JPS61153350A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS61153350A
JPS61153350A JP59278929A JP27892984A JPS61153350A JP S61153350 A JPS61153350 A JP S61153350A JP 59278929 A JP59278929 A JP 59278929A JP 27892984 A JP27892984 A JP 27892984A JP S61153350 A JPS61153350 A JP S61153350A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
pipe
temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278929A
Other languages
Japanese (ja)
Inventor
康雄 中島
玉利 純次
寿彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59278929A priority Critical patent/JPS61153350A/en
Publication of JPS61153350A publication Critical patent/JPS61153350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は空気調和機にかがり、特に冷媒回路の冷媒温
度信号に応じ圧縮機の駆動周波数等の制御可能な空気調
和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to air conditioners, and more particularly to an air conditioner in which the driving frequency of a compressor, etc. can be controlled in accordance with a refrigerant temperature signal of a refrigerant circuit.

[従来の技術] 第9図は1例えば特開昭59−77268号公報に示さ
れた従来の空気調和機を示す冷媒回路図であり、図にお
いて(1)は圧縮機、(2)は西方弁、(3)は室外熱
交換器、(4)は電動式膨張弁、(5)は室内熱交換器
で、これらを冷媒配管(6)で連結してヒートポンプ式
冷凍サイクルの冷媒回路(7)を構成している。 (6
a)〜(6f)は冷媒配管の各部配管を示す。(8a)
 (8b)は膨張弁(4)の両側の冷媒配管(6c) 
(6d)から圧縮機(1)の吸入配管(6f)へバイパ
ス回路をなす毛細管、(9)は吸入配管(6f)に設け
られた吸入冷媒温度検出用の冷媒温度検出器。
[Prior Art] Fig. 9 is a refrigerant circuit diagram showing a conventional air conditioner disclosed in, for example, Japanese Unexamined Patent Publication No. 59-77268. The valve (3) is an outdoor heat exchanger, (4) is an electric expansion valve, and (5) is an indoor heat exchanger. These are connected by refrigerant piping (6) to form the refrigerant circuit (7) of the heat pump refrigeration cycle. ). (6
a) to (6f) show each part of the refrigerant piping. (8a)
(8b) is the refrigerant pipe (6c) on both sides of the expansion valve (4)
A capillary tube forming a bypass circuit from (6d) to the suction pipe (6f) of the compressor (1), and (9) a refrigerant temperature detector for detecting the suction refrigerant temperature provided in the suction pipe (6f).

(lO)は毛細管(8a) (8b)の出口(8c)に
設けられた吸入圧力飽和温度検出用の冷媒温度検出器で
ある。
(lO) is a refrigerant temperature detector for detecting the suction pressure saturation temperature, which is provided at the outlet (8c) of the capillary tube (8a) (8b).

次にそれの動作について説明する。冷房運転時において
は、四方弁(2)は図示位置にあり、圧縮1(1)より
吐出された高温高圧のガス冷媒は配管(6a)、四方弁
(2)、配管(6b)を通り室外熱交換器(3)に入り
、ここで凝縮して液冷媒となり配管(6C)にいたる。
Next, we will explain its operation. During cooling operation, the four-way valve (2) is in the position shown, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 (1) passes through the pipe (6a), the four-way valve (2), and the pipe (6b) to the outside. It enters the heat exchanger (3), where it condenses to become a liquid refrigerant and reaches the pipe (6C).

液冷媒の大部分は電動式膨張弁(4)で減圧され配管(
6d)から室内熱交換器(5)へ入り。
Most of the liquid refrigerant is depressurized by the electric expansion valve (4) and transferred to the piping (
6d) into the indoor heat exchanger (5).

