JP2010261715A - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
JP2010261715A
JP2010261715A JP2010191310A JP2010191310A JP2010261715A JP 2010261715 A JP2010261715 A JP 2010261715A JP 2010191310 A JP2010191310 A JP 2010191310A JP 2010191310 A JP2010191310 A JP 2010191310A JP 2010261715 A JP2010261715 A JP 2010261715A
Authority
JP
Japan
Prior art keywords
flow rate
degree
opening degree
outdoor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010191310A
Other languages
Japanese (ja)
Other versions
JP5436375B2 (en
Inventor
Hirosuke Shimazu
裕輔 島津
Fumitake Unezaki
史武 畝崎
Naomichi Tamura
直道 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010191310A priority Critical patent/JP5436375B2/en
Publication of JP2010261715A publication Critical patent/JP2010261715A/en
Application granted granted Critical
Publication of JP5436375B2 publication Critical patent/JP5436375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning device for stably carrying out control of liquid equalization and excessive coolant treatment during heating. <P>SOLUTION: In the air conditioner having a plurality of outdoor units 1a, 1b composed of at least compressors 2a, 2b, outdoor heat exchangers 4a, 4b, and accumulators 5a, 5b, flow regulating valves 5a, 5b for regulating a coolant amount flowing into each outdoor unit 1a, 1b are respectively equipped between common liquid piping 11 and each outdoor heat exchanger 4a, 4b of each outdoor unit 1a, 1b. It includes a controller 14 determining whether or not degrees of superheat of outlet sides of the outdoor heat exchanger 4a, 4b of the outdoor units 1a, 1b are within a range wherein a certain value is an upper limit, determining whether degrees of discharge superheat of the compressors 2a, 2b are within a constant range, and regulating openings of the flow regulating valves 5a, 5b such that the degrees of superheat of outlet sides of the outdoor heat exchangers 4a, 4b are within the range and the degrees of discharge superheat of the compressors 2a, 2b are within the certain range on the basis of a combination of determination results. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、複数台の室外機と複数台の室内機とを共通のガス管及び共通の液管で配管接続して構成される空気調和装置に関わるものであり、特に暖房時に問題となる均液・余剰冷媒処理に関するものである。   The present invention relates to an air conditioner configured by connecting a plurality of outdoor units and a plurality of indoor units with a common gas pipe and a common liquid pipe, and is particularly a problem in heating. The present invention relates to liquid / surplus refrigerant processing.

従来、空気調和装置の大容量化に応じるため、複数の室外機と複数の室内機と共通のガス管と共通の液管とにより構成される空気調和機が開発されている。この種の空気調和装置では、圧縮機回転数、ファン回転数、外機減圧装置開度等により冷媒循環量を制御することで、各室外機のアキュームレータ(気液分離器)を均液管で接続することなく暖房時の均液・余剰冷媒処理を行っているので、施工性・コスト面でよいものがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, an air conditioner that includes a plurality of outdoor units, a plurality of indoor units, a common gas pipe, and a common liquid pipe has been developed in order to meet the increase in capacity of the air conditioner. In this type of air conditioner, the accumulator (gas-liquid separator) of each outdoor unit is controlled by a liquid equalizing pipe by controlling the refrigerant circulation rate by means of the compressor rotation speed, fan rotation speed, opening degree of the external unit decompression device, etc. Since the liquid equalization / excess refrigerant processing during heating is performed without connection, there are some which are good in terms of workability and cost (for example, see Patent Document 1).

また他の従来の空気調和装置では、均液・余剰冷媒処理を実施するため、圧縮機等における過熱度を目標として室外機の流量調整弁の開度を制御するものもある(例えば、特許文献2、3参照)。   In addition, in other conventional air conditioners, in order to perform liquid leveling and surplus refrigerant processing, there is also a device that controls the opening degree of the flow rate adjustment valve of the outdoor unit with the target of superheat in a compressor or the like (for example, Patent Documents). 2 and 3).

特開平11−142010号公報(第1−6、10、11貢、第1−8、13図)Japanese Patent Laid-Open No. 11-142010 (1-6, 10, 11 Mitsugu, FIGS. 1-8, 13) 特開平8−200869号公報(第5−12貢、第1図)Japanese Patent Laid-Open No. 8-200809 (5-12 Mitsugu, Fig. 1) 特開2005−121361号公報(第4−9貢、第1図)Japanese Patent Laying-Open No. 2005-121361 (4-9 Mitsugu, Fig. 1)

従来の空気調和装置では、暖房時の均液・余剰冷媒処理のため、圧縮機回転数、ファン回転数、外機減圧装置開度等により複数台の室外機への流量分配を制御して室外機熱交換器の出口側の過熱度が各室外機ともに等しくなるようにするため、以下のような問題があった。   In conventional air conditioners, for the treatment of liquid equalization and surplus refrigerant during heating, the flow distribution to multiple outdoor units is controlled by controlling the compressor rotation speed, fan rotation speed, outdoor unit decompression device opening, etc. In order to make the degree of superheat on the outlet side of the machine heat exchanger equal in each outdoor unit, there are the following problems.

まず、過熱度の絶対値の目標値を定めないため、高乾き度で能力が低下したり、過度の湿りでアキュームレータ内に溜まった冷媒がオーバーフローすることで、圧縮機(室外機)の信頼性を損なう恐れがある。また、過熱度合わせの冷媒流量調整と、室内機側の負荷変動に応じた冷媒流量制御との対応がとれず、結果として追従できなかったり、時間を要する場合がある。そして、最悪の場合、1台の室外機にすべての余剰冷媒が溜まろうとしてしまうことが起こり得るため、それに備えようとすると各室外機のアキュームレータの容積を十分に大きくしておく必要がある。   First, since the target value of the absolute value of the superheat degree is not set, the reliability of the compressor (outdoor unit) can be reduced by reducing the capacity due to high dryness or overflowing the refrigerant accumulated in the accumulator due to excessive moisture. There is a risk of damage. In addition, the refrigerant flow rate adjustment for adjusting the degree of superheat and the refrigerant flow rate control according to the load fluctuation on the indoor unit side cannot be taken, resulting in failure to follow up or taking time. In the worst case, all the excess refrigerant may be stored in one outdoor unit. Therefore, in order to prepare for this, it is necessary to sufficiently increase the volume of the accumulator of each outdoor unit.

また、上記の空気調和装置では、アキュームレータに設けた液面検知器により冷媒流量を制御するようにしているが、液面検知器のコスト・生産性・信頼性を考慮すれば、アキュームレータの容積を十分大きくして液冷媒をオーバーフローさせない方が現実的である。しかし、これはコンパクト化、低コスト化が要求される現状と合致しない。   In the above air conditioner, the refrigerant flow rate is controlled by the liquid level detector provided in the accumulator. However, considering the cost, productivity and reliability of the liquid level detector, the volume of the accumulator is reduced. It is practical to make it sufficiently large so that the liquid refrigerant does not overflow. However, this is not consistent with the current situation where compactness and cost reduction are required.

また他の従来の空気調和装置では、室外機の流量調整弁の開度を制御するとしても、アキュームレータが起動時の液バック等の保護に使われており、さらに余剰冷媒処理のためにはレシーバを併せて設ける必要があるため、高コストとなる。   In other conventional air conditioners, the accumulator is used to protect the liquid back at the start-up even if the opening of the flow control valve of the outdoor unit is controlled. Since it is necessary to provide these together, it becomes expensive.

この発明は以上の課題に鑑み、暖房時の均液・余剰冷媒処理の制御を安定して実施できることを目的としている。   In view of the above problems, an object of the present invention is to stably perform control of liquid equalization / excess refrigerant processing during heating.

この発明に係る空気調和装置は、圧縮機、室外熱交換器及びアキュームレータから少なくとも構成される室外機を複数有する空気調和装置において、共通の液配管と各室外機の各室外熱交換器との間に、各室外機に流入する冷媒量を調整するための流量調整弁をそれぞれ備え、また、各室外機の室外熱交換器の出口側の過熱度が、ある値を上限とする範囲内にあるかどうかを判断し、また、圧縮機の吐出過熱度が一定の範囲にあるかどうかを判断して、各判断結果の組み合わせに基づき、室外熱交換器の出口側の過熱度を範囲内に収め、かつ、圧縮機の吐出過熱度を一定の範囲内に収めるように各流量調整弁の開度を調整する制御装置を備えるものである。   An air conditioner according to the present invention is an air conditioner having a plurality of outdoor units each including at least a compressor, an outdoor heat exchanger, and an accumulator, and is provided between a common liquid pipe and each outdoor heat exchanger of each outdoor unit. Each having a flow rate adjusting valve for adjusting the amount of refrigerant flowing into each outdoor unit, and the degree of superheat on the outlet side of the outdoor heat exchanger of each outdoor unit is within a range having a certain value as an upper limit. And whether or not the discharge superheat degree of the compressor is within a certain range, and the superheat degree on the outlet side of the outdoor heat exchanger is within the range based on the combination of the respective judgment results. And the control apparatus which adjusts the opening degree of each flow regulating valve so that the discharge superheat degree of a compressor may fall in a fixed range is provided.

この発明によれば、流量調整弁の開度を適度に調整して、室外熱交換器の出口側において、乾き度1近傍の低過熱度に制御することにより、蒸発器である室外熱交換器に存在する冷媒を凡そ一定の状態でなおかつ性能を充分高く確保して安定に運転できる。なおかつ圧縮機の吐出過熱度を一定の範囲内に制御することにより、アキュームレータから液冷媒がオーバーフローすることなく信頼性を確保して安定に運転できる。そして、各室外機において、過熱度等が同じになるような制御をしているので、各室外機内における冷媒量をほぼ均一にすることができる。これにより、レシーバ等の機器をさらに設けることなく、制御装置における演算により、均液・余剰冷媒処理を行うことができ、また、アキュームレータの容積を空気調和装置全体の能力に応じて変更等しなくてもよいので、低コスト及びコンパクト化が実現できる。   According to the present invention, the degree of opening of the flow rate adjustment valve is adjusted moderately, and on the outlet side of the outdoor heat exchanger, the degree of dryness is controlled to a low degree of superheat in the vicinity of 1, whereby the outdoor heat exchanger that is an evaporator is used. It is possible to operate stably in a substantially constant state while ensuring sufficiently high performance. In addition, by controlling the degree of discharge superheat of the compressor within a certain range, the liquid refrigerant does not overflow from the accumulator, and reliability can be ensured and stable operation can be achieved. And since control is performed so that the degree of superheat and the like is the same in each outdoor unit, the amount of refrigerant in each outdoor unit can be made substantially uniform. As a result, liquid leveling and surplus refrigerant processing can be performed by calculation in the control device without further equipment such as a receiver, and the volume of the accumulator is not changed according to the capacity of the entire air conditioner. Therefore, low cost and downsizing can be realized.

この発明の実施の形態1に係る空気調和装置を示す構成図である。It is a block diagram which shows the air conditioning apparatus which concerns on Embodiment 1 of this invention. 冷房運転における制御装置14の構成を示す図である。It is a figure which shows the structure of the control apparatus 14 in air_conditionaing | cooling operation. 暖房運転における制御装置14の構成を示す図である。It is a figure which shows the structure of the control apparatus 14 in heating operation. この空気調和装置の一部の冷媒状態を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant state of a part of this air conditioning apparatus. 流量調整弁の開度を変化させた時の室外機の状態を表す図である。It is a figure showing the state of the outdoor unit when the opening degree of a flow regulating valve is changed. 本実施の形態に係る制御装置14が行うフローチャートを表す図である。It is a figure showing the flowchart which the control apparatus 14 which concerns on this Embodiment performs. 室外機1a、1bの状態の分類例を表す図である。It is a figure showing the example of classification of the state of outdoor units 1a and 1b. 室外機を3台で構成した場合のフローチャートを表す図である。It is a figure showing the flowchart at the time of comprising three outdoor units. 温度センサ20e、20fの配設位置の他の例を表す図である。It is a figure showing the other example of the arrangement | positioning position of temperature sensor 20e, 20f. 実施の形態3に係る圧縮機に関するセンサの配設位置を表す図である。FIG. 10 is a diagram illustrating a sensor arrangement position regarding a compressor according to a third embodiment. 圧縮機に関するセンサの配設位置の他の例を表す図である。It is a figure showing the other example of the arrangement | positioning position of the sensor regarding a compressor. 実施の形態4に係る制御装置14が行うフローチャートを表す図である。It is a figure showing the flowchart which the control apparatus 14 which concerns on Embodiment 4 performs.

実施の形態1.
図1はこの発明の実施の形態1に係る空気調和装置を示す構成図である。以下、この発明の実施の形態1について説明する。なお、ここでは室外機が2台、室内機が2台接続されているものとして説明する。図1において、1a、1bは室外機、8p、8qは室内機、22a、22bは各室外機より出るガス分岐管、24p、24qは各室内機より出るガス枝管、7はガス分岐管22a、22bとガス枝管24p、24qを接続する共通のガス配管、13はガス分岐管22a、22bと共通のガス配管7との接続点、23a、23bは各室外機より出る液分岐管、25p、25qは各内機より出る液枝管、11は液分岐管23a、23bと液枝管25p、25qを接続する共通の液配管、12は液分岐管23a、23bと共通の液配管11との接続点である。本実施の形態では、以上の管を含め、液(気液二相の場合も含む)が通過する管を液管とし、ガスが通過する管をガス管というものとする。
Embodiment 1 FIG.
1 is a block diagram showing an air conditioner according to Embodiment 1 of the present invention. Embodiment 1 of the present invention will be described below. Here, it is assumed that two outdoor units and two indoor units are connected. In FIG. 1, 1a and 1b are outdoor units, 8p and 8q are indoor units, 22a and 22b are gas branch pipes exiting from each outdoor unit, 24p and 24q are gas branch pipes exiting from each indoor unit, and 7 is a gas branch pipe 22a. , 22b and the gas branch pipes 24p and 24q are connected to a common gas pipe, 13 is a connection point between the gas branch pipes 22a and 22b and the common gas pipe 7, and 23a and 23b are liquid branch pipes exiting from the outdoor units, 25p. , 25q is a liquid branch pipe coming out from each internal unit, 11 is a common liquid pipe connecting the liquid branch pipes 23a and 23b and the liquid branch pipes 25p and 25q, and 12 is a liquid pipe 11 common to the liquid branch pipes 23a and 23b. Connection point. In the present embodiment, a pipe through which a liquid (including a gas-liquid two-phase case) including the above pipes is referred to as a liquid pipe, and a pipe through which gas passes is referred to as a gas pipe.

また、室外機1a、1b内において、2a、2bは圧縮機であり、圧縮機2a、2bの吐出側では、15a、15bはオイルセパレータ、3a、3bは流量切り替え弁である四方弁、4a、4bは室外熱交換器、17a、17bは高低圧熱交換器、5a、5bは流量調整弁であり、液分岐管23a、23bへと順に接続される。なお流量調整弁5a、5bは熱交換器4a、4bと高低圧熱交換器17a、17bとの間に接続されてもよい。また圧縮機2a、2bの吸入側では、6a、6bはアキュームレータであり、四方弁3a、3b、ガス分岐管22a、22bへと順に接続される。また、16a、16bは返油バイパス回路であり、一方をオイルセパレータ15a、15bの下側内部、他方を圧縮機2a、2bの吸入側配管に接続される。14a、14bは制御装置である(詳細は後述する)。   In the outdoor units 1a and 1b, 2a and 2b are compressors, and on the discharge side of the compressors 2a and 2b, 15a and 15b are oil separators, 3a and 3b are four-way valves that are flow rate switching valves, 4a, 4b is an outdoor heat exchanger, 17a and 17b are high and low pressure heat exchangers, and 5a and 5b are flow rate adjusting valves, which are sequentially connected to the liquid branch pipes 23a and 23b. The flow rate adjusting valves 5a and 5b may be connected between the heat exchangers 4a and 4b and the high and low pressure heat exchangers 17a and 17b. On the suction side of the compressors 2a and 2b, 6a and 6b are accumulators, which are sequentially connected to the four-way valves 3a and 3b and the gas branch pipes 22a and 22b. Reference numerals 16a and 16b denote oil return bypass circuits, one of which is connected to the lower inner side of the oil separators 15a and 15b and the other is connected to the suction side piping of the compressors 2a and 2b. Reference numerals 14a and 14b denote control devices (details will be described later).

18a、18bは流量調整弁であり、高低圧熱交換器17a、17bと液分岐管23a、23bとの間より分岐し、流量調整弁18a、18b、高低圧熱交17a、17b、アキュームレータ6a、6bと四方弁3a、3bを繋ぐ配管へ合流するように順に接続される。6c、6dはアキュームレータ6a、6bの返油穴であり、圧縮機2a、2bの吸入側に接続されるU字形状であるU字管の下部に設けてある。   18a and 18b are flow rate adjusting valves, which branch from between the high and low pressure heat exchangers 17a and 17b and the liquid branch pipes 23a and 23b. The flow rate adjusting valves 18a and 18b, the high and low pressure heat exchangers 17a and 17b, the accumulator 6a, 6b and the four-way valves 3a and 3b are connected in order so as to join a pipe connecting the four-way valves 3a and 3b. 6c and 6d are oil return holes of the accumulators 6a and 6b, and are provided in the lower part of a U-shaped tube connected to the suction side of the compressors 2a and 2b.

室内機8p、8q内においては、9p、9qは室内熱交換器、10p、10qは膨張弁であり、室内機8p、8qから出るガス枝管24p、24qから液枝管へと、順に接続される。14p、14qは制御装置である(詳細は後述する)。   In the indoor units 8p and 8q, 9p and 9q are indoor heat exchangers, 10p and 10q are expansion valves, which are connected in order from the gas branch pipes 24p and 24q coming out of the indoor units 8p and 8q to the liquid branch pipe. The Reference numerals 14p and 14q denote control devices (details will be described later).

