 22 takes in the circulating composition signal from the composition calculator 20 and determines whether or not this circulating composition is within a previously stored proper circulating composition range. If so, the operation continues. On the other hand, if the circulating composition changes due to refrigerant leakage during use, or the circulating composition changes due to an erroneous operation at the time of charging the refrigerant, the comparing and calculating means 22 sets the circulating composition to a value outside the proper circulating composition range stored in advance. When it is determined that the above is true, an alarm signal is transmitted to the alarm device 23. The alarm device 23 that has received the alarm signal issues a warning for a predetermined time to warn that the circulating composition of the non-azeotropic refrigerant mixture of the refrigerating air conditioner is out of an appropriate range.

【0058】以上のように、本実施例に示すものでは、
冷房、暖房にかかわらず、常に第2膨張弁の下流側が低
圧の二相状態になるので、冷房時においても、暖房時に
おいても同一の検出器で温度、及び圧力を計測でき、冷
媒組成を演算することができる。従って、冷暖房別に検
出器を設ける必要がなく装置構成が簡単となり、かつ循
環組成が変化しても、常に最適な運転が可能となる。
As described above, in this embodiment,
Regardless of cooling or heating, since the downstream side of the second expansion valve is always in a low-pressure two-phase state, the same detector can measure the temperature and pressure during cooling and during heating, and calculate the refrigerant composition. can do. Therefore, it is not necessary to provide a detector for each of the cooling and heating, and the apparatus configuration is simplified, and even if the circulation composition changes, an optimal operation can always be performed.

【0059】なお、本実施例では、暖房運転時の室外送
風機33の回転数を、第1圧力検出器12の値が、循環
組成から演算される蒸発圧力目標値と一致するように制
御するものについて説明したが、室外熱交換器33の入
口部に温度検出器を設け、この温度が所定の値(例えば
0℃)となるように制御しても、同様の効果を得ること
ができる。
In the present embodiment, the number of revolutions of the outdoor blower 33 during the heating operation is controlled so that the value of the first pressure detector 12 matches the evaporation pressure target value calculated from the circulation composition. However, the same effect can be obtained by providing a temperature detector at the inlet of the outdoor heat exchanger 33 and controlling the temperature to be a predetermined value (for example, 0 ° C.).

【0060】また本実施例では、冷房運転時の電気式膨
張弁3の開度を、室内熱交換器41の出口部の過熱度が
所定の値(例えば5℃)となるように制御するものにつ
いて説明したが、室内熱交換器41の出入口温度差が所
定の値(例えば10℃)となるように、すなわち第4温
度検出器と第3温度検出器の差温が所定の値となるよう
に制御しても、同様の効果を得ることができる。
In this embodiment, the degree of opening of the electric expansion valve 3 during the cooling operation is controlled so that the degree of superheat at the outlet of the indoor heat exchanger 41 becomes a predetermined value (for example, 5 ° C.). However, the temperature difference between the inlet and the outlet of the indoor heat exchanger 41 becomes a predetermined value (for example, 10 ° C.), that is, the temperature difference between the fourth temperature detector and the third temperature detector becomes the predetermined value. , The same effect can be obtained.

【0061】さらに本実施例では、1台の室外機30に
2台の室内機40が接続された、冷凍空調装置で説明し
たが、これに限るものではなく、1台の室内機のみが接
続されたものや、3台以上の室内機が接続されたもので
あっても、同様の効果を得ることができる。
Further, in the present embodiment, the description has been given of the refrigerating and air-conditioning system in which two indoor units 40 are connected to one outdoor unit 30. However, the present invention is not limited to this. Only one indoor unit is connected. The same effect can be obtained even when the connection is made or when three or more indoor units are connected.

【0062】実施例6.図16、及び図17は本発明に
係わる冷凍空調装置の第6の実施例を示すもので、図1
1と図16で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図16中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
この実施例では、組成演算器20に入力される信号は、
第1温度検出器11と第1圧力検出器12のみであり、
バイパス配管50の毛細管51に流入する冷媒乾き度X
を、例えば暖房運転時には0.1、冷房運転時には0.
2と仮定して、第1温度検出器11と第1圧力検出器1
2からの信号のみで、循環組成を演算する。以下、制御
装置21、及び比較演算手段22の動作は実施例5と同
様である。
Embodiment 6 FIG. 16 and 17 show a sixth embodiment of the refrigeration / air-conditioning apparatus according to the present invention.
1 and FIG. 16, the elements having the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 16 during the heating operation, and circulates in the direction of the dashed arrow during the cooling operation.
In this embodiment, the signal input to the composition calculator 20 is
Only the first temperature detector 11 and the first pressure detector 12,
Dryness X of refrigerant flowing into capillary tube 51 of bypass pipe 50
For example, 0.1 for heating operation and 0. 0 for cooling operation.
2, the first temperature detector 11 and the first pressure detector 1
The circulating composition is calculated using only the signal from the second signal. Hereinafter, the operations of the control device 21 and the comparison operation means 22 are the same as those of the fifth embodiment.

【0063】従って、本実施例による冷凍空調装置は、
実施例2と同様、組成演算器20での演算が簡単にな
り、簡単な装置構成で実施例5と同様の装置が実現で
き、安価となる。
Therefore, the refrigeration and air-conditioning apparatus according to the present embodiment
As in the case of the second embodiment, the calculation by the composition calculator 20 is simplified, the same device as the fifth embodiment can be realized with a simple device configuration, and the cost is reduced.

