JP2002130861A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2002130861A
JP2002130861A JP2000326997A JP2000326997A JP2002130861A JP 2002130861 A JP2002130861 A JP 2002130861A JP 2000326997 A JP2000326997 A JP 2000326997A JP 2000326997 A JP2000326997 A JP 2000326997A JP 2002130861 A JP2002130861 A JP 2002130861A
Authority
JP
Japan
Prior art keywords
outdoor
indoor
heat exchanger
cooling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000326997A
Other languages
Japanese (ja)
Other versions
JP3627101B2 (en
Inventor
Yasutaka Yoshida
康孝 吉田
Susumu Nakayama
進 中山
Yoshiki Hata
良樹 畑
Kenichi Oishi
憲一 大石
Nobuhiro Sano
信浩 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000326997A priority Critical patent/JP3627101B2/en
Publication of JP2002130861A publication Critical patent/JP2002130861A/en
Application granted granted Critical
Publication of JP3627101B2 publication Critical patent/JP3627101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an air conditioner which will not be short in the cooling capacity of an indoor machine due to the working condition of pipeline connection or the like, and which is high in stability while the degree of freedom in designing the same is increased to contrive the improvement of amenity. SOLUTION: The air conditioner is provided with a plurality of indoor machines 191, 19N having indoor heat exchangers 201, 20N and indoor expansion valves 221, 22N, and an outdoor machine 8. A first outdoor heat exchanger 101 and a first outdoor expansion valve 151 are connected to one pipe branched at one of the discharging side of compressors 91, 92, and a second outdoor heat exchanger 102 as well as a second outdoor expansion valve 12 are connected to the other pipe while an outdoor fan 11 for sending air to the first outdoor heat exchanger 101 and the second outdoor heat exchanger 102 while whose number of rotation is variable. In such an air conditioner, a discharging pressure detector 33 for detecting the discharging pressures of the compressors 91, 92 is provided, and, when a discharging pressure is lowered than a predetermined pressure value upon cooling operation and mainly cooling operation, the number of rotation of the outdoor fan 11 is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室外機に複数台の
室内機を接続した空気調和機に関し、特に、冷暖同時運
転、つまり複数台の室内機の各々を冷房、暖房自由に設
定して運転を行うものに好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which a plurality of indoor units are connected to an outdoor unit, and more particularly, to a simultaneous cooling and heating operation, that is, a method in which each of the plurality of indoor units is set to be freely cooled and heated. Suitable for driving.

【0002】[0002]

【従来の技術】2つの室外熱交換器を有する室外機を用
いて冷暖同時運転を行う空気調和機は、一方の室外熱交
換器が凝縮器となる冷暖同時冷房主体運転時に、室外空
気温度が低下すると、凝縮器となる室外熱交換器におけ
る冷媒の凝縮量が多くなり、冷媒の吐出圧力が低下す
る。そのため、熱交換を行っている暖房室内熱交換器内
の凝縮温度も低下し暖房能力が低下する。
2. Description of the Related Art In an air conditioner that performs simultaneous cooling and heating operation using an outdoor unit having two outdoor heat exchangers, the outdoor air temperature is reduced during simultaneous cooling and heating main cooling operation in which one outdoor heat exchanger is a condenser. When the temperature decreases, the amount of refrigerant condensed in the outdoor heat exchanger serving as a condenser increases, and the discharge pressure of the refrigerant decreases. Therefore, the condensing temperature in the heat indoor heat exchanger performing the heat exchange also decreases, and the heating capacity decreases.

【0003】よって、従来、吐出圧力保持するため室外
温度の低下に応じて室外ファン回転数を下げ、室外膨張
弁を絞ることで室外凝縮器の液冷媒保有量を多くし、凝
縮熱量を少なくしている。
Therefore, conventionally, in order to maintain the discharge pressure, the outdoor fan speed is reduced according to the decrease in the outdoor temperature, and the outdoor expansion valve is throttled to increase the liquid refrigerant holding capacity of the outdoor condenser and reduce the heat of condensation. ing.

【0004】また、吐出圧力を所定の値するため吐出圧
力を検知して室外膨張弁の開度を制御し、室外膨張弁の
開度が上限となったときには室外ファン回転数を所定回
転数だけ上昇して凝縮能力を増加し、反対に下限となっ
たときには、所定回転数だけを減少して凝縮能力を減少
することが知られ、例えば特開平5−99525号公報
に記載されている。
In addition, the discharge pressure is detected to obtain a predetermined value, and the opening degree of the outdoor expansion valve is controlled by detecting the discharge pressure. When the opening degree of the outdoor expansion valve reaches the upper limit, the outdoor fan speed is increased by a predetermined speed. It is known that the condensing capacity is increased and the condensing capacity is reduced when the lower limit is reached. On the contrary, it is known that the condensing capacity is reduced by decreasing only a predetermined number of revolutions, for example, as described in JP-A-5-99525.

【0005】さらに、液配管内の冷媒液圧力が低下して
冷房運転室内機の冷房能力が不足したときに冷房能力を
補正することが、特開平7−4779号公報に記載され
ている。
Further, Japanese Patent Application Laid-Open No. 7-4779 describes that the cooling capacity is corrected when the cooling liquid capacity of the cooling operation indoor unit becomes insufficient due to a decrease in the refrigerant liquid pressure in the liquid pipe.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術において
は、いずれも室外ファン回転数が室外気温により予め決
定されている。室外温度と室外ファンの回転数は、種々
の配管条件に応じてマッチングさせねばならないが、も
し室外ファン回転数が低すぎて冷媒吐出圧力が高くなっ
てしまう場合、圧縮機の周波数を低くするなど保護制御
と呼ばれる緊急制御により冷凍サイクルの保護を行わね
ばならない。よって、室外ファン回転数は冷媒吐出圧力
が低くなるように余裕を見て高めに設定しなければなら
なかった。
In each of the above-mentioned prior arts, the outdoor fan speed is determined in advance by the outdoor air temperature. The outdoor temperature and the rotation speed of the outdoor fan must be matched according to various piping conditions, but if the outdoor fan rotation speed is too low and the refrigerant discharge pressure becomes high, lower the frequency of the compressor, etc. The refrigeration cycle must be protected by emergency control called protection control. Therefore, the outdoor fan speed has to be set high with a margin so that the refrigerant discharge pressure becomes low.

【0007】室外ファン回転数を高めに設定する場合、
例えば外気10℃において、冷媒吐出圧力が低くなるの
で、凝縮器となる室外膨張弁を絞って冷媒吐出圧力を設
定値に制御するようにすると、暖房運転室内機の能力は
確保されるが、室外膨張弁後流から液配管にかける液圧
力が低下し、冷房運転室内機に流入する圧力が低下する
ため、冷房運転室内機に冷媒が十分流入せず、冷房能力
不足になる恐れがある。
When the outdoor fan speed is set to be high,
For example, at 10 ° C. outside air, the refrigerant discharge pressure becomes low. Therefore, by controlling the refrigerant discharge pressure to a set value by restricting the outdoor expansion valve serving as a condenser, the performance of the heating operation indoor unit is secured, Since the liquid pressure applied to the liquid pipe from the downstream side of the expansion valve decreases and the pressure flowing into the cooling operation indoor unit decreases, the refrigerant may not sufficiently flow into the cooling operation indoor unit, and the cooling capacity may be insufficient.

【0008】冷房能力不足になる現象は1台冷房運転、
1台暖房運転の場合はまだしも、2台冷房運転、1台暖
房運転で、かつ冷房運転を行っている室内機が最も遠い
位置に配管接続される場合には、この冷房運転室内機の
冷房能力不足が顕著に表れる。 このため、室内機配管
施工などに関してある程度の制限を設けねばならなかっ
た。
[0008] The phenomenon that the cooling capacity becomes insufficient is one-unit cooling operation,
In the case of the single-unit heating operation, if the two-unit cooling operation, the one-unit heating operation, and the indoor unit performing the cooling operation are connected to the pipe at the farthest position, the cooling capacity of the cooling-operation indoor unit The shortage is noticeable. For this reason, some restrictions had to be provided for the construction of indoor unit piping.

