JP2810763B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2810763B2
JP2810763B2 JP9422390A JP9422390A JP2810763B2 JP 2810763 B2 JP2810763 B2 JP 2810763B2 JP 9422390 A JP9422390 A JP 9422390A JP 9422390 A JP9422390 A JP 9422390A JP 2810763 B2 JP2810763 B2 JP 2810763B2
Authority
JP
Japan
Prior art keywords
indoor unit
indoor
capacity
opening
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9422390A
Other languages
Japanese (ja)
Other versions
JPH03294752A (en
Inventor
進 中山
研作 小国
正敏 村松
和幹 浦田
健治 戸草
留美 南方
陽三 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9422390A priority Critical patent/JP2810763B2/en
Publication of JPH03294752A publication Critical patent/JPH03294752A/en
Application granted granted Critical
Publication of JP2810763B2 publication Critical patent/JP2810763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は室外ユニットに複数の室内ユニットを接続し
た空気調和機に関し、特に、室内ユニット間に高低差が
ある場合の各室内ユニットの能力補正手段に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to an air conditioner in which a plurality of indoor units are connected to an outdoor unit, and in particular, the capacity correction of each indoor unit when there is a height difference between the indoor units. It is about means.

[従来の技術] 従来、複数の室内ユニットを共通の室外ユニットに接
続してなる空気調和機は、特開昭62−102046号公報に記
載のように、室内ユニットの冷媒流路にある膨張弁の開
度をその室内ユニットの要求能力に応じて決めていた。
2. Description of the Related Art Conventionally, an air conditioner in which a plurality of indoor units are connected to a common outdoor unit is disclosed in Japanese Patent Application Laid-Open No. 62-102046. Was determined according to the required capacity of the indoor unit.

[発明が解決しようとする課題] 上記従来技術は、室内ユニット間に高低差がある場
合、暖房時において各室内ユニットに作用する冷媒液ヘ
ッドが異なることにより、各室内ユニットへの冷媒流量
の配分が影響を受けることについて配慮がされておら
ず、低い位置に有る室内ユニットが能力不足となる問題
があった。
[Problems to be Solved by the Invention] In the above-described conventional technology, when there is a difference in height between indoor units, the refrigerant liquid head acting on each indoor unit during heating is different, so that the refrigerant flow rate is distributed to each indoor unit. However, there is a problem that the indoor unit located at a low position has insufficient capacity.

本発明は、室内ユニット間に高低差がある場合、暖房
時に低い位置に設定されている室内ユニットに生じる能
力不足を解消し、各室内ユニットへの冷媒流量の配分を
適正に補正することを目的とする。
An object of the present invention is to solve the problem of insufficient capacity of an indoor unit that is set at a low position during heating when there is a height difference between indoor units, and to appropriately correct the distribution of the refrigerant flow rate to each indoor unit. And

[課題を解決するための手段] 上記目的を達成するため、第1の本発明による空気調
和機は、圧縮機および室外熱交換機を有する室外ユニッ
トに、室内熱交換器を夫々有し暖房運転される室内ユニ
ットを並列に複数台接続してなり、前記室内ユニットの
設置位置に高低差がある空気調和機であって、高い位置
にある室内ユニットの冷媒流路の抵抗を低い位置にある
室内ユニットと冷媒流路の抵抗よりも大きくしてなる空
気調和機において、前記各室内ユニットの冷媒流路に開
度調節可能な流路調整弁を夫々設け、各室内ユニットの
要求能力と供給能力との差に基づく各流量調整弁の指令
開度に制御する手段と、各室内ユニットの供給能力/要
求能力なる比としての能力比を各室内ユニットについて
演算する手段と、該演算された各室内ユニットの能力比
のうちの最大値と最小値との差が許容範囲を超えた場合
には最大の能力比を呈している室内ユニットの流量調整
弁の開度を絞る手段と、を備えたことを特徴とするもの
である。
Means for Solving the Problems In order to achieve the above object, an air conditioner according to a first aspect of the present invention has an outdoor unit having a compressor and an outdoor heat exchanger, and has an indoor heat exchanger and is operated for heating. An air conditioner in which a plurality of indoor units are connected in parallel with each other and the installation position of the indoor unit has a height difference, and the indoor unit at a position where the resistance of the refrigerant flow path of the indoor unit at the high position is low. And an air conditioner that is larger than the resistance of the refrigerant flow path, each of the indoor units is provided with a flow path adjustment valve capable of adjusting the opening degree in the refrigerant flow path, and the required capacity and the supply capacity of each indoor unit are provided. Means for controlling the command opening of each flow control valve based on the difference, means for calculating the ratio of the supply capacity / required capacity of each indoor unit for each indoor unit, and means for calculating the calculated indoor unit. Means for reducing the opening of the flow control valve of the indoor unit exhibiting the maximum capacity ratio when the difference between the maximum value and the minimum value of the capacity ratios exceeds the allowable range. It is characterized by the following.