【0064】実施例7.図18、及び図19は本発明に
係わる冷凍空調装置の第7の実施例を示すもので、図1
1と図18で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図18中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
バイパス配管50には、第2膨張弁として、第2電気式
膨張弁51が設けられており、この弁開度は、制御装置
21により制御される。またバイパス配管50の途中に
は、室外熱交換器32と第1電気式膨張弁3とを接続す
る配管(主配管)と熱交換を行う熱交換部52が設けら
れており、バイパス配管50を流れる冷媒のもつエンタ
ルピーを主配管を流れる冷媒へ伝達するので上記エンタ
ルピーが回収され、エネルギーロスを防いでいる。さら
にこの熱交換部52の出口部には、第5温度検出器16
が設けられ、この検出信号は制御装置21に送られる。
Embodiment 7 FIG. 18 and 19 show a refrigeration / air-conditioning apparatus according to a seventh embodiment of the present invention.
1 and FIG. 18, the elements having the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 18 during the heating operation, and circulates in the direction of the dashed arrow during the cooling operation.
The bypass pipe 50 is provided with a second electric expansion valve 51 as a second expansion valve, and the valve opening is controlled by the control device 21. In the middle of the bypass pipe 50, a pipe (main pipe) connecting the outdoor heat exchanger 32 and the first electric expansion valve 3 and a heat exchange section 52 for performing heat exchange are provided. Since the enthalpy of the flowing refrigerant is transmitted to the refrigerant flowing through the main pipe, the enthalpy is recovered, and energy loss is prevented. Further, the fifth temperature detector 16 is provided at the outlet of the heat exchange section 52.
The detection signal is sent to the control device 21.

【0065】本実施例における制御装置21では、バイ
パス配管50に設けた第2電気式膨張弁51の制御法の
みが、実施例6と異なるため、この第2電気式膨張弁5
1の制御法について説明する。第2電気式膨張弁51の
開度は、バイパス配管50に設けられた熱交換部52の
出入口部の温度差が所定の値(例えば10℃)となるよ
うに制御される。すなわち、バイパス配管51に設けら
れた第1温度検出器11と第5温度検出器16の信号が
制御装置21に送信され、制御装置21ではこの第1温
度検出器11と第5温度検出器16が検出した温度の差
を演算し、この温度差と所定値(例えば10℃)との差
に応じて、PID制御等のフィードバック制御により第
2電気式膨張弁51の開度の修正値が演算され、電気式
膨張弁開度指令が第2電気式膨張弁51に出力される。
このようにすることにより、バイパス配管50からアキ
ュムレータ5にいく冷媒が常に蒸気の状態となり、エネ
ルギーが有効に使われ、かつ圧縮機1への液戻りも防げ
る効果がある。
In the control device 21 of this embodiment, only the control method of the second electric expansion valve 51 provided in the bypass pipe 50 is different from that of the sixth embodiment.
The control method 1 will be described. The degree of opening of the second electric expansion valve 51 is controlled such that the temperature difference between the entrance and exit of the heat exchange part 52 provided in the bypass pipe 50 becomes a predetermined value (for example, 10 ° C.). That is, the signals of the first temperature detector 11 and the fifth temperature detector 16 provided in the bypass pipe 51 are transmitted to the control device 21, and the control device 21 transmits the signals of the first temperature detector 11 and the fifth temperature detector 16. Calculates the difference between the detected temperatures, and calculates the corrected value of the opening degree of the second electric expansion valve 51 by feedback control such as PID control according to the difference between this temperature difference and a predetermined value (for example, 10 ° C.). Then, the electric expansion valve opening command is output to the second electric expansion valve 51.
By doing so, the refrigerant flowing from the bypass pipe 50 to the accumulator 5 is always in a vapor state, so that there is an effect that energy is used effectively and the liquid returns to the compressor 1 can be prevented.

【0066】なお、上記実施例では、第2膨張弁51と
して電気式膨張弁を用いた場合について説明したが、毛
細管などでもよい。
In the above embodiment, the case where the electric expansion valve is used as the second expansion valve 51 has been described, but a capillary tube or the like may be used.

【0067】実施例8.図20、及び図21は本発明に
係わる冷凍空調装置の第8の実施例を示すもので、図1
8と図20で、同じ番号の要素は同一要素を示してい
る。冷媒は、暖房運転時には図20中の実線矢印の方向
に循環し、冷房運転時には破線矢印の方向に循環する。
この実施例では、組成演算器20に入力される信号は、
実施例2、及び実施例6と同様、第1温度検出器11と
第1圧力検出器12のみであり、バイパス配管50の第
2電気式膨張弁51に流入する冷媒乾き度Xを、例えば
暖房運転時には0.1、冷房運転時には0.2と仮定し
て、第1温度検出器11と第1圧力検出器12からの信
号のみで、循環組成を演算する。以下、制御装置21、
及び比較演算手段22の動作は実施例7と同様である。
Embodiment 8 FIG. FIGS. 20 and 21 show an eighth embodiment of a refrigeration / air-conditioning apparatus according to the present invention.
8 and FIG. 20, the elements having the same numbers indicate the same elements. The refrigerant circulates in the direction of the solid arrow in FIG. 20 during the heating operation, and circulates in the direction of the dashed arrow during the cooling operation.
In this embodiment, the signal input to the composition calculator 20 is
As in the second and sixth embodiments, only the first temperature detector 11 and the first pressure detector 12 are used. The dryness X of the refrigerant flowing into the second electric expansion valve 51 of the bypass pipe 50 is determined by, for example, heating. Assuming 0.1 during operation and 0.2 during cooling operation, the circulation composition is calculated only from the signals from the first temperature detector 11 and the first pressure detector 12. Hereinafter, the control device 21,
The operation of the comparison operation means 22 is the same as that of the seventh embodiment.