【0009】本発明の目的は、上記従来技術の課題を解
決し、配管接続などの施工状態によっても室内機の冷房
能力が不足せず、安定性が高く、設計自由度を増大して
快適性の向上を図ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, so that the cooling capacity of the indoor unit is not insufficient, the stability is high, the degree of freedom in design is increased, and the comfort is improved even under the construction conditions such as pipe connection. The goal is to improve

【0010】[0010]

【課題を解決するための手段】上記問題を解決するため
に、本発明は、室内熱交換器及び室内膨張弁を有した複
数の室内機と、圧縮機の吐出側で分岐した一方に第1室
外熱交換器及び第1室外膨張弁が、他方に第2室外熱交
換器及び第2室外膨張弁が接続され、前記第1室外熱交
換器及び第2室外熱交換器に送風する回転数可変の室外
ファンを有した室外機と、を備えた空気調和機におい
て、圧縮機の吐出圧力を検出する吐出圧力検知器を備
え、冷房及び冷房主体運転時に吐出圧力が所定の圧力値
よりも低下した場合、室外ファンの回転数を下げるもの
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a first indoor unit having an indoor heat exchanger and an indoor expansion valve, and a first indoor unit having a branch at the discharge side of the compressor. The outdoor heat exchanger and the first outdoor expansion valve are connected to the other, and the second outdoor heat exchanger and the second outdoor expansion valve are connected to each other, and the number of rotations for blowing air to the first outdoor heat exchanger and the second outdoor heat exchanger is variable. An outdoor unit having an outdoor fan, and an air conditioner including: a discharge pressure detector that detects a discharge pressure of a compressor, and a discharge pressure is lower than a predetermined pressure value during cooling and cooling main operation. In this case, the rotational speed of the outdoor fan is reduced.

【0011】また、上記のものにおいて、室外ファンは
予め最低回転数が決められ、吐出圧力が所定の圧力値よ
りも低下して室外ファンが最低回転数となった場合は、
凝縮器となる第1あるいは第2室外熱交換器に接続され
た第1あるいは第2室外膨張弁の開度を小さくして吐出
圧力が所定の値になるように制御することが望ましい。
さらに、上記のものにおいて、室外ファンは予め複数
ステップの回転数が決められたことが望ましい。
In the above-mentioned apparatus, the minimum rotation speed of the outdoor fan is determined in advance, and when the discharge pressure falls below a predetermined pressure value and the outdoor fan reaches the minimum rotation speed,
It is desirable that the opening degree of the first or second outdoor expansion valve connected to the first or second outdoor heat exchanger serving as a condenser is reduced to control the discharge pressure to a predetermined value.
Further, in the above, it is desirable that the rotational speed of the outdoor fan be determined in advance in a plurality of steps.

【0012】さらに、上記のものにおいて、冷房主体運
転時に冷房運転をしている室内機の冷房能力が不足して
いると判断されたときは、暖房運転をしている室内機の
暖房能力の目標値を下げることが望ましい。
In the above, when it is determined that the cooling capacity of the indoor unit performing the cooling operation is insufficient during the cooling main operation, the target of the heating capacity of the indoor unit performing the heating operation is determined. It is desirable to lower the value.

【0013】さらに、上記のものにおいて、冷房主体運
転時に冷房運転をしている室内機の冷房能力を室内温度
と吹出し温度の差により求め、設定室内温度と室内温度
との差により求まる冷房能力目標値により、暖房運転を
している室内機の暖房能力の目標値を設定することが望
ましい。
Further, in the above, the cooling capacity of the indoor unit performing the cooling operation during the cooling main operation is obtained from the difference between the indoor temperature and the blow-out temperature, and the cooling capacity target obtained from the difference between the set indoor temperature and the indoor temperature. It is desirable to set the target value of the heating capacity of the indoor unit performing the heating operation based on the value.

【0014】さらに、上記のものにおいて、暖房主体運
転時に蒸発器となる第1あるいは第2室外熱交換器と、
冷房運転をしている室内機の室内熱交換器と、の容量比
により暖房運転をしている室内機の室内膨張弁の最低開
度を決定することが望ましい。 さらに、室内熱交換器
及び室内膨張弁を有した複数の室内機と、圧縮機の吐出
側で分岐した一方に第1室外熱交換器及び第1室外膨張
弁が、他方に第2室外熱交換器及び第2室外膨張弁が接
続され室外機と、を備えた空気調和機において、 暖房
主体運転時に蒸発器となる第1あるいは第2室外熱交換
器と、冷房運転をしている室内機の室内熱交換器と、の
容量比により暖房運転をしている室内機の室内膨張弁の
最低開度を決定するものである。
Further, in the above, a first or second outdoor heat exchanger which becomes an evaporator during a heating main operation,
It is desirable to determine the minimum opening degree of the indoor expansion valve of the indoor unit performing the heating operation based on the capacity ratio of the indoor heat exchanger of the indoor unit performing the cooling operation. Further, a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve, a first outdoor heat exchanger and a first outdoor expansion valve on one side branched off on the discharge side of the compressor, and a second outdoor heat exchange on the other side. And a second outdoor expansion valve connected to the outdoor unit, the first or second outdoor heat exchanger serving as an evaporator during the main heating operation, and the indoor unit performing the cooling operation. The minimum opening degree of the indoor expansion valve of the indoor unit performing the heating operation is determined based on the capacity ratio between the indoor heat exchanger and the indoor heat exchanger.

【0015】[0015]

【発明の実施の形態】図2は、空気調和機とその制御装
置を示す構成図であり、空気調和機は室外機8と複数の
冷暖切替ユニット161、16N、室内機191、19
Nを有し、室外機8と複数台からなる冷暖切替ユニット
161、16Nとを、また冷暖切替ユニット161、1
6Nと室内機191、19Nとが配管接続されて閉回路
をなしている。
FIG. 2 is a block diagram showing an air conditioner and its control device. The air conditioner comprises an outdoor unit 8, a plurality of cooling / heating switching units 161, 16N, and indoor units 191, 19.
N, an outdoor unit 8 and a plurality of cooling / heating switching units 161 and 16N, and a plurality of cooling / heating switching units 161 and 16N.
6N and indoor units 191 and 19N are connected by piping to form a closed circuit.

【0016】室外機8は駆動周波数可変の圧縮機91、
92と第1室外熱交換器101、第2室外熱交換器10
2及び第1室外膨張弁151と第2室外膨張弁152を
配管接続するとともに第1室外熱交換器101、第2室
外熱交換器102に送風する室外ファン11を備えてい
る。また、冷暖同時ユニット161、16Nは、高圧側
ガス配管47Aとガス側配管50Bを接続する電磁弁1
71、17Nと、低圧側ガス配管48Aとガス側配管4
9Bを接続する電磁弁181、18Nを備え、室内機1
91、19Nは、室内空気と熱交換を行う室内熱交換器
201、20Nとその室内熱交換器の冷媒の流量を調整
する室内膨張弁221、22Nが順次配管されるととも
に室内熱交換器201、20Nに送風する室内ファン2
21、22Nを備えている。
The outdoor unit 8 includes a compressor 91 having a variable drive frequency.
92, the first outdoor heat exchanger 101, the second outdoor heat exchanger 10
2 and an outdoor fan 11 that connects the first outdoor expansion valve 151 and the second outdoor expansion valve 152 by piping and sends air to the first outdoor heat exchanger 101 and the second outdoor heat exchanger 102. The simultaneous cooling / heating units 161 and 16N are provided with an electromagnetic valve 1 that connects the high-pressure side gas pipe 47A and the gas side pipe 50B.
71, 17N, low pressure side gas pipe 48A and gas side pipe 4
9B is connected to the electromagnetic valves 181 and 18N.
The indoor heat exchangers 201 and 20N for performing heat exchange with indoor air and the indoor expansion valves 221 and 22N for adjusting the flow rate of the refrigerant in the indoor heat exchangers are sequentially piped. Indoor fan 2 that blows air to 20N
21, 22N.

