JPS63290354A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63290354A
JPS63290354A JP12430787A JP12430787A JPS63290354A JP S63290354 A JPS63290354 A JP S63290354A JP 12430787 A JP12430787 A JP 12430787A JP 12430787 A JP12430787 A JP 12430787A JP S63290354 A JPS63290354 A JP S63290354A
Authority
JP
Japan
Prior art keywords
electric expansion
expansion valve
heat exchanger
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12430787A
Other languages
Japanese (ja)
Inventor
八田 博司
岩本 哲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP12430787A priority Critical patent/JPS63290354A/en
Publication of JPS63290354A publication Critical patent/JPS63290354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷媒流量制御装置として、電動膨張弁を採用
した、ヒートポンプ式空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a heat pump type air conditioner that employs an electric expansion valve as a refrigerant flow rate control device.

従来の技術 近年、ヒートポンプ式空気調和機は、空調負荷の大小に
応じて、可変の周波数電源を用いて、圧縮機を駆動し運
転状態に合った最適な冷媒流量を決定するために、冷凍
サイクルの冷媒制御装置として、電動膨張弁が採用され
ている。
Conventional technology In recent years, heat pump type air conditioners have been developed using variable frequency power sources to drive the compressor and determine the optimal refrigerant flow rate according to the operating conditions, depending on the size of the air conditioning load. An electric expansion valve is used as the refrigerant control device.

第4図は従来のヒートポンプ式空気調和機の冷却システ
ム図を示すものである。第4図において1は可変の周波
数電源12で駆動される圧縮機である。2は四方弁で冷
房サイクル、暖房サイクルを切り換える。3は室外熱交
換器、4は室外側の電動膨張弁、6.6′は室内側の電
動膨張弁、7゜7′は室内熱交換器であり、これらを環
状に接続して冷凍サイクルを構成している。室外側の電
動膨張弁4は、暖房運転時に室外熱交換器3の中間部と
出口部に設けられた温度センサー20,210差温を制
御器3oにて演算することによって開度を決定し、冷媒
流量制御を行なう。室内側の電動膨張弁6.6′は冷房
運転時に室内熱交換器7,7′の中間部と出口部に設け
られた温度センサー22゜23及び22’、23’の差
温を制御器31.31’にて演算することによって開度
を決定し、冷媒流量制御を行なう。9.9′は逆止弁で
あり10.10’は電磁弁であり、逆止弁9.9′と電
磁弁10 、10’はそれぞれ並列に配管されている。
FIG. 4 shows a cooling system diagram of a conventional heat pump type air conditioner. In FIG. 4, 1 is a compressor driven by a variable frequency power source 12. In FIG. 2 is a four-way valve that switches between cooling and heating cycles. 3 is an outdoor heat exchanger, 4 is an electric expansion valve on the outdoor side, 6.6' is an electric expansion valve on the indoor side, and 7°7' is an indoor heat exchanger.These are connected in a ring to form a refrigeration cycle. It consists of The electric expansion valve 4 on the outdoor side determines the opening degree by calculating the difference in temperature between the temperature sensors 20 and 210 provided at the intermediate part and the outlet part of the outdoor heat exchanger 3 with the controller 3o during heating operation, Performs refrigerant flow control. The electric expansion valve 6, 6' on the indoor side controls the temperature difference between the temperature sensors 22, 23 and 22', 23' provided at the intermediate part and the outlet part of the indoor heat exchangers 7, 7' to the controller 31 during cooling operation. The opening degree is determined by calculating .31', and the refrigerant flow rate is controlled. 9.9' is a check valve, 10.10' is a solenoid valve, and the check valve 9.9' and the solenoid valves 10 and 10' are connected in parallel.

11はアキュムレーターである。12は可変の周波数電
源で、空調負荷の大小に応じて、周波数を可変として、
圧縮機を駆動する。
11 is an accumulator. Reference numeral 12 is a variable frequency power supply, which changes the frequency according to the size of the air conditioning load.
Drive the compressor.

以上のように構成された空気調和機について、以下その
動作について説明する。
The operation of the air conditioner configured as above will be described below.

まず冷房時について説明する。冷房時は圧縮機1で圧縮
された高温・高圧の冷媒ガスは四方弁2を通り、室外熱
交換器3で液化する。冷房時、室外側電動膨張弁4は全
開とし、ここでは、絞シを与えないため、室内機には、
高圧液冷媒が入る。更に、室内側の電動膨張弁6.6′
が室内熱交換器7゜7′の中間部の配管温度と出口部の
配管温度の差を制御器31.31’にてそれぞれ演算す
ることによって開度を決定し、冷媒に絞りをあたえるた
め、低温低圧の気液二相の冷媒となシ、室内熱交換器7
.7′で蒸発ガス化してアキュムレーター11に至シ、
圧縮機1に戻るサイクルを繰り返す。
First, the cooling time will be explained. During cooling, high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and is liquefied in the outdoor heat exchanger 3. During cooling, the outdoor electric expansion valve 4 is fully opened and no throttling is applied to the indoor unit.
High pressure liquid refrigerant enters. Furthermore, the electric expansion valve 6.6' on the indoor side
The controller 31, 31' calculates the difference between the pipe temperature at the middle part of the indoor heat exchanger 7°7' and the pipe temperature at the outlet part to determine the opening degree and apply a restriction to the refrigerant. Low-temperature, low-pressure gas-liquid two-phase refrigerant, indoor heat exchanger 7
.. It evaporates into gas at 7' and reaches the accumulator 11.
Return to compressor 1 and repeat the cycle.

次に電動膨張弁6による冷媒流量制御方法について説明
する。室内熱交換器7の中間部と出口部に設けられた温
度センサー22.23から、差温計測手段31aによシ
差温を求め、その差温に基づき電動膨張弁開度決定手段
31bにより弁開度を決定し、それに基づき電動膨張弁
制御手段31cにて電動膨張弁6を制御し、弁開度を調
節、設定。
Next, a method of controlling the refrigerant flow rate using the electric expansion valve 6 will be explained. The temperature difference measuring means 31a determines the temperature difference from the temperature sensors 22, 23 provided at the intermediate part and the outlet part of the indoor heat exchanger 7, and based on the temperature difference, the electric expansion valve opening determining means 31b controls the valve. The opening degree is determined, and based on the determination, the electric expansion valve control means 31c controls the electric expansion valve 6 to adjust and set the valve opening degree.

制御する。Control.

尚、電動膨張弁6′による冷媒流量制御方法も、電動膨
張弁6による冷媒流量制御方法と同様である。
Note that the method of controlling the refrigerant flow rate using the electric expansion valve 6' is also the same as the method of controlling the refrigerant flow rate using the electric expansion valve 6.

次に暖房時について説明する。暖房時は圧縮機1で圧縮
された高温・高圧の冷媒ガスは四方弁2を通り、室内熱
交換器7.7′で液化する。暖房時、電動膨張弁6.6
′は全開とし、室外機には、高圧液冷媒が入る。更に室
内側の電動膨張弁4が室外熱交換器3の中間部の配管温
度と出口部の配管温度の差を制御器3oにて演算するこ
とによって開度を決定し、冷媒に絞シをあたえるため、
低温低圧の気液二相の冷媒となシ室外熱交換器3で蒸発
ガス化してアキュムレーター11に至シ、圧縮機1に戻
るサイクルを繰り返す。
Next, heating will be explained. During heating, high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and is liquefied in the indoor heat exchanger 7.7'. During heating, electric expansion valve 6.6
' is fully opened and high pressure liquid refrigerant enters the outdoor unit. Furthermore, the electric expansion valve 4 on the indoor side determines the opening degree by calculating the difference between the piping temperature at the intermediate part of the outdoor heat exchanger 3 and the piping temperature at the outlet part by the controller 3o, and applies a restriction to the refrigerant. For,
The refrigerant becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant, which is evaporated into gas in the outdoor heat exchanger 3, transferred to the accumulator 11, and returned to the compressor 1, repeating the cycle.

次に電動膨張弁4による冷媒流量制御方法について説明
する。室外熱交換器3の中間部と出口部の配管温度を温
度センサー20.21によって検知することによシ、そ
の差温に応じて、室内機の制御器31と同様の制御を行
ない電動膨張弁4を制御する。
Next, a method of controlling the refrigerant flow rate using the electric expansion valve 4 will be explained. By detecting the temperature of the piping between the intermediate section and the outlet section of the outdoor heat exchanger 3 with the temperature sensor 20.21, the electric expansion valve is controlled in the same way as the controller 31 of the indoor unit according to the difference in temperature. Control 4.

発明が解決しようとする問題点 しかしながら上記のような構成では、第4図よシあきら
かなように通常の冷暖房運転時に実用上最大限の能力を
出そうとした場合は、エバポレーター中の冷媒が二相流
となっているため、圧力損失の影響で中間部の配管温度
のほうが、出口部の配管温度よシも、わずかに高くなっ
ておシ、更に、この差温はほとんどなく、変化量も微小
であるため、正確に検出することが困難であると同時に
、コントロールのほうも、複雑になると共に処理時間が
かかるという問題点を有していた。また、エバポレータ
ーの中間部の配管温度よシも出口部配管温度のほうが十
分、大きくて、更に差温検出も十分可能な程度に、電動
膨張弁を絞シ、エバポレーター出口部で過熱度をとると
圧縮機吸入側の過熱度が増大し、冷媒循環量も低下する
ので能力が低下するという問題点を有していた。
Problems to be Solved by the Invention However, with the above configuration, as is clear from Figure 4, if the maximum practical capacity is to be achieved during normal heating and cooling operation, the refrigerant in the evaporator will be Since it is a phase flow, the pipe temperature at the middle part is slightly higher than the pipe temperature at the outlet part due to pressure loss.Furthermore, this temperature difference is almost negligible, and the amount of change is also small. Because of their small size, it is difficult to accurately detect them, and at the same time, the control becomes complicated and takes a long processing time. In addition, the temperature of the pipe at the outlet of the evaporator is sufficiently higher than that of the pipe at the middle of the evaporator, and the electric expansion valve is throttled to the extent that it is possible to detect the difference in temperature. The problem is that the degree of superheating on the suction side of the compressor increases and the amount of refrigerant circulated also decreases, resulting in a decrease in capacity.

本発明は、上記問題点に鑑み、ハンチング等の現象を防
止し冷凍サイクル状態を安定に保つヒートポンプ式空気
調和機を提供するものである。
In view of the above problems, the present invention provides a heat pump type air conditioner that prevents phenomena such as hunting and maintains a stable refrigeration cycle state.

問題点を解決するための手段 上記目的を達成するために本発明のヒートポンプ式空気
調和機は、室内熱交換器と室外熱交換器との間に設けら
れた電動膨張弁を通常は、圧縮機の運転周波数を検知し
て開度を決定し、室内外の空気温度が上昇する冷暖房過
負荷運転時には、エバポレーターとなる熱交換器の中間
部の配管温度と出口部の配管温度の差を演算して、電動
膨張弁の開度を決定するという過熱度制御手段を備えた
ものである。
Means for Solving the Problems In order to achieve the above object, the heat pump type air conditioner of the present invention has an electric expansion valve provided between an indoor heat exchanger and an outdoor heat exchanger, which is normally connected to a compressor. The opening degree is determined by detecting the operating frequency of the evaporator, and during overload operation of heating and cooling when indoor and outdoor air temperatures rise, the system calculates the difference between the pipe temperature at the middle part of the heat exchanger that serves as the evaporator and the pipe temperature at the outlet part. The system is equipped with superheat degree control means for determining the degree of opening of the electric expansion valve.

作  用 本発明は、上記した構成によって、通常の冷暖房運転時
には、圧縮機運転周波数を検知して、電動膨張弁開度を
決定するため、負荷の変動があって、圧縮機運転周波数
が変わったときにも、周波数検知は正確かつ迅速である
ため、ただちに、そのとき最適絞り量が電動膨張弁によ
って設定され、ハンチング等の現象も起こらず、冷却シ
ステム全体も、すばやく安定状態に保つことが可能とな
る。
Effects The present invention has the above-described configuration, so that during normal heating and cooling operation, the compressor operating frequency is detected and the electric expansion valve opening degree is determined. In some cases, the frequency detection is accurate and quick, so the electric expansion valve immediately sets the optimal throttling amount at that time, and phenomena such as hunting do not occur, and the entire cooling system can be quickly maintained in a stable state. becomes.

また室内外の空気温度が上昇する冷暖房過負荷運転時に
は、制御手法を切り替えてエバポレーターとなる熱交換
器の中間部の配管温度と出口部の配管温度の差を演算し
て、電動膨張弁の開度決定するので、通常運転時に比べ
て、電動膨張弁開度が大きくなシ、冷媒流量が増加する
ことによって、吐出温度の上昇を防ぎ、圧縮機の信頼性
の向上をはかることが可能となる。
In addition, during overloaded heating and cooling operations when indoor and outdoor air temperatures rise, the control method is switched to calculate the difference between the pipe temperature at the middle part of the heat exchanger that serves as the evaporator and the pipe temperature at the outlet part, and open the electric expansion valve. Since the electric expansion valve opening is larger than during normal operation, the refrigerant flow rate is increased, which prevents a rise in discharge temperature and improves the reliability of the compressor. .

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて、図面を参照しながら説明する。第1図は、本発明
の実施例におけるヒートポンプ式空気調和機の冷却シス
テム図を示すものであり、特に従来例と異なる点につい
て説明する。第1図において、4,6.6’は電動膨張
弁であり、6゜8.8′は、それぞれの制御器である。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings. FIG. 1 shows a cooling system diagram of a heat pump type air conditioner according to an embodiment of the present invention, and in particular, points different from the conventional example will be explained. In FIG. 1, 4, 6.6' are electric expansion valves, and 6° 8.8' are respective controllers.

制御器5゜制御器8及び制御器8′は、可変の周波数電
源12と信号線にて結ばれている。
The controller 5°, the controller 8, and the controller 8' are connected to a variable frequency power source 12 by a signal line.

以上のように構成されたヒートポンプ式空気調和機の作
用について、以下第1図、第2図及び第3図を用いて説
明する。
The operation of the heat pump type air conditioner configured as above will be explained below with reference to FIGS. 1, 2, and 3.

まず第2図よシミ動膨張弁4,6.6’の制御について
説明する。冷暖房運転時それぞれにおいて、電動膨張弁
制御は、同一であるので、冷房時の室内側の電動膨張弁
6の制御について説明する。通常の冷房運転時は、可変
の周波数電源12から運転周波数検知手段8bにより運
転周波数を検知し、電動膨張弁開度決定手段8Cによシ
、電動膨張弁6の弁開度を決定し、それに基づき電動膨
張弁制御手段8dにて、弁開度を制御する。室内外の空
気温度が上昇する冷房過負荷時には、室内熱交換器7の
中間部と出口部に設けられた温度センサー22.23の
差温か大きくなる。差温計測手段8aが、設定した差温
の上限値よシ大きくなった場合、電動膨張弁開度決定手
段8Cは、その差温に基づき弁開度を決定し、それに基
づき電動膨張弁制御手段8dにて電動膨張弁6の弁開度
を制御する。
First, referring to FIG. 2, the control of the dynamic expansion valves 4, 6, 6' will be explained. Since the electric expansion valve control is the same during each cooling/heating operation, the control of the indoor electric expansion valve 6 during cooling will be explained. During normal cooling operation, the operating frequency is detected by the operating frequency detecting means 8b from the variable frequency power supply 12, the electric expansion valve opening determining means 8C determines the opening of the electric expansion valve 6, and Based on this, the electric expansion valve control means 8d controls the valve opening degree. During cooling overload when the indoor and outdoor air temperatures rise, the difference in temperature between the temperature sensors 22 and 23 provided at the intermediate portion and the outlet portion of the indoor heat exchanger 7 increases. When the temperature difference measuring means 8a is larger than the set upper limit value of the temperature difference, the electric expansion valve opening degree determining means 8C determines the valve opening degree based on the temperature difference, and the electric expansion valve control means 8C determines the valve opening degree based on the temperature difference. 8d, the valve opening degree of the electric expansion valve 6 is controlled.

次に第3図より負荷の変動にともなう電動膨張弁6.6
′の制御方法について更に詳しく説明する。
Next, from Fig. 3, electric expansion valve 6.6 due to load fluctuation.
′ will be explained in more detail.

通常の冷房運転時(o(T、 (t ”)には、圧縮機
1の運転周波数を制御器8.8′が検知して、電動膨張
弁6,6′の開度を決定する。したがって、負荷の変動
があって、圧縮機1の運転周波数が変動すれば、それに
追従して電動膨張弁開“度も変動する。よってこの場合
は、室内機の運転台数にかかわらず、圧縮機1の運転周
波数のみによって電動膨張弁6.6′の開度が決定され
ることとなる。ただし、この場合電動膨張弁4は全開で
ある。通常の暖房運転時も通常の冷房運転時と同様に、
圧縮機1の運転周波数を制御器6が検知して、電動膨張
弁4の開度を決定する。この場合電動膨張弁6及び6′
は全開である。次に室内外の空気温度が上昇してくる冷
房過負荷時について説明する。冷房過負荷時(t>T、
)に、エバポレーター中間部の配管温度と出口部の配管
温度の差温が一定値以上になると通常の冷房運転時(0
<t<71)から電動膨張弁6.6′の制御手法を切り
替えて、このときエバポレーターとなっている室内熱交
換器7゜7′の中間部の配管温度と出口部の配管温度の
差温を制御器8,8′が演算して、それにもとづいて電
動膨張弁6,6′の開度を決定する。ただし、この場合
も電動膨張弁4は、全開である。暖房過負荷時も冷房過
負荷時と同様に、このときエバポレーターとなっている
室外熱交換器3の中間部の配管温度と出口部の配管温度
の差温が一定値以上になると、通常の暖房運転時(0<
t<T1 )から電動膨張弁4の制御手法を切シ替えて
、制御器6がこの差温を演算して、それにもとづいて電
動膨張弁4の開度を決定する。ただし、この場合も電動
膨張弁6.6′は全開である。以上のように本実施例に
よれば通常の冷暖房運転時には、圧縮機運転周波数を検
知して、電動膨張弁開度を決定するため、負荷の変動が
あって、圧縮機運転周波数が変わったときにも、ただち
に、そのときの最適絞り量が電動膨張弁によって設定さ
れるため、ハンチング等の現象も起こらず、冷却システ
ム全体も、すばやく安定状態に保つことができる。また
室内外の空気温度が上昇してくる冷暖房過負荷時には、
エバポレーターとなっている熱交換器出口での過熱度が
大きくなシ、更には、吐出温度も増大するが、このとき
には、制御手法を切り替えて、従来と同様にエバポレー
ターとなる熱交換器の中間部の配管温度と出口部の配管
温度の差を演算して、電動膨張弁の開度を決定するので
、通常運転時に比べて、電動膨張弁開度が大きくなり、
冷媒流量が増加することによって、吐出温度の上昇を防
ぎ、圧縮機の信頼性の向上をはかることができる。
During normal cooling operation (o(T, (t'')), the controller 8.8' detects the operating frequency of the compressor 1 and determines the opening degree of the electric expansion valves 6, 6'. If there is a load change and the operating frequency of the compressor 1 changes, the electric expansion valve opening degree will also change accordingly.Therefore, in this case, regardless of the number of indoor units in operation, the compressor 1 The opening degree of the electric expansion valve 6,6' is determined only by the operating frequency.However, in this case, the electric expansion valve 4 is fully open.During normal heating operation, as well as during normal cooling operation, ,
A controller 6 detects the operating frequency of the compressor 1 and determines the opening degree of the electric expansion valve 4. In this case electric expansion valves 6 and 6'
is at full throttle. Next, a case of cooling overload when the indoor and outdoor air temperature rises will be explained. During cooling overload (t>T,
), when the difference in temperature between the pipe temperature at the middle part of the evaporator and the pipe temperature at the outlet part exceeds a certain value, the temperature difference during normal cooling operation (0
<t<71), the control method of the electric expansion valve 6.6' is changed, and the temperature difference between the pipe temperature at the middle part and the pipe temperature at the outlet part of the indoor heat exchanger 7°7', which is the evaporator, is changed. The controllers 8, 8' calculate the opening degrees of the electric expansion valves 6, 6' based on the calculations. However, in this case as well, the electric expansion valve 4 is fully open. During a heating overload, as well as during a cooling overload, if the difference in temperature between the pipe temperature at the middle part of the outdoor heat exchanger 3, which serves as an evaporator, and the pipe temperature at the outlet part exceeds a certain value, normal heating is resumed. When driving (0<
The control method for the electric expansion valve 4 is switched from t<T1), the controller 6 calculates this temperature difference, and determines the opening degree of the electric expansion valve 4 based on it. However, in this case as well, the electric expansion valve 6.6' is fully open. As described above, according to this embodiment, during normal cooling/heating operation, the compressor operating frequency is detected and the electric expansion valve opening degree is determined, so when there is a load fluctuation and the compressor operating frequency changes. Since the optimum throttling amount at that time is immediately set by the electric expansion valve, phenomena such as hunting do not occur, and the entire cooling system can be quickly maintained in a stable state. In addition, during heating and cooling overload when indoor and outdoor air temperatures rise,
The degree of superheating at the outlet of the heat exchanger that serves as an evaporator is large, and the discharge temperature also increases. The opening degree of the electric expansion valve is determined by calculating the difference between the piping temperature of
By increasing the refrigerant flow rate, it is possible to prevent an increase in discharge temperature and improve the reliability of the compressor.

なお、本実施例において、エバポレーターの中間部の配
管温度と出口部の配管温度の差温が一定値以上になるこ
とにて、冷暖房の過負荷状態を検知しているが、これは
、吐出温度、吐出圧力及び外気温にて検知してもよい。
In addition, in this example, an overload state of heating and cooling is detected when the temperature difference between the piping temperature at the middle part of the evaporator and the piping temperature at the outlet part exceeds a certain value, but this is due to the discharge temperature. , the discharge pressure and the outside temperature may be used for detection.

発明の効果 以上のように本発明は、通常の冷暖房運転時には、圧縮
機運転周波数を検知して、電動膨張弁開度を決定するこ
とによシ、負荷の変動があって、圧縮機運転周波数が変
わったときにも、ただちに、そのときの最適絞り量が電
動膨張弁によって設定されるため、ハンチング等の現象
も起こらず、冷却システム全体も、すばやく安定状態に
保つことができる。′また室内外の空気温度が上昇する
冷暖房過負荷運転時には、制御手法を切り替えてエバポ
レーターとなる熱交換器の中間部の配管温度と出口部の
配管温度の差を演算して、電動膨張弁の開度を決定する
ので、通常運転時に比べて、電動膨張弁開度が大きくな
り、冷媒流量が増加することによって、吐出温度の上昇
を防ぎ、圧縮機の信頼性の向上をはかることができる。
Effects of the Invention As described above, the present invention detects the compressor operating frequency and determines the opening degree of the electric expansion valve during normal heating and cooling operation. Even when the amount of throttle changes, the electric expansion valve immediately sets the optimal throttling amount at that time, so phenomena such as hunting do not occur, and the entire cooling system can be quickly maintained in a stable state. 'Also, during overloaded heating and cooling operations when the indoor and outdoor air temperatures rise, the control method is switched to calculate the difference between the pipe temperature at the middle section of the heat exchanger that serves as the evaporator and the pipe temperature at the outlet section, and control the electric expansion valve. Since the opening degree is determined, the electric expansion valve opening degree becomes larger than during normal operation, and the refrigerant flow rate increases, thereby preventing a rise in discharge temperature and improving the reliability of the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷却システム図、第2図は同制御器のブロック
図、第3図は上記ヒートポンプ式空気調和機の電動膨張
弁制御方法について示した図、第4図は従来のヒートポ
ンプ式空気調和機の冷却システム図、第6図は同制御器
のブロック図、第6図は同電動膨張弁開度とエバポレー
ター配管温度、能力の関係について示した図である。 1・・・・・・圧縮機、3・・・・・・室外熱交換器、
4・・・・・・電動膨張弁、5・・・・・・制御器、6
・・・・・・電動膨張弁、6′・・・・・・電動膨張弁
、7・・・・・・室内熱交換器、7′・・・・・・室内
熱交換器、8・・・・・・制御器、8′・・・・・・制
御器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
m=圧縮機 3−一一室外熟交挟量 4− 電動膨張弁 5−−一剖1」器 6、6’−@動膨張弁 77・−一一室汀熟交換器 8、8’−−一剖#量 第1図 6−電動カ張弁 8−制御器 12−−一可変の屑波数電原 22、23−−一温度辷りサー 第2図 第4図 第5図
Fig. 1 is a diagram of the cooling system of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a block diagram of the controller, and Fig. 3 is a diagram of the electric expansion valve control method of the heat pump air conditioner. Figure 4 is a diagram of the cooling system of a conventional heat pump air conditioner, Figure 6 is a block diagram of the controller, and Figure 6 shows the relationship between the electric expansion valve opening, evaporator piping temperature, and capacity. This is a diagram. 1...Compressor, 3...Outdoor heat exchanger,
4...Electric expansion valve, 5...Controller, 6
...Electric expansion valve, 6'...Electric expansion valve, 7...Indoor heat exchanger, 7'...Indoor heat exchanger, 8... ...Controller, 8'...Controller. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
m=compressor 3-11 outdoor exchanger 4- electric expansion valve 5--1'' unit 6, 6'- @ dynamic expansion valve 77--11 chamber exchanger 8, 8'- - Anatomy # quantity Fig. 1 6 - Electric tension valve 8 - Controller 12 - - Variable waste wave number electric field 22, 23 - - Temperature fluctuation sensor Fig. 2 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims]  可変の周波数電源にて駆動される圧縮機,室内熱交換
器,室外熱交換器等を環状に接続して構成される冷媒回
路中に、前記室内熱交換器と前記室外熱交換器との間に
電動膨張弁を設け、通常は、前記圧縮機の運転周波数を
検知して上記電動膨張弁の開度を決定し、室内外の空気
温度が上昇する冷暖房過負荷運転時には、エバポレータ
ーとなる熱交換器の中間部の配管温度と出口部の配管温
度の差を演算して、前記電動膨張弁の開度を決定する過
熱度制御手段を備えたことを特徴とするヒートポンプ式
空気調和機。
In a refrigerant circuit configured by connecting a compressor, an indoor heat exchanger, an outdoor heat exchanger, etc. in an annular manner driven by a variable frequency power source, there is a refrigerant circuit between the indoor heat exchanger and the outdoor heat exchanger. Normally, the operating frequency of the compressor is detected to determine the opening degree of the electric expansion valve, and during overload heating and cooling operation when indoor and outdoor air temperatures rise, the heat exchanger acts as an evaporator. 1. A heat pump type air conditioner, comprising: a degree of superheat control means that calculates a difference between a piping temperature at an intermediate portion of the container and a piping temperature at an outlet portion to determine the degree of opening of the electric expansion valve.
JP12430787A 1987-05-21 1987-05-21 Heat pump type air conditioner Pending JPS63290354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12430787A JPS63290354A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12430787A JPS63290354A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63290354A true JPS63290354A (en) 1988-11-28

Family

ID=14882093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12430787A Pending JPS63290354A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63290354A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384364A (en) * 1989-08-25 1991-04-09 Mitsubishi Heavy Ind Ltd Air conditioner
US5182920A (en) * 1991-07-15 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle system
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Operation control method of air conditioner
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device
JP2013002742A (en) * 2011-06-17 2013-01-07 Mitsubishi Heavy Ind Ltd Multi-split type air conditioning system
JP2014501381A (en) * 2010-12-30 2014-01-20 ピーディーエックス テクノロジーズ エルエルシー Cooling system controlled by refrigerant quality in the evaporator
WO2014203364A1 (en) * 2013-06-20 2014-12-24 三菱電機株式会社 Heat pump apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384364A (en) * 1989-08-25 1991-04-09 Mitsubishi Heavy Ind Ltd Air conditioner
US5182920A (en) * 1991-07-15 1993-02-02 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle system
JPH05196309A (en) * 1992-01-22 1993-08-06 Daikin Ind Ltd Operation control method of air conditioner
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device
JP2014501381A (en) * 2010-12-30 2014-01-20 ピーディーエックス テクノロジーズ エルエルシー Cooling system controlled by refrigerant quality in the evaporator
JP2013002742A (en) * 2011-06-17 2013-01-07 Mitsubishi Heavy Ind Ltd Multi-split type air conditioning system
WO2014203364A1 (en) * 2013-06-20 2014-12-24 三菱電機株式会社 Heat pump apparatus
JPWO2014203364A1 (en) * 2013-06-20 2017-02-23 三菱電機株式会社 Heat pump equipment
US9863680B2 (en) 2013-06-20 2018-01-09 Mitsubishi Electric Corporation Heat pump apparatus

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US5809794A (en) Feed forward control of expansion valve
WO1999034156A1 (en) Refrigerating cycle
US6843066B2 (en) Air conditioning system and method for controlling the same
US20040118135A1 (en) Air conditioner and method for operating air conditioner in cooling mode
JPS63290354A (en) Heat pump type air conditioner
EP0445368A2 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
US20220082313A1 (en) Refrigeration cycle apparatus
US6871505B2 (en) Compressor-controlling device and method for air conditioner comprising a plurality of compressors
US6669102B1 (en) Method for operating air conditioner in warming mode
JP2684824B2 (en) Separated heat pump type air conditioner
JPH06137691A (en) Controlling equipment for refrigerant circuit
US6722576B1 (en) Method for operating air conditioner in warming mode
JPH03221760A (en) Method and apparatus for controlling refrigerant flow in heat pump air conditioner
JP2508842B2 (en) Air conditioner
JPH06317360A (en) Multi-chamber type air conditioner
JPS63286664A (en) Heat pump type air conditioner
JPH05272822A (en) Freezer
JPH01256769A (en) Multi-room air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPS63290355A (en) Method of controlling refrigerant for heat pump type air conditioner
JP2000088362A (en) Heat pump type air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPH085184A (en) Multi-room type air conditioner