JPS62142971A - Detector for proper quantity of refrigerant filled - Google Patents
Detector for proper quantity of refrigerant filledInfo
- Publication number
- JPS62142971A JPS62142971A JP28501785A JP28501785A JPS62142971A JP S62142971 A JPS62142971 A JP S62142971A JP 28501785 A JP28501785 A JP 28501785A JP 28501785 A JP28501785 A JP 28501785A JP S62142971 A JPS62142971 A JP S62142971A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- bypass
- piping
- compressor
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、空気調和装置の適正冷媒量検出装置に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an appropriate refrigerant amount detection device for an air conditioner.
第6図は実願昭56−155055号明細書に示された
従来のヒートポンプ式空気調和機の冷媒回路の構成図で
ある。FIG. 6 is a block diagram of a refrigerant circuit of a conventional heat pump air conditioner disclosed in Japanese Utility Model Application No. 155055/1980.
この第6図において、冷媒回路は、圧縮機1゜四方弁2
.室外熱交換器3.減圧用毛細管4.室内熱交換器5.
アキュムレータ6により構成されており各部は冷媒配管
により連結されている。In this Fig. 6, the refrigerant circuit consists of a compressor 1 degree four-way valve 2
.. Outdoor heat exchanger 3. Capillary tube for reducing pressure 4. Indoor heat exchanger5.
It is composed of an accumulator 6, and each part is connected by refrigerant piping.
次に、冷房時の動作について説明する。第6図に示す冷
媒回路において、圧縮機1より吐出された高温、高圧の
ガス冷媒は、四方弁2を通り、室外熱交換器3に供給さ
れる。Next, the operation during cooling will be explained. In the refrigerant circuit shown in FIG. 6, high temperature, high pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and is supplied to the outdoor heat exchanger 3.
この室外熱交換器3では、室外空気との熱交換が行われ
、ガス冷媒は冷却凝縮され、高圧の2相状態から高圧の
過冷却液冷媒へ変化する。In this outdoor heat exchanger 3, heat exchange with outdoor air is performed, and the gas refrigerant is cooled and condensed, changing from a high-pressure two-phase state to a high-pressure supercooled liquid refrigerant.
この高圧の過冷却冷媒は、減圧用毛細管4を通る過程で
減圧され、低圧の2相状態となり、室内熱交換器5に供
給される。This high-pressure supercooled refrigerant is depressurized in the process of passing through the pressure-reducing capillary tube 4, becomes a low-pressure two-phase state, and is supplied to the indoor heat exchanger 5.
室内熱交換器5では、室内空気と熱交換が行われ、低圧
の2相冷媒は乾き度の大きい低圧の2相状態か、あるい
は加熱ガス冷媒に変化し、四方弁2を経て、アキュムレ
ータ6に供給され、圧縮機1に吸入される。このサイク
ルを繰り返すことにより、室内の空気が冷やされ、冷房
が行われる。In the indoor heat exchanger 5, heat is exchanged with indoor air, and the low-pressure two-phase refrigerant changes to a dry low-pressure two-phase state or heated gas refrigerant, and passes through the four-way valve 2 to the accumulator 6. is supplied and sucked into the compressor 1. By repeating this cycle, the indoor air is cooled and air conditioning is performed.
一方、暖房時には、圧縮機1より吐出された冷媒は前記
冷房時とは逆に、まず、室内熱交換器5に次いで減圧用
毛細管4を経て、室外熱交換器3に供給され、さらに、
四方弁2.アキュムレータ6を経て、圧縮機1に吸入さ
れる。On the other hand, during heating, the refrigerant discharged from the compressor 1 is first supplied to the outdoor heat exchanger 3 via the indoor heat exchanger 5, then the decompression capillary tube 4, contrary to the above-mentioned cooling time.
Four-way valve 2. It passes through the accumulator 6 and is sucked into the compressor 1.
室外熱交換器3は蒸発器として動作し、一方、室内熱交
換器5は凝縮器として動作し、上記のサイクルを繰り返
すことにより、室内の空気が暖められ、暖房を行う。The outdoor heat exchanger 3 operates as an evaporator, while the indoor heat exchanger 5 operates as a condenser, and by repeating the above cycle, indoor air is warmed and space heating is performed.
さらに、前記冷暖房サイクルを行う冷媒回路においては
、冷媒充填量変化によるサイクル運転状態の変化を第7
図により説明する。Furthermore, in the refrigerant circuit that performs the cooling/heating cycle, changes in the cycle operating state due to changes in the refrigerant filling amount are
This will be explained using figures.
この第7図は縦軸に冷媒圧力P(kg/crA)、横軸
にエンタルピ(Kcal /kg)をとったそり二線図
であり、図中の添字「1」 (実線)、r2J(一点鎖
線)、r3J (破線)で示すサイクルはそれぞれ冷
媒充填量が適切であるとき、過少であるとき、および過
大であるときの運転状態を示している。This Fig. 7 is a two-line diagram with refrigerant pressure P (kg/crA) on the vertical axis and enthalpy (Kcal/kg) on the horizontal axis. The cycles indicated by (dashed line) and r3J (dashed line) respectively indicate operating states when the refrigerant charge amount is appropriate, too little, and too much.
なお、図中のSH(スーパヒート)とは、圧縮機lの吸
入冷媒の過熱度、Xは吸入冷媒が2相状態のときの乾き
度、SC(サブクール)とは凝縮器として動作する熱交
換器出口の液冷媒の過冷却度、Tdは圧縮機1の吐出冷
媒温度、Pd、Psはそれぞれ圧縮機lの吐出圧力、吸
入圧力を示す。In addition, SH (super heat) in the figure refers to the degree of superheating of the suction refrigerant of compressor l, X represents the degree of dryness when the suction refrigerant is in a two-phase state, and SC (subcool) refers to the heat exchanger that operates as a condenser. The degree of supercooling of the liquid refrigerant at the outlet, Td is the discharge refrigerant temperature of the compressor 1, and Pd and Ps are the discharge pressure and suction pressure of the compressor 1, respectively.
同図より、それぞれの値の関係は、
SH+ <SHz (同図では「3」の場合、吸入冷
媒が2相であり、SH3は存在しない)sc2<sc、
<sc。From the same figure, the relationship between the respective values is: SH+ < SHz (In the case of "3" in the figure, the suction refrigerant is two-phase and SH3 does not exist) sc2 < sc,
<sc.
Td3<Td、<T’d2 Pd、<Pd、<Pd3 Psz <Ps、<Ta2 となっている。Td3<Td,<T'd2 Pd, <Pd, <Pd3 Psz <Ps, <Ta2 It becomes.
適正な冷媒充填量のときのサイクル「1」に対し、冷媒
充填量が過少のときのサイクル「2」では、空調能力が
不足するか、あるいは吐出温度が上昇しすぎる運転状態
を示し、冷媒充填量が過大のときのサイクル「3」では
、圧縮機の吸入冷媒が2相状態であり、圧縮機シリンダ
内で、いわゆる液圧縮を生じるような運転状態となり、
いずれも圧縮機の運転には、好ましくない。In contrast to cycle ``1'' when the refrigerant charging amount is appropriate, cycle ``2'' when the refrigerant charging amount is too low indicates an operating state in which the air conditioning capacity is insufficient or the discharge temperature rises too much, and the refrigerant charging In cycle "3" when the amount is excessive, the refrigerant sucked into the compressor is in a two-phase state, and the operating state is such that so-called liquid compression occurs in the compressor cylinder.
Both are unfavorable for compressor operation.
従来の空気調和機は以上のように構成されており、冷媒
量の充填に関しては、据付現場において、圧縮機を運転
しながら重量計器、ボンベなどで充填しているため、十
分な精度で充填されず、適切な運転状態で使用されない
か、あるいは運転中の空気調和装置が適正な運転状態で
あるか判定する条件が明確でないなどの問題点があった
。Conventional air conditioners are configured as described above, and the amount of refrigerant is filled at the installation site using a weighing machine, cylinder, etc. while the compressor is running, so it is possible to fill the refrigerant with sufficient accuracy. First, there are problems in that the air conditioner is not used in an appropriate operating state, or the conditions for determining whether the air conditioner is in an appropriate operating state are not clear.
この発明は、かかる問題点を解決するためになされたも
ので、冷媒回路の運転状態のうち、圧縮機の吸入状態を
精度よく検出し、空調機に必要かつ十分な冷媒量を充填
できる適正冷媒充填量検出装置を得ることを目的とする
。This invention was made in order to solve such problems. Among the operating conditions of the refrigerant circuit, the suction condition of the compressor can be accurately detected, and an appropriate refrigerant can be used to fill the air conditioner with the necessary and sufficient amount of refrigerant. The purpose is to obtain a filling amount detection device.
この発明に係る適正冷媒充填量検出装置は、第1のバイ
パス配管2毛細管、第2のバイパス配管を順次直列に接
続し、第1のバイパス配管と第2のバイパス配管を熱交
換するように構成し、第1の冷媒温度検出器を吸入配管
に設け、第2の冷媒温度検出器を第2のバイパス配管上
の熱交換部に設け、第1の冷媒温度検出器と第2の冷媒
温度検出器の検出温度情韻を演算処理する装置を設けた
ものである。The appropriate refrigerant filling amount detection device according to the present invention is configured to connect a first bypass pipe, two capillary tubes, and a second bypass pipe in series, and to exchange heat between the first bypass pipe and the second bypass pipe. A first refrigerant temperature sensor is provided in the suction pipe, a second refrigerant temperature sensor is provided in the heat exchange section on the second bypass pipe, and the first refrigerant temperature sensor and the second refrigerant temperature sensor are connected to each other. This device is equipped with a device that performs arithmetic processing on the temperature detected by the device.
この発明においては、圧縮機の吐出配管中の高温高圧の
過熱ガス冷媒の一部を第1のバイパス配管に通し、熱交
換部で第2のバイパス配管と熱交換することにより圧カ
一定のまま冷却され、高圧の2相状態あるいは過冷却な
液冷媒状態で毛細管により減圧し、低圧の2相状態にし
て第2のバイパス配管に通し、その通過過程で第1のバ
イパス配管と熱交換することにより加熱され、吸入圧力
に等しい圧力の過熱ガスとして吸入配管に戻し、この吸
入配管の温度を第1の冷媒温度検出器で検出し、第2の
バイパス配管の熱交換部の吸入圧力に等しい2相冷媒の
飽和蒸発温度を第2の冷媒温度検出器で検出してその雨
検出情報を演算装置で処理する。In this invention, a part of the high-temperature, high-pressure superheated gas refrigerant in the discharge pipe of the compressor is passed through the first bypass pipe, and the pressure is kept constant by exchanging heat with the second bypass pipe in the heat exchange section. The cooled, high-pressure two-phase state or supercooled liquid refrigerant state is depressurized by a capillary tube, and the refrigerant is brought to a low-pressure two-phase state and passed through the second bypass pipe, exchanging heat with the first bypass pipe during the passage process. The temperature of the suction pipe is detected by the first refrigerant temperature detector, and the temperature of the suction pipe is detected by the first refrigerant temperature detector, and the temperature of the suction pipe is 2, which is equal to the suction pressure of the heat exchange section of the second bypass pipe. The saturated evaporation temperature of the phase refrigerant is detected by the second refrigerant temperature detector, and the rain detection information is processed by the arithmetic unit.
以下、この発明の適正冷媒充填量検出装置の実施例につ
いて図面に基づき説明する。第2図はその一実施例が適
用された空気調和機本体の冷媒回路の構成図である。こ
の第1図において、第6図と同一部分には同一符号が付
されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the appropriate refrigerant filling amount detection device of the present invention will be described based on the drawings. FIG. 2 is a configuration diagram of a refrigerant circuit of an air conditioner main body to which one embodiment of the present invention is applied. In FIG. 1, the same parts as in FIG. 6 are given the same reference numerals.
この第2図の空気調和機本体は、圧縮機1.四方弁2.
室外熱交換器3.減圧用毛細管4.室内熱交換器5.ア
キュムレータ6を冷媒配管7a〜7gで接続して構成さ
れている。また、8は吐出ボート、9は吸入ボートを示
す。The main body of the air conditioner shown in FIG. 2 includes a compressor 1. Four-way valve 2.
Outdoor heat exchanger 3. Capillary tube for reducing pressure 4. Indoor heat exchanger5. It is constructed by connecting the accumulator 6 with refrigerant pipes 7a to 7g. Further, 8 indicates a discharge boat, and 9 indicates a suction boat.
この吐出ボート8には、第1図に示すように、吐出バイ
パスポート1)が接続され、吸入ボート9には、吸入バ
イパスポート12が接続されている。この第1図はこの
発明の適正冷媒充填量検出装置の構成を示すものである
。As shown in FIG. 1, the discharge boat 8 is connected to a discharge bypass port 1), and the suction boat 9 is connected to a suction bypass port 12. FIG. 1 shows the configuration of the appropriate refrigerant filling amount detection device of the present invention.
この第1図より明らかなように、吐出バイパスポートI
Iには、第1のバイパス配管I3が接続され、吸入バイ
パスポート12には、第2のバイパス配管14が接続さ
れている。As is clear from this Figure 1, the discharge bypass port I
A first bypass pipe I3 is connected to I, and a second bypass pipe 14 is connected to the suction bypass port 12.
第1のバイパス配管13と第2のバイパス配管14は所
定個所で熱交換するように、図示のごとく、所定の長さ
密着するように固着されて熱交換部が形成されている。As shown in the figure, the first bypass piping 13 and the second bypass piping 14 are closely fixed for a predetermined length to form a heat exchange section so as to exchange heat at predetermined locations.
この第1のバイパス配管13と第2のバイパス配管】4
の他端間には、毛細管15が接続されている。This first bypass piping 13 and second bypass piping】4
A capillary tube 15 is connected between the other ends.
一方、16は第1の冷媒温度検出器であり、上記吸入配
管7f上で、吸入ボート9と四方弁2との間に装着され
ている。この第1の冷媒温度検出器16の検出々力は演
算装置18に送出するようにしている。On the other hand, 16 is a first refrigerant temperature detector, which is installed between the suction boat 9 and the four-way valve 2 on the suction pipe 7f. The detection power of the first refrigerant temperature detector 16 is sent to the arithmetic unit 18.
また、上記熱交換部の第2のバイパス配管14上に、第
2の冷媒温度検出器17が設けられている。この第2の
冷媒温度検出器17の検出々力は演算装置18に送出す
るようになっている。Further, a second refrigerant temperature detector 17 is provided on the second bypass pipe 14 of the heat exchange section. The detected power of this second refrigerant temperature detector 17 is sent to an arithmetic unit 18.
演算装置18は第1の冷媒温度検出器16の検出々力と
第2の冷媒温度検出々力を入力して、演算処理を行い、
出力装置19に出力するようにしている。The calculation device 18 inputs the detection power of the first refrigerant temperature detector 16 and the second refrigerant temperature detection power, performs calculation processing,
It is configured to output to an output device 19.
次に、この発明の動作について説明する。まず、第2図
の空気調和機本体の動作から説明する。たとえば、冷房
運転の場合、圧′4′r6機1から吐出された高温高圧
のガス冷媒は、吐出配管7a、四方弁2、配管7b、室
外熱交換器3に入り、ここで凝縮し、液冷媒となり、配
管7cに至る。Next, the operation of this invention will be explained. First, the operation of the air conditioner body shown in FIG. 2 will be explained. For example, in the case of cooling operation, the high temperature and high pressure gas refrigerant discharged from the pressure '4'r6 machine 1 enters the discharge pipe 7a, the four-way valve 2, the pipe 7b, and the outdoor heat exchanger 3, where it condenses and becomes liquid. It becomes a refrigerant and reaches the pipe 7c.
さらに、減圧用毛細管4により減圧され、配管7dを経
て室内熱交換器5に入り、ここで冷媒を蒸発させること
により、冷媒効果を出し、さらに、配管7e、四方弁2
.配管7fを経てアキュムレータ6に至り、そこで余剰
冷媒を蓄え、配管7gから圧縮機lに吸入されるという
、ヒートポンプ式冷凍サイクルを構成する。Furthermore, the pressure is reduced by the decompression capillary tube 4, and the refrigerant enters the indoor heat exchanger 5 through the pipe 7d, where the refrigerant is evaporated to produce a refrigerant effect.
.. The refrigerant reaches the accumulator 6 via the piping 7f, stores surplus refrigerant there, and is sucked into the compressor l through the piping 7g, forming a heat pump type refrigeration cycle.
このような空気調和機本体に、第1図のこの発明の装置
が装着されると、吐出冷媒の一部は吐出配管7aから吐
出ボート8より吐出バイパスボートllを経て、第1の
バイパス配管131毛細管15、第2のバイパス配管1
4.吸入バイパスポート12.吸入ボート9を経て、吸
入配管7fに戻るという、バイパス回路を形成する。When the apparatus of the present invention shown in FIG. 1 is installed in such an air conditioner main body, a part of the discharged refrigerant passes through the discharge pipe 7a, the discharge boat 8, the discharge bypass boat ll, and the first bypass pipe 131. Capillary tube 15, second bypass piping 1
4. Inhalation bypass port 12. A bypass circuit is formed in which the air passes through the suction boat 9 and returns to the suction pipe 7f.
このとき、高温高圧の過熱ガス冷媒は、第1のバイパス
配管13を通る過程で、毛細管15で減圧された低温の
冷媒と熱交換部で熱交換することにより、冷却され、高
圧の2相状態または過冷却な液冷媒となり、毛細管15
の入口に至る。At this time, the high-temperature, high-pressure superheated gas refrigerant is cooled in the process of passing through the first bypass pipe 13 by exchanging heat with the low-temperature refrigerant whose pressure has been reduced in the capillary tube 15 in the heat exchange section, and is brought into a high-pressure two-phase state. Or it becomes a supercooled liquid refrigerant, and the capillary tube 15
leading to the entrance.
この高圧の冷媒は毛細管15により減圧され、低圧の2
相冷媒となり、第2のバイパス配管I4を通る過程で、
熱交換部で熱交換することにより加熱され、吐出ガスと
ほぼ同じエンタルピとなって、吸入配管7fに戻るとい
う、サイクルを構成する。This high-pressure refrigerant is depressurized by the capillary tube 15, and the low-pressure refrigerant is
In the process of becoming a phase refrigerant and passing through the second bypass pipe I4,
A cycle is formed in which the gas is heated by exchanging heat in the heat exchange section, has almost the same enthalpy as the discharged gas, and returns to the suction pipe 7f.
第3図は以上の動作を示すモリエル線図であり、横軸に
エンタルピiをとり、縦軸に圧力Pをとって示し、冷媒
バイパス回路によるサイクルを示している。FIG. 3 is a Mollier diagram showing the above operation, with enthalpy i plotted on the horizontal axis and pressure P plotted on the vertical axis, showing a cycle using a refrigerant bypass circuit.
この第3図中のrlJ、r2Jはそれぞれ第1のバイパ
ス配管13の入口および出口の冷媒のi。In FIG. 3, rlJ and r2J are the refrigerant i at the inlet and outlet of the first bypass pipe 13, respectively.
pを表わしている。It represents p.
また、「3」、r5Jはそれぞれ第2のバイパス配管1
4の入口および出口の冷媒のt+ pを表わしており
、「4」は第2の冷媒温度検出器17の設けられている
位置での冷媒のi、pを表わしている。Moreover, "3" and r5J are respectively the second bypass piping 1
"4" represents the refrigerant i and p at the position where the second refrigerant temperature sensor 17 is provided.
この第3図からも明らかなように、「4」の位置で吸入
冷媒圧力に対する飽和温度、すなわち、飽和蒸発温度が
検出される。この飽和蒸発温度は冷媒充填量に依存する
ことなく、常に吸入圧力に対する飽和温度を示す。As is clear from FIG. 3, the saturation temperature relative to the suction refrigerant pressure, that is, the saturated evaporation temperature, is detected at position "4". This saturated evaporation temperature does not depend on the amount of refrigerant charged and always indicates the saturated temperature with respect to the suction pressure.
一方、吸入配管7「に設けられた第1の冷媒温度検出器
16は、吸入冷媒の温度を検出するが、この吸入温度は
冷媒充填量に対して、第4図に示すように変化する。On the other hand, the first refrigerant temperature detector 16 provided in the suction pipe 7'' detects the temperature of the suction refrigerant, and this suction temperature changes as shown in FIG. 4 with respect to the refrigerant filling amount.
この第4図は縦軸に吸入冷媒温度をとり、横軸に冷媒充
填量をとって示しており、図中A点が最適冷媒充填量で
あり、このA点により冷媒充填量が少ないときは吸入冷
媒温度は飽和蒸発温度より常に高く、ある過熱度(吸入
冷媒温度と飽和蒸発温度との差)をもって吸入される。This Figure 4 shows the suction refrigerant temperature on the vertical axis and the refrigerant charging amount on the horizontal axis. Point A in the figure is the optimal refrigerant charging amount, and when the refrigerant charging amount is small due to this point A, The suction refrigerant temperature is always higher than the saturated evaporation temperature, and is sucked in with a certain degree of superheat (difference between the suction refrigerant temperature and the saturated evaporation temperature).
また、A点より冷媒充填量が多いときは、余剰冷媒が生
じ、液冷媒として、アキュムレータフに貯留されるため
、吸入配管7fには、2相の冷媒が流れることによる吸
入温度は飽和蒸発温度に等しくなる。Furthermore, when the amount of refrigerant charged is larger than point A, surplus refrigerant is generated and stored in the accumulator trough as liquid refrigerant, so the suction temperature due to two-phase refrigerant flowing through the suction pipe 7f is the saturated evaporation temperature. is equal to
したがって、空気調和機本体を運転しながら冷媒を充填
するとき、上記吸入冷媒温度と飽和蒸発温度をそれぞれ
第1および第2の冷媒温度検出器16.17により検出
し、これを電気信号に変え、演算装置18により比較し
、両者の温度値が丁度等しくなったところが最適冷媒量
とし、出力装置19に電気信号を送る。Therefore, when charging the refrigerant while operating the air conditioner main body, the intake refrigerant temperature and the saturated evaporation temperature are detected by the first and second refrigerant temperature detectors 16 and 17, respectively, and converted into electrical signals. The arithmetic unit 18 compares the two, and when the two temperature values are exactly equal, the optimum amount of refrigerant is determined, and an electric signal is sent to the output device 19.
この出力装置19は、たとえばランプなどを点灯するな
どとすることにより、最適な冷媒充填量が検出できる。This output device 19 can detect the optimum refrigerant charging amount by, for example, lighting a lamp or the like.
なお、上記実施例は第1のバイパス配管13および第2
のバイパス配管14の熱交換部を所定長接触させ、ろう
付けなどで固着するものを示したが、第5図に示すよう
に、熱交換部として、第1のバイパス配管13を第2の
バイパス配管14内に配設するように構成した2重管方
式で熱交換させ得るようにしても、上記実施例と同様の
効果を奏する。Note that in the above embodiment, the first bypass pipe 13 and the second
Although the heat exchange section of the bypass pipe 14 is brought into contact with the heat exchange section of the bypass pipe 14 for a predetermined length and fixed by brazing or the like, as shown in FIG. Even if heat exchange is performed using a double pipe system arranged inside the pipe 14, the same effects as in the above embodiment can be obtained.
この発明は以上説明したとおり、通常の空気調和機本体
に熱交換部を有する冷媒バイパス回路を装着し、飽和蒸
発温度を生成、検出できるように構成したので、精度の
よい追加冷媒充填が安価に据付現場にて行うことができ
る効果がある。As explained above, this invention is configured such that a refrigerant bypass circuit having a heat exchange section is attached to the main body of a normal air conditioner, and the saturated evaporation temperature can be generated and detected, making it possible to accurately charge additional refrigerant at low cost. This has the effect of being able to be carried out at the installation site.
第1図はこの発明の適正冷媒充填量検出装置の一実施例
の構成を示す図、第2図は同上適正冷媒充填量検出装置
を適用した空気調和機本体の冷媒回路の構成を示す図、
第3図は同上適正冷媒充填量検出装置の動作を説明する
ためのバイパスサイクルモリエ線図、第4図は同上適正
冷媒充填量検出装置の動作を説明するための吸入冷媒温
度と冷媒充填量の関係を示す図、第5図はこの発明の適
正冷媒充填量検出装置の他の実施例の構成を示す図、第
6図は従来の空気調和機の冷媒回路の構成を示す図、第
7図は従来の空気調和機における冷媒充填量による運転
状態変化を示すモリエ線図である。
1・・・圧縮機、2・・・四方弁、3・・・室外機、4
・・・減圧用毛細管、5・・・室内熱交換器、6・・・
アキュムレータ、13・・・第1のバイパス配管、14
・・・第2のバイパス配管、15・・・毛細管、16・
・・第1の冷媒温度検出器、17・・・第2の冷媒温度
検出器、18・・・演算装置、19・・・出力装置、な
お、図中同一符号は同一または相当部分を示す。FIG. 1 is a diagram showing the configuration of an embodiment of the appropriate refrigerant charging amount detection device of the present invention, and FIG. 2 is a diagram showing the configuration of a refrigerant circuit of an air conditioner body to which the above-mentioned appropriate refrigerant charging amount detection device is applied.
Fig. 3 is a bypass cycle Mollier diagram for explaining the operation of the appropriate refrigerant charge amount detection device as above, and Fig. 4 shows the intake refrigerant temperature and refrigerant charge amount for explaining the operation of the above appropriate refrigerant charge amount detection device. FIG. 5 is a diagram showing the configuration of another embodiment of the appropriate refrigerant filling amount detection device of the present invention, FIG. 6 is a diagram showing the configuration of a refrigerant circuit of a conventional air conditioner, and FIG. 7 is a diagram showing the relationship. is a Mollier diagram showing changes in operating conditions depending on the amount of refrigerant charged in a conventional air conditioner. 1... Compressor, 2... Four-way valve, 3... Outdoor unit, 4
...Capillary tube for depressurization, 5...Indoor heat exchanger, 6...
Accumulator, 13...first bypass piping, 14
...Second bypass piping, 15...Capillary tube, 16.
. . . first refrigerant temperature detector, 17 . . . second refrigerant temperature detector, 18 . . . arithmetic device, 19 .
Claims (3)
,室内熱交換器,アキュムレータを順次冷媒配管で連結
することにより構成した冷媒回路をもつ空気調和機にお
いて、前記圧縮機の吐出配管に一端が接続される第1の
バイパス配管、前記圧縮機の吸入配管に一端が接続され
前記第1のバイパス配管と熱交換部を構成する第2のバ
イパス配管、前記第1および第2のバイパス配管の他端
間に接続される毛細管、前記アキュムレータと四方弁と
を連結する配管上に設置されてこの配管の冷媒温度を検
出する第1の冷媒温度検出器、前記第2のバイパス配管
上の前記熱交換部の冷媒の飽和蒸発温度を検出する第2
の冷媒温度検出器、前記第1および第2の冷媒温度検出
器の検出温度情報を処理する演算装置を備えてなる適正
冷媒充填量検出装置。(1) In an air conditioner having a refrigerant circuit configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, a decompression capillary, an indoor heat exchanger, and an accumulator with refrigerant piping, the discharge piping of the compressor a first bypass pipe whose one end is connected to the suction pipe of the compressor, a second bypass pipe whose one end is connected to the suction pipe of the compressor and forms a heat exchange section with the first bypass pipe, and the first and second bypass pipes. A capillary tube connected between the other ends of the piping, a first refrigerant temperature detector installed on the piping connecting the accumulator and the four-way valve to detect the refrigerant temperature of this piping, and a first refrigerant temperature detector on the second bypass piping. a second detecting the saturated evaporation temperature of the refrigerant in the heat exchange section;
An appropriate refrigerant filling amount detection device comprising: a refrigerant temperature detector; and an arithmetic unit that processes temperature information detected by the first and second refrigerant temperature detectors.
定の長さに密接して固着して構成することを特徴とする
特許請求の範囲第1項記載の適正冷媒充填量検出装置。(2) The appropriate refrigerant filling amount detection device according to claim 1, wherein the heat exchange section is constructed by closely fixing the first and second bypass pipes to a predetermined length.
パス配管を挿入した2重管構造とすることを特徴とする
特許請求の範囲第1項記載の適正冷媒充填量検出装置。(3) The appropriate refrigerant filling amount detection device according to claim 1, wherein the heat exchange section has a double pipe structure in which the first bypass pipe is inserted into the second bypass pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28501785A JPS62142971A (en) | 1985-12-18 | 1985-12-18 | Detector for proper quantity of refrigerant filled |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28501785A JPS62142971A (en) | 1985-12-18 | 1985-12-18 | Detector for proper quantity of refrigerant filled |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62142971A true JPS62142971A (en) | 1987-06-26 |
Family
ID=17686073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28501785A Pending JPS62142971A (en) | 1985-12-18 | 1985-12-18 | Detector for proper quantity of refrigerant filled |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62142971A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192090A (en) * | 2008-02-12 | 2009-08-27 | Denso Corp | Refrigerating cycle device |
-
1985
- 1985-12-18 JP JP28501785A patent/JPS62142971A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192090A (en) * | 2008-02-12 | 2009-08-27 | Denso Corp | Refrigerating cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4884365B2 (en) | Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device | |
US20150211772A1 (en) | Refrigeration cycle apparatus | |
US20050081543A1 (en) | System and method for controlling temperature of refrigerant in air conditioner | |
JP2004044883A (en) | Air conditioner | |
JP2943613B2 (en) | Refrigeration air conditioner using non-azeotropic mixed refrigerant | |
JP5369953B2 (en) | Multi-room air conditioner performance calculator | |
JPWO2020070793A1 (en) | Refrigeration cycle equipment | |
JP2948105B2 (en) | Refrigeration air conditioner using non-azeotropic mixed refrigerant | |
JP3000805B2 (en) | Controller for refrigerant circuit | |
JPS62142971A (en) | Detector for proper quantity of refrigerant filled | |
CN113720047A (en) | Air conditioning system | |
JPH11248294A (en) | Refrigerating machine | |
JP2904354B2 (en) | Air conditioner | |
JPH0328270Y2 (en) | ||
JPS636369A (en) | Proper refrigerant filling-quantity detector | |
JPS63169461A (en) | Air conditioner | |
JPS61153350A (en) | Air conditioner | |
JP4330220B2 (en) | Thermal storage air conditioner | |
JP2692895B2 (en) | Air conditioner | |
JPH046371A (en) | Multi-room type air-conditioning machine | |
CA1198905A (en) | Heat pump apparatus and method of operating the same | |
JPS62288441A (en) | Multichamber air conditioner | |
JPS61140756A (en) | Air conditioner | |
KR100212667B1 (en) | Cooling cycle device | |
JPH01169272A (en) | Device for coolant |