【0017】室外機8は、アキュムレータ12、第1四
方弁131、第2四方弁132及び液タンク14を備
え、室外機8及び冷暖切替ユニット161、16Nの各
液配管23、高圧ガス側及び低圧ガス側配管24、25
は各々液配管46A、高圧ガス側配管47A、低圧ガス
側配管48A及び分岐管26、27、28で接続され、
冷暖切替ユニット161、16N及び室内機191、1
9Nの各液側、ガス側が各々液側管路49B、ガス側管
路50Bで接続されて閉回路をなし、その中に冷媒が封
入してある。
The outdoor unit 8 includes an accumulator 12, a first four-way valve 131, a second four-way valve 132, and a liquid tank 14. The outdoor unit 8 and each liquid pipe 23 of the cooling / heating switching units 161 and 16N, a high-pressure gas side and a low-pressure Gas side piping 24, 25
Are connected by a liquid pipe 46A, a high-pressure gas side pipe 47A, a low-pressure gas side pipe 48A, and branch pipes 26, 27, 28, respectively.
Cooling / heating switching units 161, 16N and indoor units 191, 1
The liquid side and gas side of 9N are connected by a liquid side pipe 49B and a gas side pipe 50B, respectively, to form a closed circuit, in which a refrigerant is sealed.

【0018】さらに、室外空気温度を検知する室外空気
温度検知器29、冷媒吸入圧力を検知する吸入圧力検知
器32、冷媒吐出圧力を検知する吐出圧力検知器33、
圧縮機91、92の周波数を操作するインバータ圧縮機
駆動周波数操作器341、342、室外ファン11の送
風能力を操作する室外ファン送風能力操作器35、第1
室外膨張弁151の開度を操作する第1室外膨張弁開度
操作器361、第2室外膨張弁152の開度を操作する
第2室外膨張弁開度操作器362、第1四方弁131の
冷媒方向を切り替える操作を行う第1四方弁操作器37
1、第2四方弁132の冷媒方向を切り替える操作を行
う第2四方弁操作器372、利用部の室内空気温度を検
知する室内空気温度検知器381、38N、その利用部
への吹き出し空気温度を検知する吹き出し空気温度検知
器391、39N、室内ファン211、21Nの送風能
力を操作する室内ファン送風能力操作器421、42
N、室内膨張弁221、22Nの冷媒循環量を操作する
室内膨張弁開度操作器431、43N、予め与えられた
温湿度設定値を記憶、あるいは使用者が好みの温湿度を
設定するためのリモコン空気温湿度設定器441、44
Nを有している。さらに、演算運転装置45で上記の検
知値を読み込んで、操作器の操作量を演算し、制御す
る。
Further, an outdoor air temperature detector 29 for detecting outdoor air temperature, a suction pressure detector 32 for detecting refrigerant suction pressure, a discharge pressure detector 33 for detecting refrigerant discharge pressure,
Inverter compressor drive frequency controllers 341 and 342 for controlling the frequencies of the compressors 91 and 92, an outdoor fan blower capacity controller 35 for controlling the blower capacity of the outdoor fan 11,
The first outdoor expansion valve opening operation device 361 for operating the opening degree of the outdoor expansion valve 151, the second outdoor expansion valve opening operation device 362 for operating the opening degree of the second outdoor expansion valve 152, and the first four-way valve 131 First four-way valve operating device 37 for performing an operation of switching the refrigerant direction
1. The second four-way valve operation device 372 for switching the refrigerant direction of the second four-way valve 132, the indoor air temperature detectors 381 and 38N for detecting the indoor air temperature of the use part, and the air temperature blown out to the use part. The blower air temperature detectors 391 and 39N to be detected, and the indoor fan blowing capacity controllers 421 and 42 for controlling the blowing capacity of the indoor fans 211 and 21N.
N, indoor expansion valve opening degree controllers 431 and 43N for controlling the refrigerant circulation amounts of the indoor expansion valves 221 and 22N, for storing a predetermined temperature and humidity set value, or for setting a desired temperature and humidity by a user. Remote control air temperature / humidity setting devices 441, 44
N. Further, the operation value is read by the arithmetic operation device 45, and the operation amount of the operation device is calculated and controlled.

【0019】図1の空気調和機では、冷暖同時冷房主体
運転のとき、圧縮機91、92が起動することで、冷媒
は圧縮、過熱され、分岐管を介して一方は第1四方弁1
31を通じて高圧側ガス配管24、47Aに、他方は第
2四方弁132を通じて第2室外熱交換器102に流れ
る。冷房運転室内機を191、暖房運転室内機を19N
とした場合、高圧側ガス配管24、47Aに流れていっ
た高圧高温冷媒は暖房運転冷暖ユニットに流入し、電磁
弁17Nを通じて暖房運転室内機19Nに流入し、室内
空気により冷却、液化され、空気には熱量を与える。他
方、第2室外熱交換器102に流入した冷媒は室外空気
により冷却、液化される。次に液配管23、46A、冷
房運転冷暖同時ユニット161、液配管49B、さらに
冷房運転室内機191に流入し、膨張作用を行う室内膨
張弁221を通過することにより、減圧されて、冷房運
転室内熱交換器201に流入する。そこで、室内空気に
より加熱、蒸発されて、空気からは、熱量を奪う。蒸発
した冷媒は、ガス側配管50B、冷房運転冷暖切替ユニ
ット電磁弁181を通じて低圧側ガス配管48A、25
に流入し、また圧縮機に戻り、以下上記動作を繰返す。
演算運転装置45は、室内空気温度、湿度を制御するた
め、空気調和機の冷媒温度、圧力の制御を行う。
In the air conditioner shown in FIG. 1, in the simultaneous cooling / heating simultaneous cooling main operation, the refrigerant is compressed and superheated by the activation of the compressors 91 and 92, and one of the refrigerant is connected to the first four-way valve 1 via the branch pipe.
The gas flows into the high-pressure side gas pipes 24 and 47A through 31, and flows into the second outdoor heat exchanger 102 through the second four-way valve 132. Cooling operation indoor unit 191 and heating operation indoor unit 19N
In this case, the high-pressure high-temperature refrigerant flowing through the high-pressure side gas pipes 24 and 47A flows into the heating operation cooling / heating unit, flows into the heating operation indoor unit 19N through the solenoid valve 17N, is cooled and liquefied by room air, and is air-cooled. Gives calorie. On the other hand, the refrigerant flowing into the second outdoor heat exchanger 102 is cooled and liquefied by the outdoor air. Next, the liquid pipes 23 and 46A, the cooling operation cooling / heating simultaneous unit 161 and the liquid pipe 49B, further flow into the cooling operation indoor unit 191 and pass through the indoor expansion valve 221 which performs an expansion action. It flows into the heat exchanger 201. Then, it is heated and evaporated by the indoor air, and the heat is taken from the air. The evaporated refrigerant passes through the gas-side pipe 50B and the low-pressure-side gas pipes 48A, 48 through the cooling operation cooling / heating switching unit solenoid valve 181.
And returns to the compressor to repeat the above operation.
The arithmetic operation device 45 controls the refrigerant temperature and pressure of the air conditioner in order to control the indoor air temperature and humidity.

【0020】暖房運転室内機の暖房能力を確保するため
には、高圧高温状態である高圧側ガス配管24、47A
内の冷媒圧力、温度を十分高くする必要があり、高圧ガ
ス側配管24、47A内の冷媒圧力、温度は冷媒吐出圧
力により管理出来るので、冷媒吐出圧力をある値以上に
設定するとよい。
Heating operation In order to secure the heating capacity of the indoor unit, the high pressure side gas pipes 24 and 47A which are in a high pressure and high temperature state are required.
It is necessary to make the refrigerant pressure and temperature in the inside sufficiently high, and the refrigerant pressure and temperature in the high pressure gas side pipes 24 and 47A can be controlled by the refrigerant discharge pressure. Therefore, it is preferable to set the refrigerant discharge pressure to a certain value or more.