ここで室内の熱を奪うことにより蒸発して低温低圧のガ
ス冷媒となり、配管(6e)、四方弁(2)、配管(6
f)をへて圧縮機(1)に吸入される。一方一部の液冷
媒は冷媒配管(6c)からバイパス用毛細管(8a)を
通り未蒸発の状態で吸入配管(6f)に吐出し圧縮機(
1)に戻る。ここで吸入配管(6f)中の蒸発後の冷媒
温度を冷媒温度検出器(9)で検出し、毛細管(8a)
をへてそれの出口(8C)における冷媒から冷媒温度検
出器(10)により吸入(蒸発)圧力に対応した飽和温
度、即ち飽和蒸発温度を検出する。これらの冷媒温度検
出器(9) (10)からの温度信号の差からスーパー
ヒート量を検出し、そのスーパーヒート量が所定の幅内
に入るよう制御装置によって電動式膨張弁(4)を制御
する。なお暖房時には冷媒配管(6d)側が高圧となる
のでバイパス冷媒は毛細管(8b)をへて圧縮機(1)
に戻る。
By removing heat from the room, it evaporates and becomes a low-temperature, low-pressure gas refrigerant.
f) and is sucked into the compressor (1). On the other hand, some of the liquid refrigerant passes through the bypass capillary (8a) from the refrigerant pipe (6c) and is discharged to the suction pipe (6f) in an unevaporated state to the compressor (
Return to 1). Here, the refrigerant temperature after evaporation in the suction pipe (6f) is detected by the refrigerant temperature detector (9), and the temperature of the refrigerant after evaporation in the suction pipe (6f) is detected, and
After passing through the refrigerant at its outlet (8C), a refrigerant temperature detector (10) detects the saturation temperature corresponding to the suction (evaporation) pressure, that is, the saturated evaporation temperature. The amount of superheat is detected from the difference in temperature signals from these refrigerant temperature detectors (9) and (10), and the control device controls the electric expansion valve (4) so that the amount of superheat falls within a predetermined range. do. During heating, the pressure on the refrigerant pipe (6d) is high, so the bypass refrigerant passes through the capillary tube (8b) to the compressor (1).
Return to

[発明が解決しようとする問題点] 上述の従来の空気調和機では、蒸発圧力における飽和温
度、即ち飽和蒸発温度の検出は容易であるが、凝縮圧力
における飽和温度、即ち飽和凝縮温度を検出することが
できず、圧縮機の回転数制御を含むより高度な制御には
適さないという欠点があった。飽和凝縮温度を検出する
には、内外熱交換器温度を検出するか圧力センサを取付
ける必要があり、何れも高価で複雑となるという問題点
があった。
[Problems to be Solved by the Invention] In the conventional air conditioner described above, it is easy to detect the saturation temperature at the evaporation pressure, that is, the saturated evaporation temperature, but it is difficult to detect the saturation temperature at the condensation pressure, that is, the saturated condensation temperature. Therefore, it has the disadvantage that it is not suitable for more advanced control including compressor rotation speed control. In order to detect the saturated condensation temperature, it is necessary to detect the temperature of the internal and external heat exchangers or to attach a pressure sensor, both of which are expensive and complicated.

この発明は以上の問題点を解消するためになされたもの
で油分離器の油回収回路を有効に利用して飽和凝縮温度
を検出し、より高度な制御の可能な空気調和機を提供す
ることを目的としている。
This invention was made in order to solve the above problems, and it is an object of the present invention to effectively utilize the oil recovery circuit of an oil separator to detect the saturated condensation temperature, and to provide an air conditioner capable of more advanced control. It is an object.

[問題点を解決するための手段] この発明にかかる空気調和機は、圧縮機の吐出配管に設
けられた油分離器と圧縮機の吸入配管との間に順次直列
に連結した入口管、毛細管及び出口管からなる油回収回
路を設け、入口管にその中の冷媒温度を2相域迄冷却す
る熱交換部を設けると共に、上記毛細管の入口側に冷媒
温度検出器を取付け、この温度検出器からの冷媒温度信
号に応じて圧縮機の付勢電源周波数を制御するよう構成
したものである。
[Means for Solving the Problems] The air conditioner according to the present invention includes an inlet pipe and a capillary tube connected in series between an oil separator provided in the discharge pipe of the compressor and the suction pipe of the compressor. An oil recovery circuit consisting of an oil recovery circuit and an outlet pipe is provided, and the inlet pipe is provided with a heat exchange section for cooling the refrigerant therein to a two-phase region, and a refrigerant temperature detector is attached to the inlet side of the capillary tube, and this temperature detector The power supply frequency for energizing the compressor is controlled according to the refrigerant temperature signal from the compressor.