同じく、第2の本発明による空気調和機は、圧縮機お
よび室外熱交換器を有する室外ユニットに、室内熱交換
器を夫々有し暖房運転される室内ユニットを並列に複数
台接続してなる空気調和機において、前記各室内ユニッ
トの冷媒流路に開度調節可能な流量調整弁を夫々設け、
各室内ユニットの要求能力と供給能力との差に基づく各
流量調整弁の指令開度に制御する手段と、各室内ユニッ
トの供給能力/要求能力なる比としての能力比を各室内
ユニットについて演算する手段と、該演算された各室内
ユニットの能力比のうちの最大値と最小値との差が許容
範囲を超えた場合には最大の能力比を呈している室内ユ
ニットの流量調整弁の開度を絞る手段と、を備えたこと
を特徴とするものである。
Similarly, the air conditioner according to the second aspect of the present invention is an air conditioner in which a plurality of indoor units each having an indoor heat exchanger and performing a heating operation are connected in parallel to an outdoor unit having a compressor and an outdoor heat exchanger. In the conditioner, each of the indoor units is provided with a flow control valve capable of adjusting the opening degree in the refrigerant flow path,
Means for controlling the command opening of each flow control valve based on the difference between the required capacity and the supply capacity of each indoor unit, and a capacity ratio as a ratio of supply capacity / required capacity of each indoor unit is calculated for each indoor unit. Means and the opening degree of the flow control valve of the indoor unit exhibiting the maximum capacity ratio when the difference between the maximum value and the minimum value of the calculated capacity ratios of the indoor units exceeds an allowable range. And means for narrowing down.

[作用] 本発明の上記した特徴を有する構成によれば、第3図
のように室内ユニット間に高低差がある場合でも、自動
的に適切な流路抵抗を室内ユニットに与えるように流量
調整弁の開度が調整され、室内ユニットの設置位置の高
低差に伴う能力アンバランスを解消するように作用す
る。
[Operation] According to the configuration having the above-described features of the present invention, even when there is a height difference between the indoor units as shown in FIG. 3, the flow rate is adjusted so that an appropriate flow path resistance is automatically given to the indoor units. The degree of opening of the valve is adjusted, and acts to eliminate the capacity imbalance due to the difference in elevation of the installation positions of the indoor units.

[実 施 例] 本発明の実施例を説明するのに先立って、その先行例
を第1図、第2図により説明する。
[Embodiment] Prior to describing an embodiment of the present invention, a preceding example will be described with reference to FIGS.

第1図に示す第1の先行例は、室内ユニットの取付位
置に高低差がある場合、第2図に示す第2の先行例は、
室内ユニットの取付位置が同一高さの場合であり、いず
れも暖房時を示している。
The first prior example shown in FIG. 1 is based on the case where there is a height difference between the mounting positions of the indoor units, and the second prior example shown in FIG.
This is the case where the mounting positions of the indoor units are at the same height, and all show the time of heating.

