JPH0610571B2 - Appropriate refrigerant filling amount detection device - Google Patents

Appropriate refrigerant filling amount detection device

Info

Publication number
JPH0610571B2
JPH0610571B2 JP15087886A JP15087886A JPH0610571B2 JP H0610571 B2 JPH0610571 B2 JP H0610571B2 JP 15087886 A JP15087886 A JP 15087886A JP 15087886 A JP15087886 A JP 15087886A JP H0610571 B2 JPH0610571 B2 JP H0610571B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
temperature
bypass
bypass pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15087886A
Other languages
Japanese (ja)
Other versions
JPS636369A (en
Inventor
寿彦 榎本
隆雄 駒井
康雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15087886A priority Critical patent/JPH0610571B2/en
Publication of JPS636369A publication Critical patent/JPS636369A/en
Publication of JPH0610571B2 publication Critical patent/JPH0610571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空気調和機の据付時の追加冷媒充填の精度
向上あるいは適正冷媒量での運転かどうかを精度よくチ
ェックできるようにした適正冷媒充填量検出装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a proper refrigerant capable of accurately checking whether or not the operation of the air conditioner is improved with the accuracy of additional refrigerant charging or an appropriate amount of refrigerant. The present invention relates to a filling amount detection device.

〔従来の技術〕[Conventional technology]

第6図は特願昭60-285017 号に示された従来の適正冷媒
充填量検出装置であり、第7図はそれを空気調和機に装
着した状態の冷媒回路構成図である。第7図は圧縮機1
−冷媒配管7a−四方弁2−冷媒配管7b−室外熱交換
器3−冷媒配管7c−減圧用毛細管4−冷媒配管7d−
室内熱交換器5−冷媒配管7e−四方弁2−冷媒配管7
f−アキュムレータ6−冷媒配管7g−圧縮機1を順次
連結した冷媒回路構成である。
FIG. 6 shows a conventional proper refrigerant charge amount detection device shown in Japanese Patent Application No. 60-285017, and FIG. 7 is a refrigerant circuit configuration diagram in a state where it is installed in an air conditioner. FIG. 7 shows a compressor 1
-Refrigerant pipe 7a-Four-way valve 2-Refrigerant pipe 7b-Outdoor heat exchanger 3-Refrigerant pipe 7c-Capillary pipe for pressure reduction 4-Refrigerant pipe 7d-
Indoor heat exchanger 5-refrigerant pipe 7e-four-way valve 2-refrigerant pipe 7
This is a refrigerant circuit configuration in which f-accumulator 6-refrigerant pipe 7g-compressor 1 are sequentially connected.

これに吐出ポート8,吸入ポート9を適正冷媒量検出装
置21のバイパスポート11,12が冷媒配管により連
結されている。
The discharge port 8 and the suction port 9 are connected to the bypass ports 11 and 12 of the proper refrigerant amount detection device 21 by a refrigerant pipe.

第6図は第1のバイパス配管13,第2のバイパス配管
14,毛細管15,第1の冷媒温度検出器16,第2の
冷媒温度検出器17,温度情報入力装置18,演算装置
19,演算結果の出力装置20より構成される適正冷媒
量検出装置21を示している。第1のバイパス配管13
と第2のバイパス配管14は熱交換するように所定の長
さを密着するように固着されて熱交換部が形成されてい
る。
FIG. 6 shows the first bypass pipe 13, the second bypass pipe 14, the capillary pipe 15, the first refrigerant temperature detector 16, the second refrigerant temperature detector 17, the temperature information input device 18, the arithmetic device 19, and the arithmetic operation. The proper refrigerant amount detection device 21 including the output device 20 of the result is shown. First bypass pipe 13
The second bypass pipe 14 and the second bypass pipe 14 are fixed so as to be in close contact with each other for a predetermined length so as to exchange heat with each other to form a heat exchange portion.

次に動作について説明する。たとえば、冷房運転の場合
のまず空気調和機本体の動作から説明する。圧縮機1か
ら吐出された高温高圧のガス冷媒は冷媒配管7a,四方
弁2,冷媒配管7bから室外熱交換器3に入り、ここで
凝縮し高圧の液冷媒となり冷媒配管7cに至る。
Next, the operation will be described. For example, the operation of the air conditioner main body in the case of the cooling operation will be described first. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the outdoor heat exchanger 3 through the refrigerant pipe 7a, the four-way valve 2 and the refrigerant pipe 7b, and is condensed there to become a high-pressure liquid refrigerant and reach the refrigerant pipe 7c.

さらに、減圧用毛細管4により減圧され、冷媒配管7d
を経て、室内熱交換器5に入り、ここで冷媒を蒸発させ
ることにより冷媒効果を出し、さらに冷媒配管7e,四
方弁2,冷媒配管7fを経てアキュムレータ6に至り、
そこで余剰冷媒を蓄え、冷媒配管7gから圧縮機1に吸
入されるというヒートポンプ式冷凍サイクルを構成す
る。
Further, the pressure is reduced by the pressure reducing capillary 4, and the refrigerant pipe 7d
To the indoor heat exchanger 5, where the refrigerant effect is produced by evaporating the refrigerant, and further reaches the accumulator 6 via the refrigerant pipe 7e, the four-way valve 2, and the refrigerant pipe 7f.
Therefore, a heat pump type refrigeration cycle in which surplus refrigerant is stored and taken into the compressor 1 through the refrigerant pipe 7g is configured.