【0068】なお、上記実施例では、第2膨張弁51と
して電気式膨張弁を用いた場合について説明したが、毛
細管などでもよい。
In the above embodiment, the case where the electric expansion valve is used as the second expansion valve 51 has been described, but a capillary tube or the like may be used.

【0069】また、上記実施例5ないし実施例8では、
アキュムレータ5を有する冷凍空調装置を示したが、無
いものでもよい。この場合、バイパス配管50は圧縮機
の吸入配管と主配管とを第2膨張弁を介して接続する構
成となる。さらに、上記実施例5ないし実施例8では、
比較演算手段22が接続されており、循環組成が所定範
囲から外れた場合には、警告信号を警報装置23に送信
するように構成されているが、これら比較演算手段2
2、及び警報装置23を設けなくてもよい。また、実施
例1ないし実施例4に対し、上記比較演算手段22、及
び警報装置23を設けてもよい。
In Examples 5 to 8,
Although the refrigeration and air-conditioning apparatus having the accumulator 5 is shown, the refrigeration and air-conditioning apparatus may be omitted. In this case, the bypass pipe 50 connects the suction pipe and the main pipe of the compressor through the second expansion valve. Further, in Embodiments 5 to 8,
The comparison operation means 22 is connected, and is configured to transmit a warning signal to the alarm device 23 when the circulating composition is out of the predetermined range.
2, and the alarm device 23 may not be provided. Further, the above-described comparison operation means 22 and alarm device 23 may be provided in the first to fourth embodiments.

【0070】[0070]

【発明の効果】以上のように本発明の請求項1によれ
ば、非共沸混合冷媒を用い、圧縮機、凝縮器、膨張弁、
及び蒸発器を連結して冷凍サイクルを構成する冷凍空調
装置において、蒸発器入口部の冷媒の温度と圧力、及び
凝縮器出口部の冷媒温度を検出してサイクル内を循環す
る冷媒組成を演算する組成演算器を設けると共に、この
組成演算器により検出された循環組成に応じて冷凍サイ
クルの運転制御を行う制御装置を設けたので、サイクル
内の循環組成が変化しても、常に最適な運転が可能とな
る。
As described above, according to the first aspect of the present invention, a compressor, a condenser, an expansion valve,
In the refrigeration and air-conditioning system that forms the refrigeration cycle by connecting the evaporator and the evaporator, the temperature and pressure of the refrigerant at the inlet of the evaporator and the temperature of the refrigerant at the outlet of the condenser are detected to calculate the composition of the refrigerant circulating in the cycle. In addition to providing a composition calculator, a control device for controlling the operation of the refrigeration cycle according to the circulating composition detected by the composition calculator is provided, so that even if the circulating composition in the cycle changes, optimal operation is always performed. It becomes possible.

【0071】また、本発明の請求項2によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、及び蒸発器
を連結して冷凍サイクルを構成する冷凍空調装置におい
て、蒸発器入口部の冷媒の温度と圧力を検出してサイク
ル内を循環する冷媒組成を演算する組成演算器を設ける
と共に、この組成演算器により検出された循環組成に応
じて冷凍サイクルの運転制御を行う制御装置を設けたの
で、簡単な装置構成で、上記装置と同様の効果がある。
According to a second aspect of the present invention, in a refrigeration and air-conditioning system that constitutes a refrigeration cycle by using a non-azeotropic mixed refrigerant and connecting a compressor, a condenser, an expansion valve, and an evaporator, A composition calculator is provided for detecting the temperature and pressure of the refrigerant at the inlet of the vessel to calculate the composition of the refrigerant circulating in the cycle, and the operation of the refrigeration cycle is controlled in accordance with the circulating composition detected by the composition calculator. Since the control device is provided, the same effect as the above device can be obtained with a simple device configuration.

【0072】また、本発明の請求項3によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、蒸発器、及
びアキュムレータを連結して冷凍サイクルを構成する冷
凍空調装置において、アキュムレータ内、あるいはアキ
ュムレータと圧縮機吸入配管との間の冷媒の温度と圧力
を検出してサイクル内を循環する冷媒組成を演算する組
成演算器を設けると共に、この組成演算器により検出さ
れた循環組成に応じて冷凍サイクルの運転制御を行う制
御装置を設けたので、簡単な装置構成で、上記装置と同
様の効果がある。
According to a third aspect of the present invention, there is provided a refrigeration air-conditioning apparatus comprising a refrigeration cycle using a non-azeotropic refrigerant mixture and connecting a compressor, a condenser, an expansion valve, an evaporator, and an accumulator. And a composition calculator for detecting the temperature and pressure of the refrigerant in the accumulator or between the accumulator and the compressor suction pipe to calculate the composition of the refrigerant circulating in the cycle, and the circulation detected by the composition calculator. Since the control device for controlling the operation of the refrigeration cycle according to the composition is provided, the same effect as the above device can be obtained with a simple device configuration.