ここで、圧縮機2a、2bは、インバータ回路を有しており、インバータ回路による電源周波数の変換により回転数が制御され、容量制御が行われるタイプである。また、流量調整弁5a、5b、18a、18b、膨張弁10p、10qは開度が可変に制御される電子膨張弁である。これらの制御は、前述した制御装置14a、14b、14p及び14qが行う。   Here, the compressors 2a and 2b have an inverter circuit, and the number of revolutions is controlled by the conversion of the power supply frequency by the inverter circuit, and the capacity control is performed. The flow rate adjusting valves 5a, 5b, 18a, 18b, and the expansion valves 10p, 10q are electronic expansion valves whose opening degree is controlled variably. These controls are performed by the control devices 14a, 14b, 14p and 14q described above.

室外機1a、1b内における圧力センサは、19a、19bが圧縮機2a、2bの吐出側、19c、19dが圧縮機2a、2bの吸入側に設けられ、それぞれ設置場所の圧力を計測し、その計測に基づく信号を送信する。室外機1a、1b内における温度センサは、20a、20bが圧縮機2a、2bの吐出側、20c、20dが圧縮機2a、2bの吸入側、20e、20fは室外熱交換器4a、4bのガス側出口、20g、20hは室外熱交換器4a、4bの液側出口、20i、20jは高低圧熱交換器17a、17bと流量調整弁5a、5bと流量調整弁18a、18bとの間、20k、20lはアキュームレータ6a、6bと四方弁3a、3bとの接続配管と高低圧熱交換器17a、17bとの間に設けられており、それぞれ設置場所の温度を計測する。温度センサ20m、20nは室外機1a、1bの周囲温度を計測し、その計測に基づく信号を送信する。   The pressure sensors in the outdoor units 1a and 1b are provided at 19a and 19b on the discharge side of the compressors 2a and 2b, and 19c and 19d on the suction side of the compressors 2a and 2b, respectively. Send a signal based on the measurement. As for the temperature sensors in the outdoor units 1a and 1b, 20a and 20b are the discharge sides of the compressors 2a and 2b, 20c and 20d are the suction sides of the compressors 2a and 2b, and 20e and 20f are the gases of the outdoor heat exchangers 4a and 4b. 20 g, 20 h are liquid side outlets of the outdoor heat exchangers 4 a, 4 b, 20 i, 20 j are 20 k between the high and low pressure heat exchangers 17 a, 17 b, the flow regulating valves 5 a, 5 b and the flow regulating valves 18 a, 18 b. , 20l are provided between the connecting pipes of the accumulators 6a and 6b and the four-way valves 3a and 3b and the high and low pressure heat exchangers 17a and 17b, respectively, and measure the temperature at the installation location. The temperature sensors 20m and 20n measure the ambient temperature of the outdoor units 1a and 1b, and transmit signals based on the measurements.

室内機8p、8q内における温度センサは、20p、20qが室内熱交換器9p、9qのガス側出口、20r、20sが室内熱交換器9p、9qの液側出口に設けられており、それぞれ設置場所の温度を計測する。   The temperature sensors in the indoor units 8p and 8q are provided at 20p and 20q at the gas side outlet of the indoor heat exchangers 9p and 9q, and 20r and 20s at the liquid side outlet of the indoor heat exchangers 9p and 9q, respectively. Measure the temperature of the place.

前述のように、室外機1a、1b、室内機8p、8qには、例えばマイクロコンピュータで構成された制御装置14a、14b、14p、14qがそれぞれ設けられており、圧力センサ19、温度センサ20が検出したデータ、空気調和装置の使用者からの運転内容(負荷要求)の指示等に基づいて、圧縮機2a、2bの起動、停止等の運転、四方弁3a、3bの流路切替、室外熱交換器4a、4bにおける熱交換量、膨張弁10p、10qの開度、流量調整弁5a、5b、18a、18bの開度等を制御する。そして、制御装置14a、14b、14p、14qは例えば、各種データ等を含む通信を送受信することができるものとする。なお、以下では、各制御装置14a、14b、14p、14qの制御全体をまとめる場合は制御装置14として説明する。ここでは各制御装置14a、14b、14p、14qを各室外機1a、1b、室内機8p、8qに分けて設置しているが、一箇所にまとめて設置してもよい。また1つの装置で各装置の制御を行うようにしてもよい。制御装置14の機能を実行する内部構成については後述する。   As described above, the outdoor units 1a and 1b and the indoor units 8p and 8q are respectively provided with the control devices 14a, 14b, 14p, and 14q configured by a microcomputer, for example, and the pressure sensor 19 and the temperature sensor 20 are provided. Based on the detected data, the operation content (load request) instruction from the user of the air conditioner, the operation of starting and stopping the compressors 2a and 2b, the flow switching of the four-way valves 3a and 3b, the outdoor heat The amount of heat exchange in the exchangers 4a and 4b, the opening degree of the expansion valves 10p and 10q, the opening degree of the flow rate adjusting valves 5a, 5b, 18a and 18b, and the like are controlled. And control device 14a, 14b, 14p, 14q shall be able to transmit / receive the communication containing various data etc., for example. In the following description, the control device 14 will be described when the entire control of each of the control devices 14a, 14b, 14p, and 14q is summarized. Here, although each control apparatus 14a, 14b, 14p, 14q is divided and installed in each outdoor unit 1a, 1b and indoor unit 8p, 8q, you may install collectively. Further, each device may be controlled by one device. The internal configuration for executing the function of the control device 14 will be described later.

次にこの空気調和装置での運転動作について説明する。まず冷房運転時の動作について説明する。四方弁3a、3bでは、図1の実線方向に管が接続される。また、流量調整弁5a、5bは全閉または全開に近い状態、流量調整弁18a、18bは適度な開度、膨張弁10p、10qは適度な開度に設定する。この場合の冷媒の流れは以下の様になる。   Next, the operation of the air conditioner will be described. First, the operation during the cooling operation will be described. In the four-way valves 3a and 3b, pipes are connected in the direction of the solid line in FIG. Further, the flow rate adjusting valves 5a and 5b are set to a fully closed state or almost fully opened state, the flow rate adjusting valves 18a and 18b are set to appropriate opening degrees, and the expansion valves 10p and 10q are set to appropriate opening degrees. The refrigerant flow in this case is as follows.

圧縮機2a、2bから吐出された高圧高温ガスの冷媒は、オイルセパレータ15a、15bを通過する。この時に冷媒に混在する冷凍機油のおよそ大部分は、冷媒と分離され、内側底部に溜められて、返油バイパス回路16a、16bを通り、圧縮機2a、2bの吸入配管に戻される。これにより室外機1a、1bの外部へ流出する冷凍機油を低減でき、圧縮機の信頼性を改善することができる。   The refrigerant of high-pressure and high-temperature gas discharged from the compressors 2a and 2b passes through the oil separators 15a and 15b. At this time, approximately most of the refrigerating machine oil mixed in the refrigerant is separated from the refrigerant, stored in the bottom of the inside, passes through the oil return bypass circuits 16a and 16b, and is returned to the suction pipes of the compressors 2a and 2b. Thereby, the refrigeration oil which flows out of the outdoor units 1a and 1b can be reduced, and the reliability of the compressor can be improved.

一方、冷凍機油が占める割合が低下した高圧高温の冷媒は、四方弁3a、3bを通り、室外熱交換器4a、4bで凝縮、液化され、高低圧熱交換器17a、17bを通過する。高低圧熱交換器17a、17bを出て分岐した一方の流れは、流量調整弁18a、18bで適度に流量調整されて低圧低温の冷媒となり、室外熱交換器4a、4bを出た冷媒と高低圧熱交換器17a、17b内で熱交換するため、室外熱交換器4a、4bの出口側の冷媒状態よりも、高低圧熱交換器17a、17bの出口側での冷媒状態の方がエンタルピーが低くなる。流量調整弁18a、18bを通り、高低圧熱交換器17a、17bを出た低圧の冷媒は、アキュームレータ6a、6bと四方弁3a、3bとを結ぶ配管に至る。これにより、エンタルピー差が増大するため、同一能力にする場合の必要冷媒流量を低減でき、圧損低減による性能改善の効果がある。なお、ここでいう高圧、低圧は冷媒回路内における圧力の相対的な関係を表すものとする(温度についても同様である)。   On the other hand, the high-pressure and high-temperature refrigerant in which the ratio occupied by the refrigerating machine oil passes through the four-way valves 3a and 3b, is condensed and liquefied by the outdoor heat exchangers 4a and 4b, and passes through the high and low pressure heat exchangers 17a and 17b. One of the flows branched out of the high and low pressure heat exchangers 17a and 17b is moderately adjusted in flow rate by the flow rate adjusting valves 18a and 18b to become a low pressure and low temperature refrigerant, and the refrigerant flowing out of the outdoor heat exchangers 4a and 4b is high. Since heat is exchanged in the low-pressure heat exchangers 17a and 17b, the enthalpy is higher in the refrigerant state at the outlet side of the high- and low-pressure heat exchangers 17a and 17b than in the refrigerant state at the outlet side of the outdoor heat exchangers 4a and 4b. Lower. The low-pressure refrigerant passing through the flow rate adjusting valves 18a and 18b and exiting the high- and low-pressure heat exchangers 17a and 17b reaches a pipe connecting the accumulators 6a and 6b and the four-way valves 3a and 3b. Thereby, since the enthalpy difference increases, the required refrigerant flow rate in the case of the same capacity can be reduced, and there is an effect of performance improvement by reducing pressure loss. Here, the high pressure and the low pressure represent the relative relationship of the pressure in the refrigerant circuit (the same applies to the temperature).

一方、高低圧熱交換器17a、17bを出た高圧側の冷媒は、流量調整弁5a、5bを通るが、流量調整弁5a、5bが全開のため、さして減圧することなく高圧の液冷媒として液配管11に供給される。その後、室内機8p、8q内に入り、膨張弁10p、10qで減圧されて低圧二相冷媒となり、室内熱交換器9p、9qで蒸発、ガス化し、ガス配管7、四方弁3a、3b、アキュームレータ6a、6bを通り、圧縮機2a、2bに吸入される。   On the other hand, the high-pressure refrigerant that has exited the high-low pressure heat exchangers 17a and 17b passes through the flow rate adjusting valves 5a and 5b. However, since the flow rate adjusting valves 5a and 5b are fully opened, Supplied to the liquid pipe 11. Then, it enters into the indoor units 8p and 8q, is decompressed by the expansion valves 10p and 10q, becomes a low-pressure two-phase refrigerant, is evaporated and gasified by the indoor heat exchangers 9p and 9q, and is connected to the gas pipe 7, four-way valves 3a and 3b, accumulator. It passes through 6a and 6b and is sucked into the compressors 2a and 2b.

ここで、アキュームレータ6a、6b内に二相冷媒が流入すると液冷媒が容器下部に溜まり、U字管の上方開口部より流入されたガスリッチな冷媒が、圧縮機2a、2bへ吸入される。過渡的な液や二相冷媒をアキュームレータ6a、6b内に溜めきり、オーバーフローするまで、圧縮機2a、2bの液バックを一時的に防止することができ、圧縮機の信頼性維持の効果が得られる。   Here, when the two-phase refrigerant flows into the accumulators 6a and 6b, the liquid refrigerant accumulates in the lower part of the container, and the gas-rich refrigerant flowing in from the upper opening of the U-shaped pipe is sucked into the compressors 2a and 2b. The liquid back of the compressors 2a and 2b can be temporarily prevented until the transient liquid or the two-phase refrigerant is accumulated in the accumulators 6a and 6b and overflows, and the effect of maintaining the reliability of the compressor is obtained. It is done.

また、オイルセパレータ15a、15bで分離出来なかった冷凍機油も、冷媒回路を循環してアキュームレータ6a、6b内に溜まる。ある一定量の冷凍機油が滞留すると、U字管の上方開口部より下方に位置するU字管返油穴6c、6dより圧縮機2a、2bへ返油される。アキュームレータ6a、6b内に滞留する冷凍機油を低減することができ、圧縮機信頼性の向上や、冷凍機油の油量低減によるコスト改善といった効果が得られる。ただし、同時に下部に滞留したり、冷凍機油に溶解した液冷媒もU字管返油穴6c、6dより圧縮機2a、2bへ吸入されるが、適度なU字管返油穴形状を設定することにより、適度な吸入乾き度を有し、冷凍機油だけを返油できる機能を持つことができる。   Also, the refrigeration oil that could not be separated by the oil separators 15a and 15b circulates in the refrigerant circuit and accumulates in the accumulators 6a and 6b. When a certain amount of refrigerating machine oil stays, it is returned to the compressors 2a and 2b through the U-shaped pipe return holes 6c and 6d located below the upper opening of the U-shaped pipe. Refrigerating machine oil staying in the accumulators 6a and 6b can be reduced, and an effect of improving the reliability of the compressor and improving the cost by reducing the oil amount of the refrigerating machine oil can be obtained. However, liquid refrigerant staying in the lower part or dissolved in the refrigerating machine oil is also sucked into the compressors 2a and 2b through the U-shaped pipe return holes 6c and 6d, but an appropriate U-shaped pipe return hole shape is set. Thus, it can have a function of returning only the refrigerating machine oil with an appropriate degree of suction dryness.

図2は冷房運転における制御装置14の構成を示す図である。次にこの空気調和装置での制御装置14により行われる制御動作について説明する。冷房運転では室内熱交換器9p、9qが蒸発器となるので、ここで所定の熱交換能力が発揮されるように蒸発温度(蒸発器の二相冷媒温度)が設定され、この蒸発温度を実現する圧力の値を低圧目標値として設定する。そして、圧縮機制御手段30でインバータ回路による圧縮機2a、2bの回転数制御を行う。圧縮機2a、2bの運転容量は圧力センサ19c、19dで計測される圧力が定められた目標値、例えば飽和温度10℃に相当する圧力になるよう制御される。また回転数制御により、凝縮温度(凝縮器の二相冷媒温度)も変化するが、性能、信頼性確保のため、凝縮温度として一定の範囲が設定され、この凝縮温度を実現する圧力の値を、高圧目標値として設定する。伝熱媒体である空気や水を搬送するファン回転数やポンプ流量を、室外熱交換器4a、4bの熱交換量や、室内熱交換器9p、9qの熱交換量から予め定められた状態を元に、圧縮機制御手段30と室外熱交換量制御手段31とにより、圧力センサ19a、19bで計測される圧力が目標範囲内になるよう制御される。   FIG. 2 is a diagram illustrating a configuration of the control device 14 in the cooling operation. Next, the control operation performed by the control device 14 in this air conditioner will be described. In the cooling operation, the indoor heat exchangers 9p and 9q serve as an evaporator, and the evaporation temperature (two-phase refrigerant temperature of the evaporator) is set so that a predetermined heat exchange capability is exhibited here, and this evaporation temperature is realized. The pressure value to be set is set as the low pressure target value. The compressor control means 30 controls the rotation speed of the compressors 2a and 2b by an inverter circuit. The operating capacities of the compressors 2a and 2b are controlled so that the pressure measured by the pressure sensors 19c and 19d becomes a predetermined target value, for example, a pressure corresponding to a saturation temperature of 10 ° C. In addition, the condensing temperature (condenser two-phase refrigerant temperature) also changes due to the rotational speed control. To ensure performance and reliability, a certain range is set as the condensing temperature, and the pressure value that realizes this condensing temperature is set. Set as the high pressure target value. The number of rotations of the fan and the pump flow rate for conveying air or water as a heat transfer medium are determined in advance from the heat exchange amounts of the outdoor heat exchangers 4a and 4b and the heat exchange amounts of the indoor heat exchangers 9p and 9q. Originally, the pressure measured by the pressure sensors 19a and 19b is controlled to be within the target range by the compressor control means 30 and the outdoor heat exchange amount control means 31.

また、過熱度制御手段32により、膨張弁10p、10qは(温度センサ20pの温度)−(温度センサ20rの温度)、(温度センサ20qの温度)−(温度センサ20sの温度)で演算される室内熱交換器9p、9qの出口の過熱度が目標(温度)値となるように開度制御する。この目標値としては、予め定められた目標値、例えば5℃を用いる。目標となる出口過熱度に制御することで、室内熱交換器9p、9q内の二相状態の冷媒が占める割合を好ましい状態に保つことができる。   Further, the expansion valve 10p, 10q is calculated by (temperature of the temperature sensor 20p) − (temperature of the temperature sensor 20r), (temperature of the temperature sensor 20q) − (temperature of the temperature sensor 20s) by the superheat degree control means 32. The opening degree is controlled so that the degree of superheat at the outlets of the indoor heat exchangers 9p and 9q becomes a target (temperature) value. As this target value, a predetermined target value, for example, 5 ° C. is used. By controlling to the target outlet superheat degree, the proportion of the refrigerant in the two-phase state in the indoor heat exchangers 9p and 9q can be maintained in a preferable state.