この空気調和機に第6図の適正冷媒量検出装置21が装
着されると、吐出冷媒の一部は冷媒配管7aから吐出ポ
ート8より吐出バイパスポート11を経て、第1のバイ
パス配管13,毛細管15、第2のバイパス配管14,
吸入バイパスポート9を経て冷媒配管7fに戻るという
バイパス回路を形成する。
When the proper refrigerant amount detection device 21 of FIG. 6 is installed in this air conditioner, a part of the discharged refrigerant passes from the refrigerant pipe 7a through the discharge port 8 to the discharge bypass port 11 to the first bypass pipe 13 and the capillary tube. 15, the second bypass pipe 14,
A bypass circuit is formed that returns to the refrigerant pipe 7f via the suction bypass port 9.

このとき、高温高圧の過熱ガス冷媒は第1のバイパス配
管13を通る過程で、毛細管15で減圧された低温の冷
媒と熱交換部で熱交換することにより冷却され、高圧の
2相状態となり、毛細管15の入口に至る。この高圧の
冷媒は毛細管15により減圧され、低圧の2相冷媒とな
り、第2のバイパス配管14を通る過程で熱交換部で熱
交換することにより加熱され、吐出ガスとほぼ同じエン
タルピとなって冷媒配管7fに戻るというサイクルを構
成する。
At this time, the high-temperature and high-pressure superheated gas refrigerant is cooled by exchanging heat with the low-temperature refrigerant decompressed by the capillary tube 15 in the heat exchange section in the process of passing through the first bypass pipe 13, and becomes a high-pressure two-phase state. It reaches the entrance of the capillary tube 15. This high-pressure refrigerant is decompressed by the capillaries 15 to become a low-pressure two-phase refrigerant, which is heated by heat exchange in the heat exchange section in the process of passing through the second bypass pipe 14 and becomes an enthalpy almost the same as the discharge gas. A cycle of returning to the pipe 7f constitutes a cycle.

このとき、第2のバイパス配管14の入口に設けられた
第2の冷媒温度検出器17は圧縮機吸入圧力に対する飽
和温度、すなわち飽和蒸発温度が検出される。
At this time, the second refrigerant temperature detector 17 provided at the inlet of the second bypass pipe 14 detects the saturation temperature with respect to the compressor suction pressure, that is, the saturated evaporation temperature.

この飽和蒸発温度は冷媒充填量に依存することなく、常
に吸入圧力に対する飽和温度を示す。
This saturated evaporation temperature does not depend on the refrigerant charge amount and always indicates the saturated temperature with respect to the suction pressure.

一方、冷媒配管7fに設けられた第1の冷媒温度検出器
16は吸入冷媒の温度を検出するが、この吸入温度は冷
媒充填量に対して第8図のように変化する。
On the other hand, the first refrigerant temperature detector 16 provided in the refrigerant pipe 7f detects the temperature of the sucked refrigerant, and this sucked temperature changes with respect to the refrigerant charge amount as shown in FIG.

第8図は縦軸に吸入冷媒温度、横軸に冷媒充填量をとっ
て示しており、図中のA点が最適冷媒充填量であり、こ
のA点より冷媒充填量が少ない程吸入冷媒温度は高くな
り、ある過熱度(=吸入冷媒温度−飽和蒸発温度)をも
って吸入される。
In FIG. 8, the vertical axis represents the intake refrigerant temperature and the horizontal axis represents the refrigerant charge amount. Point A in the figure is the optimum refrigerant charge amount, and the intake refrigerant temperature decreases as the refrigerant charge amount decreases from this point A. Becomes higher and is sucked with a certain degree of superheat (= intake refrigerant temperature−saturated evaporation temperature).

また、A点より冷媒充填量が多いときには余剰冷媒が生
じ、液冷媒としてアキュムレータ7に貯留されるため、
冷媒配管7fには2相の冷媒が流れることにより、吸入
温度は飽和蒸発温度に等しくなる。
Further, when the refrigerant charge amount is larger than the point A, excess refrigerant is generated and stored in the accumulator 7 as a liquid refrigerant,
Since the two-phase refrigerant flows through the refrigerant pipe 7f, the suction temperature becomes equal to the saturated evaporation temperature.

したがって、空気調和機本体を運転しながら冷媒を充填
するとき、上記吸入冷媒温度と飽和蒸発温度をそれぞれ
第1および第2の冷媒温度検出器16,17により検出
し、これを電気信号に変え、温度情報入力装置18を経
て演算装置19により比較し、両者の温度が丁度等しく
なったところが最適冷媒量とし、出力装置20に電気信
号を送る。
Therefore, when charging the refrigerant while operating the air conditioner main body, the intake refrigerant temperature and the saturated evaporation temperature are detected by the first and second refrigerant temperature detectors 16 and 17, respectively, and converted into electric signals, The calculation device 19 compares the temperature information input device 18 with each other, and when the two temperatures are exactly equal, the optimum refrigerant amount is determined, and an electric signal is sent to the output device 20.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の適正冷媒充填量検出装置は以上のように構成され
ており、冷媒充填量は少ない時点から冷媒を徐々に充填
しなければ、最適冷媒量を見出すことができず、すでに
冷媒を充填した状態で吸入温度が飽和蒸発温度に等しい
値を示している場合は、その冷媒充填量が適正かどうか
判定することができない。
The conventional appropriate refrigerant filling amount detection device is configured as described above, and the refrigerant filling amount cannot be found unless the refrigerant is gradually filled from a small point, and the refrigerant is already filled with the refrigerant. If the suction temperature shows a value equal to the saturated evaporation temperature, it cannot be determined whether the refrigerant charge amount is appropriate.