【0073】また、本発明の請求項4によれば、非共沸
混合冷媒を用い、圧縮機、凝縮器、膨張弁、蒸発器、及
びアキュムレータを連結して冷凍サイクルを構成する冷
凍空調装置において、アキュムレータの液面を検出して
サイクル内を循環する冷媒組成を演算する組成演算器を
設けると共に、この組成演算器により検出された循環組
成に応じて冷凍サイクルの運転制御を行う制御装置を設
けたので、簡単な装置構成で、上記装置と同様の効果が
ある。
According to a fourth aspect of the present invention, there is provided a refrigeration air-conditioning apparatus comprising a refrigeration cycle using a non-azeotropic mixed refrigerant and connecting a compressor, a condenser, an expansion valve, an evaporator, and an accumulator. A composition calculator for detecting the liquid level of the accumulator and calculating the refrigerant composition circulating in the cycle, and a control device for controlling the operation of the refrigeration cycle in accordance with the circulating composition detected by the composition calculator. Therefore, the same effects as those of the above-described device can be obtained with a simple device configuration.

【0074】また、本発明の請求項5によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する冷凍空調装置において、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力、及び第2膨張弁の入口部の冷媒温度を検
出して、サイクル内を循環する冷媒組成を演算する組成
演算器を設けると共に、この組成演算器により検出され
た循環組成に応じて冷凍サイクルの運転制御を行う制御
装置を設けたので、サイクル内の循環組成が変化して
も、常に最適な運転が可能となる。
According to a fifth aspect of the present invention, a compressor, a four-way valve, a first heat exchanger, a first heat exchanger, a non-azeotropic mixed refrigerant are used.
In a refrigeration / air-conditioning apparatus that constitutes a refrigeration cycle by connecting an expansion valve and a second heat exchanger, a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected to a second expansion valve. A composition for detecting the temperature and pressure of the refrigerant at the outlet of the second expansion valve and the temperature of the refrigerant at the inlet of the second expansion valve to calculate the composition of the refrigerant circulating in the cycle through a bypass pipe An operation unit is provided, and a control unit that controls the operation of the refrigeration cycle according to the circulation composition detected by the composition operation unit is provided, so even if the circulation composition in the cycle changes, optimal operation is always possible. Becomes

【0075】また、本発明の請求項6によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する冷凍空調装置において、第1熱交換器と第1膨張
弁の間の配管と、圧縮機の吸入配管とを第2膨張弁を介
してバイパス配管で接続し、第2膨張弁の出口部の冷媒
の温度と圧力を検出して、サイクル内を循環する冷媒組
成を演算する組成演算器を設けると共に、この組成演算
器により検出された循環組成に応じて冷凍サイクルの運
転制御を行う制御装置を設けたので、簡単な装置構成
で、上記装置と同様の効果がある。
According to a sixth aspect of the present invention, a compressor, a four-way valve, a first heat exchanger, a first heat exchanger, a non-azeotropic mixed refrigerant are used.
In a refrigeration / air-conditioning apparatus that constitutes a refrigeration cycle by connecting an expansion valve and a second heat exchanger, a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor are connected to a second expansion valve. And a composition calculator for detecting the temperature and pressure of the refrigerant at the outlet of the second expansion valve to calculate the composition of the refrigerant circulating in the cycle. Since the control device for controlling the operation of the refrigeration cycle according to the circulating composition is provided, the same effect as the above device can be obtained with a simple device configuration.

【0076】また、本発明の請求項7によれば、非共沸
混合冷媒を用い、圧縮機、四方弁、第1熱交換器、第1
膨張弁、及び第2熱交換器を連結して冷凍サイクルを構
成する上記冷凍空調装置において、バイパス配管に、第
1熱交換器と第1膨張弁の間の配管とで熱交換を行う熱
交換部を設けたので、サイクル内の循環組成が変化して
も、常に最適な運転が可能となるとともに、エネルギー
効率の高い冷凍空調装置が得られる。
According to a seventh aspect of the present invention, a compressor, a four-way valve, a first heat exchanger, a first heat exchanger, and a non-azeotropic mixed refrigerant are used.
In the above refrigeration / air-conditioning apparatus, which constitutes a refrigeration cycle by connecting an expansion valve and a second heat exchanger, heat exchange in which heat is exchanged between a bypass pipe and a pipe between the first heat exchanger and the first expansion valve. Since the unit is provided, even if the circulation composition in the cycle changes, optimal operation can always be performed, and a refrigeration / air-conditioning apparatus with high energy efficiency can be obtained.

【0077】また、本発明の請求項8によれば、上記各
冷凍空調装置において、組成演算器で検出された循環組
成が所定範囲から外れた場合に警告信号を発する比較演
算手段と、この比較演算手段が発する警報信号によって
動作する警報装置を設けたので、安全性や信頼性の高い
冷凍空調装置の提供が可能となる。
According to the eighth aspect of the present invention, in each of the refrigeration and air-conditioning systems, a comparison operation means for issuing a warning signal when the circulating composition detected by the composition operation unit is out of a predetermined range, Since the alarm device operated by the alarm signal generated by the arithmetic unit is provided, it is possible to provide a safe and reliable refrigeration / air-conditioning device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 1 is a configuration diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 1 of the present invention.

【図2】本発明の実施例1に係わる組成演算器の動作を
示すフローチャートである。
FIG. 2 is a flowchart illustrating an operation of the composition calculator according to the first embodiment of the present invention.

【図3】本発明の実施例1に係わる組成演算器の動作を
圧力−エンタルピー線を用いて説明する説明図である。
FIG. 3 is an explanatory diagram illustrating an operation of the composition calculator according to the first embodiment of the present invention using a pressure-enthalpy line.

【図4】本発明の実施例1に係わる組成演算器の動作を
非共沸混合冷媒の温度と循環組成との関係を用いて説明
する説明図である。
FIG. 4 is an explanatory diagram illustrating the operation of the composition calculator according to the first embodiment of the present invention using the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulation composition.