室外ユニット1は、圧縮機11、室外熱交換器12、暖房
用膨張弁13および室外ファン14で構成され、室内ユニッ
ト2および3は、夫々、室内熱交換器21、31および室内
ファン22、32で構成され、第1図では室内ユニット2に
は絞り部材23が付加されている。室内ユニット2および
3は同じ容量である。室外ユニット1と室内ユニット2
および3とはガス配管4と液配管5で接合されている。
また、室内ユニット2および3は並列結合となってい
る。
The outdoor unit 1 includes a compressor 11, an outdoor heat exchanger 12, a heating expansion valve 13, and an outdoor fan 14. The indoor units 2 and 3 respectively include an indoor heat exchanger 21, 31 and an indoor fan 22, 32. In FIG. 1, a throttle member 23 is added to the indoor unit 2. The indoor units 2 and 3 have the same capacity. Outdoor unit 1 and indoor unit 2
And 3 are joined by a gas pipe 4 and a liquid pipe 5.
The indoor units 2 and 3 are connected in parallel.

冷媒の流れについて説明する。圧縮機11から吐出され
た高温高圧の冷媒ガスは、ガス配管4を通って室内ユニ
ット2および3に送られ、室内熱交換器21および31でそ
れぞれの室内空気と熱交換されて液冷媒となる。このと
き、室内空気は暖められ、室内は暖房される。第1図の
場合、室内熱交換器21を出た液冷媒は絞り部材23を通っ
て室内ユニット2から出る。室内ユニット2および3か
ら出た液冷媒は液配管5を通り、室外ユニット1へ入
り、暖房用膨張弁13で減圧され、室外熱交換器12で室外
空気と熱交換され、低圧ガスとなって圧縮機11へ吸入さ
れ、圧縮機11で圧縮されて高温高圧の冷媒ガスとなって
再び吐出される。
The flow of the refrigerant will be described. The high-temperature and high-pressure refrigerant gas discharged from the compressor 11 is sent to the indoor units 2 and 3 through the gas pipe 4 and exchanges heat with the indoor air in the indoor heat exchangers 21 and 31 to become a liquid refrigerant. . At this time, the room air is warmed and the room is heated. In the case of FIG. 1, the liquid refrigerant that has exited the indoor heat exchanger 21 passes through the throttle member 23 and exits the indoor unit 2. The liquid refrigerant flowing out of the indoor units 2 and 3 passes through the liquid pipe 5, enters the outdoor unit 1, is decompressed by the heating expansion valve 13, is heat-exchanged with the outdoor air by the outdoor heat exchanger 12, and becomes a low-pressure gas. The refrigerant is sucked into the compressor 11, compressed by the compressor 11, becomes a high-temperature and high-pressure refrigerant gas, and is discharged again.

1つの室内ユニットに流れる冷媒流量Gは、当該室内
ユニットの入口側圧力をP1、出口側圧力をP2、流路抵抗
をRとすれば で表わされる。
The refrigerant flow rate G flowing through one indoor unit is given by P 1 as the inlet pressure of the indoor unit, P 2 as the outlet pressure, and R as the flow path resistance. Is represented by

室内ユニット2と3の取付位置に高低差がない第2図
の場合には、入口側圧力P1および出口側圧力P2は室内ユ
ニット2と3とで違わないから、流路抵抗Rが等しけれ
ば、冷媒流量Gは室内ユニット2および3とも等しい。
In the case of Figure 2 there is no height difference in the mounting position of the indoor unit 2 and 3, since the inlet-side pressure P 1 and the outlet pressure P 2 is not different in the indoor unit 2, 3 and the flow path resistance R is equal For example, the refrigerant flow rate G is equal to the indoor units 2 and 3.