【0021】冷暖同時冷房主体運転では室外温度が低下
し、かつ室外ファン11の回転数が適切な値よりも高い
場合、他方の第2室外熱交換器102へ流入する冷媒が
過度に冷却、凝縮されるために冷媒吐出圧力が低下する
ので、第2室外膨張弁152を絞ることにより第2室外
熱交換器内の液冷媒量を多くし、第2室外熱交換器10
2の熱交換量を小さくすると、冷媒吐出圧力を高く保持
出来る。
In the simultaneous cooling / heating cooling main operation, when the outdoor temperature decreases and the rotation speed of the outdoor fan 11 is higher than an appropriate value, the refrigerant flowing into the other second outdoor heat exchanger 102 is excessively cooled and condensed. Therefore, the amount of liquid refrigerant in the second outdoor heat exchanger is increased by narrowing the second outdoor expansion valve 152, so that the second outdoor heat exchanger 10
By reducing the heat exchange amount of No. 2, the refrigerant discharge pressure can be kept high.

【0022】しかし、予め室外温度により室外ファン回
転数を決定する方法では室外ファン回転数を高めに設定
しなければならないので室外熱交換量が過剰となり、第
2室外膨張弁152を絞らなければならない。この場
合、第2室外膨張弁152の後流である液配管23、4
6A内の冷媒は、減圧されるため圧力が低い状態とな
り、低圧力状態の液冷媒が冷房運転室内機191に流れ
る。
However, in the method in which the outdoor fan speed is determined in advance based on the outdoor temperature, the outdoor fan speed must be set higher, so that the amount of outdoor heat exchange becomes excessive and the second outdoor expansion valve 152 must be throttled. . In this case, the liquid pipes 23, 4 downstream of the second outdoor expansion valve 152
The refrigerant in 6A is decompressed and thus has a low pressure, and the low-pressure liquid refrigerant flows to the cooling operation indoor unit 191.

【0023】図3の例の如く最も近い室内機571が冷
房運転室内機、中間に暖房運転室内機572、最も遠い
室内機573が冷房運転室内機である場合、暖房を行っ
た後の凝縮液冷媒が液配管58に合流するが、暖房運転
室内機572から流出した液冷媒は圧力が高く、液配管
58の液圧力が低い場合には、暖房運転室内機572に
用いられた液冷媒は、近い方の冷房運転室内機571に
向かう量が多くなり、遠い方の冷房運転室内機573に
流れる量が少なくなる。よって、遠い冷房運転室内機5
73の冷房能力が大幅に低下する。この低下を防止する
には、ホットガスバイパスを液タンクの直前に注入し、
液配管58の圧力を上昇させ、暖房を行った後の液冷媒
との差圧を減少させる手法があるが、冷房能力を充分補
正出来るものではない。
When the closest indoor unit 571 is a cooling operation indoor unit, the middle room is a heating operation indoor unit 572, and the farthest indoor unit 573 is a cooling operation indoor unit as shown in the example of FIG. Although the refrigerant joins the liquid pipe 58, the liquid refrigerant flowing out of the heating operation indoor unit 572 has a high pressure, and when the liquid pressure of the liquid pipe 58 is low, the liquid refrigerant used in the heating operation indoor unit 572 is: The amount going to the closer cooling operation indoor unit 571 increases, and the amount flowing to the farther cooling operation indoor unit 573 decreases. Therefore, the far cooling operation indoor unit 5
The cooling capacity of the air conditioner 73 is greatly reduced. To prevent this drop, inject the hot gas bypass just before the liquid tank,
There is a method of increasing the pressure of the liquid pipe 58 to reduce the pressure difference between the liquid refrigerant after heating and the liquid refrigerant, but it cannot sufficiently correct the cooling capacity.

【0024】そこで、本例では、暖房能力を得るために
冷媒吐出圧力は確保し、かつ図2での液配管23、46
Aの圧力を上昇させるために、室外ファン11の回転数
を冷媒吐出圧力検知器33の検知値を利用してフィード
バックすることにより、過剰な室外ファン回転数を防止
する。また、室外膨張弁開度152は室外ファン11の
凝縮能力がこれよりも下げられない場合のみ2次的に操
作することにより、冷媒吐出圧力を確保し、かつ液配管
23、46Aの冷媒圧力を確保して冷房運転室内機冷房
能力を確保する。つまり、冷房及び冷房主体運転時に吐
出圧力が所定の圧力値よりも低下した場合、室外ファン
11の回転数を下げて吐出圧力が所定の値になるように
制御する。
Therefore, in this embodiment, the refrigerant discharge pressure is ensured to obtain the heating capacity, and the liquid pipes 23, 46 in FIG.
In order to increase the pressure of A, the number of rotations of the outdoor fan 11 is fed back using the detection value of the refrigerant discharge pressure detector 33 to prevent an excessive number of rotations of the outdoor fan. The outdoor expansion valve opening 152 is operated only in a secondary manner when the condensing capacity of the outdoor fan 11 cannot be reduced below this level, thereby ensuring the refrigerant discharge pressure and increasing the refrigerant pressure of the liquid pipes 23 and 46A. Ensure the cooling operation indoor unit cooling capacity. That is, when the discharge pressure becomes lower than the predetermined pressure value during the cooling and the cooling main operation, the number of revolutions of the outdoor fan 11 is reduced to control the discharge pressure to the predetermined value.

【0025】より具体的には、室外ファン11の回転数
を連続的あるいは十分な細かさで変化出来るように室外
ファン送風能力操作器35を用い、室外ファンステップ
を全15ステップなど幾通りにも変化出来るようにす
る。そして図1に示す如く吐出圧力検知値が目標圧力よ
り例えば0.2MPa以上高い場合(2)には1ステッ
プ上昇させ(3)、0.2MPa低い場合(4)には回
転数を1ステップ低下させる(6)。これにより、冷媒
吐出圧力が±0.2MPaで管理出来るので暖房能力の
確保が出来る。
More specifically, an outdoor fan blowing capacity controller 35 is used so that the number of rotations of the outdoor fan 11 can be changed continuously or with sufficient fineness, and the number of outdoor fan steps is 15 or more. Make it change. As shown in FIG. 1, when the discharge pressure detection value is higher than the target pressure by, for example, 0.2 MPa or more (2), it is increased by one step (3), and when it is lower than 0.2 MPa (4), the rotation speed is reduced by one step. (6). Thereby, the refrigerant discharge pressure can be controlled at ± 0.2 MPa, so that the heating capacity can be ensured.

【0026】また、室外ファンは吐出圧力検知値により
ステップ的にフィードバック制御を行うので不用意に高
いステップとならないので、室外膨張弁152を絞る必
要はなくなり、液配管Aの冷媒圧力も確保することがで
き、冷房運転室内機の冷房能力も確保できる。ただし、
室外温度が−5℃であるなど外気が低温となる条件で
は、室外ファン11を下限ステップ(最低回転数)とし
ても吐出圧力が確保出来ないので、室外ファン11が下
限ステップとなった場合(5)のみ第2室外膨張弁15
2を絞るようにする(7)。
Since the outdoor fan performs feedback control in a stepwise manner based on the detected discharge pressure, the step does not become a carelessly high step. Therefore, it is not necessary to throttle the outdoor expansion valve 152, and the refrigerant pressure in the liquid pipe A is also ensured. The cooling capacity of the cooling operation indoor unit can be secured. However,
Under conditions where the outside air is low, such as when the outdoor temperature is −5 ° C., the discharge pressure cannot be secured even if the outdoor fan 11 is set to the lower limit step (minimum rotation speed). ) Only the second outdoor expansion valve 15
2 is squeezed (7).

【0027】以上、室外温度が高い条件では室外ファン
11による制御を行い、室外ファン11による制御だけ
では吐出圧力が保持しきれない条件では、室外膨張弁1
51、152による制御を行う(室外ファン−室外膨張
弁リンク制御)を行うことにより、冷暖同時冷房主体
時、様々な室内機施工条件、空気温度条件に対応して冷
房能力、暖房能力を確保することが出来る。
As described above, when the outdoor temperature is high, the control by the outdoor fan 11 is performed, and when the discharge pressure cannot be sufficiently maintained only by the control by the outdoor fan 11, the outdoor expansion valve 1 is controlled.
By performing the control by 51 and 152 (outdoor fan-outdoor expansion valve link control), when simultaneous cooling and heating are mainly performed, cooling capacity and heating capacity are secured in accordance with various indoor unit construction conditions and air temperature conditions. I can do it.