【図5】本発明の実施例1に係わる制御装置の動作を示
すフローチャートである。
FIG. 5 is a flowchart illustrating an operation of the control device according to the first embodiment of the present invention.

【図6】本発明の実施例2による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 6 is a configuration diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 2 of the present invention.

【図7】本発明の実施例3による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 7 is a configuration diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 3 of the present invention.

【図8】本発明の実施例3に係わる組成演算器の動作を
非共沸混合冷媒の温度と循環組成との関係を用いて説明
する説明図である。
FIG. 8 is an explanatory diagram illustrating the operation of the composition calculator according to the third embodiment of the present invention using the relationship between the temperature of the non-azeotropic mixed refrigerant and the circulation composition.

【図9】本発明の実施例4による非共沸混合冷媒を用い
た冷凍空調装置を示す構成図である。
FIG. 9 is a configuration diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 4 of the present invention.

【図10】本発明の実施例4に係わる組成演算器の動作
をアキュムレータ内の冷媒液面高さと循環組成との関係
を用いて説明する説明図である。
FIG. 10 is an explanatory diagram illustrating the operation of the composition calculator according to the fourth embodiment of the present invention using the relationship between the refrigerant liquid level in the accumulator and the circulation composition.

【図11】本発明の実施例5による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 11 is a configuration diagram showing a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 5 of the present invention.

【図12】本発明の実施例5による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 12 is a control block diagram of a refrigeration and air conditioning system using a non-azeotropic mixed refrigerant according to Embodiment 5 of the present invention.

【図13】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の凝縮圧力と循環組成との関係を用いて
説明する説明図である。
FIG. 13 is an explanatory diagram illustrating the operation of the control device according to the fifth embodiment of the present invention using the relationship between the condensing pressure of the non-azeotropic mixed refrigerant and the circulation composition.

【図14】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の蒸発圧力と循環組成との関係を用いて
説明する説明図である。
FIG. 14 is an explanatory diagram illustrating the operation of the control device according to the fifth embodiment of the present invention using the relationship between the evaporation pressure of the non-azeotropic mixed refrigerant and the circulation composition.

【図15】本発明の実施例5に係わる制御装置の動作を
非共沸混合冷媒の飽和液温度と圧力と循環組成との関係
を用いて説明する説明図である。
FIG. 15 is an explanatory diagram illustrating the operation of the control device according to the fifth embodiment of the present invention using the relationship among the saturated liquid temperature, the pressure, and the circulation composition of the non-azeotropic refrigerant mixture.

【図16】本発明の実施例6による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 16 is a configuration diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 6 of the present invention.

【図17】本発明の実施例6による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 17 is a control block diagram of a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 6 of the present invention.

【図18】本発明の実施例7による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 18 is a configuration diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 7 of the present invention.

【図19】本発明の実施例7による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 19 is a control block diagram of a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 7 of the present invention.

【図20】本発明の実施例8による非共沸混合冷媒を用
いた冷凍空調装置を示す構成図である。
FIG. 20 is a configuration diagram illustrating a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 8 of the present invention.

【図21】本発明の実施例8による非共沸混合冷媒を用
いた冷凍空調装置の制御ブロック図である。
FIG. 21 is a control block diagram of a refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant according to Embodiment 8 of the present invention.