[作 用] この発明における空気調和機は、圧縮機の吐出配管中の
油分離器の油戻し口から回収される油と共に、高温高圧
の過熱域にあるガス冷媒の一部を油回収回路の入口管に
通し、それの熱交換部で熱交換して圧力をほぼ一定の状
態で冷媒温度を2相域まで冷却し、この状態での冷媒か
らの冷媒温度検出器により吐出(凝縮)圧力における飽
和温度(飽和凝縮温度)を検出する。この吐出圧力にお
ける2相域の冷媒を第2の毛細管により吸入圧力、即ち
蒸発圧力に相当する2相域まで減圧し、出口管に通して
吸入配管に戻す。そして上記冷媒温度検出器からの飽和
凝縮温度に応じた温度信号からの吸入冷媒温度信号に応
じ、制御装置によって圧縮機の付勢電源周波数を最適に
制御する。
[Function] The air conditioner according to the present invention collects oil from the oil return port of the oil separator in the discharge pipe of the compressor, as well as a part of the gas refrigerant in the high-temperature, high-pressure superheated region through the oil recovery circuit. The refrigerant temperature is cooled down to a two-phase region while the pressure is kept almost constant through heat exchange in the inlet pipe, and the refrigerant temperature is measured at the discharge (condensing) pressure by the refrigerant temperature sensor in this state. Detect saturation temperature (saturated condensation temperature). The refrigerant in the two-phase region at the discharge pressure is reduced in pressure by the second capillary to a two-phase region corresponding to the suction pressure, that is, the evaporation pressure, and is returned to the suction pipe through the outlet pipe. Then, the control device optimally controls the energizing power frequency of the compressor in accordance with the suction refrigerant temperature signal from the temperature signal corresponding to the saturated condensation temperature from the refrigerant temperature detector.

[実施例コ 以下この発明の一実施例を図について説明する。[Example code] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す冷媒回路図で。FIG. 1 is a refrigerant circuit diagram showing one embodiment of the present invention.

図において(1)〜(7)及び(9)は第9図の同一符
号と同−或は相当部分を示している。 (11)は圧縮
機(1)の吐出配管(6a)中に設けられた油分離器で
In the figure, (1) to (7) and (9) indicate the same or corresponding parts as the same reference numerals in FIG. (11) is an oil separator installed in the discharge pipe (6a) of the compressor (1).

圧縮機(1)、四方弁(2)、室外熱交換器(3)、室
内熱交換器(5)、膨張弁(4)と共に冷媒配管(6)
で連結されヒートポンプ式冷媒回路(7)を構成してい
る。この油分離器(11)は圧縮機(1)から冷媒と一
緒に吐出配管(6a)に吐出された冷凍機油を捕捉して
吸入配管(6f)に戻すものである。 (12)はこの
油分離器(11)の油戻し口(lla)と吸入配管(6
f)間に設けられた油回収回路で、その詳細が第2図に
示されている。
Compressor (1), four-way valve (2), outdoor heat exchanger (3), indoor heat exchanger (5), expansion valve (4) and refrigerant piping (6)
are connected to form a heat pump refrigerant circuit (7). The oil separator (11) captures the refrigerating machine oil discharged from the compressor (1) together with the refrigerant into the discharge pipe (6a) and returns it to the suction pipe (6f). (12) is the oil return port (lla) of this oil separator (11) and the suction pipe (6).
f) an intervening oil recovery circuit, the details of which are shown in FIG.