【0028】上記冷媒吐出圧力制御による液配管圧力の
保持と共に、さらに冷房能力を補正する制御を行う。つ
まり、末端接続室内機が極端に遠い施工にしている場
合、さらに冷房能力を補正するため、冷暖同時冷房主体
運転時、暖房能力を少し犠牲にして、冷房能力を補正す
る。例えば、暖房運転室内機から流出した冷媒の圧力が
高い場合、末端接続冷房運転室内機に冷媒が流れ難くな
るので、暖房運転室内機を流出した冷媒の圧力を低下さ
せる。
In addition to maintaining the liquid pipe pressure by the refrigerant discharge pressure control, control for further correcting the cooling capacity is performed. In other words, when the terminal connection indoor unit is constructed to be extremely distant, the cooling capacity is corrected at the time of simultaneous cooling and heating main cooling operation while slightly sacrificing the heating capacity in order to further correct the cooling capacity. For example, when the pressure of the refrigerant flowing out of the heating operation indoor unit is high, it is difficult for the refrigerant to flow into the terminal connection cooling operation indoor unit, so that the pressure of the refrigerant flowing out of the heating operation indoor unit is reduced.

【0029】冷房運転室内機の冷房能力は、吸込み温度
(室内温度)−吹出し温度の温度差Δt(C)により大まか
な能力を計測する。冷房運転室内機は、図4に示す如
く、設定室内温度−室内温度の差ΔT(C)により、冷房
能力目標値Δts(C)を決定している。また暖房運転室内
機は室内温度−設定室内温度との差ΔT(H)により、暖房
能力目標値Δts(H)を決定している。そこで、Δt(C)
低下している室内機があるときは、暖房運転室内機の暖
房能力がある許容量確保されていることを確認する。
冷房能力が低下し、かつ暖房能力が許容量出力されてい
る場合は、暖房能力の設定吹出し−吸込み温度差の目標
値Δts(H)を変更する。Δts(H)の上限値Δtu(H)を冷房
能力の不足分e(C)=Δts(C)−Δt(C)により設定するこ
とにより、暖房能力設定値Δts(H)が低下するように再
設定される。冷房能力が不足している冷房運転室内機が
多数あるときは、最も冷房能力が不足している室内機の
e(C)を用いる。
The cooling capacity of the indoor unit is roughly measured by a temperature difference Δt (C) between the suction temperature (indoor temperature) and the blowout temperature. As shown in FIG. 4, the cooling operation indoor unit determines a cooling capacity target value Δts (C) based on a difference ΔT (C) between the set indoor temperature and the indoor temperature. The heating operation indoor unit determines the heating capacity target value Δts (H) based on the difference ΔT (H) between the indoor temperature and the set indoor temperature. Therefore, when there is an indoor unit having a decreased Δt (C), it is confirmed that the heating capacity of the heating operation indoor unit has a certain allowable amount.
If the cooling capacity is reduced and the heating capacity is output in an allowable amount, the target value Δts (H) of the set blowing-suction temperature difference of the heating capacity is changed. By setting the .DELTA.ts upper limit Δtu (H) the shortfall e of cooling capacity of the (H) (C) = Δts (C) -Δt (C), as the heating capacity setpoint .DELTA.ts (H) is reduced It is reset. If there are many cooling operation indoor units with insufficient cooling capacity,
Use e (C) .

【0030】暖房目標能力を低下させるので、暖房運転
室内膨張弁は能力が十分出力されていることとなり、暖
房運転室内機膨張弁下流の液圧力が低下し、液配管から
来る液冷媒との差圧が少なくなり、最も近い冷房運転室
内機のみだけでなく、最も遠い冷凍運転室内機へも冷媒
が流れる。そして、最も遠い冷房運転室内機の冷房能力
も増大する。
Since the heating target capacity is reduced, the expansion valve in the heating operation room has a sufficient output, and the liquid pressure downstream of the expansion valve in the heating operation indoor unit decreases, and the difference between the expansion valve and the liquid refrigerant coming from the liquid pipe is reduced. The pressure decreases, and the refrigerant flows not only to the nearest cooling operation indoor unit but also to the furthest refrigeration operation indoor unit. Then, the cooling capacity of the farthest cooling operation indoor unit also increases.

【0031】制御フローに表したのが図7であり、最初
に冷房運転室内機の能力不足分e(C)=Δts(C)−Δt(C)
を計測する(64)。次に著しく能力低下している冷房
運転機があるかどうか、各冷房運転室内機のe(C)につい
て、e(C)≧Eであるか調べる(65)。Eは予め決められ
た定数である。低下している冷房運転室内機があれば、
それは冷房運転室内機に冷媒が十分供給されていないの
で、能力補正をする必要がある。そこで暖房運転室内機
の暖房吹出し温度がある程度高いかを確認する(6
6)。暖房運転室内機能力が出力されているかを確認す
れば良いので、吹出し温度差だけでなく、暖房運転室内
機吹出し温度−吸込み温度差Δt(H)がある定数より大き
いかどうかを判断してもよい。 暖房運転室内機の能力
が充分出力されていれば、冷房能力補正を行う。仮に暖
房運転室内機の能力が出力されていない場合は、冷房能
力補正を行わずに、先の暖房能力目標値のまま制御を続
ける。冷房能力補正が可能と判断される場合は、冷房能
力の最も不足している冷房運転室内機のe(C)を選び、そ
の値により各暖房運転室内機の目標上限値Δtu(H)を計
算する(62、67)。計算された目標上限値より、各
暖房運転室内機の目標値Δt(H)を計算し直し(63、6
8)、その値を用いて各暖房運転室内機は室内膨張弁制
御を行う(69)。この一連の動作により、暖房運転室
内機に流入している冷媒が冷房能力不足である冷房運転
室内機に供給され、冷房運転室内機の能力不足が補正さ
れる。
[0031] The shown in the control flow is 7, the first cooling operation of the indoor unit capacity shortage e (C) = Δts (C ) -Δt (C)
Is measured (64). Next, it is checked whether or not there is a cooling operation unit whose capacity is significantly reduced, and whether or not e (C) ≧ E is satisfied for e (C) of each cooling operation indoor unit (65). E is a predetermined constant. If there is a cooling operation indoor unit that is decreasing,
Since the refrigerant is not sufficiently supplied to the cooling operation indoor unit, the capacity needs to be corrected. Therefore, it is confirmed whether the heating blow-out temperature of the heating operation indoor unit is high to some extent (6).
6). Since it is sufficient to check whether the functional capacity of the heating operation room is output, not only the difference between the blowout temperature but also the difference between the temperature difference between the blowout temperature and the suction temperature of the heating operation indoor unit Δt (H) is determined whether it is larger than a certain constant. Good. If the capacity of the heating operation indoor unit is sufficiently output, the cooling capacity correction is performed. If the capacity of the heating operation indoor unit is not output, the control is continued with the previous heating capacity target value without performing the cooling capacity correction. If it is determined that the cooling capacity correction is possible, select e (C) of the cooling operation indoor unit with the lowest cooling capacity and calculate the target upper limit value Δtu (H) of each heating operation indoor unit based on that value. (62, 67). From the calculated target upper limit, the target value Δt (H) of each heating operation indoor unit is calculated again (63, 6).
8), each heating operation indoor unit controls the indoor expansion valve using the value (69). Through this series of operations, the refrigerant flowing into the heating operation indoor unit is supplied to the cooling operation indoor unit having insufficient cooling capacity, and the insufficient capacity of the cooling operation indoor unit is corrected.