すなわち、下限冷媒充填量は検出できても上限冷媒充填
量が検出できないという問題点があった。
That is, there is a problem that the lower limit refrigerant charge amount can be detected but the upper limit refrigerant charge amount cannot be detected.

この発明は、このような問題点を解決するためになされ
たもので、冷媒回路の運転状態として、圧縮機の吸入状
態および吐出状態を精度よく検出し、適正冷媒量の下限
および上限をも検知できる信頼性の高い適正冷媒充填量
検出装置を得ることを目的とする。
The present invention has been made to solve such a problem, and accurately detects the suction state and the discharge state of the compressor as the operating state of the refrigerant circuit, and also detects the lower limit and the upper limit of the proper refrigerant amount. An object of the present invention is to obtain a reliable and reliable proper refrigerant charge amount detection device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る適正冷媒充填量検出装置は、第1のバイ
パス配管,毛細管、第2のバイパス配管を順次直列に接
続し、熱交換部を有する冷媒バイパス回路と、圧縮機の
吐出側の冷媒配管に設けられた第1の冷媒温度検出器
と、アキュムレータの吸入側の冷媒配管に設けられた第
2の冷媒温度検出器と、第1のバイパス配管の熱交換部
出口に設けられた第3の冷媒温度検出器と、第2のバイ
パス配管上の熱交換部入口に設けられた第4の冷媒温度
検出器と、第1ないし第4の冷媒温度検出器の出力を処
理する演算装置とを設けたものである。
A proper refrigerant filling amount detection device according to the present invention includes a refrigerant bypass circuit having a heat exchange section, in which a first bypass pipe, a capillary tube, and a second bypass pipe are sequentially connected in series, and a refrigerant pipe on a discharge side of a compressor. A first refrigerant temperature detector, a second refrigerant temperature detector provided in the suction side refrigerant pipe of the accumulator, and a third refrigerant temperature detector provided in the heat exchange section outlet of the first bypass pipe. A refrigerant temperature detector, a fourth refrigerant temperature detector provided at the inlet of the heat exchange section on the second bypass pipe, and an arithmetic unit processing the outputs of the first to fourth refrigerant temperature detectors are provided. It is a thing.

〔作用〕[Action]

この発明においては、圧縮機の吐出側の冷媒配管中の高
温,高圧のガス冷媒の一部を第1のバイパス配管に通
し、熱交換部で第2のバイパス配管と熱交換することに
より圧力一定のまま冷却され、高圧の2相状態とし、こ
れを毛細管により減圧し、低圧の2相状態にして第2の
バイパス配管に通し、その通過過程で第1のバイパス配
管と熱交換することにより過熱され、吸入圧力に等しい
過熱ガスとして吸入側の冷媒配管に戻し、第1〜第4の
冷媒温度検出器によりそれぞれ吐出ガス冷媒温度,吸入
冷媒温度,飽和凝縮温度,飽和蒸発温度を検出し、その
検出情報を演算装置で処理する。
In the present invention, a part of the high-temperature, high-pressure gas refrigerant in the refrigerant pipe on the discharge side of the compressor is passed through the first bypass pipe, and heat is exchanged with the second bypass pipe at the heat exchanging section to keep the pressure constant. It is cooled as it is to be in a high-pressure two-phase state, which is decompressed by a capillary tube, is made into a low-pressure two-phase state, is passed through a second bypass pipe, and is overheated by exchanging heat with the first bypass pipe in the passing process Is returned to the suction-side refrigerant pipe as superheated gas equal to the suction pressure, and the discharge gas refrigerant temperature, the suction refrigerant temperature, the saturated condensation temperature, and the saturated evaporation temperature are detected by the first to fourth refrigerant temperature detectors, respectively. The detection information is processed by the arithmetic device.

〔実施例〕〔Example〕

以下、この発明の適正冷媒充填量検出装置の実施例を図
について説明する。第1図はその一実施例の構成を示す
図であり、第2図はそれを空気調和機に装着した状態の
冷媒回路構成図である。
An embodiment of the proper refrigerant filling amount detection device of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of one embodiment thereof, and FIG. 2 is a refrigerant circuit configuration diagram in a state in which it is mounted on an air conditioner.

まず、第2図から述べる。この第2図において、第7図
と同一部分には同一符号を付して述べることにする。こ
の第2図は圧縮機1−冷媒配管7a−切換弁としての四
方弁2−冷媒配管7b−室外熱交換器3−冷媒配管7c
−減圧用毛細管4−冷媒配管7d−室内熱交換器5−冷
媒配管7e−四方弁2−冷媒配管7f−アキュムレータ
6−冷媒配管7a−圧縮機1を順次連結した空気調和機
の冷媒回路構成を示す図であり、これに吐出ポート8,
吸入ポート9と適正冷媒量検出装置21のバイパスポー
ト11,12がそれぞれ冷媒配管により連結されてい
る。
First, FIG. 2 will be described. In FIG. 2, the same parts as those in FIG. 7 are designated by the same reference numerals. This FIG. 2 shows a compressor 1-refrigerant pipe 7a-four-way valve as a switching valve 2-refrigerant pipe 7b-outdoor heat exchanger 3-refrigerant pipe 7c.
-Decompression capillary tube 4-Refrigerant pipe 7d-Indoor heat exchanger 5-Refrigerant pipe 7e-Four-way valve 2-Refrigerant pipe 7f-Accumulator 6-Refrigerant pipe 7a-Refrigerant circuit configuration of an air conditioner in which compressor 1 is sequentially connected. FIG.
The suction port 9 and the bypass ports 11 and 12 of the proper refrigerant amount detection device 21 are connected by refrigerant pipes, respectively.