【図22】従来の非共沸混合冷媒を用いた冷凍空調装置
を示す構成図である。
FIG. 22 is a configuration diagram showing a conventional refrigeration / air-conditioning apparatus using a non-azeotropic mixed refrigerant.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 電気式膨張弁 4 蒸発器 5 アキュムレータ 11 温度検出器 12 圧力検出器 13 温度検出器 14 圧力検出器 15 液面検出器 16 温度検出器 20 組成演算器 21 制御装置 22 比較演算器 23 警報装置 31 四方弁 32 室外熱交換器 41 室内熱交換
器 42 温度検出器 43 温度検出器 50 バイパス配管 51 第2膨張弁 52 熱交換部
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Electric expansion valve 4 Evaporator 5 Accumulator 11 Temperature detector 12 Pressure detector 13 Temperature detector 14 Pressure detector 15 Liquid level detector 16 Temperature detector 20 Composition calculator 21 Control device 22 Comparison Arithmetic unit 23 Alarm device 31 Four-way valve 32 Outdoor heat exchanger 41 Indoor heat exchanger 42 Temperature detector 43 Temperature detector 50 Bypass pipe 51 Second expansion valve 52 Heat exchange unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 平8−21667(JP,A) 特開 平6−18105(JP,A) 特開 平6−101911(JP,A) 特公 平5−66503(JP,B2) 特公 平5−45867(JP,B2) (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 F25B 13/00 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomohiko Kasai 6-66, Tehira, Wakayama-shi Mitsubishi Electric Corporation Wakayama Works (56) References JP-A-8-21667 (JP, A) 6-18105 (JP, A) JP-A-6-101911 (JP, A) JP-B 5-66503 (JP, B2) JP-B 5-45867 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) F25B 1/00 F25B 13/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、及び蒸発器を連結して冷凍サイク
ルを構成するものにおいて、蒸発器入口部の冷媒温度を
検出する第1温度検出器、上記蒸発器入口部の冷媒圧力
を検出する圧力検出器、凝縮器出口部の冷媒温度を検出
する第2温度検出器、第1温度検出器と上記圧力検出器
と第2温度検出器で検出した信号から、冷媒の乾き度、
温度及び圧力に基づいてサイクル内を循環する冷媒組成
を演算する組成演算器、及びこの組成演算器により検出
された冷媒組成に応じて上記冷凍サイクルの運転制御を
行う制御装置を備えたことを特徴とする非共沸混合冷媒
を用いた冷凍空調装置。
1. A refrigerant circuit comprising a non-azeotropic refrigerant mixture and a compressor, a condenser, an expansion valve, and an evaporator connected to form a refrigeration cycle, wherein a refrigerant temperature at an evaporator inlet is detected. 1 temperature detector, a pressure detector for detecting the refrigerant pressure at the evaporator inlet, a second temperature detector for detecting the refrigerant temperature at the condenser outlet, a first temperature detector, the pressure detector and the second temperature From the signal detected by the detector, the dryness of the refrigerant,
A composition calculator for calculating the composition of the refrigerant circulating in the cycle based on the temperature and the pressure , and a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator. Refrigeration air conditioner using a non-azeotropic mixed refrigerant.
【請求項2】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、及び蒸発器を連結して冷凍サイク
ルを構成するものにおいて、蒸発器入口部の冷媒温度を
検出する温度検出器、上記蒸発器入口部の冷媒圧力を検
出する圧力検出器、上記温度検出器と上記圧力検出器で
検出した信号から、冷媒の乾き度、温度及び圧力に基づ
いてサイクル内を循環する冷媒組成を演算する組成演算
器、及びこの組成演算器により検出された冷媒組成に応
じて上記冷凍サイクルの運転制御を行う制御装置を備え
たことを特徴とする非共沸混合冷媒を用いた冷凍空調装
置。
2. A temperature for detecting a refrigerant temperature at an inlet of an evaporator in a refrigerating cycle using a non-azeotropic mixed refrigerant as a refrigerant and connecting a compressor, a condenser, an expansion valve, and an evaporator. A detector, a pressure detector for detecting the refrigerant pressure at the inlet of the evaporator, a temperature detector and a signal detected by the pressure detector , based on the dryness, temperature and pressure of the refrigerant.
A composition calculator for calculating the composition of the refrigerant circulating in the cycle, and a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator. A refrigeration and air conditioning system using a mixed refrigerant.
【請求項3】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、蒸発器、及びアキュムレータを連
結して冷凍サイクルを構成するものにおいて、アキュム
レータ内、または上記アキュムレータと圧縮機吸入配管
との間の冷媒温度を検出する温度検出器、上記アキュム
レータ内、または上記アキュムレータと圧縮機吸入配管
との間の冷媒圧力を検出する圧力検出器、上記温度検出
器と上記圧力検出器で検出した信号から、冷媒の乾き
度、温度及び圧力に基づいてサイクル内を循環する冷媒
組成を演算する組成演算器、及びこの組成演算器により
検出された冷媒組成に応じて上記冷凍サイクルの運転制
御を行う制御装置を備えたことを特徴とする非共沸混合
冷媒を用いた冷凍空調装置。
3. A refrigeration cycle using a non-azeotropic mixed refrigerant as a refrigerant and connecting a compressor, a condenser, an expansion valve, an evaporator, and an accumulator, wherein the refrigerant is in the accumulator or the accumulator and the compressor. A temperature detector for detecting a refrigerant temperature between the suction pipe, a pressure detector for detecting a refrigerant pressure in the accumulator, or between the accumulator and the compressor suction pipe, the temperature detector and the pressure detector. From the detected signal, dry the refrigerant
A composition calculator for calculating the composition of the refrigerant circulating in the cycle based on the temperature, temperature and pressure , and a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator. A refrigeration and air-conditioning system using a non-azeotropic refrigerant mixture, characterized in that:
【請求項4】 冷媒として非共沸混合冷媒を用い、圧縮
機、凝縮器、膨張弁、蒸発器、及びアキュムレータを連
結して冷凍サイクルを構成するものにおいて、予め定め
られた運転条件と余剰冷媒量との関係から上記アキュム
レータの液面を検出する液面検出手段、この液面検出手
段で検出した信号から、サイクル内を循環する冷媒組成
を演算する組成演算器、及びこの組成演算器により検出
された冷媒組成に応じて上記冷凍サイクルの運転制御を
行う制御装置を備えたことを特徴とする非共沸混合冷媒
を用いた冷凍空調装置。
Using a non-azeotropic refrigerant as wherein the refrigerant compressor, condenser, expansion valve, an evaporator, and in which by connecting the accumulator constituting a refrigerating cycle, predetermined
Liquid level detection means for detecting the liquid level of the accumulator from the relationship between the operating conditions and the amount of excess refrigerant, a composition calculator for calculating a refrigerant composition circulating in the cycle from a signal detected by the liquid level detection means, And a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator.
【請求項5】 冷媒として非共沸混合冷媒を用い、圧縮
機、四方弁、第1熱交換器、第1膨張弁、及び第2熱交
換器を連結して冷凍サイクルを構成するものにおいて、
第1熱交換器と第1膨張弁の間の配管と、上記圧縮機の
吸入配管とを第2膨張弁を介して接続するバイパス配
管、第2膨張弁の出口部の冷媒温度を検出する第1温度
検出器、第2膨張弁の出口部の冷媒圧力を検出する圧力
検出器、第2膨張弁の入口部の冷媒温度を検出する第2
温度検出器、第1温度検出器と上記圧力検出器と第2温
度検出器で検出した信号から、サイクル内を循環する冷
媒組成を演算する組成演算器、及びこの組成演算器によ
り検出された冷媒組成に応じて上記冷凍サイクルの運転
制御を行う制御装置を備えたことを特徴とする非共沸混
合冷媒を用いた冷凍空調装置。
5. A refrigeration cycle using a non-azeotropic mixed refrigerant as a refrigerant and connecting a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger.
A bypass pipe that connects a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor via a second expansion valve, and a bypass pipe that detects a refrigerant temperature at an outlet of the second expansion valve. (1) a temperature detector, a pressure detector for detecting a refrigerant pressure at an outlet of a second expansion valve, and a second detector for detecting a refrigerant temperature at an inlet of the second expansion valve.