【0032】冷暖同時暖房主体運転時、同じく末端接続
冷房運転室内機の冷房能力が低下する。そのため、暖房
運転室内機に流入する冷媒を調整し、冷房能力を補正す
る。冷暖同時暖房主体運転とは、冷房主体運転と異な
り、室外熱交換器が蒸発器となる。そのため、熱バラン
ス的にも冷房能力は低下する。従って液冷媒が供給され
にくい末端接続室内機に対しては、冷房能力の低下が顕
著となる。
During the simultaneous cooling / heating simultaneous heating operation, the cooling capacity of the terminal connection cooling operation indoor unit similarly decreases. Therefore, the refrigerant flowing into the heating operation indoor unit is adjusted to correct the cooling capacity. The cooling-heating simultaneous heating main operation is different from the cooling main operation, in which the outdoor heat exchanger is an evaporator. For this reason, the cooling capacity is reduced in terms of heat balance. Therefore, for the terminal connection indoor unit to which the liquid refrigerant is hardly supplied, the cooling capacity is significantly reduced.

【0033】空気調和機における冷暖同時暖房主体運転
においては、圧縮機91、92が起動することで、封入
された冷媒が、圧縮、過熱され、分岐管を介して一方は
第1四方弁131を通じて高圧側ガス配管24、47A
に、他方は第2四方弁132を通じて第2室外熱交換器
102に流れてゆく。但し第2室外膨張弁152の開度
はほぼ全閉とするので、冷媒流量は少ない。冷房運転室
内機を191、暖房運転室内機を19Nとすると、高圧
側ガス配管24、47Aに流れていった高圧高温冷媒は
暖房運転冷暖ユニット16Nに流入し、さらに電磁弁1
7Nを通じて暖房運転室内機19Nに流入し、室内空気
により冷却、液化され、空気には熱量を与える。次に、
暖房を終えた液冷媒は、液配管49B、暖房運転冷暖切
替ユニット16N、液配管46Aを通じて、一方は冷房
運転冷暖切替ユニット161、液配管49B、冷房運転
室内機191に流入する。そこで膨張作用を行う室内膨
張弁221を通過することにより、減圧されて、冷房運
転室内熱交換器201に流入する。冷媒は室内空気によ
り加熱、蒸発されて、空気からは熱量を奪う。蒸発した
冷媒は、ガス側配管50B、冷房運転冷暖切替ユニット
電磁弁181を通じて低圧側ガス配管48A、25に流
入し、また圧縮機に戻る。暖房を終えた液冷媒の他方
は、第1室外熱交換器101に向かい、第1室外膨張弁
151により減圧されて第1室外熱交換器101で蒸発
する。蒸発した冷媒はまた圧縮機に戻り、以下上記動作
を繰返す。
In the simultaneous cooling / heating simultaneous heating main operation of the air conditioner, when the compressors 91 and 92 are started, the enclosed refrigerant is compressed and superheated, and one of the refrigerants is passed through the first four-way valve 131 through the branch pipe. High-pressure gas pipe 24, 47A
Meanwhile, the other flows to the second outdoor heat exchanger 102 through the second four-way valve 132. However, since the opening degree of the second outdoor expansion valve 152 is almost completely closed, the flow rate of the refrigerant is small. Assuming that the cooling operation indoor unit is 191 and the heating operation indoor unit is 19N, the high-pressure high-temperature refrigerant flowing through the high-pressure side gas pipes 24 and 47A flows into the heating operation cooling / heating unit 16N, and further the electromagnetic valve 1
The air flows into the heating operation indoor unit 19N through 7N, is cooled and liquefied by the indoor air, and gives heat to the air. next,
The liquid refrigerant that has finished heating flows through the liquid pipe 49B, the heating / cooling / heating switching unit 16N, and the liquid pipe 46A, and one of them flows into the cooling / cooling / heating switching unit 161, the liquid pipe 49B, and the cooling operation indoor unit 191. Then, by passing through the indoor expansion valve 221 which performs an expansion action, the pressure is reduced and flows into the cooling operation indoor heat exchanger 201. The refrigerant is heated and evaporated by the indoor air, and takes heat from the air. The evaporated refrigerant flows into the low-pressure side gas pipes 48A and 25 through the gas side pipe 50B and the cooling operation cooling / heating switching unit solenoid valve 181, and returns to the compressor. The other of the liquid refrigerant after the heating is directed to the first outdoor heat exchanger 101, is decompressed by the first outdoor expansion valve 151, and evaporates in the first outdoor heat exchanger 101. The evaporated refrigerant returns to the compressor again, and repeats the above operation.

【0034】上記の冷暖同暖房主体運転は、暖房を終え
た液冷媒が一方は冷房運転室内機191に、他方は第1
室外熱交換器101に流れる。冷房運転室内機が末端接
続室内機であった場合には、相対的に第1室外熱交換器
101に多く流れるため、冷房能力の低下が顕著であ
る。そこで、暖房運転室内機19Nに流入する冷媒量を
多くし、冷房運転室内機191に流れる冷媒量を多くす
る。具体的には、熱バランス的に第1室外熱交換器10
1と冷房運転室内熱交換器201が蒸発器、暖房運転室
内熱交換器19Nが凝縮器となるので、第1室外熱交換
器101の容量と冷房運転室内熱交換器201の容量の
比を用いて暖房運転室内機19Nの最低膨張弁開度を高
めに制限し、冷房運転室内機191へ流入する冷媒量を
確保する。冷房運転室内熱交換器201の容量比が大き
い場合、冷房能力を出力するためには多くの冷媒が必要
となる。最低膨張弁開度を第1室外熱交換器と冷房運転
室内熱交換器の容量比によって段階的、あるいは連続的
に変化させる。第1室外熱交換器と冷房運転室内機との
容量比をRとした場合、例えば暖房運転室内機の室内膨
張弁の最低開度EVIminを EVImin=1000+1000R とすることで、特に末端接続室内機への液冷媒供給量を
確保し、冷房能力の低下低減を図る。
In the above-described cooling / heating / heating-main operation, one of the liquid refrigerants having finished heating is supplied to the cooling operation indoor unit 191 and the other is supplied to the first cooling refrigerant indoor unit.
It flows to the outdoor heat exchanger 101. When the cooling operation indoor unit is the terminal connection indoor unit, a large amount of the air flows into the first outdoor heat exchanger 101, so that the cooling capacity is significantly reduced. Therefore, the amount of refrigerant flowing into the heating operation indoor unit 19N is increased, and the amount of refrigerant flowing into the cooling operation indoor unit 191 is increased. Specifically, the first outdoor heat exchanger 10 is heat-balanced.
1 and the cooling operation indoor heat exchanger 201 are evaporators, and the heating operation indoor heat exchanger 19N is a condenser. Therefore, the ratio of the capacity of the first outdoor heat exchanger 101 to the capacity of the cooling operation indoor heat exchanger 201 is used. Therefore, the opening degree of the minimum expansion valve of the heating operation indoor unit 19N is limited to a high degree, and the amount of refrigerant flowing into the cooling operation indoor unit 191 is secured. When the capacity ratio of the cooling operation indoor heat exchanger 201 is large, a large amount of refrigerant is required to output the cooling capacity. The minimum expansion valve opening is changed stepwise or continuously according to the capacity ratio between the first outdoor heat exchanger and the cooling operation indoor heat exchanger. When the capacity ratio between the first outdoor heat exchanger and the cooling operation indoor unit is R, for example, by setting the minimum opening EVImin of the indoor expansion valve of the heating operation indoor unit to EVImin = 1000 + 1000R, particularly to the terminal connection indoor unit To ensure a sufficient supply of liquid refrigerant to reduce the cooling capacity.

【0035】冷暖同時冷房主体運転時、室外ファン11
と室外膨張弁152によるフィードバック制御を行った
ので、暖房運転室内機の後流の冷媒液圧力と液配管の冷
媒液圧力の圧力差を減少させ、不足しがちな最も遠い冷
房運転室内機の冷房能力の確保ができ、全体としてバラ
ンスのとれた空調システムとすることができる。
During simultaneous cooling / heating simultaneous cooling main operation, the outdoor fan 11
And the outdoor expansion valve 152 perform feedback control, thereby reducing the pressure difference between the refrigerant liquid pressure downstream of the heating operation indoor unit and the refrigerant liquid pressure in the liquid pipe, and cooling the furthest cooling operation indoor unit, which tends to be insufficient. The capacity can be secured, and the air conditioning system can be balanced as a whole.