第1図は適正冷媒充填量検出装置21の本体を示す図で
あり、吐出バイパスポート11には第1のバイパス配管
13が接続され、吸入バイパスポート12には第2のバ
イパス配管14が接続されている。
FIG. 1 is a view showing the main body of the proper refrigerant filling amount detection device 21, in which a first bypass pipe 13 is connected to the discharge bypass port 11 and a second bypass pipe 14 is connected to the suction bypass port 12. ing.

第1のバイパス配管13と第2のバイパス配管14は所
定個所で所定量の熱交換を行うよう、図示のごとく所定
長さを密着させて固着することにより熱交換部を形成し
ている。
The first bypass pipe 13 and the second bypass pipe 14 form a heat exchange portion by closely adhering and fixing a predetermined length as shown so that a predetermined amount of heat is exchanged at a predetermined location.

この第1のバイパス配管13と第2のバイパス配管14
との他端間には、毛細管15が接続されている。
The first bypass pipe 13 and the second bypass pipe 14
A capillary tube 15 is connected between the other ends of and.

一方、16aは第1の冷媒温度検出器であり、吐出側の
冷媒配管7a上に装着されている。16bは第2の冷媒
温度検出器であり吸入側の冷媒配管7f上で吸入バイパ
スポート9と四方弁2の間に装着されている。
On the other hand, 16a is a first refrigerant temperature detector, which is mounted on the discharge side refrigerant pipe 7a. A second refrigerant temperature detector 16b is mounted on the suction side refrigerant pipe 7f between the suction bypass port 9 and the four-way valve 2.

また、上記第1のバイパス配管13上で熱交換部出口に
は、第3の冷媒温度検出器17aが装着されており、第
2のバイパス配管14上で熱交換部入口には第4の冷媒
温度検出器17bが装着されている。
Further, a third refrigerant temperature detector 17a is attached to the heat exchange section outlet on the first bypass pipe 13 and a fourth refrigerant temperature detector is attached to the heat exchange section inlet on the second bypass pipe 14. A temperature detector 17b is attached.

上記第1〜第4の冷媒温度検出器16a,16b,17
a,17bによる温度情報は温度情報入力装置18によ
り収集され、演算装置19に送出されるようになってい
る。
The first to fourth refrigerant temperature detectors 16a, 16b, 17
The temperature information from a and 17b is collected by the temperature information input device 18 and sent to the arithmetic device 19.

演算装置19は温度情報入力装置18より送出される温
度情報を演算処理を行ない、出力装置20に出力するよ
うにしている。
The arithmetic device 19 performs arithmetic processing on the temperature information sent from the temperature information input device 18, and outputs it to the output device 20.

次にこの発明の動作について説明する。まず、空気調和
機本体の動作は、たとえば冷房運転の場合、圧縮機1か
ら吐出された高温高圧のガス冷媒は吐出側の冷媒配管7
aから四方弁2、冷媒配管7bを通り、室外熱交換器3
に至り、ここで凝縮されて高圧の液冷媒となり、冷媒配
管7cを経て減圧用毛細管4を通る過程で減圧され、冷
媒配管7dを経て室内熱交換器5に入り、ここで冷媒を
蒸発させることにより冷凍効果を出す。
Next, the operation of the present invention will be described. First, in the operation of the air conditioner main body, for example, in the case of cooling operation, the high temperature and high pressure gas refrigerant discharged from the compressor 1 is discharged on the refrigerant pipe 7 side.
a through the four-way valve 2 and the refrigerant pipe 7b, and the outdoor heat exchanger 3
And condensed here to become a high-pressure liquid refrigerant, which is decompressed in the process of passing through the refrigerant pipe 7c and the pressure-reducing capillary tube 4, enters the indoor heat exchanger 5 through the refrigerant pipe 7d, and evaporates the refrigerant here. To produce a freezing effect.

さらに、冷媒配管7e,四方弁2,吸入側の冷媒配管7
fを経てアキュムレータ6に至り、そこで余剰冷媒を貯
留し、冷媒配管7gから圧縮機1に吸入されるというヒ
ートポンプ式冷凍サイクルを構成する。
Further, the refrigerant pipe 7e, the four-way valve 2, the suction side refrigerant pipe 7
A heat pump type refrigeration cycle in which the refrigerant reaches the accumulator 6 via f, stores the excess refrigerant therein, and is sucked into the compressor 1 through the refrigerant pipe 7g is configured.