しかし、第1図に示したように、室内ユニット2と室
内ユニット3の取付位置に高低差がある場合には、低い
位置にある室内ユニット3の冷媒出口側圧力は、高い位
置にある室内ユニット2の冷媒出口側圧力より液ヘッド
Hの分だけ高くなり、従って、室内ユニット3の方が室
内ユニット2に比較して入口側圧力P1と出口側圧力P2
の差(P1−P2)が小さくなり、室内ユニット2に比べて
室内ユニット3の方が冷媒流量が減り、その分だけ室内
ユニット2の冷媒流量が増える(全体の冷媒流量は変ら
ないから)。そこで、室内ユニット2に絞り部材を付加
することによって、その流路抵抗Rを大きくし、これに
より室内ユニット2の冷媒流量を減らし、その分だけ室
内ユニット3へ流すことができ、両者の冷媒流量を等し
くできる。
However, as shown in FIG. 1, when there is a difference in height between the mounting positions of the indoor unit 2 and the indoor unit 3, the refrigerant outlet side pressure of the indoor unit 3 at the lower position becomes higher than the indoor unit at the higher position. 2 is higher than the refrigerant outlet pressure by the liquid head H, so that the indoor unit 3 has a difference (P 1 −P) between the inlet pressure P 1 and the outlet pressure P 2 compared to the indoor unit 2. 2 ) is smaller, the refrigerant flow rate of the indoor unit 3 is smaller than that of the indoor unit 2, and the refrigerant flow rate of the indoor unit 2 is increased accordingly (because the overall refrigerant flow rate does not change). Therefore, by adding a throttle member to the indoor unit 2, the flow path resistance R thereof is increased, thereby reducing the flow rate of the refrigerant in the indoor unit 2 and allowing the refrigerant to flow to the indoor unit 3 by that much. Can be equal.

以上は、室内ユニット2および3が同じ容量の場合を
示したが、容量が違う場合は次のようにすればよい。
The case where the indoor units 2 and 3 have the same capacity has been described above, but when the capacity is different, the following may be performed.

冷媒流量は室内ユニットの容量にほぼ比例して流すこ
とが必要であるから、したがって、室内ユニットへの冷
媒流量の分配は、単位容量当りの冷媒流量が等しくなる
ように、単位容量当りの流路抵抗で考えればよい。例え
ば、室内ユニット2が2馬力の容量で、室内ユニット3
が1馬力の容量であれば、室内ユニットの取付位置の高
さが等しい第2図の場合には、室内ユニット2の単位容
量当りの流路抵抗R2′は室内ユニット2の流路抵抗R2
容量で割って となり、また、室内ユニット3のそれは となり、第2図では室内ユニット2および3の単位容量
当たりの夫々の流路抵抗R2′およびR3′をR2′=R3′と
なるようにすれば、夫々の室内ユニットは夫々の容量に
合った能力を出すことができる。
Since the flow rate of the refrigerant needs to flow almost in proportion to the capacity of the indoor unit, the distribution of the flow rate of the refrigerant to the indoor unit is performed in such a manner that the flow rate of the refrigerant per unit capacity is equal to the flow rate per unit capacity. Think in terms of resistance. For example, the indoor unit 2 has a capacity of 2 hp and the indoor unit 3
Is 1 horsepower, the flow path resistance R 2 ′ per unit capacity of the indoor unit 2 is equal to the flow path resistance R 2 of the indoor unit 2 in the case of FIG. Divide 2 by capacity And that of the indoor unit 3 is In FIG. 2, if the flow path resistances R 2 ′ and R 3 ′ per unit capacity of the indoor units 2 and 3 are set so that R 2 ′ = R 3 ′, the respective indoor units become We can give ability that matched capacity.

他方、これらの室内ユニット2および3を第1図のよ
うに高低差をつけて設置する場合は、高い方の室内ユニ
ット2の単位容量当たりの流路抵抗R2′が、低い方の室
内ユニット3の単位容量当たりの流路抵抗R1′より大き
くなるように絞り部材23を選定し、この絞り部材23を室
内ユニット2に付加すればよい。すなわち、第1図のよ
うに高い位置に設置された室内ユニット2の流路抵抗
が、第2図のようにそれぞれの室内ユニットが同一高さ
に設置された場合の室内ユニット2の流路抵抗より大き
くなるように室内ユニット2に絞り部材23を付加する。
On the other hand, when these indoor units 2 and 3 are installed with a difference in height as shown in FIG. 1, the flow resistance R 2 ′ per unit capacity of the higher indoor unit 2 is lower than that of the lower indoor unit. The throttle member 23 may be selected so as to be larger than the flow path resistance R 1 'per unit capacity of 3, and the throttle member 23 may be added to the indoor unit 2. That is, the flow path resistance of the indoor unit 2 installed at a high position as shown in FIG. 1 is the flow path resistance of the indoor unit 2 when each indoor unit is installed at the same height as shown in FIG. A throttle member 23 is added to the indoor unit 2 so as to be larger.

以上に説明した第1および第2の先行例を踏まえて、
本発明の第1実施例を第3図ないし第5図で説明する。
第3図は第1図の室内ユニット2および3に、夫々、開
度調整可能な流量調整弁24および34を付加し、第1図の
室内ユニット2にあった絞り部材23を除去したものであ
る。第4図は流量調整弁24および34の開度調整手段を示
したもので、開度指令部25および35には指令開度aと修
正量bが入力され、これらの入力値から開度指令部25お
よび35は修正指令開度a′(=a−b)を演算し、流量
調整弁24および34へ出力する。流量調整弁24および34は
それを受けて修正指令開度a′となるように開度が調節
される。修正量bはディップスイッチ26および36で与え
られる。第3図の場合は、高い位置にある室内ユニット
2の弁24の開度が、低い位置にある室内ユニット3の弁
34の開度より小さくなるように、言いかえれば、流路抵
抗が大きくなるように、ディップスイッチ26および36に
修正量をセットし、以て、室内ユニット2および3の冷
媒流量が等しくなるようにできる。第5図は流量調整弁
24、34に対する上記の開度修正の説明図である。
Based on the first and second prior examples described above,
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 3 shows the indoor units 2 and 3 of FIG. 1 with flow control valves 24 and 34, respectively, whose opening can be adjusted, and the throttle member 23 of the indoor unit 2 of FIG. 1 removed. is there. FIG. 4 shows the means for adjusting the opening of the flow regulating valves 24 and 34. A command opening a and a correction amount b are inputted to the opening command units 25 and 35, and the opening command is obtained from these input values. The units 25 and 35 calculate the corrected command opening a '(= ab) and output it to the flow regulating valves 24 and 34. In response thereto, the flow control valves 24 and 34 are adjusted in opening so as to have the corrected command opening a '. The correction amount b is given by the dip switches 26 and 36. In the case of FIG. 3, the opening degree of the valve 24 of the indoor unit 2 at the high position is equal to the valve opening of the indoor unit 3 at the low position.
A correction amount is set to the dip switches 26 and 36 so as to be smaller than the opening degree of 34, in other words, so as to increase the flow path resistance, so that the refrigerant flow rates of the indoor units 2 and 3 are equalized. Can be. Fig. 5 shows a flow control valve
It is explanatory drawing of said opening degree correction with respect to 24,34.

次に、本発明の第2実施例を第6図を参照して説明す
る。第6図は第3図のように、室内ユニット間に高低差
がある場合、夫々の室内ユニットに設けた冷媒流量調整
弁に自動的に適切な弁開度を与える制御の流れ図を示し
たものである。室内ユニットはn台あるとする。室内ユ
ニットiの要求能力(例えば設定温度と室温との差に比
例する値)と供給能力(例えば吹出空気温度と室温との
差に比例する値)との差ΔQiを当該室内ユニットiの能
力偏差とし、この能力偏差ΔQiを用いて室内ユニットi
の流量調整弁の指令開度aiを算出する(i=1,2,…,
n)。この演算には例えばPID演算を用いる。そして、こ
の指令開度aiになるように室内ユニットiの流量調整弁
の開度を制御する。この制御によって、各室内ユニット
iは要求能力に比例した供給能力が出せるが、流量調整
弁開度が最大開度であって、かつ、さらに開度を大きく
する指令を受けた室内ユニットがある場合、その室内ユ
ニットは能力が不足する。そこで、以下の制御を行う。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a flow chart of control for automatically giving an appropriate valve opening to the refrigerant flow control valve provided in each indoor unit when there is a height difference between the indoor units as shown in FIG. It is. It is assumed that there are n indoor units. The difference ΔQi between the required capacity of the indoor unit i (for example, a value proportional to the difference between the set temperature and the room temperature) and the supply capacity (for example, a value proportional to the difference between the blown air temperature and the room temperature) is calculated as the capability deviation of the indoor unit i. And the indoor unit i is calculated using the capacity deviation ΔQi.
The command opening ai of the flow control valve is calculated (i = 1,2, ...,
n). For this calculation, for example, a PID calculation is used. Then, the opening of the flow control valve of the indoor unit i is controlled so as to achieve the command opening ai. By this control, each indoor unit i can provide a supply capacity in proportion to the required capacity, but when the flow control valve opening is the maximum opening and there is an indoor unit that has received a command to further increase the opening. , The indoor unit lacks capacity. Therefore, the following control is performed.

各室内ユニットiの供給能力と要求能力との比(これ
を能力比と称する)Qiを演算し、その最大値Qimax(す
なわち、Q1,Q2…Qnのうちの最大のもの)および該Qimax
を呈している室内ユニット番号imax,ならびに能力比Qi
の最小値Qimin(すなわちQ1,Q2…Qnのうちの最小のも
の)および該Qiminを呈している室内ユニット番号imin
を検出する。
The ratio of the supply capacity and the required capacity of the indoor unit i (which is referred to as capacity ratio) is calculated to Q i, the maximum value Q imax (i.e., Q 1, Q 2 ... as the largest of the Q n) And the Q imax
Indoor unit and has a number i max, and the ability ratio Q i
The minimum value Q imin (i.e. Q 1, Q 2 ... smallest ones of Q n) and the indoor unit and has a said Q imin number i min of
Is detected.

次に、最大値Qimaxと最小値Qiminの差がδ(冷媒流量
配分のアンバランスの許容差)を越え、かつ、室内ユニ
ットiminの流量調整弁開度が最大開度のとき、室内ユニ
ットimaxの流量調整弁を絞る。これにより、流量調整弁
開度が最大で且つ能力が不足している室内ユニットの冷
媒流量が、他の室内ユニットの流量調整弁を絞ることに
よって、増加し、当該室内ユニットの能力不足が解消す
る。本実施例によれば、第3図のように室内ユニット間
に高低差がある場合でも、自動的に適切な流路抵抗を室
内ユニットに与えるように流量調整弁の開度が調整さ
れ、室内ユニットの設置位置の高低差に伴う能力アンバ
ランスを解消することができる。
Next, when the difference between the maximum value Q imax and the minimum value Q imin exceeds δ (allowable difference in imbalance of refrigerant flow distribution) and the opening of the flow control valve of the indoor unit i min is the maximum opening, Squeeze the flow control valve in unit i max . Thereby, the refrigerant flow rate of the indoor unit having the maximum opening degree of the flow control valve and the insufficient capacity is increased by restricting the flow control valves of the other indoor units, and the insufficient capacity of the indoor unit is resolved. . According to the present embodiment, even when there is a height difference between the indoor units as shown in FIG. 3, the opening degree of the flow control valve is adjusted so as to automatically provide an appropriate flow path resistance to the indoor unit. It is possible to eliminate the capacity imbalance due to the difference in the height of the installation positions of the units.

[発明の効果] 本発明によれば、暖房時、室内ユニットの設置位置間
に高低差がある場合でも、冷媒流量を適切に調整できる
ので、各室内ユニットの能力アンバランスが解消される
効果がある。
[Effects of the Invention] According to the present invention, during heating, even if there is a height difference between the installation positions of the indoor units, the flow rate of the refrigerant can be appropriately adjusted. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の冷凍サイクルの構成と配置
を示す図、第2図は第1図と比較して室内ユニットが同
一高さにある場合の図、第3図は本発明の他の実施例の
冷凍サイクルの構成と配置を示す図、第4図は第3図の
流量調整弁の制御方法を示す構成図、第5図はその弁開
度修正動作の説明図、第6図は本発明のさらに他の実施
例の流量調整弁の制御方法を示す流れ図である。 1……室外ユニット、2,3……室内ユニット 4……ガス配管、5……液配管 11……圧縮機、12……室外熱交換器 21,31……室内熱交換器 23……絞り部材、24,34……流量調整弁 25,35……開度指令部 26,36……ディップスイッチ
FIG. 1 is a diagram showing the configuration and arrangement of a refrigeration cycle according to one embodiment of the present invention, FIG. 2 is a diagram showing a case where indoor units are at the same height as compared with FIG. 1, and FIG. FIG. 4 is a diagram showing a configuration and an arrangement of a refrigeration cycle of another embodiment, FIG. 4 is a diagram showing a control method of a flow regulating valve in FIG. 3, FIG. FIG. 6 is a flowchart showing a method of controlling a flow control valve according to still another embodiment of the present invention. 1 ... outdoor unit, 2, 3 ... indoor unit 4 ... gas piping, 5 ... liquid piping 11 ... compressor, 12 ... outdoor heat exchanger 21, 31 ... indoor heat exchanger 23 ... throttle Member, 24,34… Flow control valve 25,35 …… Open position command part 26,36 …… Dip switch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浦田 和幹 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 戸草 健治 静岡県清水市村松390番地 株式会社日 立製作所清水工場内 (72)発明者 南方 留美 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (72)発明者 日比野 陽三 茨城県土浦市神立町502番地 株式会社 日立製作所機械研究所内 (56)参考文献 実開 昭52−130156(JP,U) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuki Urata 502 Kandachicho, Tsuchiura-shi, Ibaraki Machinery Research Laboratory, Hitachi, Ltd. (72) Inventor Kenji Togusa 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Hitachi, Ltd. Inside the Shimizu Plant (72) Inventor Rumi Minamikata 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref.Hitachi, Ltd.Mechanical Research Laboratory Co., Ltd. References Japanese Utility Model Showa 52-130156 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機および室外熱交換器を有する室外ユ
ニットに、室内熱交換器を夫々有し暖房運転される室内
ユニットを並列に複数台接続してなり、前記室内ユニッ
トの設置位置に高低差がある空気調和機であって、高い
位置にある室内ユニットの冷媒流路の抵抗を低い位置に
ある室内ユニットの冷媒流路の抵抗よりも大きくしてな
る空気調和機において、 前記各室内ユニットの冷媒流路に開度調節可能な流量調
整弁を夫々設け、それら流量調整弁に、各室内ユニット
毎の指令開度を夫々の室内ユニットの設置位置の高低差
に応じた修正量で補正した修正開度をとらせる様にする
弁開度調整手段を備えたことを特徴とする空気調和機。
An outdoor unit having a compressor and an outdoor heat exchanger is connected in parallel with a plurality of indoor units each having an indoor heat exchanger and operated for heating. An air conditioner having a difference, wherein the resistance of the refrigerant flow path of the indoor unit at a higher position is greater than the resistance of the refrigerant flow path of the indoor unit at a lower position. Each of the refrigerant flow paths is provided with a flow control valve capable of adjusting the opening degree, and the command opening degree of each indoor unit is corrected to the flow control valve by a correction amount according to a height difference of an installation position of each indoor unit. An air conditioner comprising a valve opening adjusting means for obtaining a corrected opening.
【請求項2】圧縮機および室外熱交換器を有する室外ユ
ニットに、室内熱交換器を夫々有し暖房運転される室内
ユニットを並列に複数台接続してなる空気調和機におい
て、 前記各室内ユニットの冷媒流路に開度調節可能な流量調
整弁を夫々設け、各室内ユニットの要求能力と供給能力
との差に基づく各流量調整弁の指令開度に制御する手段
と、各室内ユニットの供給能力/要求能力なる比として
の能力比を各室内ユニットについて演算する手段と、該
演算された各室内ユニットの能力比のうちの最大値と最
小値との差が許容範囲を超えた場合には最大の能力比を
呈している室内ユニットの流量調整弁の開度を絞る手段
と、を備えたことを特徴とする空気調和機。
2. An air conditioner in which a plurality of indoor units each having an indoor heat exchanger and being operated for heating are connected in parallel to an outdoor unit having a compressor and an outdoor heat exchanger. Means for controlling the command opening of each flow control valve based on the difference between the required capacity and the supply capacity of each indoor unit, and the supply of each indoor unit. Means for calculating a capacity ratio as a ratio of capacity / required capacity for each indoor unit, and when a difference between a maximum value and a minimum value of the calculated capacity ratio of each indoor unit exceeds an allowable range. Means for narrowing the opening of the flow control valve of the indoor unit exhibiting the maximum capacity ratio.
JP9422390A 1990-04-10 1990-04-10 Air conditioner Expired - Fee Related JP2810763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9422390A JP2810763B2 (en) 1990-04-10 1990-04-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9422390A JP2810763B2 (en) 1990-04-10 1990-04-10 Air conditioner