また流量調整弁5a、5bは流量制御手段34によって予め定められた初期開度、例えば全開または全開に近い開度に制御される。また、流量調整弁18a、18bは、高低圧熱交換器過熱度制御手段33によって(温度センサ20gの温度)−(圧力センサ19cで計測される圧力から換算される飽和温度)、(温度センサ20iの温度)−(圧力センサ19dで計測される圧力から換算される飽和温度)で演算される高低圧熱交換器17a、17bの低圧の冷媒が通過する低圧側出口の過熱度があらかじめ定めた目標値となるように開度制御される。目標値は任意に定めることができるが、ここでは例えば2℃が用いられる。これにより、高低圧熱交換器17a、17bの仕様に見合った熱交換が実現できる。ここで、圧縮機制御手段30、室外熱交換量制御手段31、高低圧熱交換器過熱度制御手段33及び流量制御手段34は各室外機1a、1bにある制御手段14a、14bに設けられ、過熱度制御手段32は室内機8p、8qの制御手段14p、14qに設けられる。   The flow rate adjusting valves 5a and 5b are controlled by the flow rate control means 34 to a predetermined initial opening degree, for example, an opening degree close to or fully open. The flow rate adjusting valves 18a and 18b are controlled by the high / low pressure heat exchanger superheat degree control means 33 (temperature of the temperature sensor 20g) − (saturation temperature converted from the pressure measured by the pressure sensor 19c), (temperature sensor 20i). Of the low pressure side outlet through which the low pressure refrigerant of the high and low pressure heat exchangers 17a and 17b calculated by (the saturation temperature converted from the pressure measured by the pressure sensor 19d) is a predetermined target. The opening degree is controlled to be a value. Although the target value can be arbitrarily determined, for example, 2 ° C. is used here. Thereby, the heat exchange corresponding to the specification of the high-low pressure heat exchangers 17a and 17b can be realized. Here, the compressor control means 30, the outdoor heat exchange amount control means 31, the high and low pressure heat exchanger superheat degree control means 33, and the flow rate control means 34 are provided in the control means 14a and 14b in each of the outdoor units 1a and 1b. The superheat degree control means 32 is provided in the control means 14p, 14q of the indoor units 8p, 8q.

次に暖房運転の動作について説明する。四方弁3a、3bでは、図1の破線方向に管が接続される。流量調整弁5a、5bは適度に流量を調整して、室外機内の冷媒分布状態が各室外機で同様になり、なおかつ流量調整弁5a、5bの前後で適度な差圧が生じるように開度を予め設定されている。流量調整弁18a、18bは全閉、膨張弁10p、10qは適度な開度に設定する。   Next, the heating operation will be described. In the four-way valves 3a and 3b, pipes are connected in the direction of broken lines in FIG. The flow rate adjusting valves 5a and 5b adjust the flow rate appropriately so that the refrigerant distribution state in the outdoor unit is the same in each outdoor unit, and the opening degree is such that an appropriate differential pressure is generated before and after the flow rate adjusting valves 5a and 5b. Is preset. The flow rate adjusting valves 18a and 18b are fully closed, and the expansion valves 10p and 10q are set to appropriate opening degrees.

この場合の冷媒の流れは次のようになる。圧縮機2a、2bから吐出された高圧高温ガスの冷媒はオイルセパレータ15a、15b、四方弁3a、3bを通りガス配管7に流入する。オイルセパレータ15a、15bは前記した冷房運転時と同じ動作を行う。ガス配管7を通り室内機8に供給されたガス冷媒は室内機8p、8q内の室内熱交換器9p、9qで凝縮、液化された後、膨張弁10p、10qで減圧され、中間圧で液飽和状態に近い二相冷媒となる。中間圧の冷媒は液配管11を通った後、室外機1a、1bに分配され室外機1a、1bに流入する。流量調整弁5a、5bで適度に各室外機1a、1bの冷媒流量を調節しているため、流量調整弁5a、5bを通った冷媒は低圧二相状態となる。低圧二相状態となった冷媒は高低圧熱交換器17a、17bを通り、室外熱交換器4a、4bで蒸発し、ガス化した後、アキュムーレータ6a、6bを通り、圧縮機2a、2bに吸入される。アキュムーレータ6a、6bは前記した冷房運転時と同じ動作を行う。流量調整弁18a、18bは全閉しており、流れがないため、高低圧熱交換器17a、17bで冷媒間の熱交換はなされない。逆に流れがあると、熱交換するほど性能が低下することになる。   The refrigerant flow in this case is as follows. The refrigerant of the high-pressure high-temperature gas discharged from the compressors 2a and 2b flows into the gas pipe 7 through the oil separators 15a and 15b and the four-way valves 3a and 3b. The oil separators 15a and 15b perform the same operation as in the above cooling operation. The gas refrigerant supplied to the indoor unit 8 through the gas pipe 7 is condensed and liquefied by the indoor heat exchangers 9p and 9q in the indoor units 8p and 8q, and then depressurized by the expansion valves 10p and 10q. It becomes a two-phase refrigerant close to saturation. The intermediate-pressure refrigerant passes through the liquid pipe 11, is distributed to the outdoor units 1a and 1b, and flows into the outdoor units 1a and 1b. Since the refrigerant flow rates of the outdoor units 1a and 1b are appropriately adjusted by the flow rate adjusting valves 5a and 5b, the refrigerant passing through the flow rate adjusting valves 5a and 5b is in a low-pressure two-phase state. The refrigerant in the low-pressure two-phase state passes through the high- and low-pressure heat exchangers 17a and 17b, evaporates in the outdoor heat exchangers 4a and 4b, is gasified, passes through the accumulators 6a and 6b, and passes through the compressors 2a and 2b. Inhaled. The accumulators 6a and 6b perform the same operation as in the cooling operation described above. Since the flow rate adjusting valves 18a and 18b are fully closed and there is no flow, heat exchange between the refrigerants is not performed in the high and low pressure heat exchangers 17a and 17b. On the contrary, if there is a flow, the performance decreases as the heat is exchanged.

次にこの空気調和装置での制御装置14により行われる制御動作について説明する。図3は暖房運転における制御装置14の構成を示す。暖房運転では室内熱交換器9p、9qが凝縮器となるので、ここで所定の熱交換量が発揮されるように凝縮温度が設定され、この凝縮温度を実現する高圧の圧力値を高圧目標値として設定する。そして圧縮機制御手段30がインバータ回路による圧縮機2a、2bの回転数制御を行う。圧縮機2a、2bの運転容量は圧力センサ19a、19bで計測される高圧の圧力値が定められた目標値、例えば飽和温度50℃に相当する圧力になるよう制御される。また同時に回転数制御により、室外熱交換器4a、4bの蒸発温度が変化するが、能力、信頼性確保のため一定の範囲が設定され、この蒸発温度を実現する圧力の値を低圧目標値として設定する。圧縮機制御手段30と室外熱交換量制御手段31とにより、伝熱媒体である空気や水を搬送するファン回転数やポンプ流量を、室外熱交換器4a、4bの熱交換量や、室内熱交換器9p、9qの熱交換量から予め定められた状態を元に、圧力センサ19c、19dで計測される低圧の圧力値が目標範囲内になるよう制御される。   Next, the control operation performed by the control device 14 in this air conditioner will be described. FIG. 3 shows a configuration of the control device 14 in the heating operation. In the heating operation, the indoor heat exchangers 9p and 9q are condensers, and therefore, the condensation temperature is set so that a predetermined heat exchange amount is exhibited, and the high pressure value that realizes the condensation temperature is set as the high pressure target value. Set as. The compressor control means 30 controls the rotational speed of the compressors 2a and 2b by an inverter circuit. The operating capacities of the compressors 2a and 2b are controlled so that the high pressure value measured by the pressure sensors 19a and 19b becomes a predetermined target value, for example, a pressure corresponding to a saturation temperature of 50 ° C. At the same time, the evaporation temperature of the outdoor heat exchangers 4a and 4b changes due to the rotational speed control, but a certain range is set to ensure capacity and reliability, and the pressure value that realizes this evaporation temperature is set as the low pressure target value. Set. By means of the compressor control means 30 and the outdoor heat exchange amount control means 31, the number of rotations of the fan and the pump flow rate for conveying the heat transfer medium such as air and water can be changed to the heat exchange amount of the outdoor heat exchangers 4 a and 4 b and the indoor heat. Based on a predetermined state based on the heat exchange amounts of the exchangers 9p and 9q, control is performed so that the low pressure value measured by the pressure sensors 19c and 19d is within the target range.

また、過冷却度制御手段35により、膨張弁10p、10qは(圧力センサ19pで計測される圧力から換算される飽和温度)−(温度センサ20rの温度)、(圧力センサ19qで計測される圧力から換算される飽和温度)−(温度センサ20sの温度)で演算される室内熱交換器9p、9qの出口側の過冷却度(以下、室内熱交換器出口過冷却度という)が目標値(温度)となるように開度制御される。この目標値としては、予め定められた目標値、例えば10℃を用いる。また、流量調整弁18a、18bは、高低圧熱交換器過熱度制御手段33によって予め定められた初期開度、例えば全閉または全閉に近い開度に固定して制御される。また、流量制御手段34は、後述する圧縮機吐出過熱度及び蒸発器出口過熱度を演算して流量調整弁5a、5bの開度を制御する。ここで、圧縮機制御手段30、室外熱交換量制御手段31、高低圧熱交換器過熱度制御手段33及び流量制御手段34は各室外機1a、1bにある制御手段14a、14bに設けられ、過冷却度制御手段35は室内機8p、8qの制御手段14p、14qに設けられる。   Further, by the supercooling degree control means 35, the expansion valves 10p, 10q are (saturated temperature converted from the pressure measured by the pressure sensor 19p) − (temperature of the temperature sensor 20r), (pressure measured by the pressure sensor 19q). (Saturation temperature converted from) − (temperature of temperature sensor 20s), the degree of subcooling on the outlet side of indoor heat exchangers 9p and 9q (hereinafter referred to as indoor heat exchanger outlet subcooling degree) is a target value ( The opening degree is controlled to be (temperature). As this target value, a predetermined target value, for example, 10 ° C. is used. Further, the flow rate adjusting valves 18a and 18b are controlled to be fixed at an initial opening predetermined by the high / low pressure heat exchanger superheat degree control means 33, for example, an opening that is fully closed or close to being fully closed. Moreover, the flow control means 34 calculates the compressor discharge superheat degree and evaporator outlet superheat degree which are mentioned later, and controls the opening degree of the flow regulating valves 5a and 5b. Here, the compressor control means 30, the outdoor heat exchange amount control means 31, the high and low pressure heat exchanger superheat degree control means 33, and the flow rate control means 34 are provided in the control means 14a and 14b in each of the outdoor units 1a and 1b. The supercooling degree control means 35 is provided in the control means 14p, 14q of the indoor units 8p, 8q.

ここで、暖房運転と冷房運転の違いをみると、冷房運転では液配管11に高圧の液冷媒が存在する一方、暖房運転では液配管11に中間圧の液相または飽和液に近い二相冷媒が存在する。従って暖房運転では冷房運転に比べて液配管11内を流れる冷媒の量は少なく、その分発生した余剰冷媒はアキュームレータ6a、6bに液冷媒として溜まることになる。大容量化した空気調和装置では、共通の液配管11や液分岐管23a、23b、液枝管25p、25qの管径、配管長が増加するが、それに比例して冷媒量も増加するため、余剰冷媒の量もさらに増大することになる。   Here, looking at the difference between the heating operation and the cooling operation, a high-pressure liquid refrigerant exists in the liquid pipe 11 in the cooling operation, whereas a two-phase refrigerant close to an intermediate-pressure liquid phase or saturated liquid in the liquid pipe 11 in the heating operation. Exists. Therefore, in the heating operation, the amount of refrigerant flowing in the liquid pipe 11 is smaller than in the cooling operation, and surplus refrigerant generated accordingly is accumulated as liquid refrigerant in the accumulators 6a and 6b. In the air conditioner having a large capacity, the common liquid pipe 11, liquid branch pipes 23a and 23b, and the liquid branch pipes 25p and 25q have increased pipe diameters and pipe lengths. The amount of surplus refrigerant will further increase.

そこで、室外流量制御手段34が、圧力センサ19からの圧力値及び温度センサ20からの温度値に基づく演算を行って、流量調整弁5a、5bの開度を調整し、余剰冷媒の総量と、各室外機1a、1bのアキュームレータ6a、6bに余剰冷媒がいくら存在するかを制御する。なお、一般的に熱交換器の容積は室内熱交換器9p、9qより室外熱交換器4a、4bのほうが大きい。暖房時には室内熱交換器9p、9qを凝縮器として使うので、その容積差が暖房時の熱交換器における余剰冷媒となる。このような熱交換器の余剰冷媒と前述の液管内の余剰冷媒の和に安全率を掛け合わせたものがアキュームレータ6a、6bの容積となる。この安全率には、従来では空気調和装置が室外機1台構成であり流量調整弁5a、5bが存在せず液管の余剰冷媒が増大することも含まれる。   Therefore, the outdoor flow rate control means 34 performs an operation based on the pressure value from the pressure sensor 19 and the temperature value from the temperature sensor 20 to adjust the opening degree of the flow rate adjustment valves 5a and 5b, and the total amount of surplus refrigerant, It controls how much surplus refrigerant exists in the accumulators 6a and 6b of the outdoor units 1a and 1b. In general, the volume of the heat exchanger is larger in the outdoor heat exchangers 4a and 4b than in the indoor heat exchangers 9p and 9q. Since the indoor heat exchangers 9p and 9q are used as condensers during heating, the volume difference becomes an excess refrigerant in the heat exchanger during heating. The volume of the accumulators 6a and 6b is obtained by multiplying the sum of the surplus refrigerant in the heat exchanger and the surplus refrigerant in the liquid pipe by the safety factor. This safety factor includes that the air conditioner is conventionally configured as a single outdoor unit, the flow rate adjusting valves 5a and 5b are not present, and the surplus refrigerant in the liquid pipe is increased.

熱交換器容積、液管長さ、冷媒充填量等は多種あるものの、それらが合わさった空気調和装置の能力については、ほぼ線形性があり、余剰冷媒量も空気調和装置の能力の大きさに基づいて推定できる。室外機1台で空気調和装置を構成する場合は、その能力に見合った分の容積のアキュームレータを設ければよく、能力が大きくなると、アキュームレータの容積も大きくすればよい。ここで、大容量の空気調和装置を複数台の室外機で構成し、十分な均液制御が行われる場合、各室外機は個々の室外機の能力に見合ったアキュームレータの容積とすればよい。一方、同一構成でも均液制御が十分に機能しない場合、各室外機のアキュームレータは、最悪の事態を考え、同一能力の空気調和装置を室外機1台で構成する場合の容積としなくてはならない。このように、均液制御の良否によって、発生する余剰冷媒量が同じであっても空気調和装置におけるアキュームレータの容積の総計が大きく異なり、コスト・コンパクト性に影響を及ぼす。そこで、本実施の形態では、均液制御を十分に機能させるための制御を行う。   Although there are various heat exchanger volumes, liquid pipe lengths, refrigerant charge amounts, etc., the air conditioner capacity combined with them is almost linear, and the surplus refrigerant amount is also based on the capacity of the air conditioner Can be estimated. When an air conditioner is configured by one outdoor unit, an accumulator having a volume corresponding to the capacity may be provided, and the capacity of the accumulator may be increased as the capacity increases. Here, when a large-capacity air conditioner is configured by a plurality of outdoor units and sufficient liquid leveling control is performed, each outdoor unit may have a capacity of an accumulator that matches the capacity of each outdoor unit. On the other hand, if liquid leveling control does not function sufficiently even with the same configuration, the accumulator of each outdoor unit must take into account the worst situation, and must have a capacity when an air conditioner having the same capacity is configured with one outdoor unit. . As described above, depending on whether the liquid leveling control is good or not, the total volume of the accumulator in the air conditioner varies greatly even if the amount of generated surplus refrigerant is the same, which affects cost and compactness. Therefore, in the present embodiment, control is performed so that liquid leveling control functions sufficiently.

図4は凝縮器から蒸発器までの冷媒状態を流量調整弁の開度を変えて示したモリエル線図である。図4に基づいて流量調整弁5a、5bの開度と液管内の冷媒量の関係について説明する。ここで、おおよそ蒸発圧力、凝縮圧力は一定であり、高低差圧を占めるのは、膨張弁圧損、液管圧損、流量調整弁圧損である。本来、O、A、Bはほぼ同じエンタルピー線上であるが、区別するためずらして記している。   FIG. 4 is a Mollier diagram showing the refrigerant state from the condenser to the evaporator by changing the opening of the flow rate adjusting valve. Based on FIG. 4, the relationship between the opening degree of the flow regulating valves 5a and 5b and the amount of refrigerant in the liquid pipe will be described. Here, the evaporating pressure and the condensing pressure are approximately constant, and it is the expansion valve pressure loss, liquid pipe pressure loss, and flow rate adjustment valve pressure loss that occupy the high and low differential pressures. Originally, O, A, and B are on substantially the same enthalpy line, but are shifted to distinguish.

モリエル線図上で状態Oとなっている場合、この状態より流量調整弁5a、5bの開度を減少させると、状態はA側に変化する。このとき、流量調整弁5a、5b通過前後の冷媒の圧力の差圧が増大し、高低差一定であるため、膨張弁10p、10q通過前後の冷媒の圧力の差圧も減少し、そのため膨張弁10p、10qの開度が増加する。また、液管圧力の上昇、乾き度低下により液管内の密度が増加し、液管内に存在する冷媒量が増加する。さらに、液管内の乾き度低下により液管圧損も減少する。   In the state O on the Mollier diagram, when the opening degree of the flow rate adjusting valves 5a and 5b is decreased from this state, the state changes to the A side. At this time, the pressure difference between the refrigerant before and after passage through the flow rate adjusting valves 5a and 5b increases, and the difference in height is constant, so the pressure difference between the refrigerant before and after passage through the expansion valves 10p and 10q also decreases. The opening of 10p, 10q increases. Further, the density in the liquid pipe increases due to the increase in the liquid pipe pressure and the decrease in the dryness, and the amount of refrigerant existing in the liquid pipe increases. Furthermore, liquid pipe pressure loss is also reduced due to a decrease in dryness in the liquid pipe.

逆に状態Oより流量調整弁5a、5bの開度を増加させると、モリエル線図上の状態はB側に変化する。このとき、流量調整弁5a、5b通過前後の冷媒の圧力の差圧が減少し、高低差一定であるため、膨張弁10p、10q通過前後の冷媒の圧力の差圧も増大し、そのため膨張弁10p、10qの開度が減少する。また、液管圧力の低下、乾き度増大により液管内の密度が減少し、液管内に存在する冷媒量が減少する。さらに、液管内の乾き度増大により液管圧損も増加する。   Conversely, when the opening degree of the flow rate adjusting valves 5a, 5b is increased from the state O, the state on the Mollier diagram changes to the B side. At this time, the pressure difference between the refrigerant before and after passing through the flow rate adjusting valves 5a and 5b decreases and the difference in height is constant, so the pressure difference between the refrigerant before and after passage through the expansion valves 10p and 10q also increases. The opening degree of 10p and 10q decreases. Moreover, the density in a liquid pipe | tube reduces by the fall of a liquid pipe | tube pressure, and dryness increase, and the refrigerant | coolant amount which exists in a liquid pipe | tube reduces. Further, the liquid pipe pressure loss increases due to the increase in the dryness in the liquid pipe.

図5は流量調整弁5a、5bの開度を変化させた時の室外機1a、1bにおける状態量を表す図である。図4より流量調整弁5a、5bの開度を減少させると液管内の冷媒量が増加する。図中の開度Aまでは、液管内の冷媒増加分によりアキュームレータ6a、6bの液冷媒量が減少となる。アキュームレータ6a、6b内に冷媒が存在しており、圧縮機2a、2bの吸入側における乾き度(以下、圧縮機吸入乾き度という)が1近傍、その結果、圧縮機2a、2bの吐出側の過熱度(以下、圧縮機吐出過熱度という)が一定値近傍で若干増加する程度であり、圧縮機2a、2bの信頼性は確保される。また、蒸発器である室外熱交換器4a、4bにおける冷媒滞留量に変化はなく、その出口乾き度(以下、蒸発器出口過熱度という)は0近傍であり、熱交換性能は高い。   FIG. 5 is a diagram illustrating state quantities in the outdoor units 1a and 1b when the opening degree of the flow rate adjusting valves 5a and 5b is changed. As shown in FIG. 4, when the opening degree of the flow rate adjusting valves 5a and 5b is decreased, the refrigerant amount in the liquid pipe is increased. Until the opening degree A in the figure, the amount of liquid refrigerant in the accumulators 6a and 6b decreases due to the increase in refrigerant in the liquid pipe. The refrigerant is present in the accumulators 6a and 6b, and the dryness on the suction side of the compressors 2a and 2b (hereinafter referred to as compressor suction dryness) is close to 1, and as a result, on the discharge side of the compressors 2a and 2b. The degree of superheat (hereinafter, referred to as compressor discharge superheat degree) slightly increases in the vicinity of a certain value, and the reliability of the compressors 2a and 2b is ensured. Further, there is no change in the refrigerant retention amount in the outdoor heat exchangers 4a and 4b, which are evaporators, and the outlet dryness (hereinafter referred to as evaporator outlet superheat degree) is close to 0, and the heat exchange performance is high.

そして流量調整弁5a、5bの開度の減少が開度Aを超え、アキュームレータ6a、6b内に液冷媒が存在しなくなると、室外熱交換器4a、4bの冷媒滞留量が減少し、蒸発器出口過熱度が増加する。室外熱交換器4a、4bの熱交換能力が低下して蒸発温度も低下するため、暖房能力が低下して性能(COP:成績係数)が低下する。また、圧縮機吐出過熱度及び圧縮機吸入乾き度は大きく増加し、圧縮機内が温度上昇して信頼性を損なうおそれがある。また、膨張弁10p、10qの開度を増加させる必要があるが、最終的には全開または全開に近い状態となり、凝縮器である室内熱交換器9a、9bの室内熱交換器出口過冷却度が目標値以上となってしまい、要求される暖房能力を発揮でないおそれがある。また、膨張弁10p、10qの開度制御による室外機1a、1bへの冷媒の流量分配ができなくなる。   If the decrease in the opening degree of the flow rate adjusting valves 5a and 5b exceeds the opening degree A and no liquid refrigerant exists in the accumulators 6a and 6b, the refrigerant retention amount in the outdoor heat exchangers 4a and 4b is reduced, and the evaporator Outlet superheat increases. Since the heat exchange capacity of the outdoor heat exchangers 4a and 4b is lowered and the evaporation temperature is also lowered, the heating capacity is lowered and the performance (COP: coefficient of performance) is lowered. Further, the compressor discharge superheat degree and the compressor suction dryness greatly increase, and there is a risk that the temperature in the compressor rises and the reliability is impaired. Moreover, although it is necessary to increase the opening degree of the expansion valves 10p and 10q, it finally becomes a state of full open or nearly full open, and the indoor heat exchanger outlet subcooling degree of the indoor heat exchangers 9a and 9b which are condensers May exceed the target value, and the required heating capacity may not be exhibited. Further, it becomes impossible to distribute the refrigerant flow rate to the outdoor units 1a and 1b by controlling the opening of the expansion valves 10p and 10q.

逆に流量調整弁5a、5bの開度を増加させると液管内の冷媒量が減少する。図中の開度Bまでは、液管内の冷媒減少分によりアキュームレータ6a、6bの液冷媒量が増加となる。そのため、アキュームレータ6a、6b内の液面が高くなるが、アキュームレータ6a、6bの気液分離が機能しており、圧縮機吸入乾き度が1近傍、その結果、圧縮機吐出過熱度は一定値近傍で若干減少する程度であり、圧縮機2a、2bの信頼性は確保される。室外熱交換器4a、4bの冷媒滞留量に変化はなく蒸発器出口過熱度は0近傍であり、熱交換性能は高い。   Conversely, when the opening degree of the flow rate adjusting valves 5a and 5b is increased, the amount of refrigerant in the liquid pipe decreases. Until the opening degree B in the figure, the amount of liquid refrigerant in the accumulators 6a and 6b increases due to the decrease in the refrigerant in the liquid pipe. For this reason, the liquid level in the accumulators 6a and 6b is increased, but the gas-liquid separation of the accumulators 6a and 6b is functioning, and the compressor suction dryness is close to 1. As a result, the compressor discharge superheat is close to a constant value. Therefore, the reliability of the compressors 2a and 2b is ensured. There is no change in the refrigerant retention amount of the outdoor heat exchangers 4a and 4b, the evaporator superheat degree is close to 0, and the heat exchange performance is high.

さらに流量調整弁5a、5bの開度の増加が開度Bを超え、アキュームレータ6a、6bの気液分配が機能しなくなると、アキュームレータ6a、6bの代わりに室外熱交換器4a、4bに冷媒が滞留し始め、蒸発器出口過熱度は変化しないが室外熱交換器4a、4bの出口側が液バック状態となる。さらに、圧縮機吐出過熱度、圧縮機吸入乾き度は大きく減少し圧縮機2a、2bの信頼性が損なわれるおそれがある。   Further, when the increase in the opening degree of the flow rate adjusting valves 5a and 5b exceeds the opening degree B and the gas-liquid distribution of the accumulators 6a and 6b stops functioning, the refrigerant is transferred to the outdoor heat exchangers 4a and 4b instead of the accumulators 6a and 6b. It begins to stay, and the degree of superheat of the evaporator outlet does not change, but the outlet side of the outdoor heat exchangers 4a and 4b enters a liquid back state. Furthermore, the compressor discharge superheat degree and the compressor suction dryness are greatly reduced, and the reliability of the compressors 2a and 2b may be impaired.

以上より、流量調整弁5a、5bの開度を、好ましい状態である図5の開度Aと開度Bの範囲内に調整すれば、室外熱交換器4a、4bの蒸発器出口過熱度を1近傍の低過熱度に制御することができ、また、圧縮機吐出過熱度をある一定値以上または圧縮機吸入乾き度を1近傍に制御することができるので、目的とする均液・余剰冷媒処理を実現することができる。そして、このことは本実施の形態のように2つの室外機1a、1bの構成だけによるものではなく、3台以上の室外機を有する空気調和装置についても同様のことがいえる。   As mentioned above, if the opening degree of the flow regulating valves 5a and 5b is adjusted within the range of the opening degree A and the opening degree B of FIG. 5 which is a preferable state, the evaporator superheat degree of the outdoor heat exchangers 4a and 4b is set. It is possible to control the degree of superheat in the vicinity of 1, and to control the compressor discharge superheat to a certain value or higher, or to control the compressor suction dryness in the vicinity of 1. Processing can be realized. This is not only due to the configuration of the two outdoor units 1a and 1b as in the present embodiment, but the same can be said for an air conditioner having three or more outdoor units.

図6は本実施の形態に係る制御装置14が行う制御の処理に関するフローチャートを表す図である。図6に基づいて、制御装置14(特に制御装置14a、14b)が行う制御、特に室外流量制御手段34が行う流量調整弁5a、5bの開度の制御について説明する。まず、ステップS0で、圧縮機2a、2b等が起動して空気調和装置による暖房運転が開始される。ステップS1で、制御装置14を構成する各制御手段は、各センサの初期状態検知に応じた初期設定による固定値を設定する。   FIG. 6 is a diagram illustrating a flowchart regarding control processing performed by the control device 14 according to the present embodiment. Based on FIG. 6, the control performed by the control device 14 (particularly the control devices 14a and 14b), particularly the control of the opening degree of the flow rate adjusting valves 5a and 5b performed by the outdoor flow rate control means 34 will be described. First, in step S0, the compressors 2a, 2b, etc. are activated and the heating operation by the air conditioner is started. In step S1, each control means constituting the control device 14 sets a fixed value by initial setting according to the initial state detection of each sensor.

次にステップS2で、空気調和装置の運転開始後、一定時間(例えば5分、10分等)が経過したかどうかを判断する。ここで、暖房運転開始時に、流量調整弁5a、5bを、そのの前後において差圧が発生する程度の開度にしておくと、冷媒が低圧となって着霜してしまい、能力低下となり、低圧目標値に回復するまでに時間を要したり、さらには回復できないなどの起動不良のおそれがある。そこで、例えば、暖房運転開始時には、流量調整弁5a、5bを全開または全開に近い状態とすることで、前述の能力低下や起動不良を防止することができる。その後、流量調整弁5a、5bは、室外流量制御手段34による制御が実施されるまで、全開または全開に近い状態のまま維持させる。   Next, in step S2, it is determined whether or not a certain time (for example, 5 minutes, 10 minutes, etc.) has elapsed since the start of the operation of the air conditioner. Here, at the start of the heating operation, if the flow rate adjusting valves 5a and 5b are set to an opening degree at which a differential pressure is generated before and after the flow regulating valves 5a and 5b, the refrigerant becomes low pressure and forms frost, resulting in a decrease in capacity. There is a risk of starting failure such as it takes time to recover to the low pressure target value and further recovery is impossible. Therefore, for example, when the heating operation is started, the flow rate adjustment valves 5a and 5b are fully opened or close to full opening, so that the above-described deterioration in performance and startup failure can be prevented. Thereafter, the flow rate adjusting valves 5a and 5b are maintained in a fully opened state or a state close to a fully opened state until the control by the outdoor flow rate control unit 34 is performed.

ステップS2で運転開始後、一定時間が経過したものと判断すると、ステップS3で、各圧力センサ19及び温度センサ20並びに、室内機8p、8qの使用状況(負荷)等の情報(データ)基づいて室外流量制御手段34を除く他の制御手段が各制御対象の制御を行う。そして、ステップS4で、流量調整弁5a、5bを制御する時間間隔に基づいて時間経過を判断する。ここで、他の制御手段が各々に固有の制御の指令が出る時間間隔(例えば1分)ごとに実施するのに対し、室外流量制御手段34は、それよりも十分大きい時間間隔(例えば5分)でステップS5a、S5bを実行して流量調整弁5a、5bを制御するものとする。これは後述するように、ハンチング等の発生を防止し、制御を安定させるためである。なお、以下のステップにおいて、室外流量制御手段34は流量調整弁5a、5bを制御するが、流量調整弁5a、5bの両方に同じ制御が行われるのではなく、流量調整弁5a及び5bはそれぞれが設けられている室外機1a、1bの各機器の状態等に応じて制御が行われる。   If it is determined that a certain period of time has elapsed after the start of operation in step S2, based on information (data) such as the usage status (load) of each pressure sensor 19 and temperature sensor 20 and indoor units 8p and 8q in step S3. Control means other than the outdoor flow rate control means 34 controls each control object. In step S4, the passage of time is determined based on the time interval for controlling the flow rate adjusting valves 5a and 5b. Here, the other flow rate control unit 34 is executed every time interval (for example, 1 minute) at which each control command is issued, whereas the outdoor flow rate control unit 34 has a sufficiently larger time interval (for example, 5 minutes). ), Steps S5a and S5b are executed to control the flow rate adjusting valves 5a and 5b. This is to prevent the occurrence of hunting and stabilize the control, as will be described later. In the following steps, the outdoor flow rate control means 34 controls the flow rate adjustment valves 5a and 5b, but the same control is not performed on both the flow rate adjustment valves 5a and 5b. Control is performed in accordance with the state of each device of the outdoor units 1a and 1b.

室外流量制御手段34が行うステップS5a、S5bの内容として、まず、ステップS6a、S6bで、各室外機1a、1bの室外熱交換器4a、4bにおける蒸発器出口過熱度を、(温度センサ20eの温度)−(圧力センサ19cで計測される圧力から換算される飽和温度)、(温度センサ20fの温度)−(圧力センサ19dで計測される圧力から換算される飽和温度)により演算する。また、圧縮機2a、2bの圧縮機吐出過熱度を(温度センサ20aの温度)−(圧力センサ19aで計測される圧力から換算される飽和温度)、(温度センサ20bの温度)−(圧力センサ19bで計測される圧力から換算される飽和温度)により演算する。ここで、飽和温度については、制御装置14(室外流量制御手段34)が圧力−飽和温度換算テーブルのデータを記憶手段(図示せず)に記憶しており、計測される圧力の値に基づいて換算を行う。   As the contents of steps S5a and S5b performed by the outdoor flow rate control means 34, first, in steps S6a and S6b, the degree of superheat of the evaporator outlet in the outdoor heat exchangers 4a and 4b of the outdoor units 1a and 1b is determined (of the temperature sensor 20e). (Temperature)-(saturation temperature converted from pressure measured by pressure sensor 19c), (temperature of temperature sensor 20f)-(saturation temperature converted from pressure measured by pressure sensor 19d). Further, the compressor discharge superheat degree of the compressors 2a and 2b is expressed as (temperature of the temperature sensor 20a) − (saturation temperature converted from the pressure measured by the pressure sensor 19a), (temperature of the temperature sensor 20b) − (pressure sensor). (Saturation temperature converted from the pressure measured in 19b)). Here, regarding the saturation temperature, the control device 14 (outdoor flow rate control means 34) stores the data of the pressure-saturation temperature conversion table in the storage means (not shown), and based on the measured pressure value. Perform conversion.

図7は流量調整弁5a、5bの開度操作を行う判断基準となる室外機1a、1bの状態の分類例を表す図である。ステップS7a、S7bで、演算した圧縮機吐出過熱度及び蒸発器出口過熱度に基づいて、室外機1a、1bの状態が図7に示すような状態A〜状態Eの5分類のどの状態に該当するかを判断する。ここで、圧縮機吐出過熱度には1つのしきい値(例えば30℃)を設け、蒸発器出口過熱度には2つのしきい値(例えば2℃と5℃)を設けて分類する。なお、等号は実質的に意味がなく、しきい値がそれよりも大きい数値の分類に属しても小さい分類に属してもよい。   FIG. 7 is a diagram illustrating a classification example of the states of the outdoor units 1a and 1b, which are determination criteria for performing the opening operation of the flow rate adjusting valves 5a and 5b. On the basis of the compressor discharge superheat degree and the evaporator outlet superheat degree calculated in steps S7a and S7b, the state of the outdoor units 1a and 1b corresponds to any of the five states of state A to state E as shown in FIG. Judge whether to do. Here, one threshold value (for example, 30 ° C.) is provided for the compressor discharge superheat degree, and two threshold values (for example, 2 ° C. and 5 ° C.) are provided for the evaporator outlet superheat degree. Note that the equal sign is substantially meaningless and may belong to a classification of numerical values having a threshold value larger or smaller than that.

状態Aは、
圧縮機吐出過熱度<30℃(しきい値)かつ、
0≦蒸発器出口過熱度<2℃(しきい値1)
となる状態である。圧縮機吸入状態が液バック状態であり、今後もこの状態が続く。
状態Bは、
圧縮機吐出過熱度<30℃(しきい値)かつ、
2℃(しきい値1)≦蒸発器出口過熱度<5℃(しきい値2)
となる状態である。圧縮機吸入状態は湿り気味であるが、蒸発器出口乾き度がある程度高いので、時間が経過すると吸入湿り状態が解消される可能性がある。
状態Cは、
圧縮機吐出過熱度<30℃(しきい値)かつ、
蒸発器出口過熱度>5℃(しきい値2)
となる状態である。圧縮機吸入状態は湿り気味であるが、蒸発器出口乾き度が高いので、時間が経過すると吸入湿り状態から高乾き状態となり性能低下する恐れがある。
状態Dは、
圧縮機吐出過熱度≧30℃(しきい値)かつ、
0≦蒸発器出口過熱度<5℃(しきい値2)
となる状態である。蒸発器出口乾き度ほぼ0近傍で性能が確保でき、なおかつ圧縮機吸入状態が良好である。
状態Eは、
圧縮機吐出過熱度≧30℃(しきい値)かつ、
蒸発器出口過熱度>5℃(しきい値2)
となる状態である。状態Eは圧縮機吸入状態がかなり乾いてアキュームレータ6a、6bに余剰冷媒がなく、性能低下の恐れがある。
State A is
Compressor discharge superheat <30 ° C (threshold) and
0 ≦ Evaporator outlet superheat <2 ° C. (Threshold 1)
This is the state. The compressor suction state is the liquid back state, and this state will continue in the future.
State B is
Compressor discharge superheat <30 ° C (threshold) and
2 ° C (threshold 1) ≤ evaporator outlet superheat <5 ° C (threshold 2)
This is the state. The compressor inhalation state is damp, but the evaporator outlet dryness is high to some extent, so that the inhalation moist state may be eliminated over time.
State C is
Compressor discharge superheat <30 ° C (threshold) and
Evaporator outlet superheat> 5 ° C (threshold 2)
This is the state. Although the compressor inhalation state is damp, the evaporator outlet dryness is high, so that over time, the intake moist state may become a high dry state and performance may be degraded.
State D is
Compressor discharge superheat degree ≧ 30 ° C. (threshold) and
0 ≦ Evaporator outlet superheat <5 ° C. (Threshold 2)
This is the state. The performance can be ensured when the evaporator outlet dryness is almost zero, and the compressor suction state is good.
State E is
Compressor discharge superheat degree ≧ 30 ° C. (threshold) and
Evaporator outlet superheat> 5 ° C (threshold 2)
This is the state. In the state E, the compressor suction state is considerably dry, and there is no surplus refrigerant in the accumulators 6a and 6b, which may cause a decrease in performance.

ステップS7a、S7bの判断に基づいて流量調整弁5a、5bの開度の増減または維持を判断する。開度増減の変化量は、例えば変化前と約5%異なるようにする。ここで、
状態Aの場合は、流量調整弁が開き過ぎているため、開度を減少させるものと判断する(ステップS8a、S8b)。
状態Bの場合は、流量制御弁の開度を変更する必要がないものと判断する(ステップS9a、S9b)。
状態Cの場合は、流量制御弁を絞り過ぎているため、開度を増加させるものと判断する。(ステップS10a、S10b)
状態Dの場合は、流量制御弁の開度は望ましい状態であり変更しないものと判断する(ステップS9a、S9b)。
状態Eの場合は、流量調整弁を絞り過ぎているため、開度を増加させるものと判断する(ステップS10a、S10b)。
Based on the determinations in steps S7a and S7b, it is determined whether the flow rate adjusting valves 5a and 5b are increased or decreased. The amount of change in the opening / closing increase / decrease is, for example, about 5% different from that before the change. here,
In the case of the state A, since the flow rate adjustment valve is too open, it is determined that the opening degree is to be decreased (steps S8a and S8b).
In the case of state B, it is determined that there is no need to change the opening degree of the flow control valve (steps S9a, S9b).
In the state C, it is determined that the opening degree is increased because the flow control valve is excessively throttled. (Steps S10a, S10b)
In the state D, it is determined that the opening degree of the flow rate control valve is a desirable state and is not changed (steps S9a and S9b).
In the case of the state E, since the flow rate adjustment valve is too narrowed, it is determined that the opening degree is to be increased (steps S10a and S10b).

次に、ステップS11a、11bで、流量調整弁5a、5bの開度の上限値及び下限値を求める。流量調整弁5a、5bの開度範囲を固定してもよいが、後述するように、図5の好ましい状態の範囲は一意的に決まらないため、流量調整弁5a、5bの開度範囲を調整した方が望ましい。ここで、ステップS11a、11bはステップS3より後であれば、これより前のステップにおいて算出するようにしてもよい。ステップS12a、12bで、増減または維持したときの開度が、上限値及び下限値で定めた範囲内に収まっているか判断し、収まっていない場合は開度を修正する。開度が下限値以下の場合は開度を下限値に修正する(S13a、S13b)。また、開度が上限値以上の場合は開度を上限値に修正する(S14a、S14b)。ステップS15a、S15bで、流量調整弁5a、5bに指令を送信し、流量調整弁5a、5bが決定した開度になるように制御する。そして、またステップS3に戻り、順に処理を始める。   Next, in steps S11a and 11b, an upper limit value and a lower limit value of the opening degree of the flow rate adjusting valves 5a and 5b are obtained. The opening range of the flow rate adjusting valves 5a and 5b may be fixed. However, as will be described later, the preferable range of FIG. 5 is not uniquely determined, so the opening range of the flow rate adjusting valves 5a and 5b is adjusted. It is better to do it. Here, if step S11a, 11b is after step S3, you may make it calculate in the step before this. In steps S12a and 12b, it is determined whether the opening when increasing, decreasing, or maintaining is within the range defined by the upper limit value and the lower limit value. If not, the opening is corrected. If the opening is less than or equal to the lower limit, the opening is corrected to the lower limit (S13a, S13b). If the opening is equal to or greater than the upper limit, the opening is corrected to the upper limit (S14a, S14b). In steps S15a and S15b, a command is transmitted to the flow rate adjusting valves 5a and 5b, and the flow rate adjusting valves 5a and 5b are controlled to have the determined opening. And it returns to step S3 again and starts a process in order.

室外流量制御手段34において、以上のような流量調整弁5a、5bの制御を行い、圧縮機吐出過熱度を一定値以上に設定することにより圧縮機吸入乾き度を高く保つことができ、圧縮機2a、2bの信頼性向上、特に軸受け部分の信頼性を確保する上で、実運転時において必要な分の冷凍機油の潤滑性能を確保する効果がある。また蒸発器出口過熱度を1近傍の低い過熱度に設定することにより、室外熱交換器4a、4bにおける熱交換性能を高く保ち、空気調和装置全体の性能を改善する効果がある。   The outdoor flow rate control means 34 controls the flow rate adjusting valves 5a and 5b as described above, and the compressor discharge superheat degree is set to a predetermined value or higher, so that the compressor suction dryness can be kept high. In order to improve the reliability of 2a and 2b, particularly to ensure the reliability of the bearing portion, there is an effect of ensuring the lubricating performance of the refrigerating machine oil necessary for the actual operation. Moreover, by setting the evaporator outlet superheat degree to a low superheat degree in the vicinity of 1, the heat exchange performance in the outdoor heat exchangers 4a and 4b can be kept high, and the performance of the entire air conditioner can be improved.

また、複数台の室外機1a、1bで大容量の空気調和装置を構成するため、冷媒充填量が多く余剰冷媒処理のためにアキュームレータの容量を大きくする必要がある。しかし、圧縮機吐出過熱度を一定値以上にし、蒸発器出口を乾き度1近傍の低過熱度の状態(上述した状態D)になるように流量調整弁5a、5bの開度を制御することにより、各室外機1a、1b内における冷媒分布状態が同一(均一)の状態になるように近づけ、各室外機1a、1b内に大きな偏りなく(余剰)冷媒を分配することができる。このため、各室外機1a、1b内には、その室外機の能力に応じた容積のアキュームレータ6a、6bを設ければよい。そのため、1台で用いるか、複数台で用いるかにより同能力の室外機でアキュームレータの容積を分けずにすみ、生産性向上、コスト低減の効果を得られる。また、圧縮機吐出過熱度は圧縮機吸入乾き度の他に、圧縮機運転時の吐出、吸入圧力に強く依存する。   Moreover, since a large capacity air conditioner is configured by the plurality of outdoor units 1a and 1b, it is necessary to increase the capacity of the accumulator in order to process a large amount of refrigerant and to treat surplus refrigerant. However, the opening degree of the flow rate adjusting valves 5a and 5b is controlled so that the compressor discharge superheat is a certain value or more and the evaporator outlet is in a low superheat state near the dryness 1 (state D described above). Thus, the refrigerant distribution state in each of the outdoor units 1a and 1b can be made to be the same (uniform) state, and the refrigerant can be distributed to the outdoor units 1a and 1b without significant deviation (surplus). For this reason, what is necessary is just to provide the accumulator 6a, 6b of the capacity | capacitance according to the capability of the outdoor unit in each outdoor unit 1a, 1b. Therefore, it is not necessary to divide the volume of the accumulator with an outdoor unit of the same capacity depending on whether it is used by one unit or a plurality of units, and the effects of productivity improvement and cost reduction can be obtained. In addition, the compressor discharge superheat degree strongly depends on the discharge and suction pressure during the compressor operation, in addition to the compressor suction dryness.

ここで、低圧縮比ほど圧縮機吐出過熱度が低下することがわかっているので、暖房時のような外気温度が低い環境での運転においては圧縮機吐出過熱度に設けるしきい値を低くするように補正してもよい。   Here, since it is known that the lower the compression ratio, the lower the compressor discharge superheat degree, the lower the threshold value for the compressor discharge superheat degree when operating in an environment where the outside air temperature is low such as during heating. You may correct | amend as follows.

次に流量調整弁5a、5bの制御の時間的な変化について説明する。室外熱交換器4a、4bの蒸発器出口過熱度が変化すると、アキュームレータ6a、6b内に液冷媒が存在し、その液面高さが変化する場合は、アキュームレータ6a、6bにあるU字管の気液分離が機能し、圧縮機吸入乾き度の変化は少ない。逆にアキュームレータ6a、6b内に液冷媒が存在しないか、またはオーバーフローして気液分離が機能しない場合は、圧縮機吸入乾き度は大きく変化する。このように蒸発器出口過熱度は圧縮機吸入乾き度に影響を与えるが、圧縮機吸入乾き度の大きな変化は、アキュームレータ6a、6bの容積分、時間遅れを生じる。   Next, a temporal change in the control of the flow rate adjusting valves 5a and 5b will be described. When the superheat degree of the evaporator outlet of the outdoor heat exchangers 4a and 4b changes, liquid refrigerant exists in the accumulators 6a and 6b, and when the liquid level changes, the U-tubes in the accumulators 6a and 6b change. Gas-liquid separation works, and the change in compressor suction dryness is small. On the other hand, when the liquid refrigerant does not exist in the accumulators 6a and 6b or overflows and the gas-liquid separation does not function, the compressor suction dryness greatly changes. As described above, the superheat degree at the outlet of the evaporator affects the dryness of the compressor, but a large change in the dryness of the suction of the compressor causes a time delay corresponding to the volume of the accumulators 6a and 6b.

また、図5に示しているように、圧縮機吸入乾き度の変化が小さい場合は圧縮機吐出過熱度の変化も小さいが、圧縮機吸入乾き度が1から小さくなるに従い、圧縮機吐出過熱度の変化も大きくなる。圧縮機吐出過熱度の変化は遅れを生じることなく圧縮機吸入乾き度の変化に反映する。室外機1a、1bの状態が、図5に示した好ましい範囲内にある場合は、状態変化が少なく、流量調整弁5a、5bの制御時間間隔が大きくても十分制御可能である。一方、好ましい状態の範囲を外れる、または外れそうな場合は、圧縮機吸入乾き度が低い高湿り側(Bより右側)の状態では時間遅れのない圧縮機吐出過熱度により、また、圧縮機吸入乾き度が高い高乾き側(Aより左側)の状態では蒸発器出口過熱度について2つのしきい値を設けて状態を区別することにより、流量調整弁5a、5bの制御時間間隔が大きくても十分制御可能である。   Further, as shown in FIG. 5, when the change in the compressor suction dryness is small, the change in the compressor discharge superheat is also small, but as the compressor suction dryness decreases from 1, the compressor discharge superheat degree The change of becomes larger. The change in the compressor discharge superheat is reflected in the change in the compressor suction dryness without causing a delay. When the state of the outdoor units 1a and 1b is within the preferable range shown in FIG. 5, the state change is small, and even if the control time interval of the flow rate adjusting valves 5a and 5b is large, sufficient control is possible. On the other hand, when it is out of the range of the preferable state or is likely to be out of the range, in the state of high humidity (right side from B) where the compressor suction dryness is low, the compressor discharge superheat is not delayed in time, and the compressor suction Even when the control time interval of the flow rate adjusting valves 5a and 5b is large by providing two threshold values for the evaporator outlet superheat degree in the state of the high dry side where the dryness is high (left side from A). Fully controllable.

さらに、前記のように圧縮機制御手段30が行う圧縮機の容量(運転周波数)制御、室内過冷却度制御手段35が行う膨張弁10p、10qの開度制御は、制御すべき指令が出る時間間隔が小さく、図4に示している配管圧損、膨張弁差圧は、その制御に同期して短い時間間隔で変化する。流量調整弁5a、5bをこれらの時間間隔に合わせて制御すると、差圧も短い時間で変化する可能性があり、これらの変化が互いに影響を及ぼし合ってハンチング等が生じ、制御が安定しないおそれがある。そこで、流量調整弁5a、5bの開度制御は、圧縮機2a、2bの容量制御、膨張弁10p、10qの開度制御よりも指令する時間間隔を大きくし、少なくとも流量調整弁における差圧の変化をゆっくりとしたものにして、ハンチング発生を防止することで、安定した制御が実現できる。   Further, the compressor capacity (operating frequency) control performed by the compressor control means 30 and the opening control of the expansion valves 10p, 10q performed by the indoor supercooling degree control means 35 as described above are the times when commands to be controlled are issued. The pipe pressure loss and the expansion valve differential pressure shown in FIG. 4 change at short time intervals in synchronization with the control. If the flow rate adjusting valves 5a and 5b are controlled in accordance with these time intervals, the differential pressure may also change in a short time, and these changes may affect each other, resulting in hunting and the like, and control may not be stable. There is. Therefore, the opening control of the flow rate adjusting valves 5a and 5b is performed with a command time interval larger than that of the capacity control of the compressors 2a and 2b and the opening control of the expansion valves 10p and 10q. Stable control can be realized by slowing the change and preventing the occurrence of hunting.

次に流量調整弁5a、5bの個別の開度範囲について説明する。図5の好ましい状態の範囲は一意的に決まらず、流量調整弁5a、5bの開度範囲は必ずしも一定でない。実使用の条件ごとに図5の好ましい状態の開度範囲を決めればよいが、現実には、開度範囲を変化させる因子が多く煩雑である。そのため、特定の因子に絞る必要がある。ここで、開度範囲が一定でなくてもモリエル線図上の状態は大きく変化しないので、できる限り差圧一定となるように、例えば下限側0.5MPa、上限側1.4MPaとして開度範囲を定める。このためには冷媒流量を想定する必要がある。そのため、室外機1a、1bに要求される能力(負荷)、外気温度、吸入圧力、冷媒の蒸発温度、圧縮機の運転周波数等、冷媒流量に関するデータ等が開度範囲を特定するための因子となる。また、開度範囲だけでなく開度の補正も行うようにしてもよい。   Next, individual opening ranges of the flow rate adjusting valves 5a and 5b will be described. The range of the preferable state of FIG. 5 is not uniquely determined, and the opening ranges of the flow rate adjusting valves 5a and 5b are not necessarily constant. Although the opening range of the preferable state of FIG. 5 may be determined for each actual use condition, in reality, there are many factors that change the opening range and are complicated. Therefore, it is necessary to focus on specific factors. Here, since the state on the Mollier diagram does not change greatly even if the opening range is not constant, for example, the lower limit side is set to 0.5 MPa and the upper limit side is set to 1.4 MPa so that the differential pressure is as constant as possible. Determine. For this purpose, it is necessary to assume the refrigerant flow rate. Therefore, the capacity (load) required for the outdoor units 1a and 1b, the outside air temperature, the suction pressure, the refrigerant evaporation temperature, the compressor operating frequency, and the like are the factors for specifying the opening range. Become. Further, not only the opening range but also the opening may be corrected.

ここで、実使用条件における各種のばらつきを考慮して余裕の開度範囲を定めた場合、開度範囲外になるのは想定される実使用条件を外れた使用であることになる。従って、運転を継続すべきではないという判断ができる。このように、開度範囲の設定は想定外の使用の歯止めとして性能・信頼性を確保する効果がある。また、開度範囲の変化に応じて流量調整弁5a、5bの開度を変化させることで、実使用条件の変化に応じて、安定した制御を実施することができる。そして、室外機1a、1bの機種構成は、通常、定格能力に対し圧縮機、熱交換器、アキュームレータ等を相似設計するので、機種によらず、要求される負荷容量、外気温度に基づいて開度範囲を設定することができ、開発負荷を低減でき、制御仕様を共通化することにより生産性向上が図れる効果がある。   Here, when the opening range of the margin is determined in consideration of various variations in the actual use conditions, it is the use outside the assumed actual use conditions that falls outside the opening range. Therefore, it can be determined that the operation should not be continued. Thus, the setting of the opening range has an effect of ensuring performance and reliability as a pawl for unexpected use. Moreover, the stable control can be implemented according to the change of actual use conditions by changing the opening of the flow control valves 5a and 5b according to the change of the opening range. The model configuration of the outdoor units 1a and 1b is usually similar to the rated capacity of the compressor, heat exchanger, accumulator, etc., so that it can be opened based on the required load capacity and outside air temperature regardless of the model. It is possible to set the degree range, to reduce the development load, and to improve the productivity by sharing the control specifications.

以上のように実施の形態1の空気調和装置によれば、制御装置14の室外流量制御手段34が圧力センサ19、温度センサ20等の測定から得られる物理量に基づいて、蒸発器出口過熱度及び圧縮機吐出過熱度を演算して算出し、流量調整弁5a、5bの開度の増減または維持を判断し、適度に調整することにより、各室外機1a、1bにおける室外熱交換器4a、4bの出口側において乾き度1近傍の低過熱度に制御し、室外熱交換器4a、4bに存在する冷媒を凡そ一定の状態でなおかつ性能を充分高く確保して安定に運転できる。そして、圧縮機2a、2bの圧縮機吐出過熱度を一定の範囲内に制御することにより、アキュームレータ6a、6bから液冷媒がオーバーフローすることなく、室外機の信頼性を確保しつつ、安定な運転をおこなうことができる。そして、室外機1a、1bに蒸発器出口過熱度及び圧縮機吐出過熱度が一定になるようにしたので、室外機1a、1b内の冷媒量をほぼ均一にすることができる。さらに、制御装置における演算により、均液・余剰冷媒処理を行うことができるので、レシーバ等の機器を新たに設けなくてもよいので、低コスト等が実現できる。   As described above, according to the air conditioner of Embodiment 1, the outdoor flow rate control means 34 of the control device 14 is based on the physical quantity obtained from the measurement of the pressure sensor 19, the temperature sensor 20, etc. Calculating and calculating the compressor discharge superheat degree, determining whether the flow rate adjusting valves 5a and 5b are open or closed, and appropriately adjusting them, thereby adjusting the outdoor heat exchangers 4a and 4b in the outdoor units 1a and 1b. On the outlet side, the degree of dryness in the vicinity of a dryness of 1 is controlled so that the refrigerant present in the outdoor heat exchangers 4a and 4b can be stably operated while maintaining a sufficiently high performance in a substantially constant state. And by controlling the compressor discharge superheat degree of the compressors 2a and 2b within a certain range, the liquid refrigerant does not overflow from the accumulators 6a and 6b, and the operation of the outdoor unit is ensured and the operation is stable. Can be done. And since the evaporator outlet superheat degree and the compressor discharge superheat degree were made constant in the outdoor units 1a and 1b, the refrigerant amounts in the outdoor units 1a and 1b can be made substantially uniform. Furthermore, since liquid equalization and surplus refrigerant processing can be performed by calculation in the control device, it is not necessary to newly provide a device such as a receiver, so that low cost and the like can be realized.

また、開度の上限値及び下限値を設けるようにしたので、例えばその開度を超えようとする想定外の使用を防止することができ、信頼性を確保することができる。そして、その開度、開度範囲を補正するようにしたので、より好ましい範囲に流量調整弁5a、5bの開度を調整することができる。そして、開度範囲、開度の補正の際、多くの因子として、冷媒流量に着目し、要求される能力、外気温度等の冷媒流量に関するデータに基づいて補正を行うようにしたので、多くの因子を用いて複雑な開度範囲の計算をしなくても、ほぼ適当な開度範囲、開度の補正を行うことができる。そして、上記のような流量調整弁5a、5bの開度制御を行って、各室外機1a、1b内の冷媒をその能力応じて均一に分配等できるので、アキュームレータ6a、6bの容積について、単体用途、複数台並列使用用途等に分けることなく、仕様等の変更なく、製品コスト、製品サイズを抑えることができ、生産性を高くすることができる。   In addition, since the upper limit value and the lower limit value of the opening degree are provided, for example, unexpected use that exceeds the opening degree can be prevented, and reliability can be ensured. And since the opening degree and the opening degree range were correct | amended, the opening degree of the flow regulating valves 5a and 5b can be adjusted to a more preferable range. And, in the correction of the opening range and the opening degree, attention is paid to the refrigerant flow rate as many factors, and the correction is performed based on the data related to the refrigerant flow rate such as required capacity and outside air temperature. Even if a complicated opening degree range is not calculated using factors, it is possible to correct the opening range and the opening degree almost appropriately. And since the opening degree control of the flow control valves 5a and 5b as described above is performed and the refrigerant in each of the outdoor units 1a and 1b can be evenly distributed according to the capacity, the volume of the accumulators 6a and 6b Product costs and product sizes can be reduced without increasing the use and usage of multiple units in parallel, without changing specifications, etc., and productivity can be increased.

実施の形態2.
図8は室外機を3台で構成した場合の制御装置14が行う制御の処理に関するフローチャートを表す図である。図8に基づいて、制御装置14が行う制御、特に室外流量制御手段34が行う流量調整弁の開度の制御について説明する。複数台の室外機で空気調和装置を構成することで、前記のように、図5の好ましい状態の開度範囲は各流量調整弁で一意的に決まらない。そして、各流量調整弁の開度範囲は他の流量調整弁の開度の相対関係にも依存する。接続点12で分岐した気液二相状態の冷媒が偏って分配され、求めた流量調整弁の開度が、予め想定して定めた開度の上限値・下限値の範囲を超えようとする場合にも、各流量調整弁の開度について、以下のような補正を行うことにより、より最適な均液・余剰冷媒処理を行うことができる。ここで、特に図示はしないが、3台目の室外機を室外機1cとし、室外機1c内の各手段について、符号にcを付すものとする。
Embodiment 2. FIG.
FIG. 8 is a diagram illustrating a flowchart relating to control processing performed by the control device 14 in the case where three outdoor units are configured. Based on FIG. 8, control performed by the control device 14, particularly control of the opening degree of the flow rate adjusting valve performed by the outdoor flow rate control means 34 will be described. By configuring the air conditioner with a plurality of outdoor units, as described above, the opening range in a preferable state of FIG. 5 is not uniquely determined by each flow rate adjustment valve. And the opening range of each flow regulating valve also depends on the relative relationship between the opening of other flow regulating valves. The refrigerant in the gas-liquid two-phase state branched at the connection point 12 is unevenly distributed, and the calculated opening degree of the flow rate adjustment valve tends to exceed the range of the upper limit value and the lower limit value of the opening degree determined in advance. Even in this case, more optimal liquid equalization / surplus refrigerant processing can be performed by performing the following correction on the opening degree of each flow rate adjustment valve. Here, although not particularly illustrated, the third outdoor unit is assumed to be the outdoor unit 1c, and c is added to the reference numeral for each means in the outdoor unit 1c.

まず、ステップS20からS30までの処理は、図6に示したステップS0からS10と同様の処理を行うため説明を省略する。ステップS30の後、ステップS31a、S31b、S31cで、制御装置14a、14b、14cの室外流量制御手段34は、流量調整弁5a、5b、5cのそれぞれについて、開度の上限値と下限値を求める。そして、S32でどの室外機の流量調整弁の開度が最も突出しているかを判断するための指標を演算等により求める。この指標を求める処理は、制御装置14a、14b、14cのいずれかが行えばよい。例えば、(流量調整弁5a、5b、5cについて求めた開度の下限値Lmin )−(流量調整弁5a、5b、5cの開度L)の中で最も大きな値を指標δmin とする。また、(流量調整弁5a、5b、5cの開度L)−(流量調整弁5a、5b、5cに求めた開度の上限値Lmax )の中で最も大きな値を指標δmax とする。 First, the processing from steps S20 to S30 is the same as the processing from steps S0 to S10 shown in FIG. After step S30, in steps S31a, S31b, and S31c, the outdoor flow rate control means 34 of the control devices 14a, 14b, and 14c calculates the upper limit value and the lower limit value of the opening degree for each of the flow rate adjustment valves 5a, 5b, and 5c. . In S32, an index for determining which outdoor unit the flow rate adjustment valve has the most protruding opening is obtained by calculation or the like. Any of the control devices 14a, 14b, and 14c may perform the process for obtaining the index. For example, the largest value of (the lower limit value L min of the opening degree obtained for the flow rate adjusting valves 5a, 5b, 5c) − (the opening degree L of the flow rate adjusting valves 5a, 5b, 5c) is taken as the index δ min . In addition, the largest value among (opening degree L of the flow rate adjusting valves 5a, 5b, 5c) − (upper limit value L max of the opening degree obtained for the flow rate adjusting valves 5a, 5b, 5c) is set as an index δ max .

ステップS33で、δmin ≧0であるかどうか(下限値を超えようとする流量調整弁があるかどうか)を判断する。δmin ≧0であれば、ステップS34a、S34b、S34cで、求めた流量調整弁5a、5b、5cの開度Lが、下限値Lmin と上限値Lmax の範囲内にあり、かつ、図7で示す状態Aにあるかどうかを判断する。この条件を満たしていると判断すれば、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、求めた開度Lになるように流量調整弁5a、5b、5cを制御する。この条件を満たしていないと判断すれば、ステップS35a、S35b、S35cで、開度Lにδmin を加えた開度をあらためて開度Lとする補正を行う。そして、さらにステップS36a、S36b、S36cで、補正した開度Lが上限値Lmax より大きいかどうかを判断し、大きくなければ、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、補正した開度Lになるように流量調整弁5a、5b、5cを制御する。一方、補正した開度Lが上限値Lmax より大きければ、ステップS37a、S37b、S37cで上限値Lmax を開度Lにする補正をし、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、補正した開度L(上限値Lmax )になるように流量調整弁5a、5b、5cを制御する。以上のようにして、流量調整弁5a、5b、5cを制御した後、ステップS23に戻り、順に処理を始める。 In step S33, it is determined whether or not δ min ≧ 0 (whether there is a flow rate adjusting valve that is going to exceed the lower limit value). If δ min ≧ 0, the opening L of the flow rate regulating valves 5a, 5b, 5c determined in steps S34a, S34b, S34c is within the range between the lower limit value L min and the upper limit value L max , and FIG. Whether or not the state is in the state A indicated by 7 is determined. If it is determined that this condition is satisfied, in step S43, a command is transmitted to the flow rate adjusting valves 5a, 5b, and 5c, and the flow rate adjusting valves 5a, 5b, and 5c are controlled so that the obtained opening degree L is obtained. If it is determined that this condition is not satisfied, in steps S35a, S35b, and S35c, the opening degree obtained by adding δ min to the opening degree L is corrected to the opening degree L again. Then, further steps S36a, S36b, in S36c, the corrected opening L is determined whether larger than the upper limit L max, not greater, in step S43, and transmits the flow control valve 5a, 5b, an instruction to 5c The flow rate adjusting valves 5a, 5b, and 5c are controlled so that the corrected opening degree L is obtained. On the other hand, if the corrected angle L is greater than the upper limit value L max, step S37a, S37b, and a correction to set the upper limit L max on the opening L in S37c, in step S43, the flow control valve 5a, 5b, and 5c A command is transmitted to control the flow rate adjusting valves 5a, 5b, and 5c so that the corrected opening degree L (upper limit value L max ) is obtained. After controlling the flow rate adjusting valves 5a, 5b, and 5c as described above, the process returns to step S23 and processing is started in order.

一方、ステップS33で、δmin ≧0でないと判断すると、ステップS38で、δmax ≧0であるかどうか(上限値を超えようとする流量調整弁があるかどうか)を判断する。δmax ≧0であれば、ステップS39a、S39b、S39cで、求めた流量調整弁5a、5b、5cの開度Lが、下限値Lmin と上限値Lmax の範囲内にあり、かつ、図7で示す状態CまたはEにあるかどうかを判断する。この条件を満たしていると判断すれば、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、求めた開度Lになるように流量調整弁5a、5b、5cを制御する。この条件を満たしていないと判断すれば、ステップS40a、S40b、S40cで、開度Lからδmax を引いた開度をあらためて開度Lとする補正を行う。そして、さらにステップS41a、S41b、S41cで、補正した開度Lが下限値Lmin より大きいかどうかを判断し、大きくなければ、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、補正した開度Lになるように流量調整弁5a、5b、5cを制御する。一方、補正した開度Lが下限値Lmin より大きければ、ステップS42a、S42b、S42cで上限値Lmax を開度Lにする補正をし、ステップS43で、流量調整弁5a、5b、5cに指令を送信し、補正した開度L(下限値Lmin )になるように流量調整弁5a、5b、5cを制御する。以上のようにして、流量調整弁5a、5b、5cを制御した後、ステップS23に戻り、順に処理を始める。 On the other hand, if it is determined in step S33 that δ min ≧ 0, it is determined in step S38 whether δ max ≧ 0 (whether there is a flow rate adjustment valve that exceeds the upper limit value). If δ max ≧ 0, the opening degree L of the flow rate regulating valves 5a, 5b, 5c determined in steps S39a, S39b, S39c is within the range between the lower limit value L min and the upper limit value L max , and FIG. Whether the state is in the state C or E shown in FIG. If it is determined that this condition is satisfied, in step S43, a command is transmitted to the flow rate adjusting valves 5a, 5b, and 5c, and the flow rate adjusting valves 5a, 5b, and 5c are controlled so that the obtained opening degree L is obtained. If it is determined that this condition is not satisfied, in steps S40a, S40b, and S40c, the opening degree obtained by subtracting δ max from the opening degree L is corrected to the opening degree L again. Further, in steps S41a, S41b, and S41c, it is determined whether or not the corrected opening degree L is larger than the lower limit L min. If not, the command is transmitted to the flow rate adjusting valves 5a, 5b, and 5c in step S43. The flow rate adjusting valves 5a, 5b, and 5c are controlled so that the corrected opening degree L is obtained. On the other hand, if the corrected opening degree L is larger than the lower limit value L min , the upper limit value L max is corrected to the opening degree L in steps S42a, S42b, S42c, and in step S43, the flow rate adjusting valves 5a, 5b, 5c are changed. A command is transmitted, and the flow rate adjusting valves 5a, 5b, and 5c are controlled so that the corrected opening degree L (lower limit value L min ) is obtained. After controlling the flow rate adjusting valves 5a, 5b, and 5c as described above, the process returns to step S23 and processing is started in order.

ステップS38で、δmax ≧0でないと判断すると、求めた開度Lになるように流量調整弁5a、5b、5cを制御する。以上のようにして、流量調整弁5a、5b、5cを制御した後、ステップS23に戻り、順に処理を始める。 If it is determined in step S38 that δ max ≧ 0, the flow rate adjusting valves 5a, 5b, and 5c are controlled so as to obtain the obtained opening degree L. After controlling the flow rate adjusting valves 5a, 5b, and 5c as described above, the process returns to step S23 and processing is started in order.

例えば、仮に空気調和装置の設置工事等のイレギュラー要因や運転起動前に液冷媒分布が偏っている等のために、室外機から出る液配管と共通の液配管との接続点13から、ある室外機(例えば室外機1a)に、液リッチに偏った二相冷媒が分配されてしまう場合がある。このとき、室外流量制御手段34は、例えば、流量調整弁5aの開度を減少させる判断をすることにより、定められた下限値を下回る開度となってしまう場合がある。このとき、本実施の形態では、下限値を超過する開度分を、他の流量調整弁の開度に加え、流量調整弁5aを開度下限値に設定する。そのため、各流量調整弁5a、5b、5cにおいて、開度範囲を逸脱することなく、流量調整弁5a、5b、5cの間の相対的な開度関係を拡大し、開度総量を低減させることにより余剰冷媒を減少させるようにしたので、液リッチに偏った冷媒分配にも対応できる。   For example, because of irregular factors such as the installation work of the air conditioner or the distribution of the liquid refrigerant before the start of operation, there is a connection point 13 between the liquid pipe that exits the outdoor unit and the common liquid pipe. In some cases, the two-phase refrigerant biased in the liquid rich state is distributed to the outdoor unit (for example, the outdoor unit 1a). At this time, for example, the outdoor flow rate control unit 34 may make an opening degree lower than a predetermined lower limit value by determining to reduce the opening degree of the flow rate adjustment valve 5a. At this time, in this embodiment, the opening amount exceeding the lower limit value is added to the opening amounts of the other flow rate adjustment valves, and the flow rate adjustment valve 5a is set to the lower limit value. Therefore, in each flow regulating valve 5a, 5b, 5c, the relative opening relationship between the flow regulating valves 5a, 5b, 5c is expanded and the total opening is reduced without departing from the opening range. As a result, the excess refrigerant is reduced, so that it is possible to deal with refrigerant distribution that is liquid-rich.

逆に、ある室外機(例えば室外機1a)にガスリッチに偏った二相冷媒が分配される場合は、このとき、室外流量制御手段34は、例えば、流量調整弁5aの開度を増加させる判断をすることにより、定められた上限値を上回る開度となってしまう場合がある。このとき、本実施の形態では、上限値を超過する開度分を、他の流量調整弁の開度から差し引いて、流量調整弁5aを開度上限値に設定する。そのため、各流量調整弁5a、5b、5cにおいて、開度範囲を逸脱することなく、流量調整弁5a、5b、5cの間の相対的な開度関係を拡大し、開度総量を増加させることにより乾き度を減少させ、ガスリッチに偏った冷媒分配に対応できる。   Conversely, when the gas-rich two-phase refrigerant is distributed to a certain outdoor unit (for example, the outdoor unit 1a), the outdoor flow rate control unit 34 determines, for example, that the opening degree of the flow rate adjustment valve 5a is increased at this time. In some cases, the opening degree may exceed the predetermined upper limit value. At this time, in the present embodiment, the flow rate adjusting valve 5a is set to the opening upper limit value by subtracting the opening amount exceeding the upper limit value from the opening amounts of the other flow rate adjusting valves. Therefore, in each flow regulating valve 5a, 5b, 5c, the relative opening relationship between the flow regulating valves 5a, 5b, 5c is expanded and the total opening is increased without departing from the opening range. Therefore, it is possible to reduce the degree of dryness and deal with refrigerant distribution that is biased toward gas richness.

図9は温度センサ20e、20fの配設位置の他の例を表す図である。図1では、蒸発器出口過熱度を計測できるようにするため、室外熱交換器4a、4b内を通過する各パス(配管等)が集合した部分の管に温度センサ20e、20fを配置している。各パスにより過熱度のつきやすさにばらつきがあるため、各パスが集合した部分に配設すれば、平均の蒸発器出口過熱度に基づく温度が計測できる。   FIG. 9 is a diagram illustrating another example of the arrangement positions of the temperature sensors 20e and 20f. In FIG. 1, in order to measure the degree of superheat of the evaporator outlet, the temperature sensors 20e and 20f are arranged on the pipes where the paths (piping etc.) passing through the outdoor heat exchangers 4a and 4b are gathered. Yes. Since the degree of superheat varies depending on each pass, the temperature based on the average degree of superheat at the outlet of the evaporator can be measured if it is disposed in a portion where the passes are gathered.

一方、図9では過熱度がつきやすい(温度が高い)パスに温度センサ20e、20fを配設するようにしている。このような配設をすると、室外熱交換器4a、4bにおける高い過熱度のパスの温度を計測することになるため、各パスが集合した部分に配設した温度と同じ温度を計測しても、その温度に基づく平均的な蒸発器出口過熱度は低くなる。従って、室外熱交換器4a、4b内において、二相冷媒が占める割合は大きいと判断した上で対応することができるので、熱交換性能を高く維持する効果がある。   On the other hand, in FIG. 9, the temperature sensors 20e and 20f are arranged in a path where the degree of superheat is likely to occur (the temperature is high). If such an arrangement is made, the temperature of the path with a high degree of superheat in the outdoor heat exchangers 4a and 4b will be measured, so even if the same temperature as the temperature arranged in the part where each path is gathered is measured. The average evaporator outlet superheat degree based on the temperature is low. Therefore, in the outdoor heat exchangers 4a and 4b, it can be dealt with after determining that the proportion of the two-phase refrigerant is large, so that there is an effect of maintaining high heat exchange performance.

以上のように実施の形態2の空気調和装置では、流量調整弁5a、5b、5cの開度制御によって、設定した開度範囲が突出する(超えてしまう)ときは、その流量調整弁については、開度範囲を超えないように制御し、他の流量調整弁の開度の増減が可能であれば、増減させることにより、開度の絶対値を変化させず、室外機1a、1b、1c間の相対的な変化と流量調整弁5a、5b、5cの開度の総計を調整することで、連携により、より精度の高い均液・余剰冷媒処理を行うことができる。   As described above, in the air conditioner of Embodiment 2, when the set opening range protrudes (exceeds) due to the opening control of the flow rate adjusting valves 5a, 5b, 5c, If the opening degree of the other flow rate control valve can be increased / decreased, the absolute value of the opening degree is not changed, and the outdoor units 1a, 1b, 1c are controlled. By adjusting the relative change between them and the sum of the opening degree of the flow rate adjusting valves 5a, 5b, and 5c, it is possible to perform the liquid equalization / surplus refrigerant processing with higher accuracy by cooperation.

実施の形態3.
図10は実施の形態3に係る圧縮機2a、2bに関するセンサの配設位置を表す図である。前記の実施の形態(特に実施の形態1)では、温度センサ20a、20bの温度から圧力センサ19a、19bで計測される圧力から換算される飽和温度を引くことで圧縮機吐出過熱度を算出した。本実施の形態では、圧縮機2a、2bの冷凍機油が溜まる部位の圧縮機シェル表面に温度センサ20t、20uを設け、圧縮機シェルにおける圧縮機シェル表面温度過熱度を判断して流量調整弁5a、5bの開度制御を実施する。
Embodiment 3 FIG.
FIG. 10 is a diagram illustrating the positions of sensors related to the compressors 2a and 2b according to the third embodiment. In the above-described embodiment (particularly Embodiment 1), the compressor discharge superheat degree is calculated by subtracting the saturation temperature converted from the pressure measured by the pressure sensors 19a and 19b from the temperature of the temperature sensors 20a and 20b. . In the present embodiment, temperature sensors 20t and 20u are provided on the surface of the compressor shell where the refrigerating machine oil of the compressors 2a and 2b accumulates, and the flow rate adjusting valve 5a is determined by determining the degree of superheat of the compressor shell surface temperature in the compressor shell. The opening degree control of 5b is implemented.

ここで、圧力センサ19c、19dについては、室外機1a、1bの吸引側であれば特定の箇所である必要はない。前述のように、圧力−飽和温度換算テーブルに基づいて圧力値を飽和温度に換算する。この飽和温度と温度センサ20t、20uが計測して得られた温度値との差に基づいて、圧縮機シェル表面温度過熱度を求める。なお、図10に示すように、圧縮機2a、2b内の低圧空間に冷凍機油が溜まっているために圧力センサ19c、19dが計測した圧力の値を用いたが、例えば、場合であるが、圧縮機2a、2b内の高圧空間に冷凍機油が溜まっている場合、温度センサ20t、20uが計測して得られた温度値と圧力センサ19a、19bで計測される圧力から換算される飽和温度を用いてシェル表面温度過熱度を求める。   Here, about the pressure sensors 19c and 19d, if it is the suction | inhalation side of the outdoor units 1a and 1b, it is not necessary to be a specific location. As described above, the pressure value is converted into the saturation temperature based on the pressure-saturation temperature conversion table. The compressor shell surface temperature superheat degree is obtained based on the difference between the saturation temperature and the temperature value obtained by the temperature sensors 20t and 20u. As shown in FIG. 10, the pressure values measured by the pressure sensors 19 c and 19 d are used because the refrigerating machine oil is accumulated in the low-pressure spaces in the compressors 2 a and 2 b. When refrigerating machine oil is accumulated in the high-pressure space in the compressors 2a and 2b, the saturation temperature converted from the temperature value obtained by the temperature sensors 20t and 20u and the pressure measured by the pressure sensors 19a and 19b is calculated. To determine the shell surface temperature superheat.

そして、圧縮機吐出過熱度の代わりに圧縮機シェル表面温度過熱度を用いて、室外流量制御手段34は流量調整弁5a、5bの開度を制御する。ここで、図7において圧縮機吐出過熱度のしきい値を例えば30℃で設定したが、圧縮機シェル表面温度過熱度のしきい値としては、例えば10℃で設定すればよい。   And the outdoor flow control means 34 controls the opening degree of the flow control valves 5a and 5b using the compressor shell surface temperature superheat degree instead of the compressor discharge superheat degree. Here, in FIG. 7, the threshold value of the compressor discharge superheat degree is set at 30 ° C., for example, but the threshold value of the compressor shell surface temperature superheat degree may be set at 10 ° C., for example.

圧縮機2a、2bの信頼性を確保するにあたり、特に軸受け信頼性を確保する上で必要な実運転時の冷凍機油の潤滑性能は圧縮機吐出過熱度と相関関係がある。しかし、圧縮機2a、2bの実運転状態、特に冷媒循環量により圧縮機内部の温度分布によりその相関関係は異なる。また最近の圧縮機は、DCブラシレスモーター化等の高効率化により、圧縮機吐出過熱度が低く、圧縮機吐出過熱度に基づいて圧縮機吸入乾き度を判断すると誤差を伴う。そこで、潤滑油性能との相関の変化要因、誤差要因を圧縮機吐出過熱度より低い圧縮機シェル表面温度過熱度に基づいて判断することにより、均液・余剰冷媒制御を高精度で実現できる効果がある。また、圧縮機2a、2b(特に軸受け)の信頼性を確保することができる。   In securing the reliability of the compressors 2a and 2b, the lubricating performance of the refrigerating machine oil during actual operation particularly necessary for securing the bearing reliability has a correlation with the compressor discharge superheat degree. However, the correlation varies depending on the actual operating state of the compressors 2a and 2b, particularly the temperature distribution inside the compressor, depending on the refrigerant circulation amount. Moreover, recent compressors have low efficiency of compressor discharge superheat due to high efficiency such as DC brushless motors, and there is an error when judging the compressor suction dryness based on the compressor discharge superheat. Therefore, it is possible to realize liquid leveling and surplus refrigerant control with high accuracy by judging the factors of change and error in the correlation with the lubricant performance based on the compressor shell surface temperature superheat degree lower than the compressor discharge superheat degree. There is. Further, the reliability of the compressors 2a and 2b (particularly bearings) can be ensured.

図11は圧縮機2a、2bに関するセンサの配設位置の他の例を表す図である。図11では、温度センサ20t、20uを冷凍機油が溜まる部位の圧縮機シェル表面に配設する代わりに、直接、冷凍機油の温度を計測することができる油温センサ21a、21bを用いるようにしたものである。油温センサ21a、21bが計測して得られた温度値と圧力センサ19a、19bで計測される圧力から換算される飽和温度を用いて冷凍機油の過熱度を求める。   FIG. 11 is a diagram illustrating another example of the sensor arrangement positions related to the compressors 2a and 2b. In FIG. 11, instead of arranging the temperature sensors 20t and 20u on the surface of the compressor shell where the refrigerating machine oil accumulates, oil temperature sensors 21a and 21b that can directly measure the temperature of the refrigerating machine oil are used. Is. The degree of superheat of the refrigerating machine oil is obtained using the temperature value obtained by measurement by the oil temperature sensors 21a and 21b and the saturation temperature converted from the pressure measured by the pressure sensors 19a and 19b.

そして、圧縮機吐出過熱度の代わりに冷凍機油の過熱度を用いて、室外流量制御手段34は流量調整弁5a、5bの開度を制御する。ここで、図7において圧縮機吐出過熱度のしきい値を例えば30℃で設定したが、冷凍機油の過熱度のしきい値としては、例えば5℃で設定すればよい。   And the outdoor flow control means 34 controls the opening degree of the flow control valves 5a and 5b using the superheat degree of refrigeration oil instead of the compressor discharge superheat degree. Here, in FIG. 7, the threshold value of the compressor discharge superheat degree is set at 30 ° C., for example, but the threshold value of the superheat degree of the refrigerating machine oil may be set at 5 ° C., for example.

圧縮機2a、2bの軸受け信頼性を確保する上で、必要な実運転時の冷凍機油の潤滑性能は、圧縮機シェル表面温度過熱度と相関があるが、実運転状態、特に外気温度や圧縮機内部の冷媒流れ、圧縮機への返油状況によりその相関は異なる。潤滑油性能との相関の変化要因、誤差要因を圧縮機シェル表面の過熱度より低い冷凍機油の過熱度を検知することにより、均液・余剰冷媒制御を高精度で実現できる効果がある。また、圧縮機2a、2b(特に軸受け)の信頼性を確保することができる。   In order to ensure the bearing reliability of the compressors 2a and 2b, the required lubrication performance of the refrigeration oil during actual operation has a correlation with the degree of superheat of the compressor shell surface temperature. The correlation varies depending on the refrigerant flow inside the machine and the oil return to the compressor. By detecting the superheat degree of the refrigeration oil that is lower than the superheat degree of the compressor shell surface as a factor of change and error of the correlation with the lubricating oil performance, it is possible to realize liquid leveling and surplus refrigerant control with high accuracy. Further, the reliability of the compressors 2a and 2b (particularly bearings) can be ensured.

以上のように実施の形態3の空気調和装置によれば、圧縮機シェル表面温度過熱度を演算し、圧縮機吐出過熱度の代わりに圧縮機シェル表面温度過熱度に基づいて、流量調整弁5a、5bの開度制御を行うようにしたので、圧縮機の高効率化による低過熱度化により、判断に誤差が含まれる可能性がある圧縮機吐出過熱度よりも均液・余剰冷媒制御を高精度で実現でき、圧縮機2a、2b(特に軸受け)の信頼性を確保することができる。また、圧縮機シェル表面温度過熱度よりも誤差が含まれる可能性が小さい冷凍機油の過熱度により流量調整弁5a、5bの開度制御を行うようにすることで、さらに効果を高めることができる。   As described above, according to the air conditioner of Embodiment 3, the compressor shell surface temperature superheat degree is calculated, and the flow rate adjusting valve 5a is calculated based on the compressor shell surface temperature superheat degree instead of the compressor discharge superheat degree. Since the opening control of 5b is performed, liquid leveling and surplus refrigerant control is performed more than the compressor discharge superheat degree, which may include an error in judgment due to the low superheat degree due to the high efficiency of the compressor. This can be realized with high accuracy, and the reliability of the compressors 2a and 2b (particularly bearings) can be ensured. Further, the effect can be further enhanced by controlling the opening of the flow rate adjusting valves 5a and 5b with the degree of superheat of the refrigeration oil that is less likely to contain an error than the degree of superheat of the compressor shell surface temperature. .

実施の形態4.
図12は実施の形態4に係る制御装置14が行う制御の処理に関するフローチャートを表す図である。前記の実施の形態(特に実施の形態1)では、各室外機1a、1bで余剰冷媒を偏りなく分配することを目的として、圧縮機吐出過熱度を一定値以上にし、蒸発器出口過熱度を0に近い状態にするように流量調整弁5a、5bの開度を制御するようにした。本実施形態では、1台の室外機(例えば室外機1a)のアキュームレータ6aに余剰冷媒を溜め、残りの室外機には余剰冷媒を溜めないようにすることを目的として、流量調整弁5a、5bの開度を制御する。基本的な空気調和装置の構成は図1と同じであるが、余剰冷媒を溜めようとする室外機1aのアキュームレータ6aの容積は、溜めようとする余剰冷媒に見合った分大きいものとする。
Embodiment 4 FIG.
FIG. 12 is a diagram illustrating a flowchart regarding control processing performed by the control device 14 according to the fourth embodiment. In the above-described embodiment (particularly Embodiment 1), for the purpose of distributing the surplus refrigerant in each outdoor unit 1a, 1b without unevenness, the compressor discharge superheat is set to a certain value or more, and the evaporator outlet superheat is The opening degree of the flow rate adjusting valves 5a and 5b is controlled so as to be close to zero. In the present embodiment, the flow rate adjusting valves 5a and 5b are used for the purpose of accumulating excess refrigerant in the accumulator 6a of one outdoor unit (for example, the outdoor unit 1a) and preventing the surplus refrigerant from accumulating in the remaining outdoor units. To control the opening degree. The basic configuration of the air conditioner is the same as that shown in FIG. 1, but the volume of the accumulator 6a of the outdoor unit 1a that is intended to store excess refrigerant is assumed to be large in proportion to the excess refrigerant that is to be stored.

まず、ステップS50からS54までの処理は、図6に示したステップS0からS4と同様の処理を行うため説明を省略する。ステップS54の後、室外流量制御手段34では、余剰冷媒を溜める室外機1aにおける流量調整弁5aの開度の判断を行うステップS55aと、その他の室外機における流量調整弁5bの開度の判断を行うステップS55bに分けて判断を行う。   First, the processing from steps S50 to S54 is the same as the processing from steps S0 to S4 shown in FIG. After step S54, the outdoor flow rate control means 34 determines the opening degree of the flow rate adjustment valve 5a in the outdoor unit 1a that accumulates excess refrigerant, and the opening degree of the flow rate adjustment valve 5b in the other outdoor units. The determination is divided into step S55b to be performed.

室外流量制御手段34が行うステップS55aの内容として、まず、ステップS56aで、各室外機1aの室外熱交換器4aにおける蒸発器出口過熱と圧縮機2aの圧縮機吐出過熱度を演算する。演算方法については前記したものと同様の方法で行う。   As contents of step S55a performed by the outdoor flow rate control means 34, first, in step S56a, the evaporator outlet superheat in the outdoor heat exchanger 4a of each outdoor unit 1a and the compressor discharge superheat degree of the compressor 2a are calculated. The calculation method is the same as described above.

ステップS57aで、3つの分類から室外機1aの状態を判断する。蒸発器出口過熱度があらかじめ定めた所定の範囲(以下、第1の範囲という)の下限値よりも小さいか、または圧縮機吐出過熱度があらかじめ定めたしきい値より小さいと判断した場合は、ステップS58aで流量調整弁5aの開度を減少させると判断し、ステップS61aにおいて、流量調整弁5aに指令を送信し、流量調整弁5aが決定した開度になるように制御する。また、蒸発器出口過熱度が第1の範囲内にあると判断した場合は、ステップS59aで流量調整弁5aの開度を現状維持すると判断し、ステップS61aにおいて、流量調整弁5aに指令を送信し、流量調整弁5aが開度を維持するように制御する。また、蒸発器出口過熱度が第1の範囲の上限値より大きいと判断した場合は、ステップS60aで流量調整弁5aの開度を増加させると判断し、ステップS61aにおいて、流量調整弁5aに指令を送信し、流量調整弁5aが決定した開度になるように制御する。   In step S57a, the state of the outdoor unit 1a is determined from the three classifications. When it is determined that the evaporator superheat degree is smaller than the lower limit value of a predetermined range (hereinafter referred to as the first range) or the compressor discharge superheat degree is smaller than a predetermined threshold value, In step S58a, it is determined that the opening degree of the flow rate adjustment valve 5a is to be decreased. In step S61a, a command is transmitted to the flow rate adjustment valve 5a, and the flow rate adjustment valve 5a is controlled to have the determined opening degree. If it is determined that the evaporator outlet superheat degree is within the first range, it is determined in step S59a that the opening degree of the flow rate adjustment valve 5a is maintained, and a command is transmitted to the flow rate adjustment valve 5a in step S61a. Then, the flow rate adjustment valve 5a is controlled to maintain the opening degree. If it is determined that the degree of superheat of the evaporator outlet is greater than the upper limit of the first range, it is determined in step S60a that the opening degree of the flow rate adjustment valve 5a is to be increased. In step S61a, a command is sent to the flow rate adjustment valve 5a. And the flow rate adjustment valve 5a is controlled to have the determined opening degree.

一方、室外流量制御手段34が行うステップS55bの内容として、まず、ステップS56bで、各室外機1bの室外熱交換器4bにおける蒸発器出口過熱を演算する。演算方法については前記したものと同様の方法で行う。   On the other hand, as the content of step S55b performed by the outdoor flow rate control means 34, first, in step S56b, the evaporator outlet overheat in the outdoor heat exchanger 4b of each outdoor unit 1b is calculated. The calculation method is the same as described above.

ステップS57bで、3つの分類から室外機1bの状態を判断する。蒸発器出口過熱度があらかじめ定めた所定の範囲(以下、第2の範囲という)の下限値よりも小さいと判断した場合は、ステップS58bで流量調整弁5bの開度を減少させると判断し、ステップS61bにおいて、流量調整弁5bに指令を送信し、流量調整弁5bが決定した開度になるように制御する。また、蒸発器出口過熱度が第2の範囲内にあると判断した場合は、ステップS59bで流量調整弁5bの開度を現状維持すると判断し、ステップS61bにおいて、流量調整弁5bに指令を送信し、流量調整弁5bが開度を維持するように制御する。また、蒸発器出口過熱度が第2の範囲の上限値より大きいと判断した場合は、ステップS60bで流量調整弁5bの開度を増加させると判断し、ステップS61bにおいて、流量調整弁5bに指令を送信し、流量調整弁5bが決定した開度になるように制御する。   In step S57b, the state of the outdoor unit 1b is determined from the three classifications. If it is determined that the evaporator outlet superheat degree is smaller than the lower limit of a predetermined range (hereinafter referred to as the second range), it is determined in step S58b that the opening degree of the flow rate adjustment valve 5b is decreased, In step S61b, a command is transmitted to the flow rate adjusting valve 5b, and the flow rate adjusting valve 5b is controlled to have the determined opening. If it is determined that the evaporator outlet superheat degree is within the second range, it is determined in step S59b that the opening degree of the flow rate adjustment valve 5b is maintained, and a command is transmitted to the flow rate adjustment valve 5b in step S61b. Then, the flow rate adjustment valve 5b is controlled to maintain the opening degree. If it is determined that the degree of superheat of the evaporator outlet is larger than the upper limit value of the second range, it is determined in step S60b that the opening degree of the flow rate adjustment valve 5b is increased. In step S61b, a command is sent to the flow rate adjustment valve 5b. And the flow rate adjustment valve 5b is controlled to have the determined opening degree.

ここで、少なくとも第2の範囲の上限値は第1の範囲の上限値よりも大きくする。例えば、第1の範囲の下限値を0℃、上限値を2℃とすると、第2の範囲の下限値を2℃、上限値を5℃とする。これにより、流量調整弁5aの開度が流量調整弁5bの開度に比べて増加することになるため、冷媒が室外機1a側に流れ込むことになる。そして、その範囲が重ならないようにすることで、   Here, at least the upper limit value of the second range is larger than the upper limit value of the first range. For example, if the lower limit of the first range is 0 ° C. and the upper limit is 2 ° C., the lower limit of the second range is 2 ° C., and the upper limit is 5 ° C. Thereby, since the opening degree of the flow control valve 5a will increase compared with the opening degree of the flow control valve 5b, a refrigerant | coolant will flow into the outdoor unit 1a side. And by keeping the ranges from overlapping,

以上のように実施の形態4によれば、余剰冷媒を溜める室外機を特定し、その室外機について、蒸発器出口過熱度に基づいて流量調整弁の開度を増加させる基準となる上限値を下げることにより、余剰冷媒を溜めない他の室外機の流量調整弁の開度に比べて流量調整弁の開度を増加させやすくし、特定の室外機に余剰冷媒を溜めるようにしたので、余剰冷媒の挙動が把握しやすく、制御の精度が改善する効果がある。   As described above, according to the fourth embodiment, an outdoor unit that stores excess refrigerant is specified, and the upper limit value that serves as a reference for increasing the opening degree of the flow rate adjustment valve is determined for the outdoor unit based on the degree of superheat of the evaporator outlet. Lowering the flow rate adjustment valve makes it easier to increase the opening of the flow rate adjustment valve than the flow rate adjustment valve of other outdoor units that do not accumulate excess refrigerant, and it is possible to accumulate excess refrigerant in a specific outdoor unit. It is easy to grasp the behavior of the refrigerant and has an effect of improving the accuracy of control.

実施の形態5.
なお、ここでは、空気調和装置について説明した。本発明は、室内熱交換器4a、4bを蒸発器及び凝縮器に用いることができる冷暖房両用の空気調和装置で、余剰冷媒に差が出るような状況で特に効果を発揮するが、室内熱交換器4a、4bを蒸発器として用いるヒートポンプ等にも用いることができる。
Embodiment 5 FIG.
Here, the air conditioner has been described. The present invention is an air-conditioning apparatus for both heating and cooling that can use the indoor heat exchangers 4a and 4b as an evaporator and a condenser, and is particularly effective in a situation where there is a difference in surplus refrigerant. It can use also for the heat pump etc. which use the apparatus 4a, 4b as an evaporator.

1a,1b 室外機、2a,2b 圧縮機、3a,3b 四方弁、4a,4b 室外熱交換器、5a,5b 流量調整弁、6a,6b アキュームレータ、6c,6d アキュームレータ内のU字管返油穴、7 共通のガス配管、8p,8q 室内機、9p,9q 室内熱交換器、10p,10q 膨張弁、11 共通の液配管,12 室外機から出る液配管と共通の液配管との接続点、13 室外機から出るガス配管と共通のガス配管との接続点、14,14a,14b,14p,14q 制御装置、15a,15b オイルセパレータ、16a,16b 返油バイパス回路、17a,17b 高低圧熱交換器、18a,18b 流量調整弁、19a,19b,19c,19d 圧力センサ、20a,20b,20c,20d,20e,20f,20g,20h,20i,20j,20k,20l,20m,20n,20p,20q,20r,20s,20t,20u 温度センサ, 21a,21b 油温センサ, 22a,22b ガス分岐管, 23a,23b 液分岐管,24p,24q ガス枝管, 25p,25q 液枝管、30 圧縮機制御手段、31 室外熱交換量制御手段、32 室内過熱度制御手段、33 高低圧熱交換器過熱度制御手段、34 室外流量制御手段、35 室内過冷却度制御手段。   1a, 1b Outdoor unit, 2a, 2b Compressor, 3a, 3b Four-way valve, 4a, 4b Outdoor heat exchanger, 5a, 5b Flow control valve, 6a, 6b Accumulator, 6c, 6d U-shaped pipe oil return hole in accumulator 7 common gas piping, 8p, 8q indoor unit, 9p, 9q indoor heat exchanger, 10p, 10q expansion valve, 11 common liquid piping, 12 connection point between liquid piping coming out of outdoor unit and common liquid piping, 13 Connection point between gas piping coming out of outdoor unit and common gas piping, 14, 14a, 14b, 14p, 14q Control device, 15a, 15b Oil separator, 16a, 16b Oil return bypass circuit, 17a, 17b High-low pressure heat exchange 18a, 18b Flow rate adjusting valve, 19a, 19b, 19c, 19d Pressure sensor, 20a, 20b, 20c, 20d, 20e, 20f, 20g, 20h, 20i, 20j, 20k, 20l, 20m, 20n, 20p, 20q, 20r, 20s, 20t, 20u Temperature sensor, 21a, 21b Oil temperature sensor, 22a, 22b Gas branch pipe, 23a, 23b Liquid branch pipe, 24p 24q gas branch pipe, 25p, 25q liquid branch pipe, 30 compressor control means, 31 outdoor heat exchange amount control means, 32 indoor superheat degree control means, 33 high / low pressure heat exchanger superheat degree control means, 34 outdoor flow rate control means , 35 Indoor supercooling degree control means.

Claims (10)

圧縮機、室外熱交換器及びアキュームレータから少なくとも構成される室外機を複数有する空気調和装置において、
共通の液配管と各室外機の各室外熱交換器との間に、前記各室外機に流入する冷媒量を調整するための流量調整弁をそれぞれ備え、
また、各室外機の前記室外熱交換器の出口側の過熱度がある値を上限とする範囲内にあるかどうかを判断し、また、前記圧縮機の吐出過熱度が一定の範囲にあるかどうかを判断して、各判断結果の組み合わせに基づき、前記室外熱交換器の出口側の過熱度を前記範囲内に収め、かつ、前記圧縮機の吐出過熱度を一定の範囲内に収めるように各流量調整弁の開度を調整する制御装置を備えることを特徴とする空気調和装置。
In an air conditioner having a plurality of outdoor units configured at least from a compressor, an outdoor heat exchanger, and an accumulator,
Between the common liquid pipe and each outdoor heat exchanger of each outdoor unit, each has a flow rate adjustment valve for adjusting the amount of refrigerant flowing into each outdoor unit,
Further, it is determined whether the degree of superheat on the outlet side of the outdoor heat exchanger of each outdoor unit is within a range with an upper limit, and whether the discharge superheat degree of the compressor is within a certain range. And determining the degree of superheat on the outlet side of the outdoor heat exchanger within the range and the discharge superheat degree of the compressor within a certain range based on a combination of the determination results. An air conditioner comprising a control device for adjusting the opening of each flow rate adjustment valve.
前記制御装置は、前記圧縮機の吐出過熱度を一定の範囲内に収める代わりに、
前記圧縮機内の冷凍機油が滞留する部分における圧力換算飽和温度に対する前記滞留する部分の圧縮機シェル表面の過熱度を一定の範囲内に収めるように前記流量調整弁の開度を調整することを特徴とする請求項1に記載の空気調和装置。
The control device, instead of keeping the discharge superheat degree of the compressor within a certain range,
The opening degree of the flow rate adjusting valve is adjusted so that the superheat degree of the surface of the compressor shell of the staying portion with respect to the pressure conversion saturation temperature in the portion of the compressor where the refrigerating machine oil stays is within a certain range. The air conditioning apparatus according to claim 1.
前記制御装置は、前記圧縮機の吐出過熱度を一定の範囲内に収める代わりに、
前記圧縮機内の冷凍機油が滞留する部分における圧力換算飽和温度に対する前記滞留する部分の冷凍機油の過熱度を一定の範囲内に収めるように前記流量調整弁の開度を調整することを特徴とする請求項1に記載の空気調和装置。
The control device, instead of keeping the discharge superheat degree of the compressor within a certain range,
The opening degree of the flow rate adjusting valve is adjusted so that the degree of superheat of the refrigeration oil in the stagnation part with respect to the pressure-converted saturation temperature in the part where the refrigeration oil stays in the compressor is within a certain range. The air conditioning apparatus according to claim 1.
前記制御装置は、前記流量調整弁の開度範囲を予め設定することを特徴とする請求項1〜3のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 3, wherein the control device presets an opening range of the flow regulating valve. 前記制御装置は、前記各室外機を流れる冷媒流量に基づいて、前記各室外機の前記流量調整弁の開度範囲を補正することを特徴とする請求項4記載の空気調和装置。   The air conditioner according to claim 4, wherein the control device corrects an opening range of the flow rate adjusting valve of each outdoor unit based on a refrigerant flow rate flowing through each outdoor unit. 前記制御装置は、前記各室外機を流れる冷媒流量に基づいて、前記各室外機の前記流量調整弁の開度を補正することを特徴とする請求項1〜3のいずれかに記載の空気調和装置。   The air conditioning according to any one of claims 1 to 3, wherein the control device corrects an opening degree of the flow rate adjustment valve of each outdoor unit based on a refrigerant flow rate flowing through each outdoor unit. apparatus. 吸入圧力、蒸発温度、圧縮機運転周波数、外気温度、要求能力のうちの1または複数の値に基づいて、前記各室外機を流れる冷媒流量を算出することを特徴とする請求項5または6記載の空気調和装置。   The refrigerant flow rate flowing through each outdoor unit is calculated based on one or more values of suction pressure, evaporation temperature, compressor operating frequency, outside air temperature, and required capacity. Air conditioner. 前記制御装置は、前記流量調整弁の開度の増減を判断したときに、設定した前記開度範囲を超える前記流量調整弁があると判断すると、前記流量調整弁の開度を前記開度範囲にし、前記開度範囲を超えない前記流量調整弁の開度が増減できるかどうかを判断し、増減できると判断すると、前記開度範囲を超えない前記流量調整弁の開度を増減させることを特徴とする請求項4記載の空気調和装置。   When the controller determines that there is an increase or decrease in the opening degree of the flow rate adjustment valve and determines that there is the flow rate adjustment valve that exceeds the set opening degree range, the control device changes the opening degree of the flow rate adjustment valve to the opening range. Determining whether the opening degree of the flow rate adjustment valve that does not exceed the opening degree range can be increased or decreased, and determining that the opening degree can be increased or decreased, increase or decrease the opening degree of the flow rate adjustment valve that does not exceed the opening degree range. The air conditioner according to claim 4, wherein 前記流量調整弁の開度に関する制御間隔を、前記空気調和装置の他の機器の制御間隔よりも長くすることを特徴とする請求項1〜8のいずれかに記載の空気調和装置。   The air conditioning apparatus according to any one of claims 1 to 8, wherein a control interval related to an opening degree of the flow regulating valve is made longer than a control interval of other devices of the air conditioning apparatus. 前記各室外機を単体で構成した際に必要となるアキュームレータの容積に基づいて、前記各室外機のアキュームレータを構成することを特徴とする請求項1〜9のいずれかに記載の空気調和装置。   The air conditioner according to any one of claims 1 to 9, wherein the accumulator of each outdoor unit is configured based on a volume of the accumulator required when each outdoor unit is configured as a single unit.
JP2010191310A 2010-08-27 2010-08-27 Air conditioner Active JP5436375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191310A JP5436375B2 (en) 2010-08-27 2010-08-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191310A JP5436375B2 (en) 2010-08-27 2010-08-27 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006050445A Division JP4619303B2 (en) 2006-02-27 2006-02-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2010261715A true JP2010261715A (en) 2010-11-18
JP5436375B2 JP5436375B2 (en) 2014-03-05

Family

ID=43359926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191310A Active JP5436375B2 (en) 2010-08-27 2010-08-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP5436375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207841A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Indoor unit and air conditioning device
WO2016207947A1 (en) * 2015-06-22 2016-12-29 三菱電機株式会社 Air-conditioning apparatus
JP2017514100A (en) * 2014-04-25 2017-06-01 フランケ・テクノロジー・アンド・トレードマーク・リミテッドFranke Technology And Trademark Ltd. Cooling system with pressure control means
WO2017109906A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air conditioner
EP4317865A1 (en) * 2022-08-05 2024-02-07 Carel Industries S.p.A. Refrigeration plant and operating method thereof
US11913664B2 (en) 2019-06-03 2024-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus and method of controlling the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290354A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH06185816A (en) * 1992-12-15 1994-07-08 Hitachi Ltd Refrigerating cycle
JPH08145524A (en) * 1994-11-17 1996-06-07 Matsushita Refrig Co Ltd Refrigerator
JPH08200869A (en) * 1995-01-31 1996-08-06 Daikin Ind Ltd Refrigerator
JPH10122672A (en) * 1996-10-22 1998-05-15 Kansai Reinetsu Kk Apparatus and method for controlling motor driven expansion valve as well as control program recording medium of the valve
JP2810763B2 (en) * 1990-04-10 1998-10-15 株式会社日立製作所 Air conditioner
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2001066000A (en) * 1999-08-27 2001-03-16 Hitachi Ltd Heat pump type air conditioner and outdoor unit
JP2001248920A (en) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp Controller for refrigeration circuit
JP2006010136A (en) * 2004-06-23 2006-01-12 Denso Corp Supercritical heat pump cycle device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290354A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JP2810763B2 (en) * 1990-04-10 1998-10-15 株式会社日立製作所 Air conditioner
JPH06185816A (en) * 1992-12-15 1994-07-08 Hitachi Ltd Refrigerating cycle
JPH08145524A (en) * 1994-11-17 1996-06-07 Matsushita Refrig Co Ltd Refrigerator
JPH08200869A (en) * 1995-01-31 1996-08-06 Daikin Ind Ltd Refrigerator
JPH10122672A (en) * 1996-10-22 1998-05-15 Kansai Reinetsu Kk Apparatus and method for controlling motor driven expansion valve as well as control program recording medium of the valve
JP2001012808A (en) * 1999-06-29 2001-01-19 Matsushita Electric Ind Co Ltd Method of and apparatus for controlling expansion valve of air conditioner
JP2001066000A (en) * 1999-08-27 2001-03-16 Hitachi Ltd Heat pump type air conditioner and outdoor unit
JP2001248920A (en) * 2000-03-06 2001-09-14 Mitsubishi Electric Corp Controller for refrigeration circuit
JP2006010136A (en) * 2004-06-23 2006-01-12 Denso Corp Supercritical heat pump cycle device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207841A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Indoor unit and air conditioning device
JP2017514100A (en) * 2014-04-25 2017-06-01 フランケ・テクノロジー・アンド・トレードマーク・リミテッドFranke Technology And Trademark Ltd. Cooling system with pressure control means
US10808973B2 (en) 2014-04-25 2020-10-20 Franke Technology And Trademark Ltd Cooling system with pressure control
GB2555063B (en) * 2015-06-22 2020-08-19 Mitsubishi Electric Corp Air-conditioning apparatus
WO2016207947A1 (en) * 2015-06-22 2016-12-29 三菱電機株式会社 Air-conditioning apparatus
JPWO2016207947A1 (en) * 2015-06-22 2018-01-25 三菱電機株式会社 Air conditioner
GB2555063A (en) * 2015-06-22 2018-04-18 Mitsubishi Electric Corp Air-conditioning apparatus
JPWO2017109906A1 (en) * 2015-12-24 2018-08-16 三菱電機株式会社 Air conditioner
GB2561096A (en) * 2015-12-24 2018-10-03 Mitsubishi Electric Corp Air conditioner
GB2561096B (en) * 2015-12-24 2020-09-23 Mitsubishi Electric Corp Air-conditioning apparatus
WO2017109906A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air conditioner
US11913664B2 (en) 2019-06-03 2024-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus and method of controlling the same
EP4317865A1 (en) * 2022-08-05 2024-02-07 Carel Industries S.p.A. Refrigeration plant and operating method thereof

Also Published As

Publication number Publication date
JP5436375B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4619303B2 (en) Air conditioner
JP5709844B2 (en) Air conditioner
JP5229476B2 (en) Refrigeration apparatus and control method thereof
JP5436375B2 (en) Air conditioner
AU2009248466B2 (en) Refrigeration Apparatus
JPWO2015111141A1 (en) Air conditioner
JP2006292213A (en) Air conditioner
JP6187514B2 (en) Refrigeration equipment
JP2010139155A (en) Refrigeration apparatus
JPH11142010A (en) Refrigeration air conditioner
JP2011174687A (en) Air conditioner
JP2008249259A (en) Refrigerating air conditioner
JP5505477B2 (en) AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER
JP5404229B2 (en) Air conditioner
JP2011196630A (en) Multi-room type air conditioning device
JP5202073B2 (en) Refrigeration air conditioner
JP2006292214A (en) Addition method of refrigerant amount determining function of air conditioner, and air conditioner
JP2006220342A (en) Air conditioner
JP5138292B2 (en) Air conditioner
JP5645453B2 (en) Air conditioner
JP2015102256A (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP7258129B2 (en) air conditioner
WO2017094172A1 (en) Air conditioning device
JP5583134B2 (en) Heat source unit and refrigeration air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250