第2図は第1図油回収回路(!2)の−例を示す構成図
で、図において(13)は、それの入口(13a)が第
1図油分離器油戻し口(lla)に連がる入口、 (1
4)はこの入口(13)の出口(13b)に連結された
毛細管、(15)はそれの入口(15b)が毛細管(1
4)に連結され。
Figure 2 is a configuration diagram showing an example of the oil recovery circuit (!2) in Figure 1. In the figure, (13) indicates that its inlet (13a) is connected to the oil return port (lla) of the oil separator in Figure 1. A series of entrances, (1
4) is a capillary tube connected to the outlet (13b) of this inlet (13), and (15) is a capillary tube whose inlet (15b) is connected to the capillary tube (15).
4).

出口(15a)が第1図の吸入配管(6f)に連がる出
口管である。これら入口管(13) +出口管(15)
の内径は上記毛細管(14)の内径より大になされ、そ
して入口管(13)と出口管(15)が所定値りだけ並
行して接触して配置され、ろうづけで固着され接触熱交
換部(16)を構成している。(17)は毛細管(14
)入口付近に取り付けられた飽和凝縮温度検出用の冷媒
温度検出器である。
The outlet (15a) is an outlet pipe connected to the suction pipe (6f) in FIG. These inlet pipes (13) + outlet pipes (15)
The inner diameter of the capillary tube (14) is made larger than the inner diameter of the capillary tube (14), and the inlet tube (13) and the outlet tube (15) are placed in parallel contact with each other by a predetermined amount and are fixed by brazing to form a contact heat exchange section. (16). (17) is a capillary tube (14
) This is a refrigerant temperature detector installed near the inlet to detect the saturated condensation temperature.

次にその動作を説明する6例えば冷房運転の場合、圧縮
機(1)から吐出され、油分離器(11)で冷凍機油を
分離した大部分の高温高圧のガス冷媒は吐出配管(6a
)、四方弁(2)、配管(6b)を通り室外熱交換器(
3)に入り、ここで凝縮し液冷媒となり配管(6c)に
いたる。続いて膨張弁(4)で減圧され配管(6d)を
へて室内熱交換器(5)に入り、ここで冷媒を蒸発させ
ることにより冷房効果を出し、配管(6e)、四方弁(
2)をへて吸入管(6f)に入り、圧縮機(1)に戻る
というヒートポンプ式冷凍サイクルを構成する。一方吐
出冷媒の一部は油分離器(11)の油戻し口(lla)
から分離された冷凍機油と゛共に油回収回路(12)を
通り吸入配管(6f)へ入るという流れを形成するが、
この際高温高圧の過熱ガス冷媒は入口管(13)を通る
過程で1毛細管(14)で減圧された低温の冷媒と接触
熱交換部(16)により熱交換することにより冷やされ
、入口管(13)の出口(13b)で高圧の2相冷媒と
なる。この高圧の2相冷媒は毛細管(14)により低圧
の2相冷媒となり、出口管(15)に入り、出口管(1
5)を通る過程で接触熱交換部(16)により熱交換す
ることにより加熱され、この油回収回路(12)の入口
(13a)の冷媒のエンタルピとほぼ同じエンタルどの
低圧過熱ガス冷媒となり吸入配管(6f)に戻る。
Next, its operation will be explained 6. For example, in the case of cooling operation, most of the high temperature and high pressure gas refrigerant is discharged from the compressor (1) and the oil separator (11) separates the refrigerating machine oil from the discharge pipe (6a
), the four-way valve (2), and the outdoor heat exchanger (
3), where it condenses to become a liquid refrigerant and reaches the pipe (6c). Subsequently, the pressure is reduced by the expansion valve (4), and the refrigerant passes through the pipe (6d) and enters the indoor heat exchanger (5), where the refrigerant is evaporated to produce a cooling effect.
2), enters the suction pipe (6f), and returns to the compressor (1), forming a heat pump type refrigeration cycle. On the other hand, a part of the discharged refrigerant is sent to the oil return port (lla) of the oil separator (11).
A flow is formed in which the oil and the refrigerating machine oil separated from the oil pass through the oil recovery circuit (12) and enter the suction pipe (6f).
At this time, the high-temperature, high-pressure superheated gas refrigerant passes through the inlet pipe (13) and is cooled by heat exchange with the low-temperature refrigerant whose pressure is reduced in one capillary (14) in the contact heat exchange section (16). 13) becomes a high-pressure two-phase refrigerant at the outlet (13b). This high-pressure two-phase refrigerant becomes a low-pressure two-phase refrigerant through the capillary tube (14), enters the outlet pipe (15), and enters the outlet pipe (15).
5), it is heated by heat exchange in the contact heat exchange section (16), and becomes a low-pressure superheated gas refrigerant with almost the same enthalpy as the refrigerant at the inlet (13a) of this oil recovery circuit (12). Return to (6f).