A temperature detector, a composition calculator for calculating a composition of a refrigerant circulating in a cycle from signals detected by the first temperature detector, the pressure detector, and the second temperature detector; and a refrigerant detected by the composition calculator. A refrigeration air conditioner using a non-azeotropic mixed refrigerant, comprising a control device for controlling the operation of the refrigeration cycle according to the composition.
【請求項6】 冷媒として非共沸混合冷媒を用い、圧縮
機、四方弁、第1熱交換器、第1膨張弁、及び第2熱交
換器を連結して冷凍サイクルを構成するものにおいて、
第1熱交換器と第1膨張弁の間の配管と、上記圧縮機の
吸入配管とを第2膨張弁を介して接続するバイパス配
管、第2膨張弁の出口部の冷媒温度を検出する温度検出
器、第2膨張弁の出口部の冷媒圧力を検出する圧力検出
器、上記温度検出器と上記圧力検出器で検出した信号か
ら、サイクル内を循環する冷媒組成を演算する組成演算
器、及びこの組成演算器により検出された冷媒組成に応
じて上記冷凍サイクルの運転制御を行う制御装置を備え
たことを特徴とする非共沸混合冷媒を用いた冷凍空調装
置。
6. A refrigeration cycle comprising a non-azeotropic mixed refrigerant as a refrigerant and connecting a compressor, a four-way valve, a first heat exchanger, a first expansion valve, and a second heat exchanger.
A bypass pipe connecting a pipe between the first heat exchanger and the first expansion valve and a suction pipe of the compressor via a second expansion valve, and a temperature for detecting a refrigerant temperature at an outlet of the second expansion valve. A detector, a pressure detector for detecting a refrigerant pressure at an outlet portion of the second expansion valve, a composition calculator for calculating a refrigerant composition circulating in a cycle from the signals detected by the temperature detector and the pressure detector, and A refrigeration air conditioner using a non-azeotropic mixed refrigerant, comprising a control device for controlling the operation of the refrigeration cycle according to the refrigerant composition detected by the composition calculator.
【請求項7】 バイパス配管に、第1熱交換器と第1膨
張弁の間の配管とで熱交換を行う熱交換部を設けたこと
を特徴とする請求項5または6記載の非共沸混合冷媒を
用いた冷凍空調装置。
7. The non-azeotropic composition according to claim 5, wherein a heat exchange section for exchanging heat between the first heat exchanger and the pipe between the first expansion valve is provided in the bypass pipe. A refrigeration and air conditioning system using a mixed refrigerant.
【請求項8】 組成演算器により検出された冷媒組成が
所定範囲から外れた場合に警告信号を発する比較演算手
段、及びこの比較演算手段が発する警告信号によって動
作する警報手段を設けたことを特徴とする請求項1ない
し7のいずれかに記載の非共沸混合冷媒を用いた冷凍空
調装置。
8. A comparison operation means for issuing a warning signal when the refrigerant composition detected by the composition operation unit is out of a predetermined range, and an alarm means operated by the warning signal issued by the comparison operation means. A refrigeration / air-conditioning apparatus using the non-azeotropic mixed refrigerant according to any one of claims 1 to 7.
JP16957094A 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant Expired - Lifetime JP2943613B2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP16957094A JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant
DE69517099T DE69517099T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and calculator to determine its composition
DE69527092T DE69527092T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
EP95304838A EP0693663B1 (en) 1994-07-21 1995-07-11 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
EP98107191A EP0854329B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
EP98107195A EP0853222B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES95304838T ES2148441T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A COMPOSITION CALCULATION UNIT.
ES98107195T ES2178070T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
PT95304838T PT693663E (en) 1994-07-21 1995-07-11 DEVICE FOR DETECTING CONTROL INFORMATION FOR A FRIGORIFIED AIR CONDITIONING APPLIANCE USING A COOLANT NOT A AZEOTROPE
PT98107192T PT853221E (en) 1994-07-21 1995-07-11 CONTROL DETECTION APPARATUS FOR A REFRIGERATION CONDITIONING APPLIANCE USING A REFRIGERANT NOT AZEOTROPE
ES98107191T ES2178068T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER WITH A NON-AZEOTROPIC REFRIGERANT AND HAS A CONTROL INFORMATION DETECTION DEVICE.
EP98107194A EP0854331B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
EP98107193A EP0854330B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107196T ES2176850T3 (en) 1994-07-21 1995-07-11 AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
DE69526982T DE69526982T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
DE69532003T DE69532003T2 (en) 1994-07-21 1995-07-11 Cooling air conditioner with non-azeotropic refrigerant and a control information acquisition device
DE69526980T DE69526980T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
DE69527095T DE69527095T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
ES98107193T ES2178069T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR DEVICE.
EP98107192A EP0853221B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
ES98107192T ES2208995T3 (en) 1994-07-21 1995-07-11 COOLING AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INCLUDING A CONTROL INFORMATION DETECTOR APPARATUS.
EP98107196A EP0854332B1 (en) 1994-07-21 1995-07-11 Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
DE69526979T DE69526979T2 (en) 1994-07-21 1995-07-11 Air conditioner with non-azeotropic refrigerant and control information acquisition device
US08/500,551 US5626026A (en) 1994-07-21 1995-07-11 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
ES98107194T ES2176849T3 (en) 1994-07-21 1995-07-11 REFRIGERATION AIR CONDITIONER USING A NON-AZEOTROPIC REFRIGERANT AND INTEGRATING A CONTROL INFORMATION DETECTOR APPARATUS.
AU25041/95A AU683385B2 (en) 1994-07-21 1995-07-18 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
CN95108967A CN1067154C (en) 1994-07-21 1995-07-21 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
TW084107907A TW289079B (en) 1994-07-21 1995-07-28
US08/779,851 US5735132A (en) 1994-07-21 1997-01-07 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
US09/005,813 US5941084A (en) 1994-07-21 1998-01-12 Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
HK98100593A HK1001659A1 (en) 1994-07-21 1998-01-22 Air-conditioner using a non-azeotrope refrigerant and having a composition computing unit
KR2019980010044U KR200145320Y1 (en) 1994-07-21 1998-06-12 Control information detecting apparatus using non-azeotropic mixed refrigerant for a refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16957094A JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Publications (2)