このような空気調和機本体に、第1のこの発明の適正冷
媒充填量検出装置が装着されると、吐出冷媒の一部は吐
出側の冷媒配管7aからの吐出ポート8より吐出バイパ
スポート11を経て、第1のバイパス配管13,毛細管
15,第2のバイパス配管14,吸入バイパスポート1
2,吸入ポート9を経て、吸入側の冷媒配管7fに戻る
というバイパス回路を形成する。
When the proper refrigerant filling amount detection device of the first aspect of the present invention is mounted on such an air conditioner main body, a part of the discharged refrigerant is discharged from the discharge port 8 through the discharge bypass port 11 from the discharge side refrigerant pipe 7a. After that, the first bypass pipe 13, the capillary pipe 15, the second bypass pipe 14, the suction bypass port 1
2. A bypass circuit is formed that returns to the refrigerant pipe 7f on the suction side through the suction port 9.

このとき、高温高圧の過熱ガス冷媒は、第1のバイパス
配管13を通る過程で、毛細管15で減圧された低温の
冷媒と熱交換部で熱交換することにより、冷却され、高
圧の2相状態となり、毛細管15の入口に至る。
At this time, the high-temperature and high-pressure superheated gas refrigerant is cooled by exchanging heat with the low-temperature refrigerant decompressed by the capillary tube 15 in the heat exchange section in the process of passing through the first bypass pipe 13, and is in a high-pressure two-phase state. And reaches the entrance of the capillary tube 15.

この高圧の冷媒は毛細管15により減圧され、低圧の2
相冷媒となり、第2のバイパス配管14を通る過程で熱
交換部で熱交換することにより加熱され、吐出ガスとほ
ぼ同じエンタルピとなって吸入側の冷媒配管7fに戻る
という、サイクルを構成する。
This high-pressure refrigerant is decompressed by the capillary tube 15,
It becomes a phase refrigerant and is heated by exchanging heat in the heat exchanging portion in the process of passing through the second bypass pipe 14, and becomes an enthalpy almost the same as the discharge gas and returns to the refrigerant pipe 7f on the suction side, which constitutes a cycle.

第3図は以上の動作を示すモリエル線図であり、横軸に
エンタルピiをとり、縦軸に圧力pをとって示し、冷媒
バイパス回路によるサイクルを示している。
FIG. 3 is a Mollier diagram showing the above operation, in which the horizontal axis shows the enthalpy i and the vertical axis shows the pressure p, showing the cycle by the refrigerant bypass circuit.

この第3図中の(1),(2)はそれぞれ第1のバイパス配管
13の入口および出口の冷媒のi,pを表わしている。
(1) and (2) in FIG. 3 represent the refrigerant i and p at the inlet and outlet of the first bypass pipe 13, respectively.

また、(3),(4)はそれぞれ第2のバイパス配管14の入
口および出口の冷媒のi,pを表わしている。特に
(2),(3)はそれぞれ第3および第4の冷媒温度検出器1
7a,17bの設けられている位置での冷媒のi,pを
表わしている。
Further, (3) and (4) represent the refrigerant i and p at the inlet and outlet of the second bypass pipe 14, respectively. In particular
(2) and (3) are the third and fourth refrigerant temperature detectors 1 respectively
It shows i and p of the refrigerant at the positions where 7a and 17b are provided.

この第3図からもわかる通り、(2)の位置で吐出冷媒圧
力に対する飽和温度、すなわち飽和凝縮温度が(3)の位
置で吸入冷媒圧力に対する飽和温度、すなわち飽和蒸発
温度がそれぞれ検出される。
As can be seen from FIG. 3, the saturation temperature with respect to the discharge refrigerant pressure is detected at the position (2), and the saturation temperature with respect to the suction refrigerant pressure, that is, the saturated evaporation temperature is detected at the position (3).

これらの飽和凝縮温度および飽和蒸発温度は冷媒充填量
に依存することなく、常に吐出圧力および吸入圧力に対
する飽和温度を示す。
These saturated condensation temperature and saturated evaporation temperature always show the saturation temperature with respect to the discharge pressure and the suction pressure, without depending on the refrigerant charge amount.

一方、吐出側の冷媒配管7a上に設けられた第1の冷媒
温度検出器16aは吐出冷媒温度を検出し、吸入側の冷
媒配管7f上に設けられた第2の冷媒温度検出器16b
は吸入冷媒温度を検出するが、この吐出冷媒温度および
吸入冷媒温度は冷媒充填量の変化に対して第4図に示す
ように変化する。
On the other hand, the first refrigerant temperature detector 16a provided on the discharge side refrigerant pipe 7a detects the discharged refrigerant temperature, and the second refrigerant temperature detector 16b provided on the suction side refrigerant pipe 7f.
Detects the intake refrigerant temperature, and the discharge refrigerant temperature and the intake refrigerant temperature change as shown in FIG. 4 in response to changes in the refrigerant charge amount.

第4図は縦軸に冷媒温度をとり、横軸に冷媒充填量をと
って示しており、同図には飽和凝縮温度および飽和蒸発
温度の変化も示す。
In FIG. 4, the vertical axis represents the refrigerant temperature and the horizontal axis represents the refrigerant filling amount. The same figure also shows changes in the saturated condensation temperature and the saturated evaporation temperature.

第4図において矢印AおよびBに相当する冷媒充填量W
およびWはそれぞれ適正と判断される下限冷媒充填
量および上限冷媒充填量である。
Refrigerant charge amount W corresponding to arrows A and B in FIG.
A and W B are lower refrigerant charge and maximum refrigerant charging amount is determined to be proper, respectively.

また、同図において、実線は吐出冷媒温度、一点鎖線は
飽和凝縮温度、二点鎖線は吸入冷媒温度、破線は飽和蒸
発温度をそれぞれ示し、また、吸入温度と飽和蒸発温度
の差を吸入スーパーヒートSHs、吐出温度と飽和凝縮
温度との差を吐出スーパーヒートSHdとそれぞれ定義
する。
In the figure, the solid line shows the discharge refrigerant temperature, the one-dot chain line shows the saturated condensation temperature, the two-dot chain line shows the intake refrigerant temperature, and the broken line shows the saturated evaporation temperature.The difference between the intake temperature and the saturated evaporation temperature is shown in the intake superheat. SHs and the difference between the discharge temperature and the saturated condensation temperature are defined as discharge superheat SHd.

下限冷媒量Wより冷媒充填量が少ないときは、吸入ガ
ス冷媒は常にある吸入スーパーヒートSHsを持って圧
縮機に吸入される。また、吐出スーパーヒートSHdに
ついても大きな値となる。つまり、冷媒量が不足した過
熱運転となる。冷媒充填量を増してWに近づく程、吸
入スーパーヒートSHsは0に、吐出スーパーヒートS
Hdはある一定値に近づく。
When less refrigerant charge than the lower refrigerant quantity W A is sucked gas refrigerant is sucked into the compressor with the always suction superheat SHs. Further, the discharge superheat SHd also has a large value. That is, the overheat operation is performed with a shortage of the refrigerant amount. The closer to the W A by increasing the refrigerant charge, to the suction superheat SHs is 0, the discharge superheat S
Hd approaches a certain fixed value.

冷媒充填量がWとWの間にあるときは、吸入SHs
は常に0、吐出スーパーヒートSHdは常に一定値とな
る。これはアキュムレータ6に液冷媒貯留されているこ
とにより、運転状態に変化がないからである。
When the refrigerant charge amount is between W A and W B , the intake SHs
Is always 0, and the discharge superheat SHd is always a constant value. This is because the operation state does not change because the liquid refrigerant is stored in the accumulator 6.

さらに、冷媒充填量を増しWより多くなると、アキュ
ムレータ6に貯留しきれなくなり、多量の液冷媒が吸入
側の冷媒配管7gより圧縮機1に吸入されることにより
吐出温度が低下し、吐出スーパーヒートSHdも急激に
低下する。
Further, when larger than W B increased refrigerant charge, will not be sufficiently accumulated in the accumulator 6, the discharge temperature is lowered by a large amount of liquid refrigerant is sucked into the compressor 1 from the refrigerant pipe 7g on the suction side, the discharge super The heat SHd also drops sharply.

このとき、吸入スーパーヒートSHsは0のままであ
る。これはいわゆる液戻り運転であり、圧縮機1に悪影
響を及ぼす。
At this time, the suction superheat SHs remains 0. This is a so-called liquid return operation, which adversely affects the compressor 1.

したがって、WとWの間の冷媒充填量が適正冷媒充
填量であり、適正であることの判定条件は第4図からも
わかるように SHd=SHd0 ……(1) SHs=0 ……(2) である。
Therefore, the refrigerant filling amount between W A and W B is a proper refrigerant filling amount, and the determination condition of being appropriate is SHd = SHd 0 (1) SHs = 0 ... As can be seen from FIG. … (2).

上記(1)式,(2)式が同時に成立することが必要である。
SHd0とは適正冷媒充填量のときの吐出スーパーヒー
トであり、運転条件が変化しても同一の値を示し、ほぼ
SHd=40(deg)である。
It is necessary that the above equations (1) and (2) are satisfied at the same time.
SHd 0 is the discharge superheat at the proper refrigerant charge amount, shows the same value even when the operating conditions change, and is approximately SHd = 40 (deg).

空気調和機を運転しながら冷媒を充填するとき、あるい
は運転中の空気調和機について、上記吐出温度および飽
和凝縮温度をそれぞれ第1および第3の冷媒温度検出器
により検出し、また、吸入温度および飽和蒸発温度をそ
れぞれ第2および第4の冷媒温度検出器により検出し、
これらを電気信号に変え、温度情報入力装置18により
収集し、演算装置19により比較演算し、上記(1)式の
条件は第1および第3の冷媒温度検出器により検出され
る温度値が丁度等しくなることであり、上記(2)式の条
件は第2および第4の冷媒温度検出器により検出される
温度の差がSHd0に等しくなることである。
When the refrigerant is filled while the air conditioner is being operated or is being operated, the discharge temperature and the saturation condensation temperature are detected by the first and third refrigerant temperature detectors, respectively, and the intake temperature and The saturated evaporation temperature is detected by the second and fourth refrigerant temperature detectors, respectively,
These are converted into electric signals, collected by the temperature information input device 18, compared and calculated by the calculation device 19, and the condition of the above formula (1) is that the temperature values detected by the first and third refrigerant temperature detectors are exactly the same. The condition of the above equation (2) is that the difference between the temperatures detected by the second and fourth refrigerant temperature detectors becomes equal to SHd 0 .

このときが最適冷媒充填量とし、出力装置20に電気信
号を送る。この出力装置20はたとえばランプを点灯す
るなどとすることにより最適な冷媒充填量が検出でき
る。
At this time, the optimum refrigerant filling amount is set, and an electric signal is sent to the output device 20. The output device 20 can detect the optimum refrigerant charge amount by turning on a lamp, for example.

なお、上記実施例は第1のバイパス配管13および第2
のバイパス配管14の熱交換部を所定長接触させ、ろう
付けなどで固着するものを示したが、第5図に示すよう
に、熱交換部として第1のバイパス配管13を第2のバ
イパス配管14内に配設するように構成した2重管方式
で熱交換させ得るようにしても、上記実施例と同様の効
果を奏する。
In addition, the above-mentioned embodiment uses the first bypass pipe 13 and the second bypass pipe 13.
Although the heat exchange part of the bypass pipe 14 is contacted for a predetermined length and fixed by brazing or the like, as shown in FIG. 5, the first bypass pipe 13 is used as the heat exchange part and the second bypass pipe 14 is used as the heat exchange part. Even if the heat exchange can be performed by the double pipe system configured to be arranged inside 14, the same effect as that of the above-described embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり、通常の空気調和機本体
に熱交換部を有する冷媒バイパス回路を装着し、飽和凝
縮温度および飽和蒸発温度を生成,検出できるように構
成したので、精度のよい追加冷媒充填ができるとともに
運転中の空気調和機の冷媒充填量が適正かどうかの判定
ができ、しかも安価に据付現場にて行なうことができる
効果がある。
As described above, according to the present invention, the normal air conditioner main body is equipped with the refrigerant bypass circuit having the heat exchange section, and is configured to generate and detect the saturated condensation temperature and the saturated evaporation temperature. There is an effect that charging can be performed and whether or not the refrigerant charging amount of the operating air conditioner is appropriate can be determined, and that it can be performed at a low cost at the installation site.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の適正冷媒充填量検出装置の一実施例
の構成を示す図、第2図は同上適正冷媒充填量検出装置
を装着した空気調和機本体の冷媒回路の構成を示す図、
第3図は同上適正冷媒充填量検出装置の動作を示すため
のバイパスサイクルモリエ線図、第4図は同上適正冷媒
充填量検出装置の動作を説明するための冷媒温度と冷媒
充填量の関係を示す図、第5図はこの発明の適正冷媒充
填量検出装置の他の実施例の構成を示す図、第6図は従
来の適正冷媒充填量検出装置の構成を示す図、第7図は
従来の適正冷媒充填量検出装置を空気調和機本体に装着
したときの冷媒回路の構成を示す図、第8図は吸入冷媒
温度と冷媒充填量の関係を示す図である。 1……圧縮機、2……四方弁、3……室外熱交換器、4
……減圧用毛細管、5……室内熱交換器、6……アキュ
ムレータ、7a〜7g……冷媒配管、13……第1のバ
イパス配管、14……第2のバイパス配管、15……毛
細管、16a……第1の冷媒温度検出器、16b……第
2の冷媒温度検出器、17a……第3の冷媒温度検出
器、17b……第4の冷媒温度検出器、19……演算装
置 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing a configuration of an embodiment of a proper refrigerant filling amount detection device of the present invention, and FIG. 2 is a diagram showing a configuration of a refrigerant circuit of an air conditioner body equipped with the same proper refrigerant filling amount detection device,
FIG. 3 is a bypass cycle Mollier diagram for showing the operation of the proper refrigerant filling amount detection device of the above, and FIG. 4 is a relationship between the refrigerant temperature and the refrigerant filling amount for explaining the operation of the proper refrigerant filling amount detection device of the same. FIG. 5, FIG. 5 is a diagram showing the configuration of another embodiment of the proper refrigerant filling amount detection device of the present invention, FIG. 6 is a diagram showing the configuration of a conventional proper refrigerant filling amount detection device, and FIG. FIG. 8 is a diagram showing a configuration of a refrigerant circuit when the appropriate refrigerant filling amount detection device of FIG. 2 is mounted on an air conditioner body, and FIG. 8 is a diagram showing a relationship between a suction refrigerant temperature and a refrigerant filling amount. 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4
... decompression capillary tube, 5 ... indoor heat exchanger, 6 ... accumulator, 7a-7g ... refrigerant pipe, 13 ... first bypass pipe, 14 ... second bypass pipe, 15 ... capillary pipe, 16a ... 1st refrigerant temperature detector, 16b ... 2nd refrigerant temperature detector, 17a ... 3rd refrigerant temperature detector, 17b ... 4th refrigerant temperature detector, 19 ... Arithmetic unit In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、四方弁、室外熱交換器、減圧用毛
細管、室内熱交換器、アキュムレータを順次冷媒配管で
連結してなる冷媒回路を持つ空気調和機において、前記
圧縮機の吐出側の冷媒配管に一端が接続される第1のバ
イパス配管、前記圧縮機の吸入側の冷媒配管に一端が接
続され前記第1のバイパス配管と熱交換部を構成する第
2のバイパス管、前記第1および第2のバイパス配管の
他端間に接続される毛細管、前記圧縮機の吐出側と四方
弁とを連結する冷媒配管上に設置されてこの冷媒配管の
冷媒温度を検出する第1の冷媒温度検出器、前記アキュ
ムレータと四方弁とを連結する冷媒配管上に設置されて
この冷媒配管の冷媒温度を検出する第2の冷媒温度検出
器、前記第1のバイパス配管上の前記熱交換部の冷媒の
飽和凝縮温度を検出する第3の冷媒温度検出器、前記第
2のバイパス配管上の前記熱交換部の冷媒の飽和蒸発温
度を検出する第4の冷媒温度検出器、前記第1ないし第
4の冷媒温度検出器の温度情報を処理する演算装置を備
えた適正冷媒充填量検出装置。
1. An air conditioner having a refrigerant circuit in which a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing capillary tube, an indoor heat exchanger, and an accumulator are sequentially connected by a refrigerant pipe, and the discharge side of the compressor. A first bypass pipe having one end connected to the refrigerant pipe, a second bypass pipe having one end connected to the suction-side refrigerant pipe of the compressor and forming a heat exchange unit with the first bypass pipe, A first pipe that is installed on a capillary pipe connected between the other ends of the first and second bypass pipes and a refrigerant pipe that connects the discharge side of the compressor and a four-way valve to detect the refrigerant temperature of the refrigerant pipe. A temperature detector, a second refrigerant temperature detector installed on a refrigerant pipe connecting the accumulator and the four-way valve to detect the refrigerant temperature of the refrigerant pipe, and a heat exchange unit on the first bypass pipe. Check the saturated condensation temperature of the refrigerant Of the third refrigerant temperature detector, the fourth refrigerant temperature detector for detecting the saturated evaporation temperature of the refrigerant in the heat exchange section on the second bypass pipe, and the first to fourth refrigerant temperature detectors. A proper refrigerant filling amount detection device equipped with a calculation device for processing temperature information.
【請求項2】熱交換部は第1および第2の配管を所定長
密接して固続することにより熱交換するよう構成したこ
とを特徴とする特許請求の範囲第1項記載の適正冷媒充
填量検出装置。
2. The proper refrigerant charging according to claim 1, wherein the heat exchange section is configured to exchange heat by closely adhering the first and second pipes for a predetermined length and fixing them. Quantity detection device.
【請求項3】熱交換部は第2のバイパス配管内に第1の
バイパス配管を挿入した2重管構造とすることを特徴と
する特許請釜の範囲第1項記載の適正冷媒充填量検出装
置。
3. The proper refrigerant charge amount detection according to claim 1, wherein the heat exchange section has a double pipe structure in which the first bypass pipe is inserted into the second bypass pipe. apparatus.
【請求項4】演算装置は適正冷媒量の判定基準として吐
出温度と飽和凝縮温度との差である吐出スーパーヒート
および吸入温度と飽和蒸発温度との差である吸入スーパ
ーヒートを演算処理することを特徴とする特許請求の範
囲第1図記載の適正冷媒充填量検出装置。
4. The arithmetic unit calculates the discharge superheat, which is the difference between the discharge temperature and the saturated condensing temperature, and the intake superheat, which is the difference between the suction temperature and the saturated evaporation temperature, as the criterion for determining the proper refrigerant amount. A proper refrigerant filling amount detection device according to claim 1, which is characterized.
JP15087886A 1986-06-27 1986-06-27 Appropriate refrigerant filling amount detection device Expired - Lifetime JPH0610571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15087886A JPH0610571B2 (en) 1986-06-27 1986-06-27 Appropriate refrigerant filling amount detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15087886A JPH0610571B2 (en) 1986-06-27 1986-06-27 Appropriate refrigerant filling amount detection device