第4図は以上の動作を示すモリエル線図で、横軸はエン
タルピi、縦軸は圧力Pを表わし、破線で示したサイク
ル(18)は、主冷媒回路(7)を流九る冷媒のサイク
ルを、実線で示したサイクル(19)は冷媒バイパス回
路(12)のサイクル、即ち飽和温度検知サイクルであ
る。
Figure 4 is a Mollier diagram showing the above operation, where the horizontal axis represents enthalpy i and the vertical axis represents pressure P. The cycle (18) shown by the broken line is the flow of refrigerant flowing through the main refrigerant circuit (7). A cycle (19) indicated by a solid line is a cycle of the refrigerant bypass circuit (12), that is, a saturation temperature detection cycle.

なお図中(6a) 〜(6f)、(13a) (13b
) (15a) (15b)は冷房時のこれらサイクル
(18) (19)における各配管、毛細管の冷媒のi
−Pを表わしている。
In addition, (6a) to (6f), (13a) (13b) in the figure
) (15a) (15b) are the refrigerant i of each pipe and capillary in these cycles (18) and (19) during cooling.
- represents P.

入口管の出口(13b)に取り付けた冷媒温度検出器(
18)で飽和凝縮温度を検出し、後述のように圧縮機の
付勢電源周波数を制御する。
A refrigerant temperature detector (
18) detects the saturated condensation temperature and controls the compressor energizing power frequency as described below.

次に上述の冷媒温度検出器(I7)によって検出された
冷媒温度に応じた圧縮機の運転周波数制御について説明
する。
Next, the operation frequency control of the compressor according to the refrigerant temperature detected by the refrigerant temperature detector (I7) described above will be explained.

第3図はこの発明の一実施例である空気調和機の制御系
統を示すブロック線図で1図において(1)(17)は
第1図、第2図と同様の圧縮機、及び飽和凝縮温度検出
用冷媒温度検出器、(20)はこの冷媒温度検出器(1
7)からの信号を入力する温度入力回路、(21)はマ
イクロコンピュータ等からなる制御装置、 (22)は
圧縮4fi(1)の回転数を可変にするインバータから
なる可変周波数電源である。
Fig. 3 is a block diagram showing the control system of an air conditioner that is an embodiment of the present invention. In Fig. 1, (1) and (17) are the same compressors as in Figs. The refrigerant temperature detector (20) for temperature detection is this refrigerant temperature detector (1
(21) is a control device consisting of a microcomputer, etc.; and (22) is a variable frequency power supply consisting of an inverter that makes the rotation speed of the compression 4fi (1) variable.