Publication Number Publication Date
JPH0835725A JPH0835725A (en) 1996-02-06
JP2943613B2 true JP2943613B2 (en) 1999-08-30

Family

ID=15888929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16957094A Expired - Lifetime JP2943613B2 (en) 1994-07-21 1994-07-21 Refrigeration air conditioner using non-azeotropic mixed refrigerant

Country Status (1)

Country Link
JP (1) JP2943613B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029489A1 (en) * 1999-10-18 2001-04-26 Daikin Industries, Ltd. Refrigerating device
KR20170005103A (en) * 2014-07-30 2017-01-11 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Turbo refrigerator, control device therefor, and control method therefor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361036A (en) 2003-06-06 2004-12-24 Daikin Ind Ltd Air conditioning system
JP4973078B2 (en) * 2006-09-11 2012-07-11 ダイキン工業株式会社 Refrigeration equipment
JP4548502B2 (en) * 2008-03-24 2010-09-22 三菱電機株式会社 Refrigeration equipment
JP5353167B2 (en) * 2008-09-30 2013-11-27 ダイキン工業株式会社 Refrigeration equipment
US20100083679A1 (en) * 2008-10-06 2010-04-08 Thermo King Corporation Temperature control system with a directly-controlled purge cycle
US9651287B2 (en) * 2011-09-30 2017-05-16 Mitsubishi Electric Corporation Air-conditioning apparatus
JPWO2014030236A1 (en) * 2012-08-23 2016-07-28 三菱電機株式会社 Refrigeration equipment
CN106871470B (en) * 2017-02-05 2019-06-04 广东美的暖通设备有限公司 The pressure regulating method of air-conditioning system
JP2018141574A (en) * 2017-02-27 2018-09-13 三菱重工サーマルシステムズ株式会社 Composition abnormality detection device and composition abnormality detection method
JP6937934B2 (en) * 2018-09-28 2021-09-22 三菱電機株式会社 Refrigeration cycle equipment
JP6972369B2 (en) * 2018-09-28 2021-11-24 三菱電機株式会社 Outdoor unit of refrigeration cycle equipment, refrigeration cycle equipment, and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029489A1 (en) * 1999-10-18 2001-04-26 Daikin Industries, Ltd. Refrigerating device
US6581397B1 (en) 1999-10-18 2003-06-24 Daikin Industries, Ltd. Refrigerating device
KR20170005103A (en) * 2014-07-30 2017-01-11 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Turbo refrigerator, control device therefor, and control method therefor
CN106461280A (en) * 2014-07-30 2017-02-22 三菱重工制冷空调系统株式会社 Turbo refrigerator, control device therefor, and control method therefor
KR101867207B1 (en) * 2014-07-30 2018-06-12 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Turbo refrigerator, control device therefor, and control method therefor
CN106461280B (en) * 2014-07-30 2019-03-15 三菱重工制冷空调系统株式会社 Turborefrigerator and its control device and its control method

Also Published As

Publication number Publication date
JPH0835725A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
EP0854331B1 (en) Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
EP0898133B1 (en) Refrigerating and air-conditioning apparatus and method of determining refrigerant composition of refrigerating and air-conditioning apparatus
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
US20110174059A1 (en) Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
US9689730B2 (en) Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JPH11182951A (en) Refrigerating device
US10876777B2 (en) Air conditioning device using vapor injection cycle and method for controlling the device
JP2019011899A (en) Air conditioning device
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP3463710B2 (en) Refrigeration equipment with non-azeotropic mixed refrigerant
JP6902390B2 (en) Refrigeration cycle equipment
JP6739664B2 (en) Refrigeration air conditioner and control device
JP3351076B2 (en) Refrigeration cycle saturated steam temperature detector
JPH1068555A (en) Circulating refrigerant composition detection method of refrigeration cycle and refrigerating apparatus using the detection method
JPH0763430A (en) Saturated vapor temperature detection circuit of refrigeration cycle
WO2020066001A1 (en) Refrigeration cycle device
JP3178192B2 (en) Refrigeration cycle control device
WO2024047832A1 (en) Refrigeration cycle device and air conditioning device
JP7196186B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
JPH03170753A (en) Air conditioner
JPS63169461A (en) Air conditioner
JPH08189735A (en) Operation control device for air conditioning device
CN115667820A (en) Cold/heat source unit, refrigeration cycle device, and refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

EXPY Cancellation because of completion of term