【0036】また、冷暖同時冷房主体運転時、冷房能力
の出力状態に応じて暖房能力の目標値を変化させること
により、同じく暖房運転室内機の後流の冷媒液圧力と液
配管の冷媒液圧力の圧力差を減少させ、不足しがちな最
も遠い冷房運転室内機の冷房能力を補正する。冷暖同時
暖房主体運転時、蒸発器である第1室外熱交換器と冷房
運転室内熱交換器の容量比により、暖房運転室内機の室
内機膨張弁の最低開度を決定することにより、冷房運転
室内機に流れる冷媒、冷媒能力の確保ができる。
In the simultaneous cooling / heating main operation, the target value of the heating capacity is changed in accordance with the output state of the cooling capacity, so that the refrigerant liquid pressure downstream of the indoor unit of the heating operation and the refrigerant liquid pressure of the liquid pipe are also changed. And corrects the cooling capacity of the farthest cooling operation indoor unit, which tends to be insufficient. During simultaneous heating and cooling main operation, cooling operation is performed by determining the minimum opening degree of the indoor unit expansion valve of the heating operation indoor unit based on the capacity ratio of the first outdoor heat exchanger, which is an evaporator, and the cooling operation indoor heat exchanger. Refrigerant flowing to the indoor unit and refrigerant capacity can be secured.

【0037】[0037]

【発明の効果】本発明によれば、冷暖同時運転を行う空
気調和機において、能力不足、能力むらを解消して、特
に、配管接続などの施工状態によっても能力が不足せ
ず、安定性が高く、設計自由度の大きい、快適性な空気
調和機を得ることができる。
According to the present invention, in an air conditioner that performs simultaneous cooling and heating operations, it is possible to eliminate insufficient capacity and uneven capacity. It is possible to obtain a comfortable air conditioner with high design flexibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施の形態による圧力を制御を示すフロー
チャート。
FIG. 1 is a flowchart illustrating pressure control according to one embodiment.

【図2】 一実施の形態による空気調和機の構成を示す
ブロック図。
FIG. 2 is a block diagram showing a configuration of an air conditioner according to one embodiment.

【図3】 一実施の形態における冷暖同時運転で、最も
遠い冷房運転室内機の手前に暖房運転室内機がある場合
を示すブロック図。
FIG. 3 is a block diagram showing a case where a heating operation indoor unit is located in front of a farthest cooling operation indoor unit in simultaneous cooling and heating operation according to an embodiment.

【図4】 一実施の形態における冷房運転室内機におい
て、室内温度と吹出し温度の差Δt(C)と冷房能力目標
値Δts(C)との関係を示すグラフ。
FIG. 4 is a graph showing a relationship between a difference Δt (C) between an indoor temperature and an outlet temperature and a cooling capacity target value Δts (C) in the cooling operation indoor unit according to the embodiment.

【図5】 一実施の形態における冷暖同時冷房主体運転
において、冷房運転室内機の能力不足分e(C) と暖房運
転室内機の暖房能力目標値Δts(H)の上限値Δtu(H)との
関係を示すグラフ。
FIG. 5 is a diagram illustrating an example of the capacity shortage e (C) of the cooling operation indoor unit and the upper limit value Δtu (H) of the heating capacity target value Δts (H) of the heating operation indoor unit in the simultaneous cooling / heating simultaneous cooling main operation according to the embodiment. The graph which shows the relationship.

【図6】 図5の結果よりさらに上限値Δtu(H)から暖
房運転室内機の新たな能力目標値Δts(H)との関係を示
すグラフ。
6 is a graph showing a relationship between the upper limit value Δtu (H) and a new target capacity value Δts (H) of the indoor unit for heating operation based on the result of FIG.

【図7】 一実施の形態における冷暖同時冷房主体運転
において、冷房能力の補正を行う制御を示すフローチャ
ート。
FIG. 7 is a flowchart showing control for correcting cooling capacity in simultaneous cooling / heating simultaneous cooling main operation in one embodiment.

【符号の説明】[Explanation of symbols]