以上の制御系統の動作を第5図、第6図及び第7図によ
って説明する。第5図は制御のために制御装置(21)
で実行されるプログラムのフローチャート、第6図は圧
縮機(1)の許容最高回転数、即ち許容最高電源周波数
F waxと、冷媒温度検出器(17)で検出される飽
和凝縮温度CTとの関係を示した制御特性図、第7図は
室内空気温度差ΔTと圧縮機(1)の要求周波数との関
係を示す制御特性図である。一般に飽和凝縮温度CTは
圧縮機の吐出冷媒圧力の上昇と共に上昇するので、第6
図は圧縮機の許容回転数即ちF l1axが吐出冷媒圧
力の上昇によって減少することを示している。これはC
Tが高い時、即ち吐出冷媒圧力が高い時に高い周波数、
即ち回転数で圧縮機を運転すると、軸受の焼付きなど故
障の原因となるからである。そのためCTとFmaxの
関係は第6図の範囲内に入れておく必要がある。
The operation of the above control system will be explained with reference to FIGS. 5, 6, and 7. Figure 5 shows a control device (21) for control.
The flowchart of the program executed in FIG. 6 shows the relationship between the maximum allowable rotation speed of the compressor (1), that is, the maximum allowable power supply frequency Fwax, and the saturated condensation temperature CT detected by the refrigerant temperature detector (17). FIG. 7 is a control characteristic diagram showing the relationship between the indoor air temperature difference ΔT and the required frequency of the compressor (1). In general, the saturated condensing temperature CT increases with the increase in pressure of the refrigerant discharged from the compressor.
The figure shows that the permissible rotational speed of the compressor, F l1ax , decreases with an increase in discharge refrigerant pressure. This is C
When T is high, that is, when the discharge refrigerant pressure is high, the frequency is high;
That is, if the compressor is operated at high rotational speed, it may cause failures such as seizure of the bearings. Therefore, it is necessary to keep the relationship between CT and Fmax within the range shown in FIG.

そこで、第5図におけるステップ(23)で、制御装!
!(21)は冷媒温度検出器(17)で検出され温度入
力回路(21)をへて入力された飽和凝縮温度CTによ
り、第6図に示す関係のFmaxを演算し決定する。次
にステップ(24)で室内熱交換器(5)の吸込み空気
温度と設定温度との差ΔTにより、第7図に示す関係の
要求される圧縮機(1)の付勢電源周波数(以下要求周
波数という)Frを決定する。そしてステップ(25)
でこの要求周波数Frと上記許容最高周波数Fmaxの
大小を比較し、もしFrがFmaxより大きければステ
ップ(26)で出力周波数FoをF maxとし1反対
に小さければステップ(27)で出力周波数FOを要求
周波数Frとし、ステップ(28)でこの出力周波数F
oをインバータである可変周波数電源(22)に出力し
、圧縮機(1)の回転数を制御する6 第8図はこの発明の他の実施例を示す冷媒回路図で、油
回収回路(12)の熱交換部(16)を、入口管(13
)と圧縮機(1)の吸入配管(6f)との間で構成して
いる。即ち入口管(13)中の高温高圧のガス冷媒を吸
入配管(6f)との間で熱交換することにより冷やし2
相冷媒とする。この2相冷媒の温度を冷媒温度検出器(
17)で検出することにより、上述と同様に飽和凝縮温
度を検出することができる。
Therefore, in step (23) in FIG. 5, the control device!
! (21) calculates and determines Fmax in the relationship shown in FIG. 6 using the saturated condensing temperature CT detected by the refrigerant temperature detector (17) and input through the temperature input circuit (21). Next, in step (24), depending on the difference ΔT between the intake air temperature of the indoor heat exchanger (5) and the set temperature, the energizing power frequency of the compressor (1) (hereinafter the required Fr (referred to as frequency) is determined. and step (25)
Then, compare the required frequency Fr with the maximum allowable frequency Fmax, and if Fr is larger than Fmax, set the output frequency Fo to Fmax in step (26), and if it is smaller, set the output frequency FO to Fmax in step (27). The required frequency Fr is set as the output frequency F in step (28).
o is output to a variable frequency power supply (22) which is an inverter to control the rotation speed of the compressor (1).6 Figure 8 is a refrigerant circuit diagram showing another embodiment of the present invention. ) of the heat exchange section (16) of the inlet pipe (13
) and the suction pipe (6f) of the compressor (1). That is, the high-temperature, high-pressure gas refrigerant in the inlet pipe (13) is cooled by exchanging heat with the suction pipe (6f).
Use as a phase refrigerant. The temperature of this two-phase refrigerant is measured by a refrigerant temperature detector (
17), it is possible to detect the saturated condensation temperature in the same manner as described above.

なお以上の実施例においては膨張弁の制御については説
明を省略したが、毛細管(14)の出口で飽和蒸発温度
が検出可能なことは明らかなので、この温度を検出して
これと吸入管(6f)の冷媒温度との温度差からスーパ
ヒート量を算出し、これで膨張弁制御が可能であること
はもちろんである。
Although the explanation of the control of the expansion valve was omitted in the above embodiment, it is clear that the saturated evaporation temperature can be detected at the outlet of the capillary tube (14), so this temperature is detected and the control of the suction tube (6f) is performed. It goes without saying that the superheat amount can be calculated from the temperature difference between the temperature of the refrigerant and the refrigerant temperature, and the expansion valve can be controlled using this amount.

[発明の効果コ 以上のようにこの発明によれば油分離器の油回収回路に
熱交換部を設は飽和凝縮温度を検出可能としたので、比
較的安価な構成で圧縮機の可変周波数電源を制御する高
度な制御が可能な、信頼性の高い空気調和機が得られる
効果を有している。
[Effects of the Invention] As described above, according to the present invention, the heat exchange section is installed in the oil recovery circuit of the oil separator, making it possible to detect the saturated condensation temperature. This has the effect of providing a highly reliable air conditioner that is capable of advanced control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す冷媒回路図、第2図
はそれの油回収回路の一例を示す構成図、第3図はそれ
の制御系統を示すブロック線図、第4図はそれの動作説
明用のモリエル線図、第5図はそれの制御動作を説明す
るフローチャート、第6図、第7図はそれの制御特性図
、第8図はこの発明の他の実施例を示す冷媒回路図、第
9図は従来の空気調和機の制御系統を示すブロック線図
である。 図において(1)は圧縮機、(2)は四方弁、(3)は
室外熱交換器、(4)は膨張弁、(5)は室内熱交換器
、(6)は冷媒配管、(6a)は吐出配管、 (6f)
は吸入配管、(7)は冷媒回路、(9)は吸入管冷媒温
度検出器、(11)は油分離器、(lla)はそれの油
戻し口、(12)は油回収回路、 (13)は入口管、
(13a)はそれの入口、(13b)はそれの出口、(
14)は毛細管、 (15)は出口管、(15a)はそ
れの出口、(15b)はそれの入口、(16)は接触熱
交換部、(17)は冷媒温度検出器、(20)は温度入
力回路、(21)は制御装置、(22)は可変周波数電
源である。 図中同一符号は同−或は相当部分を示す。
Fig. 1 is a refrigerant circuit diagram showing one embodiment of this invention, Fig. 2 is a configuration diagram showing an example of an oil recovery circuit thereof, Fig. 3 is a block diagram showing its control system, and Fig. 4 is a block diagram showing an example of its oil recovery circuit. A Mollier diagram for explaining its operation, FIG. 5 is a flowchart for explaining its control operation, FIGS. 6 and 7 are its control characteristic diagrams, and FIG. 8 shows another embodiment of the present invention. Refrigerant Circuit Diagram, FIG. 9 is a block diagram showing a control system of a conventional air conditioner. In the figure, (1) is the compressor, (2) is the four-way valve, (3) is the outdoor heat exchanger, (4) is the expansion valve, (5) is the indoor heat exchanger, (6) is the refrigerant pipe, (6a ) is the discharge pipe, (6f)
is the suction pipe, (7) is the refrigerant circuit, (9) is the suction pipe refrigerant temperature detector, (11) is the oil separator, (lla) is its oil return port, (12) is the oil recovery circuit, (13) ) is the inlet pipe,
(13a) is its entrance, (13b) is its exit, (
14) is a capillary tube, (15) is an outlet pipe, (15a) is its outlet, (15b) is its inlet, (16) is a contact heat exchange section, (17) is a refrigerant temperature detector, (20) is A temperature input circuit, (21) a control device, and (22) a variable frequency power supply. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)可変周波数電源で付勢される圧縮機、油分離器、
四方弁、室外熱交換器、膨張弁及び室内交換器等を冷媒
配管で連結してなる冷媒回路を備えた空気調和機におい
て、上記圧縮機の吐出配管に設けられた油分離器と、圧
縮機の吸入配管との間に、入口が上記油分離器の油戻し
口に連がり、その中の冷媒温度を2相域迄冷却する熱交
換部を有する入口管、出口が上記吸入配管に連がる出口
管、及び上記入口管の出口と上記出口管の入口を連結す
る毛細管とからなる油回収回路と、この油回収回路の毛
細管の入口側に取付けた冷媒温度検出器と、この冷媒温
度検出器からの冷媒温度信号に応じて上記圧縮機の付勢
電源周波数を制御する制御装置を設けたことを特徴とす
る空気調和機。
(1) Compressor, oil separator powered by variable frequency power supply,
In an air conditioner equipped with a refrigerant circuit in which a four-way valve, an outdoor heat exchanger, an expansion valve, an indoor exchanger, etc. are connected by refrigerant piping, an oil separator provided in the discharge piping of the compressor and the compressor An inlet pipe having an inlet connected to the oil return port of the oil separator and a heat exchange section for cooling the refrigerant therein to a two-phase region, and an outlet connected to the suction pipe. an oil recovery circuit comprising an outlet pipe, and a capillary tube connecting the outlet of the inlet pipe and the inlet of the outlet pipe; a refrigerant temperature detector attached to the inlet side of the capillary of the oil recovery circuit; 1. An air conditioner comprising: a control device for controlling a power supply frequency for energizing the compressor according to a refrigerant temperature signal from the air conditioner.
(2)上記油回収回路入口管と出口管とを熱交換させ、
上記入口管の熱交換部とした特許請求の範囲第1項記載
の空気調和機。
(2) exchanging heat between the oil recovery circuit inlet pipe and outlet pipe;
The air conditioner according to claim 1, wherein the inlet pipe is a heat exchange section.
(3)上記油回収回路入口管と上記圧縮機の吸入配管と
を熱交換させ上記入口管の熱交換部とした特許請求の範
囲第1項記載の空気調和機。
(3) The air conditioner according to claim 1, wherein the oil recovery circuit inlet pipe and the suction pipe of the compressor exchange heat, and the inlet pipe is used as a heat exchange part.
JP59278929A 1984-12-26 1984-12-26 Air conditioner Pending JPS61153350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278929A JPS61153350A (en) 1984-12-26 1984-12-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278929A JPS61153350A (en) 1984-12-26 1984-12-26 Air conditioner

Publications (1)

Publication Number Publication Date
JPS61153350A true JPS61153350A (en) 1986-07-12

Family

ID=17604041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278929A Pending JPS61153350A (en) 1984-12-26 1984-12-26 Air conditioner

Country Status (1)

Country Link
JP (1) JPS61153350A (en)

Similar Documents

Publication Publication Date Title
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
JPH01131851A (en) Air conditioner
JP7401795B2 (en) Refrigerant leak determination system
JP2006250440A (en) Air conditioning system
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP2000304373A (en) Engine heat pump
JPH09170828A (en) Oil recovery controller of multiple type air conditioner
JPS61153350A (en) Air conditioner
JPH0328270Y2 (en)
JPS6222962A (en) Refrigerator
JP2904354B2 (en) Air conditioner
JPH03164661A (en) Air conditioner
JP3511708B2 (en) Operation control unit for air conditioner
JPH10160273A (en) Air conditioner
JPH0610571B2 (en) Appropriate refrigerant filling amount detection device
JPS62142971A (en) Detector for proper quantity of refrigerant filled
JPS61140756A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPS62213669A (en) Method of controlling operation of air conditioner
JPS62299660A (en) Air conditioner
JPS63169461A (en) Air conditioner
KR102550626B1 (en) Air conditioner and controlling method of thereof
JPS60133267A (en) Separate type air conditioner
JPS6345030B2 (en)
JPS63263354A (en) Air conditioner