Publications (2)

Publication Number Publication Date
JPS636369A JPS636369A (en) 1988-01-12
JPH0610571B2 true JPH0610571B2 (en) 1994-02-09

Family

ID=15506353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15087886A Expired - Lifetime JPH0610571B2 (en) 1986-06-27 1986-06-27 Appropriate refrigerant filling amount detection device

Country Status (1)

Country Link
JP (1) JPH0610571B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104225B2 (en) * 2007-11-06 2012-12-19 ダイキン工業株式会社 Air conditioner
JP7150192B2 (en) * 2019-11-12 2022-10-07 三菱電機株式会社 Outdoor unit and refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS636369A (en) 1988-01-12

Similar Documents

Publication Publication Date Title
EP0854332B1 (en) Refrigeration air-conditioner using a non-azeotrope refrigerant and having a control-information detecting apparatus
US7617694B2 (en) Apparatus and method for controlling super-heating degree in heat pump system
US8555703B2 (en) Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
EP0237822B1 (en) Refrigerant flow control system for use with refrigerator
KR100561537B1 (en) Air conditioner
JP4036288B2 (en) Air conditioner
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
US20050081543A1 (en) System and method for controlling temperature of refrigerant in air conditioner
WO2021049463A1 (en) Refrigerant leakage determination system
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP6987269B2 (en) Refrigeration cycle device
JP3985092B2 (en) Air conditioner
JP7196187B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
JPH0610571B2 (en) Appropriate refrigerant filling amount detection device
JPS63169461A (en) Air conditioner
JPS62142971A (en) Detector for proper quantity of refrigerant filled
JP3511708B2 (en) Operation control unit for air conditioner
JPH0328270Y2 (en)
JPS61153350A (en) Air conditioner
JP7196186B2 (en) Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner
JPWO2023119605A5 (en)
JPS62299660A (en) Air conditioner
JPH0246865B2 (en) KUKICHOWAKI
JPS63169460A (en) Air conditioner
JPH0579894B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term