Publications (2)

Publication Number Publication Date
JPH03294752A JPH03294752A (en) 1991-12-25
JP2810763B2 true JP2810763B2 (en) 1998-10-15

Family

ID=14104318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9422390A Expired - Fee Related JP2810763B2 (en) 1990-04-10 1990-04-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP2810763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device

Also Published As

Publication number Publication date
JPH03294752A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
CN110715466A (en) Multi-connected air conditioning system and control method thereof
US6789618B2 (en) Energy recycling air handling system
US10612799B2 (en) Multi-split system and medium-pressure controlling method thereof
KR930005666B1 (en) Air conditioner and operating method
JPH06241525A (en) Selectively driving method of heating cooling stage of heat exchanger
WO2010039385A2 (en) Start-up for refrigerant system with hot gas reheat
CN111795481B (en) Air conditioning system and control method therefor
JP2810763B2 (en) Air conditioner
JPH10197194A (en) Air conditioning system with capacity adjustment function
JP2002130861A (en) Air conditioner
JPH109644A (en) Air conditioner
JP3865861B2 (en) Automatic control method for air conditioning equipment
JPH0833225B2 (en) Multi-room air conditioner
JPH03217771A (en) Air conditioner
JPH1183128A (en) Highly efficient multiple air conditioning system
KR102462773B1 (en) Air conditioner
JPH08128760A (en) Air conditioner
KR20050075099A (en) Linear expansion valve control method of a multi-type air conditioner
JP3231081B2 (en) Refrigerant heating air conditioner
JP3326322B2 (en) Air conditioner and air conditioner system equipped with this air conditioner
JP2511960B2 (en) Multi-room air conditioner
JP7571523B2 (en) Heat pump cycle equipment
JPH03217744A (en) Operation control system for temperature control device
KR20050075098A (en) Control method of a multi-type air conditioner
JPH01263465A (en) Coolant controlling device for multichamber type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070731

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090731

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees