JPS63263354A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS63263354A
JPS63263354A JP9923387A JP9923387A JPS63263354A JP S63263354 A JPS63263354 A JP S63263354A JP 9923387 A JP9923387 A JP 9923387A JP 9923387 A JP9923387 A JP 9923387A JP S63263354 A JPS63263354 A JP S63263354A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
temperature
sensor
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9923387A
Other languages
Japanese (ja)
Inventor
岩本 哲正
八田 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9923387A priority Critical patent/JPS63263354A/en
Publication of JPS63263354A publication Critical patent/JPS63263354A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気調和機に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an air conditioner.

従来の技術 従来、空気調和機に用いられる冷媒の制御に関して、キ
ャピラリを用いて、蒸発器内を流れる冷媒量を制御する
方式が多く用いられていたが、最近は、電気的信号を与
え、絞り量を可変とし、負荷に対応した流量となる様に
制御する電動膨張弁が多く用いられる様になった。そし
て、電動膨張弁の開度を決定するに際して、蒸発器の出
口側の冷媒の圧力の飽和温度と、冷媒の実際の温度との
温度差、すなわち、過熱度を検知して、過熱度が一定と
なる機制御している。
Conventional technology In the past, many methods were used to control the refrigerant used in air conditioners, using capillaries to control the amount of refrigerant flowing through the evaporator. Electric expansion valves, which have a variable flow rate and control the flow rate to match the load, have come into widespread use. When determining the opening degree of the electric expansion valve, the temperature difference between the saturation temperature of the refrigerant pressure on the outlet side of the evaporator and the actual temperature of the refrigerant, that is, the degree of superheat, is detected, and the degree of superheat is kept constant. The machine is controlled.

以下、図面を参照しながら従来の冷媒制御例及び検知例
について説明する。
Hereinafter, conventional refrigerant control examples and detection examples will be described with reference to the drawings.

第2図は、従来の空気調和機の冷凍サイクル図で、1は
圧縮機、2は室外側に設けられる凝縮器、3は室内側に
設けられて、電気的信号を得て駆動する電動膨張弁、4
は室内側に設けられる蒸発器で、冷媒管6によって環状
に接続して冷凍サイクルを形成している。
Figure 2 is a refrigeration cycle diagram of a conventional air conditioner, where 1 is a compressor, 2 is a condenser installed outside the room, and 3 is an electric expansion installed inside the room that is driven by receiving an electrical signal. valve, 4
is an evaporator provided on the indoor side, which is connected in a ring shape through a refrigerant pipe 6 to form a refrigeration cycle.

また、蒸発器4の出口部6は、室内ファン7の風上側の
蒸発器4よりも風上側に位置する熱交換管8と接続され
、室内側の吸込み空気温度と熱交換している。
Further, the outlet section 6 of the evaporator 4 is connected to a heat exchange pipe 8 located on the windward side of the evaporator 4 on the windward side of the indoor fan 7, and exchanges heat with the indoor suction air temperature.

そして、熱交換管8の出口部9には、管壁に密着する様
に固定され、管の温度を検知する第1センサー1oが設
けられている。又、蒸発器4の入口部11には、電動膨
張弁3で絞られ、二相流となった冷媒の飽和温度を検知
するための第2センサー12が管に密着されて設けられ
ている。そして、電動膨張弁3の絞り量を制御するため
に駆動部13が設けられてお9、第1センサー1oと第
2センサー12の温度差を検知し、蒸発器4での圧力損
失に相当する温度値を記憶しておき第1センサー10部
での過熱度を計算し、電動膨張弁3に信号を与えている
A first sensor 1o is provided at the outlet portion 9 of the heat exchange tube 8, which is fixed in close contact with the tube wall and detects the temperature of the tube. Further, a second sensor 12 is provided at the inlet portion 11 of the evaporator 4 in close contact with a pipe for detecting the saturation temperature of the refrigerant which has been throttled by the electric expansion valve 3 and has become a two-phase flow. A drive unit 13 is provided to control the throttle amount of the electric expansion valve 3, and detects the temperature difference between the first sensor 1o and the second sensor 12, which corresponds to the pressure loss in the evaporator 4. The temperature value is stored, the degree of superheating at the first sensor 10 is calculated, and a signal is given to the electric expansion valve 3.

次に、以上の様に構成された空気調和機の作用に関して
説明する。
Next, the operation of the air conditioner configured as above will be explained.

冷媒の流れ方向を第2図に実線矢印にて示す。The flow direction of the refrigerant is shown in FIG. 2 by solid arrows.

圧縮機1より吐出された冷媒は、凝縮器2にて凝縮液化
された後、電動膨張弁3にて絞られ、蒸発器4へと導か
れ蒸発が行なわれる。この時、室内ファン7にて、熱交
換管8と蒸発器4の周囲の空気を吸い込んで、冷房を行
なう。そして、蒸発器4の出口部6にて蒸発器4で充分
熱交換し、完全に冷媒を蒸発させた後、熱交換管8にて
室内側空気によって熱交換され、冷媒は過熱される。
The refrigerant discharged from the compressor 1 is condensed and liquefied in a condenser 2, then throttled by an electric expansion valve 3, and guided to an evaporator 4 where it is evaporated. At this time, the indoor fan 7 sucks air around the heat exchange tube 8 and the evaporator 4 to perform cooling. After sufficient heat is exchanged in the evaporator 4 at the outlet 6 of the evaporator 4 to completely evaporate the refrigerant, heat is exchanged with the indoor air in the heat exchange tube 8, and the refrigerant is superheated.

その後、出口部9を経て、圧縮機1に戻る。この時の電
動膨張弁3の開閉絞り作用は、蒸発器4の入口部11に
設けられ、冷媒の飽和温度を検知する第2センサー12
と、出口部9に設けられ、過熱冷媒の温度を検知する第
1センサー1oとの温度基及び蒸発器4内の圧力損失に
相当する温度値をあらかじめ記憶しておき、温度差に圧
力損失分の温度値を加えて演算する駆動部13で演算処
理した後、適正の過熱度になる様に設定することによわ
行なっている。ただしこの適正の過熱度とは、第1.第
2センサー10.12の温度検知バラツキを吸収させる
ためのもので、現実には過熱度0が理想的である。
Thereafter, it returns to the compressor 1 via the outlet section 9. The opening/closing throttling action of the electric expansion valve 3 at this time is controlled by a second sensor 12 provided at the inlet portion 11 of the evaporator 4 and detecting the saturation temperature of the refrigerant.
A temperature value corresponding to the pressure loss in the evaporator 4 and the temperature base of the first sensor 1o provided at the outlet part 9 and detecting the temperature of the superheated refrigerant are stored in advance, and the pressure loss is added to the temperature difference. This is done by adding and calculating the temperature value in the drive unit 13, which performs calculation processing, and then sets the temperature to an appropriate degree of superheat. However, this appropriate degree of superheating is defined as 1. This is to absorb variations in temperature detection by the second sensors 10 and 12, and in reality, a superheat degree of 0 is ideal.

発明が解決しようとする問題点 しかしながら上記の様な構成では蒸発器で過熱度が0と
なる様充分に蒸発させ、蒸発器を有効に使うがために、
別途センサーのバラツキを吸収するため過熱度を大きく
させて、過熱度検知し易くするための熱交換管を必要と
し、コスト的にも余分の費用を要する問題があった。
Problems to be Solved by the Invention However, in the above configuration, the evaporator evaporates sufficiently so that the degree of superheating becomes 0, and the evaporator is used effectively.
A separate heat exchange tube is required to increase the degree of superheat to absorb variations in the sensor and to make it easier to detect the degree of superheat, which poses a problem in that it requires additional costs.

本発明は上記問題点に鑑み蒸発器での過熱度が0となる
様に制御する空気調和機を提供する。
In view of the above problems, the present invention provides an air conditioner that controls the degree of superheating in the evaporator to zero.

問題点を解決するための手段 上記問題点を解決するために、本発明の空気調和機は凝
縮液冷媒と蒸発器出口部の配管を熱交換させる構成とし
た。
Means for Solving the Problems In order to solve the above problems, the air conditioner of the present invention is configured to exchange heat between the condensate refrigerant and the piping at the outlet of the evaporator.

作  用 本発明は、上記した構成によわ、蒸発器出口部がガス状
の過熱度が0の冷媒であれば容易に温度上昇を行なわせ
、二相流の液冷媒を含んでセれば、温度上昇を行なわせ
ない様に熱交換量を制御しているため、蒸発器出口側の
冷媒の状態を容易に検知することができる。
According to the above-described configuration, the present invention can easily raise the temperature of the evaporator outlet if it is a gaseous refrigerant with a degree of superheat of 0, and if it contains a two-phase liquid refrigerant, Since the amount of heat exchange is controlled so that the temperature does not rise, the state of the refrigerant on the evaporator outlet side can be easily detected.

実施例 以下本発明の一実施例の空気調和機について図面を参照
しながら説明する。
EXAMPLE Hereinafter, an air conditioner according to an example of the present invention will be described with reference to the drawings.

尚、従来と同一構成については同一番号を符してその詳
細な説明を省略する。
Incidentally, the same components as those in the prior art are denoted by the same numbers and detailed explanation thereof will be omitted.

蒸発器4の出口部6と圧縮機1との間には、凝縮器2と
電動膨張弁3との間と密着させて熱交換させた結合部1
4が設けられており、結合部14と圧縮機1との間の冷
媒管6には、冷媒の温度を検知するための第1センサー
10が備えられている。
Between the outlet part 6 of the evaporator 4 and the compressor 1, there is a connecting part 1 which is brought into close contact with the condenser 2 and the electric expansion valve 3 for heat exchange.
4, and the refrigerant pipe 6 between the coupling part 14 and the compressor 1 is provided with a first sensor 10 for detecting the temperature of the refrigerant.

以上の様に構成された空気調和機について、以下その作
用について説明する。ただし、基本的な冷媒流れについ
てはすでに、従来例にて説明しているので、ここでは凝
縮器よシの冷媒流れを中心に説明する。
The operation of the air conditioner configured as described above will be explained below. However, since the basic flow of refrigerant has already been explained in the conventional example, the flow of refrigerant through the condenser will be mainly explained here.

図中、冷媒の流れ方向を実線矢印にて示す。In the figure, the flow direction of the refrigerant is indicated by a solid arrow.

凝縮器2より流れた凝縮液冷媒は、蒸発器4の出口部6
に設けられた結合部14にて熱交換され、凝縮液冷媒が
さらに冷却され、冷媒のエンタルピをさらに下げた過冷
却液とした後、電動膨張弁3にて絞られ、ガスと液の混
合状態すなわち、二相流としている。従って、冷媒は、
飽和状態となっているため、圧力と温度は完全に相関関
係を有しており、飽和温度を示している。この状態の温
度を第2センサー12で検知し、駆動部13にインプッ
トしている。そして冷媒は、蒸発器4に入り、冷房を行
なって完全に蒸発し、蒸発器4の出口部6にて過熱度0
の状態となり、さらに結合部14へと導かれ、結合部1
4にて凝縮器2よりの液冷媒と熱交換し過熱度が更に上
昇させられる。この時、蒸発器4よりの冷媒は完全に蒸
発し冷房を有効に行なった後であるため、冷房能力の低
下の問題は全くない。
The condensed refrigerant flowing from the condenser 2 is transferred to the outlet section 6 of the evaporator 4.
The condensed liquid refrigerant is further cooled by heat exchange at the coupling part 14 provided in the refrigerant, and becomes a supercooled liquid with further lowered refrigerant enthalpy, which is then throttled by the electric expansion valve 3 to form a mixed state of gas and liquid. In other words, it is a two-phase flow. Therefore, the refrigerant is
Since it is in a saturated state, pressure and temperature have a perfect correlation and indicate the saturation temperature. The temperature in this state is detected by the second sensor 12 and input to the drive unit 13. The refrigerant then enters the evaporator 4, performs cooling and evaporates completely, and reaches the outlet 6 of the evaporator 4 with a degree of superheat of 0.
state, and is further guided to the joint 14, and the joint 1
At step 4, heat is exchanged with the liquid refrigerant from the condenser 2, and the degree of superheating is further increased. At this time, since the refrigerant from the evaporator 4 has completely evaporated and cooling has been effectively performed, there is no problem of reduction in cooling capacity.

そして、結合部14よシ流れた冷媒は、第1センサー1
0によって、圧縮機1と結合部14との間の温度を検知
し、駆動部13に温度値をインプットしている。
The refrigerant flowing through the joint 14 is then transferred to the first sensor 1.
0, the temperature between the compressor 1 and the coupling section 14 is detected, and the temperature value is input to the drive section 13.

この様にして、駆動部13には、第2センサー12と、
第1センサー10の温度情報がインプットされ、更に、
蒸発器4の圧力損失分の温度構正値が加算されることに
よシ、′第2センサー10部の冷媒の過熱状態が算出さ
れている。この時の第2センサー10部の過熱状態は、
結合部14の長さによって決定され、センサーの温度検
知バラツキを充分吸収し得る最低値にて設定されている
In this way, the drive unit 13 includes the second sensor 12 and
The temperature information of the first sensor 10 is input, and further,
By adding the temperature configuration value corresponding to the pressure loss of the evaporator 4, the superheated state of the refrigerant at the second sensor 10 is calculated. The overheating state of the second sensor 10 at this time is
It is determined by the length of the coupling portion 14, and is set at the minimum value that can sufficiently absorb variations in temperature detection by the sensor.

そして、冷媒は、冷媒管5を経て、圧縮機1に戻り、冷
凍サイクルを形成する。
The refrigerant then returns to the compressor 1 through the refrigerant pipe 5, forming a refrigeration cycle.

以上の様に、本実施例によれば、結合部にて凝縮液冷媒
と蒸発器出口部の温度とを熱交換するため、過熱度0の
冷媒はす早く過熱され、センサーのバラツキを充分吸収
するだけの温度上昇値が得られる。
As described above, according to this embodiment, since heat is exchanged between the condensed refrigerant and the temperature at the evaporator outlet at the joint, the refrigerant with a degree of superheat of 0 is quickly superheated, and sensor variations are sufficiently absorbed. The temperature rise value is obtained as much as possible.

発明の効果 以上の様に本発明は、凝縮器と電動膨張弁との間と蒸発
器の出口部とを熱交換させた結合部を設け、結合部と圧
縮機との間に温度を第1センサーにて検知し、さらに、
蒸発器の入口部の温度を検知する第2センサーを設け、
第1センサーと第2センサーの温度差にて電動膨張弁を
駆動させる構成であるから、凝縮液冷媒の過冷却度が上
昇し冷房能力の向上が図れると同時に、蒸発器出口部の
過熱度が0の理想状態であっても結合部にて、熱交換さ
れ、センサーのバラツキを充分吸収し得る温度差の過熱
度が任意に設定できるものである。
Effects of the Invention As described above, the present invention provides a connecting portion that exchanges heat between the condenser and the electric expansion valve and the outlet of the evaporator, and maintains a temperature between the connecting portion and the compressor. Detected by a sensor, and further
A second sensor is provided to detect the temperature at the inlet of the evaporator,
Since the electric expansion valve is driven by the temperature difference between the first sensor and the second sensor, the degree of supercooling of the condensed liquid refrigerant increases and the cooling capacity is improved, and at the same time, the degree of superheating at the outlet of the evaporator is reduced. Even in the ideal state of 0, heat is exchanged at the joint, and the degree of superheating of the temperature difference that can sufficiently absorb sensor variations can be set arbitrarily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に於ける空気調和機の冷凍サ
イクル図、第2図は従来の空気調和機の冷凍サイクル図
である。 1・・・・・−圧縮機、2・・・・・・凝縮器、3・・
・・・・電動膨張弁、4・・・・・・蒸発器、5・・・
・・・冷媒管、6・・・・・・出口部、1o・・・・・
・第1センサー、12・・・・・・第2センサー、14
・・・・・・結合部。
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigeration cycle diagram of a conventional air conditioner. 1... - Compressor, 2... Condenser, 3...
...Electric expansion valve, 4...Evaporator, 5...
...refrigerant pipe, 6...outlet section, 1o...
・First sensor, 12...Second sensor, 14
・・・・・・Connecting part.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、電動膨張弁、蒸発器とを冷媒管で環状
に接続して冷凍サイクルを形成し、前記蒸発器の出口部
と、前記凝縮器と電動膨張弁との間の冷媒管を密着させ
た結合部を設け、かつ、前記結合部と前記圧縮機との間
の冷媒管の温度を検知する第1センサーを設け、前記第
1センサーで検知する温度と、前記蒸発器もしくは蒸発
器入口部の温度を検知する第2センサーとの温度差によ
わ前記電動膨張弁の開閉を制御する構成とした空気調和
機。
A compressor, a condenser, an electric expansion valve, and an evaporator are connected in a ring with a refrigerant pipe to form a refrigeration cycle, and a refrigerant pipe is connected between an outlet of the evaporator, the condenser, and the electric expansion valve. a first sensor for detecting the temperature of a refrigerant pipe between the joint and the compressor; the temperature detected by the first sensor and the evaporator or evaporator; An air conditioner configured to control opening and closing of the electric expansion valve according to a temperature difference between the electric expansion valve and a second sensor that detects the temperature of the inlet.
JP9923387A 1987-04-22 1987-04-22 Air conditioner Pending JPS63263354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9923387A JPS63263354A (en) 1987-04-22 1987-04-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9923387A JPS63263354A (en) 1987-04-22 1987-04-22 Air conditioner

Publications (1)

Publication Number Publication Date
JPS63263354A true JPS63263354A (en) 1988-10-31

Family

ID=14241961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9923387A Pending JPS63263354A (en) 1987-04-22 1987-04-22 Air conditioner

Country Status (1)

Country Link
JP (1) JPS63263354A (en)

Similar Documents

Publication Publication Date Title
KR100561537B1 (en) Air conditioner
JPS63263354A (en) Air conditioner
JPS63290354A (en) Heat pump type air conditioner
JP2904354B2 (en) Air conditioner
JPH0328270Y2 (en)
JPH03164661A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPS6345030B2 (en)
JPS63290368A (en) Heat pump type air conditioner
JPH035826Y2 (en)
JPS63286664A (en) Heat pump type air conditioner
JPH085184A (en) Multi-room type air conditioner
JPS6139256Y2 (en)
JPH0633910B2 (en) Heat pump refrigeration system
JPS61153350A (en) Air conditioner
JPS60133267A (en) Separate type air conditioner
JP2542649B2 (en) Air conditioner
JPS63311051A (en) Heat pump type air conditioner
JPS595810Y2 (en) Heat pump air conditioner
JPS5969663A (en) Refrigeration cycle
JP2005241169A (en) Refrigerant circuit of air conditioner
JPS62272071A (en) Refrigerant controller for refrigerator
JPH0610571B2 (en) Appropriate refrigerant filling amount detection device
JP2001221527A (en) Heat pump type air conditioner
JPS5977268A (en) Air conditioner