8…室外機、91…圧縮機、92…圧縮機、101…第
1室外熱交換器、102…第2室外熱交換器、11…室
外ファン、151…第1室外膨張弁、152…第2室外
膨張弁、161、16N…冷暖切替ユニット、191、
19N…室内機、201、20N…室内熱交換器、21
1、21N…室内ファン、221、22N …室内膨
張弁、23…液管、24…高圧側ガス配管A、25…低
圧側ガス配管A、26、27、28…分岐管、32…吸
入圧力検知器、33…吐出圧力検知器。
8 ... outdoor unit, 91 ... compressor, 92 ... compressor, 101 ... first outdoor heat exchanger, 102 ... second outdoor heat exchanger, 11 ... outdoor fan, 151 ... first outdoor expansion valve, 152 ... second Outdoor expansion valve, 161, 16N: cooling / heating switching unit, 191,
19N: indoor unit, 201, 20N: indoor heat exchanger, 21
1, 21N: indoor fan, 221, 22N: indoor expansion valve, 23: liquid pipe, 24: high pressure side gas pipe A, 25 ... low pressure side gas pipe A, 26, 27, 28 ... branch pipe, 32 ... suction pressure detection , 33 ... Discharge pressure detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑 良樹 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 大石 憲一 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 (72)発明者 佐野 信浩 静岡県清水市村松390番地 株式会社日立 空調システム清水生産本部内 Fターム(参考) 3L060 AA05 CC02 CC16 DD02 EE06 EE09 3L092 GA02 GA09 HA01 JA13 KA02 KA13 LA05 LA08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiki Hata 390 Muramatsu, Shimizu-shi, Shizuoka Pref.Hitachi Air Conditioning Systems Shimizu Co., Ltd. (72) Inventor Kenichi Oishi 390 Muramatsu, Shimizu-shi Shizuoka Pref. Within the Production Division (72) Inventor Nobuhiro Sano 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture F-term in Hitachi Air-Conditioning Systems Shimizu Production Division (Reference) 3L060 AA05 CC02 CC16 DD02 EE06 EE09 3L092 GA02 GA09 HA01 JA13 KA02 KA13 LA05 LA08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】室内熱交換器及び室内膨張弁を有した複数
の室内機と、圧縮機の吐出側で分岐した一方に第1室外
熱交換器及び第1室外膨張弁が、他方に第2室外熱交換
器及び第2室外膨張弁が接続され、前記第1室外熱交換
器及び第2室外熱交換器に送風する回転数可変の室外フ
ァンを有した室外機と、を備えた空気調和機において、
前記圧縮機の吐出圧力を検出する吐出圧力検知器を備
え、 冷房及び冷房主体運転時に前記吐出圧力が所定の圧力値
よりも低下した場合、前記室外ファンの回転数を下げる
ことを特徴とする空気調和機。
1. A plurality of indoor units having an indoor heat exchanger and an indoor expansion valve, a first outdoor heat exchanger and a first outdoor expansion valve on one side branched on the discharge side of the compressor, and a second outdoor heat exchanger on the other side. An outdoor unit having an outdoor fan connected to an outdoor heat exchanger and a second outdoor expansion valve and having a variable-speed outdoor fan for blowing air to the first outdoor heat exchanger and the second outdoor heat exchanger. At
Air, comprising: a discharge pressure detector that detects a discharge pressure of the compressor; wherein, when the discharge pressure falls below a predetermined pressure value during cooling and cooling main operation, the number of revolutions of the outdoor fan is reduced. Harmony machine.
【請求項2】請求項1に記載のものにおいて、前記室外
ファンは予め最低回転数が決められ、前記吐出圧力が所
定の圧力値よりも低下して前記室外ファンが前記最低回
転数となった場合は、凝縮器となる前記第1あるいは第
2室外熱交換器に接続された前記第1あるいは第2室外
膨張弁の開度を小さくして前記吐出圧力が所定の値にな
るように制御することを特徴とする空気調和機。
2. The outdoor fan according to claim 1, wherein the outdoor fan has a predetermined minimum rotation speed, and the discharge pressure is lower than a predetermined pressure value, so that the outdoor fan has reached the minimum rotation speed. In this case, the opening degree of the first or second outdoor expansion valve connected to the first or second outdoor heat exchanger serving as a condenser is controlled to be small so that the discharge pressure becomes a predetermined value. An air conditioner characterized by that:
【請求項3】請求項1に記載のものにおいて、前記室外
ファンは予め複数ステップの回転数が決められたことを
特徴とする空気調和機。
3. The air conditioner according to claim 1, wherein the number of rotations of the outdoor fan is determined in advance in a plurality of steps.
【請求項4】請求項1に記載のものにおいて、冷房主体
運転時に冷房運転をしている前記室内機の冷房能力が不
足していると判断されたときは、暖房運転をしている室
内機の暖房能力の目標値を下げることを特徴とする空気
調和機。
4. The indoor unit performing a heating operation when it is determined that the cooling capacity of the indoor unit performing the cooling operation during cooling main operation is insufficient. An air conditioner characterized by lowering the target value of the heating capacity of the air conditioner.
【請求項5】請求項1に記載のものにおいて、冷房主体
運転時に冷房運転をしている前記室内機の冷房能力を室
内温度と吹出し温度の差により求め、設定室内温度と室
内温度との差により求まる冷房能力目標値により、暖房
運転をしている室内機の暖房能力の目標値を設定するこ
とを特徴とする空気調和機。
5. The air conditioner according to claim 1, wherein the cooling capacity of the indoor unit performing the cooling operation during the cooling main operation is obtained from the difference between the indoor temperature and the blowing temperature, and the difference between the set indoor temperature and the indoor temperature is obtained. An air conditioner characterized in that a target value of the heating capacity of an indoor unit performing a heating operation is set based on a target value of a cooling capacity obtained by the following.
【請求項6】請求項1に記載のものにおいて、暖房主体
運転時に蒸発器となる前記第1あるいは第2室外熱交換
器と、冷房運転をしている前記室内機の前記室内熱交換
器と、の容量比により暖房運転をしている前記室内機の
前記室内膨張弁の最低開度を決定することを特徴とする
空気調和機。
6. The apparatus according to claim 1, wherein the first or second outdoor heat exchanger serving as an evaporator during a heating main operation, and the indoor heat exchanger of the indoor unit performing a cooling operation. An air conditioner characterized in that a minimum opening degree of the indoor expansion valve of the indoor unit performing the heating operation is determined according to a capacity ratio of the air conditioner.
【請求項7】室内熱交換器及び室内膨張弁を有した複数
の室内機と、圧縮機の吐出側で分岐した一方に第1室外
熱交換器及び第1室外膨張弁が、他方に第2室外熱交換
器及び第2室外膨張弁が接続され室外機と、を備えた空
気調和機において、 暖房主体運転時に蒸発器となる前記第1あるいは第2室
外熱交換器と、冷房運転をしている前記室内機の前記室
内熱交換器と、の容量比により暖房運転をしている前記
室内機の前記室内膨張弁の最低開度を決定することを特
徴とする空気調和機。
7. A plurality of indoor units each having an indoor heat exchanger and an indoor expansion valve, a first outdoor heat exchanger and a first outdoor expansion valve on one side branched off on the discharge side of the compressor, and a second outdoor unit on the other side. An air conditioner comprising an outdoor unit to which an outdoor heat exchanger and a second outdoor expansion valve are connected, wherein the air conditioner performs a cooling operation with the first or second outdoor heat exchanger serving as an evaporator during a heating main operation. An air conditioner, wherein a minimum opening of the indoor expansion valve of the indoor unit that is performing a heating operation is determined based on a capacity ratio between the indoor heat exchanger of the indoor unit and the indoor heat exchanger.
JP2000326997A 2000-10-20 2000-10-20 Air conditioner Expired - Fee Related JP3627101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000326997A JP3627101B2 (en) 2000-10-20 2000-10-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000326997A JP3627101B2 (en) 2000-10-20 2000-10-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002130861A true JP2002130861A (en) 2002-05-09
JP3627101B2 JP3627101B2 (en) 2005-03-09

Family

ID=18804101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000326997A Expired - Fee Related JP3627101B2 (en) 2000-10-20 2000-10-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP3627101B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968284B (en) * 2005-12-09 2016-03-02 艾默生环境优化技术有限公司 The control system of parallel condensing unit and method
WO2017183308A1 (en) * 2016-04-19 2017-10-26 日立ジョンソンコントロールズ空調株式会社 Air conditioner
KR102266359B1 (en) * 2020-01-16 2021-06-17 엘지전자 주식회사 Control Method of the Air Conditioner System for Simultaneous Cooling and Heating and Air Conditioner System using the same
JPWO2020202424A1 (en) * 2019-04-01 2021-10-14 三菱電機株式会社 Air conditioner
CN115183398A (en) * 2022-07-29 2022-10-14 青岛海尔空调电子有限公司 Air conditioner control method, device, equipment and medium
JP7533557B2 (en) 2022-11-25 2024-08-14 株式会社富士通ゼネラル Air Conditioning Equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877986B1 (en) * 2011-10-27 2018-07-12 엘지전자 주식회사 Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968284B (en) * 2005-12-09 2016-03-02 艾默生环境优化技术有限公司 The control system of parallel condensing unit and method
WO2017183308A1 (en) * 2016-04-19 2017-10-26 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JP2017194202A (en) * 2016-04-19 2017-10-26 日立ジョンソンコントロールズ空調株式会社 Air conditioner
CN109073264A (en) * 2016-04-19 2018-12-21 日立江森自控空调有限公司 Conditioner
CN109073264B (en) * 2016-04-19 2021-09-21 日立江森自控空调有限公司 Air conditioning apparatus
JPWO2020202424A1 (en) * 2019-04-01 2021-10-14 三菱電機株式会社 Air conditioner
KR102266359B1 (en) * 2020-01-16 2021-06-17 엘지전자 주식회사 Control Method of the Air Conditioner System for Simultaneous Cooling and Heating and Air Conditioner System using the same
CN115183398A (en) * 2022-07-29 2022-10-14 青岛海尔空调电子有限公司 Air conditioner control method, device, equipment and medium
CN115183398B (en) * 2022-07-29 2023-10-20 青岛海尔空调电子有限公司 Air conditioner control method, device, equipment and medium
JP7533557B2 (en) 2022-11-25 2024-08-14 株式会社富士通ゼネラル Air Conditioning Equipment

Also Published As

Publication number Publication date
JP3627101B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP4134069B2 (en) Multi air conditioner system and valve opening control method of multi air conditioner system
KR101507454B1 (en) Heat pump and method for controlling the same
CN106839324B (en) Air conditioner and constant-temperature dehumidification control method thereof
US8215122B2 (en) Air conditioner and method of controlling the same
US20040134206A1 (en) Apparatus and method for controlling operation of air conditioner
JP2008064439A (en) Air conditioner
JP2001280669A (en) Refrigerating cycle device
KR101336720B1 (en) Air conditioning system
EP3287715B1 (en) Refrigeration cycle apparatus
CN107062470B (en) Air conditioner and constant-temperature dehumidification control method thereof
JP2002130861A (en) Air conditioner
JP2005016782A (en) Method for controlling expansion valve for multi-room type air conditioner
JP2006234295A (en) Multiple air conditioner
KR102662870B1 (en) Air conditioner and control method thereof
JP3668750B2 (en) Air conditioner
JP2010065977A (en) Air conditioning system
JP4104218B2 (en) Air conditioner
KR20060012837A (en) A multi air conditioner and a driving method of it
JP4179783B2 (en) Air conditioner
JPH08226721A (en) Operation controller for air conditioning equipment for multiple room
JP3558788B2 (en) Air conditioner and control method thereof
KR101450545B1 (en) Air conditioning system
KR100639488B1 (en) Air conditional and overload controlling method the same
JP7571523B2 (en) Heat pump cycle equipment
JP3434094B2 (en) High pressure protection device and condensing pressure control device in refrigeration system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R151 Written notification of patent or utility model registration

Ref document number: 3627101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees