JP2012207841A - Indoor unit and air conditioning device - Google Patents

Indoor unit and air conditioning device Download PDF

Info

Publication number
JP2012207841A
JP2012207841A JP2011073268A JP2011073268A JP2012207841A JP 2012207841 A JP2012207841 A JP 2012207841A JP 2011073268 A JP2011073268 A JP 2011073268A JP 2011073268 A JP2011073268 A JP 2011073268A JP 2012207841 A JP2012207841 A JP 2012207841A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
heat exchanger
bypass
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011073268A
Other languages
Japanese (ja)
Other versions
JP5765990B2 (en
Inventor
Hiromitsu Kikuchi
宏満 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011073268A priority Critical patent/JP5765990B2/en
Publication of JP2012207841A publication Critical patent/JP2012207841A/en
Application granted granted Critical
Publication of JP5765990B2 publication Critical patent/JP5765990B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an indoor unit or the like that prevents the excess cooling capacity when a constant temperature-and-humidity control, e.g., is performed.SOLUTION: The unit includes: an indoor heat exchanger 8 that provides heat exchange between a refrigerant and air; an electronic expansion valve 7 that decompresses the refrigerant flowing in the indoor heat exchanger 8 and regulates a flow rate of the refrigerant; a bypass pipe 12 connected in parallel to the indoor heat exchanger 8 and electronic expansion valve 7 and for flowing the surplus refrigerant to an air-conditioning load; and a bypass electronic expansion valve 11 for regulating a flow rate of the refrigerant flown to the bypass pipe 12.

Description

本発明は、空気調和装置の室内機等に関するものである。特に油回収運転において能力過多とならないようにするためのものである。   The present invention relates to an indoor unit of an air conditioner. This is particularly to prevent excessive capacity in the oil recovery operation.

例えば、冷凍サイクル(ヒートポンプサイクル)を利用した空気調和装置では、基本的に、圧縮機、室外側熱交換器等を有する室外機(熱源機)と流量制御手段(膨張弁等)、室内側熱交換器等を有する室内機(負荷側ユニット)とを冷媒配管により接続し、冷媒を循環させる冷媒回路を構成している。そして、室内機側熱交換器において、冷媒が蒸発、凝縮する際に、熱交換対象となる空調対象空間の空気から吸熱、放熱することを利用し、冷媒回路における冷媒に係る圧力、温度等を変化させながら空気調和を行っている。   For example, in an air conditioner using a refrigeration cycle (heat pump cycle), basically, an outdoor unit (heat source unit) having a compressor, an outdoor heat exchanger, etc., a flow rate control means (expansion valve, etc.), indoor heat An indoor unit (load side unit) having an exchanger or the like is connected by a refrigerant pipe to constitute a refrigerant circuit for circulating the refrigerant. Then, in the indoor unit side heat exchanger, when the refrigerant evaporates and condenses, the heat, heat is released from the air in the air-conditioning target space to be heat exchanged, and the pressure, temperature, etc. related to the refrigerant in the refrigerant circuit are changed. Air conditioning is performed while changing.

特開2006−170541号公報JP 2006-170541 A

例えば、上記のような冷凍サイクル(ヒートポンプサイクル)を利用した空気調和装置では、圧縮機の運転周波数を低くして冷媒回路を循環する冷媒流量を少なくして運転する小容量運転を長時間継続する場合がある。小容量運転を長時間行うと、例えば延長配管部分、室内側熱交換器等に油(冷凍機油、潤滑油)が滞留するため、油を圧縮機へ戻すために油回収運転を行う。油回収運転の際には圧縮機の運転周波数を増速させる。   For example, in an air conditioner using a refrigeration cycle (heat pump cycle) as described above, a small-capacity operation is continued for a long time, with the operation frequency of the compressor being lowered and the refrigerant flow circulating in the refrigerant circuit being reduced. There is a case. When the small capacity operation is performed for a long time, for example, oil (refrigeration oil, lubricating oil) stays in the extension pipe portion, the indoor heat exchanger, etc., so the oil recovery operation is performed to return the oil to the compressor. During the oil recovery operation, the operating frequency of the compressor is increased.

ここで、上記のような冷凍サイクル(ヒートポンプサイクル)を利用した空気調和装置の中でも、特に設備PACのような年間冷房機種では、装置外部からの容量制御指示を利用して、恒温恒湿制御を行うことが多い。   Here, among the air conditioners using the refrigeration cycle (heat pump cycle) as described above, especially in the annual cooling model such as the equipment PAC, the constant temperature and humidity control is performed using the capacity control instruction from the outside of the device. Often done.

恒温恒湿制御を行う場合、装置外部からのデマンド(指示)などによる容量制御で冷房能力を抑制する。このような状態で長時間運転していると、上記のように油回収運転を行うこととなり、このとき圧縮機の運転周波数を増速させるため、冷房能力過多となり、恒温恒湿制御ができなくなる(例えば恒温恒湿制御のような制御においては、能力を可能な限り一定にする必要があるため、上記の油回収運転のように能力が変化する運転モードがないことが望ましい)。   When performing constant temperature and humidity control, the cooling capacity is suppressed by capacity control by demand (instruction) from the outside of the apparatus. When operating in such a state for a long time, the oil recovery operation will be performed as described above. At this time, the operating frequency of the compressor is increased, so that the cooling capacity is excessive and the constant temperature and humidity control cannot be performed. (For example, in control such as constant temperature and humidity control, it is necessary to make the capacity as constant as possible. Therefore, it is desirable that there is no operation mode in which the capacity changes like the oil recovery operation described above).

そこで本発明は、例えば恒温恒湿制御を行うような場合でも、能力過多とならないような構成等を有する室内機等を得ることを目的とする。   Accordingly, an object of the present invention is to obtain an indoor unit or the like having a configuration that does not cause excessive capacity even when, for example, constant temperature and humidity control is performed.

本発明の空気調和装置の室内機は、冷媒と空調対象空間の空気との熱交換を行う室内側熱交換器と、室内側熱交換器と直列に配管接続し、室内側熱交換器に流れる冷媒の減圧及び流量の調整を行う流量調整手段と、室内側熱交換器及び流量調整手段と並列に配管接続し、空調負荷に対して余剰な冷媒を流すためのバイパス配管と、バイパス配管に流す冷媒の流量を調整するためのバイパス流量調整手段とを備えるものである。   The indoor unit of the air conditioner of the present invention is connected to the indoor side heat exchanger for exchanging heat between the refrigerant and the air in the air-conditioning target space, and the indoor side heat exchanger in series, and flows to the indoor side heat exchanger. A flow rate adjusting means for reducing the pressure and adjusting the flow rate of the refrigerant, a pipe connected in parallel with the indoor heat exchanger and the flow rate adjusting means, and a bypass pipe for flowing excess refrigerant to the air conditioning load, and a bypass pipe And a bypass flow rate adjusting means for adjusting the flow rate of the refrigerant.

本発明の室内機は、流量調整手段、室内側熱交換器と並列に、バイパス流量調整手段が設けられたバイパス配管を接続するようにしたので、室内側熱交換器には、空調負荷に対して必要な冷媒量を流すようにし、余剰の冷媒はバイパス配管に流すことができる。このため、例えば空気調和装置において、デマンドなどによる容量制御で冷房運転を行っている時、圧縮機の運転周波数の下限を油回収運転を行う運転周波数よりも高くしておくことで油回収運転を回避することができ、このとき、バイパス配管に空調負荷に対して能力過多となる分の冷媒を通過させることとで、冷房能力が変化することを抑制できるので、安定した恒温恒湿制御が可能となる。   In the indoor unit of the present invention, the bypass pipe provided with the bypass flow rate adjusting means is connected in parallel with the flow rate adjusting means and the indoor side heat exchanger. Thus, the necessary amount of refrigerant is allowed to flow, and surplus refrigerant can be allowed to flow through the bypass pipe. For this reason, for example, in an air conditioner, when cooling operation is performed with capacity control by demand or the like, the oil recovery operation is performed by setting the lower limit of the operation frequency of the compressor higher than the operation frequency for performing the oil recovery operation. At this time, it is possible to suppress the change in cooling capacity by allowing the refrigerant to pass through the bypass pipe as much capacity as possible with respect to the air conditioning load, so stable constant temperature and humidity control is possible. It becomes.

ここで、設備PACの年間冷房機種では、すべて恒温恒湿制御を目的として使用するわけではないので、コスト面も考慮し、恒温恒湿制御を目的としてデマンドなどによる容量制御を行う物件対応として上記のようなバイパス配管及びバイパス用流量調整手段をオプション設定等にするとよい。   Here, the annual cooling models of equipment PAC are not all used for the purpose of constant temperature and humidity control. Therefore, considering the cost, the above-mentioned properties can be controlled by demand for the purpose of constant temperature and humidity control. Such bypass piping and bypass flow rate adjusting means may be set as options.

本発明の実施の形態1の空気調和装置の構成を表す図である。It is a figure showing the structure of the air conditioning apparatus of Embodiment 1 of this invention. 本実施の形態1における制御処理のフローチャートを表す図である。It is a figure showing the flowchart of the control processing in this Embodiment 1. FIG. 本発明の実施の形態2の空気調和装置の構成を表す図である。It is a figure showing the structure of the air conditioning apparatus of Embodiment 2 of this invention. 本実施の形態2における制御処理のフローチャートを表す図である。It is a figure showing the flowchart of the control processing in this Embodiment 2. FIG.

実施の形態1.
以下、本発明に関する実施の形態1について説明する。ここで、以下で説明する温度、圧力の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、装置等における状態、動作等において相対的に定まる関係に基づいて表記しているものとする。
Embodiment 1 FIG.
The first embodiment relating to the present invention will be described below. Here, the levels of temperature and pressure described below are not particularly determined in relation to absolute values, but are based on relationships that are relatively determined in the state, operation, etc. of the device. It shall be written.

図1は、この発明の実施の形態1における空気調和装置の構成を表す図である。図1では、室外機100と室内機200とを冷媒配管(延長配管)で接続した空気調和装置(冷媒回路)を構成する。室外機(熱源機)100は、圧縮機1、四方弁2、室外側熱交換器3、過冷却用熱交換器4、電子膨張弁5、液操作弁6、電子膨張弁7、室内側熱交換器8、ガス操作弁9、アキュムレータ10、バイパス電子膨張弁11、バイパス配管12、制御装置13を有している。   1 is a diagram showing the configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 1, the air conditioner (refrigerant circuit) which connected the outdoor unit 100 and the indoor unit 200 by refrigerant | coolant piping (extended piping) is comprised. The outdoor unit (heat source unit) 100 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a supercooling heat exchanger 4, an electronic expansion valve 5, a liquid operation valve 6, an electronic expansion valve 7, and indoor heat. It has an exchanger 8, a gas operation valve 9, an accumulator 10, a bypass electronic expansion valve 11, a bypass pipe 12, and a control device 13.

圧縮機1は、吸入した冷媒を圧縮して吐出する。ここで、圧縮機1は、インバータ装置を備え、制御装置13からの指示に基づいて運転周波数を任意に変化させることにより、圧縮機1の容量を変化させることができる。四方弁2は、制御装置13からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。   The compressor 1 compresses and discharges the sucked refrigerant. Here, the compressor 1 includes an inverter device, and the capacity of the compressor 1 can be changed by arbitrarily changing the operation frequency based on an instruction from the control device 13. The four-way valve 2 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the control device 13.

室外側熱交換器3は、冷媒と空気(室外の空気、外気)との熱交換を行う。例えば、冷房運転時においては凝縮器として機能し、冷媒を凝縮させ、液化させる。   The outdoor heat exchanger 3 performs heat exchange between the refrigerant and air (outdoor air, outside air). For example, it functions as a condenser during cooling operation, and condenses and liquefies the refrigerant.

過冷却用熱交換器4は、冷房運転時に冷媒を過冷却させる。また、電子膨張弁5は、過冷却用の配管に流れる冷媒の流量、圧力を調整する。   The supercooling heat exchanger 4 supercools the refrigerant during the cooling operation. The electronic expansion valve 5 adjusts the flow rate and pressure of the refrigerant flowing in the supercooling pipe.

液操作弁6、ガス操作弁9は、開とすることで室外機100と室内機200との間で冷媒が流入出するようにして冷媒回路としている。   The liquid operation valve 6 and the gas operation valve 9 are opened to form a refrigerant circuit so that refrigerant flows in and out between the outdoor unit 100 and the indoor unit 200.

室内側熱交換器8は冷媒と空調対象空間の空気(空調負荷)との熱交換を行う。例えば、冷房運転時においては蒸発器として機能し、冷媒に空気の熱を奪わせて蒸発させて気化させる。また、電子膨張弁7は、開度を変化させることで、室内側熱交換器8における冷媒の圧力、流量等を調整する主冷媒回路における減圧手段(流量調整手段)である。   The indoor heat exchanger 8 performs heat exchange between the refrigerant and the air in the air-conditioning target space (air conditioning load). For example, during the cooling operation, it functions as an evaporator and causes the refrigerant to evaporate by evaporating the heat of the air. The electronic expansion valve 7 is a pressure reducing means (flow rate adjusting means) in the main refrigerant circuit that adjusts the pressure, flow rate, etc., of the refrigerant in the indoor heat exchanger 8 by changing the opening degree.

アキュムレータ10は、余剰冷媒を溜めておく手段である。また、制御装置13は、演算、指示等を行って空気調和装置の各手段、機器等を制御する。本実施の形態では、特に圧縮機1の運転周波数等に基づいて、後述するようにバイパス電子膨張弁11の開度を制御して冷媒の一部をバイパス配管12を通過させるようにし、室内側熱交換器8を流れる冷媒の量を調整する。ここで、制御装置13はタイマ(図示せず)を有し、計時を行うことができるものとする。   The accumulator 10 is means for accumulating excess refrigerant. In addition, the control device 13 performs calculations, instructions, and the like to control each means, device, and the like of the air conditioner. In the present embodiment, the opening degree of the bypass electronic expansion valve 11 is controlled based on the operating frequency of the compressor 1 and the like, as will be described later, so that a part of the refrigerant passes through the bypass pipe 12. The amount of refrigerant flowing through the heat exchanger 8 is adjusted. Here, it is assumed that the control device 13 has a timer (not shown) and can measure time.

以上が室外機100と室内機200を配管接続した冷媒回路基本構成であるが、本実施の形態では、バイパス配管12及び流量調整手段となるバイパス電子膨張弁11とで、室内側熱交換器8に冷媒が流れる主冷媒回路の流路とは別のバイパス回路の流路を形成する。ここで、バイパス配管12及び流量調整手段となるバイパス電子膨張弁11によるバイパス回路を室外機100側で形成させることも可能であるが、室外機100側でバイパス回路を形成させてしまうと、室外機100側と室内機200側を接続している配管に滞留した油を戻すために必要な流量を確保できなくなるため、本実施の形態では室内機200側にバイパス回路を形成させている。そして、デマンドなどによる容量制御において指令された圧縮機1の運転周波数が油回収運転を行う周波数となる場合は、制御装置13が、バイパス電子膨張弁11の開度を拡げる制御を行い、バイパス配管12(バイパス回路側)に冷媒が流れるようにする。それ以外では、バイパス電子膨張弁11を閉にしてバイパス配管12に冷媒が流れないようにする。ここで、例えば設備PACの年間冷房機種では、すべて恒温恒湿制御を目的として使用するわけではないので、コスト面も考慮し、バイパス電子膨張弁11、バイパス配管12をオプション設定等にするとよい。バイパス回路の詳細については後述する。   The above is the refrigerant circuit basic configuration in which the outdoor unit 100 and the indoor unit 200 are connected by piping. In the present embodiment, the indoor side heat exchanger 8 includes the bypass piping 12 and the bypass electronic expansion valve 11 serving as a flow rate adjusting means. A flow path of the bypass circuit different from the flow path of the main refrigerant circuit through which the refrigerant flows is formed. Here, it is possible to form the bypass circuit by the bypass piping 12 and the bypass electronic expansion valve 11 serving as the flow rate adjusting means on the outdoor unit 100 side, but if the bypass circuit is formed on the outdoor unit 100 side, In the present embodiment, a bypass circuit is formed on the indoor unit 200 side because a flow rate required to return the oil accumulated in the pipe connecting the unit 100 side and the indoor unit 200 side cannot be secured. And when the operating frequency of the compressor 1 instruct | indicated in capacity | capacitance control by demand etc. turns into the frequency which performs oil recovery operation, the control apparatus 13 performs control which expands the opening degree of the bypass electronic expansion valve 11, and bypass piping Let the refrigerant flow to 12 (bypass circuit side). In other cases, the bypass electronic expansion valve 11 is closed to prevent the refrigerant from flowing into the bypass pipe 12. Here, for example, in the annual cooling model of the facility PAC, not all are used for the purpose of constant temperature and humidity control. Therefore, considering the cost, the bypass electronic expansion valve 11 and the bypass pipe 12 may be set as options. Details of the bypass circuit will be described later.

本実施の形態の冷媒回路において循環させる冷媒については特に制限するものではない。例えば、R22のような単一冷媒、R407Cのような非共沸混合冷媒、R410Aのような疑似共沸冷媒、CO2 (二酸化炭素)のような自然冷媒などを用いることができる。 The refrigerant to be circulated in the refrigerant circuit of the present embodiment is not particularly limited. For example, a single refrigerant such as R22, a non-azeotropic refrigerant mixture such as R407C, a pseudo azeotropic refrigerant such as R410A, a natural refrigerant such as CO 2 (carbon dioxide), or the like can be used.

次に図1の空気調和装置における冷房運転時の主冷媒回路に係る各機器の動作を、冷媒の流れに基づいて説明する。ここでは冷房運転について説明する。まず、室外機100において、圧縮機1により圧縮されて吐出した高温、高圧のガス冷媒は、四方弁2を通過して室外側熱交換器3に流入する。   Next, the operation of each device related to the main refrigerant circuit during the cooling operation in the air conditioner of FIG. 1 will be described based on the flow of the refrigerant. Here, the cooling operation will be described. First, in the outdoor unit 100, the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 3.

室外側熱交換器3を通過した冷媒は、室外の空気と熱交換することで凝縮して液化し、過冷却用熱交換器4、液操作弁6を通過して電子膨張弁7で減圧されて低温低圧の二相冷媒となり、室内側熱交換器8に流入する。   The refrigerant that has passed through the outdoor heat exchanger 3 is condensed and liquefied by exchanging heat with outdoor air, passes through the supercooling heat exchanger 4 and the liquid operation valve 6, and is decompressed by the electronic expansion valve 7. Thus, the refrigerant becomes a low-temperature and low-pressure two-phase refrigerant and flows into the indoor heat exchanger 8.

過冷却用熱交換器4を通過した冷媒の一部は電子膨張弁5で低温低圧の二相冷媒となり、過冷却用熱交換器4を流れている冷媒と熱交換している。   A part of the refrigerant that has passed through the supercooling heat exchanger 4 becomes a low-temperature and low-pressure two-phase refrigerant by the electronic expansion valve 5 and exchanges heat with the refrigerant flowing through the supercooling heat exchanger 4.

室内側熱交換器8に流入した冷媒は、蒸発してガス化し、さらに四方弁2、アキュムレータ10を介して圧縮機1に吸入され、前述したように圧縮されて吐出することで循環する。   The refrigerant flowing into the indoor heat exchanger 8 evaporates and gasifies, and is further sucked into the compressor 1 through the four-way valve 2 and the accumulator 10, and circulated by being compressed and discharged as described above.

ここで、冷房運転において、デマンドなどによる容量制御で小容量運転をする時以外は、バイパス配管12に冷媒を流してバイパス回路を形成する必要がないため、バイパス電子膨張弁11を閉じた状態にしている。   Here, in the cooling operation, it is not necessary to flow a refrigerant through the bypass pipe 12 to form a bypass circuit except when a small capacity operation is performed by a capacity control by demand or the like, so that the bypass electronic expansion valve 11 is closed. ing.

一方、デマンドなどによる容量制御で指令された圧縮機1の運転周波数が油回収運転を行う周波数となる場合は、冷房能力過多となって安定した恒温恒湿制御ができなくなる。そこで、バイパス電子膨張弁11の開度を調整してバイパス配管12に冷媒が流れるようにし、室内側熱交換器8を流れる冷媒量を調整して冷房能力過多となるのを抑制する。   On the other hand, when the operating frequency of the compressor 1 commanded by the capacity control by demand or the like becomes a frequency for performing the oil recovery operation, the cooling capacity is excessive and stable temperature and humidity control cannot be performed. Therefore, the opening degree of the bypass electronic expansion valve 11 is adjusted so that the refrigerant flows through the bypass pipe 12, and the amount of refrigerant flowing through the indoor heat exchanger 8 is adjusted to prevent the cooling capacity from being excessive.

図2は実施の形態1における制御装置13が行う処理のフローチャートを表す図である。次に、本実施の形態における冷房能力過多を抑制する制御処理について説明する。   FIG. 2 is a diagram illustrating a flowchart of processing performed by the control device 13 according to the first embodiment. Next, control processing for suppressing excessive cooling capacity in the present embodiment will be described.

まず、運転モードが冷房運転であるかどうかを判断する(ST1)。冷房運転であると判断すると、圧縮機運転周波数f(仮周波数)が油回収運転を行う判断基準の上限の周波数f1以下を10分連続で検知しているかどうかを判断する(ST2)。   First, it is determined whether or not the operation mode is a cooling operation (ST1). If it is determined that the cooling operation is being performed, it is determined whether or not the compressor operating frequency f (temporary frequency) is detected continuously for 10 minutes or less at the upper limit frequency f1 of the criterion for performing the oil recovery operation (ST2).

ここで、圧縮機運転周波数f(仮周波数)は、例えばデマンドなどによって指示される周波数とする。そして、本実施の形態では、油回収運転とならないようにするため、実際の運転周波数の下限はf1+1としている。このため、圧縮機運転周波数f(仮周波数)が周波数f1以下を指示していたとしても、実際の運転周波数の下限がf1+1であるため、圧縮機1運転周波数はf1+1までしか下げられない。   Here, the compressor operating frequency f (temporary frequency) is a frequency instructed by demand, for example. In the present embodiment, the actual lower limit of the operating frequency is set to f1 + 1 so that the oil recovery operation is not performed. For this reason, even if the compressor operating frequency f (temporary frequency) indicates the frequency f1 or less, the lower limit of the actual operating frequency is f1 + 1, and therefore the compressor 1 operating frequency can only be lowered to f1 + 1.

判断の結果、以上の条件を満たしていないと判断すると、そのままの運転(主冷媒回路だけを冷媒循環させる冷房運転)を継続する。一方、条件を満たしていると判断すると、バイパス回路のバイパス電子膨張弁11を開としてバイパス配管12にも冷媒が流れるようにする。ここで、バイパス電子膨張弁11の開度は以下の手順で決定する。   As a result of the determination, if it is determined that the above conditions are not satisfied, the operation as it is (the cooling operation in which only the main refrigerant circuit is circulated through the refrigerant) is continued. On the other hand, if it is determined that the condition is satisfied, the bypass electronic expansion valve 11 of the bypass circuit is opened so that the refrigerant also flows through the bypass pipe 12. Here, the opening degree of the bypass electronic expansion valve 11 is determined by the following procedure.

実際の圧縮機1の運転周波数F、凝縮温度Tc、蒸発温度Teに基づいて流量Grを算出する(ST3)。また、圧縮機運転周波数fに基づいて負荷冷却に必要な流量Gr*を算出する(ST4)。そして、算出した流量Gr及び流量Gr*から流量差ΔGr=Gr−Gr*を算出する(ST5)。   The flow rate Gr is calculated based on the actual operating frequency F of the compressor 1, the condensation temperature Tc, and the evaporation temperature Te (ST3). Further, the flow rate Gr * required for load cooling is calculated based on the compressor operating frequency f (ST4). Then, a flow rate difference ΔGr = Gr−Gr * is calculated from the calculated flow rate Gr and flow rate Gr * (ST5).

流量差ΔGr(>0)が冷房能力過多となる流量を表すことになるので、流量差ΔGr分の流量の冷媒をバイパス配管12を介して流す必要がある。そこで、算出した流量差ΔGrとバイパス電子膨張弁11の開度との関係式から必要なバイパス電子膨張弁11の開度を算出する(ST6)。そして、バイパス電子膨張弁11に算出した開度とするように指示を送る。バイパス電子膨張弁11の開度を決定してバイパス配管12に冷媒を流すようにすることで、油回収運転を行わずに室内側熱交換器8に流れる冷媒流量を負荷に対応させたものとし、長時間の小容量運転を可能とする。   Since the flow rate difference ΔGr (> 0) represents the flow rate at which the cooling capacity is excessive, it is necessary to flow a refrigerant having a flow rate corresponding to the flow rate difference ΔGr through the bypass pipe 12. Therefore, the required opening degree of the bypass electronic expansion valve 11 is calculated from the relational expression between the calculated flow rate difference ΔGr and the opening degree of the bypass electronic expansion valve 11 (ST6). Then, an instruction is sent to the bypass electronic expansion valve 11 so as to obtain the calculated opening. By determining the opening degree of the bypass electronic expansion valve 11 and allowing the refrigerant to flow through the bypass pipe 12, the refrigerant flow rate flowing through the indoor heat exchanger 8 without the oil recovery operation is made to correspond to the load. , Enabling small capacity operation for a long time.

バイパス回路を形成した後、圧縮機運転周波数f(仮周波数)が周波数f1よりも大きいかどうかを判断する(ST7)。圧縮機運転周波数f(仮周波数)がf1よりも大きければ、バイパス電子膨張弁11の開度を閉じるようにして、バイパス配管12に冷媒が流れないようにする(ST8)。圧縮機運転周波数f(仮周波数)がf1よりも小さい場合は、1分経過したものと判断すると(ST9)、ST4に戻る。   After forming the bypass circuit, it is determined whether the compressor operating frequency f (temporary frequency) is higher than the frequency f1 (ST7). If the compressor operating frequency f (temporary frequency) is larger than f1, the opening degree of the bypass electronic expansion valve 11 is closed to prevent the refrigerant from flowing into the bypass pipe 12 (ST8). When the compressor operating frequency f (temporary frequency) is smaller than f1, if it is determined that one minute has passed (ST9), the process returns to ST4.

以上のように、実施の形態1に係わる空気調和装置では、室内機200において、電子膨張弁7、室内側熱交換器8と並列に、バイパス電子膨張弁11が設けられたバイパス配管12を接続してバイパス回路を構成するようにしたので、室内側熱交換器8には、空調負荷に対して必要な冷媒量を流すようにし、余剰の冷媒はバイパス配管12に流すことができる。そして、圧縮機1の運転周波数を油回収運転を行う周波数以下にしないようにし、最低の周波数においても、空調負荷に対して室内側熱交換器8の熱交換に必要な冷媒量よりも多い冷媒が流れる場合には、バイパス電子膨張弁11の開度を制御して冷媒の一部をバイパス配管12を介して流すようにしたので、冷房能力過多にならずに適切な能力供給を行うことができる。   As described above, in the air conditioner according to Embodiment 1, in the indoor unit 200, the bypass pipe 12 provided with the bypass electronic expansion valve 11 is connected in parallel with the electronic expansion valve 7 and the indoor heat exchanger 8. Since the bypass circuit is configured, the refrigerant amount necessary for the air conditioning load is allowed to flow through the indoor heat exchanger 8, and surplus refrigerant can be allowed to flow through the bypass pipe 12. Then, the operation frequency of the compressor 1 is not made lower than the frequency for performing the oil recovery operation, and the refrigerant is larger than the refrigerant amount necessary for heat exchange of the indoor heat exchanger 8 with respect to the air conditioning load even at the lowest frequency. Since the flow of a part of the refrigerant is caused to flow through the bypass pipe 12 by controlling the opening degree of the bypass electronic expansion valve 11, it is possible to supply an appropriate capacity without excessive cooling capacity. it can.

実施の形態2.
以下、本発明に関する実施の形態2について説明する。
図3は、この発明の実施の形態2における空気調和装置の構成を表す図である。前述した実施の形態1では、バイパス電子膨張弁11及びバイパス配管12によりバイパス回路を構成し、小容量運転中に油回収運転を行わないようにしつつ、冷房能力が過多となるのを抑制するようにした。ここで、外気温度が低い状態で冷房運転を行っていると、アキュムレータ10への液バックが多くなる。圧縮機1の運転周波数を高くし、また、室内側熱交換器8において蒸発させることで液バックを防止しようとすると冷房能力が過多となる可能性がある。
Embodiment 2. FIG.
The second embodiment relating to the present invention will be described below.
FIG. 3 is a diagram illustrating the configuration of the air-conditioning apparatus according to Embodiment 2 of the present invention. In the first embodiment described above, the bypass electronic expansion valve 11 and the bypass pipe 12 constitute a bypass circuit so as not to perform the oil recovery operation during the small-capacity operation and to suppress the excessive cooling capacity. I made it. Here, when the cooling operation is performed in a state where the outside air temperature is low, the liquid back to the accumulator 10 increases. If the operation frequency of the compressor 1 is increased and evaporation is caused in the indoor heat exchanger 8 to prevent liquid back, the cooling capacity may be excessive.

そこで、実施の形態2の空気調和装置では、室内側熱交換器8、バイパス配管12と並列に、液バック防止用電磁弁14を設けたバイパス配管15をさらに接続して、さらにバイパス回路を構成する。そして、例えば、外気温度が低く、液バック状態の運転が続いたときには、バイパス配管15を通過させることでアキュムレータ10への液バックを抑制し、圧縮機1の運転周波数を高くしても冷房能力が過多となるのを抑制する。   Therefore, in the air conditioner of the second embodiment, a bypass circuit is further configured by further connecting a bypass pipe 15 provided with a liquid back prevention electromagnetic valve 14 in parallel with the indoor heat exchanger 8 and the bypass pipe 12. To do. For example, when the outside air temperature is low and the operation in the liquid back state continues, the liquid back to the accumulator 10 is suppressed by allowing the bypass pipe 15 to pass therethrough, and the cooling capacity can be increased even if the operating frequency of the compressor 1 is increased. Is suppressed.

図3の空気調和装置において、図1と同じ符号を付している機器等については、実施の形態1において説明した動作、機能と同様の動作、機能を果たすものである。ここで、本実施の形態においては、液バック防止用電磁弁14、バイパス配管15をさらに追加してバイパス回路を構成している。そして、空気調和装置の運転状態に基づいて、制御装置13は液バック状態の運転が続いていると判断した場合には、液バック防止用電磁弁14を開とし、バイパス配管15に冷媒が流れるようにする。   In the air conditioner of FIG. 3, devices and the like having the same reference numerals as those in FIG. 1 perform the same operations and functions as the operations and functions described in the first embodiment. Here, in the present embodiment, a bypass circuit is configured by further adding a liquid back preventing electromagnetic valve 14 and a bypass pipe 15. When the control device 13 determines that the operation in the liquid back state continues based on the operation state of the air conditioner, the liquid back prevention electromagnetic valve 14 is opened and the refrigerant flows into the bypass pipe 15. Like that.

図4は実施の形態2における制御装置13が行う処理のフローチャートを表す図である。次に、本実施の形態における液バック防止によって冷房能力過多となることを抑制する制御について説明する。まず、実施の形態1のST1、ST2において説明したように、まず、運転モードが冷房運転であるかどうかを判断する(ST11)。冷房運転であると判断すると、圧縮機運転周波数f(仮周波数)が油回収運転を行う上限の周波数f1以下を10分連続で検知しているかどうかを判断する(ST12)。   FIG. 4 is a diagram illustrating a flowchart of processing performed by the control device 13 according to the second embodiment. Next, a description will be given of control for suppressing an excessive cooling capacity by preventing liquid back in the present embodiment. First, as described in ST1 and ST2 of the first embodiment, first, it is determined whether or not the operation mode is a cooling operation (ST11). If it is determined that the cooling operation is being performed, it is determined whether or not the compressor operating frequency f (temporary frequency) is continuously detected for 10 minutes or less at the upper limit frequency f1 at which the oil recovery operation is performed (ST12).

判断の結果、以上の条件を満たしていないと判断すると、そのままの運転(主冷媒回路だけを冷媒循環させる冷房運転)を継続する。一方、条件を満たしていると判断すると、本実施の形態では、吐出温度Tdと凝縮温度Tcとの差TdSH(吐出過熱度)が20度(℃、K)以上であるかを判断する(ST13)。   As a result of the determination, if it is determined that the above conditions are not satisfied, the operation as it is (the cooling operation in which only the main refrigerant circuit is circulated through the refrigerant) is continued. On the other hand, if it is determined that the condition is satisfied, in the present embodiment, it is determined whether the difference TdSH (discharge superheat degree) between the discharge temperature Td and the condensation temperature Tc is 20 degrees (° C., K) or more (ST13). ).

TdSHが20度以上であると判断すると、以下、実施の形態1のST3〜ST9と同様の運転を行う(ST14〜ST20)。一方、条件を満たしていないと判断すると、液バック防止用電磁弁14を開としてバイパス配管15に冷媒が流れるようにする(ST21)。   If it is determined that TdSH is 20 degrees or more, the same operation as ST3 to ST9 in the first embodiment is performed (ST14 to ST20). On the other hand, if it is determined that the condition is not satisfied, the liquid back prevention electromagnetic valve 14 is opened so that the refrigerant flows through the bypass pipe 15 (ST21).

液バック防止用電磁弁14を開とすることで、バイパス配管15に冷媒が流れ、高温の液冷媒がアキュムレータ10に戻ってくる。これにより、TdSH≧20度を確保することができる。TdSH≧20度とすることで液バックによる圧縮機1の保護のためである。通常は、TdSH≧20度を満たすように主回路の電子膨張弁7の開度を調整しているが、それでもTdSHが20度未満となるような場合に液バック防止用電磁弁14を開としてバイパス配管15に冷媒が流れるようにする。   By opening the liquid back preventing electromagnetic valve 14, the refrigerant flows into the bypass pipe 15, and the high-temperature liquid refrigerant returns to the accumulator 10. Thereby, TdSH ≧ 20 degrees can be secured. This is to protect the compressor 1 by liquid back by setting TdSH ≧ 20 degrees. Normally, the opening degree of the electronic expansion valve 7 of the main circuit is adjusted so as to satisfy TdSH ≧ 20 degrees, but if the TdSH is still less than 20 degrees, the liquid back prevention electromagnetic valve 14 is opened. The refrigerant is allowed to flow through the bypass pipe 15.

以上のように、実施の形態2に係わる空気調和装置では、室内機200に室内側熱交換器8と並列に、液バック防止用電磁弁14が設けられたバイパス配管15を接続してバイパス回路を構成する。制御装置13は、圧縮機1に係る吐出過熱度が20Kより小さいと判断すると、液バック防止用電磁弁14を開かせてバイパス配管15に冷媒を介して流れるようにしたので、高温の液冷媒がアキュムレータ10(圧縮機1吸入側)に流れることにより、吐出過熱度を高くして圧縮機1への液バックの発生を防止することができる。このため、例えば低外気の冷房運転でも安定した恒温恒湿制御が可能となる。   As described above, in the air-conditioning apparatus according to Embodiment 2, the bypass circuit 15 in which the liquid back prevention electromagnetic valve 14 is provided is connected to the indoor unit 200 in parallel with the indoor heat exchanger 8. Configure. When the control device 13 determines that the discharge superheat degree related to the compressor 1 is less than 20K, the control device 13 opens the liquid back prevention electromagnetic valve 14 and flows through the bypass pipe 15 via the refrigerant. Flowing into the accumulator 10 (on the suction side of the compressor 1), the discharge superheat degree can be increased and the occurrence of liquid back to the compressor 1 can be prevented. For this reason, for example, stable constant temperature and humidity control is possible even in a cooling operation of low outside air.

上述した実施の形態では、空気調和装置への適用について説明した。本発明は、これらの装置に限定することなく、例えば冷凍システム、給湯機等のヒートポンプ装置等、冷媒回路を構成する他の冷凍サイクル装置にも適用することができる。   In the embodiment described above, application to an air conditioner has been described. The present invention is not limited to these devices, and can also be applied to other refrigeration cycle devices constituting a refrigerant circuit, such as a refrigeration system, a heat pump device such as a water heater, and the like.

1 圧縮機、2 四方弁、3 室外側熱交換器、4 過冷却用熱交換器、5 電子膨張弁、6 液操作弁、7 電子膨張弁、8 室内側熱交換器、9 ガス操作弁、10 アキュムレータ、11 バイパス電子膨張弁、12 バイパス配管、13 制御装置、14 液バック防止用電磁弁、15 バイパス配管、100 室外機、200 室内機。   1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 supercooling heat exchanger, 5 electronic expansion valve, 6 liquid operation valve, 7 electronic expansion valve, 8 indoor heat exchanger, 9 gas operation valve, DESCRIPTION OF SYMBOLS 10 Accumulator, 11 Bypass electronic expansion valve, 12 Bypass piping, 13 Control apparatus, 14 Solenoid valve for liquid back prevention, 15 Bypass piping, 100 Outdoor unit, 200 Indoor unit.

Claims (5)

冷媒と空調対象空間の空気との熱交換を行う室内側熱交換器と、
該室内側熱交換器と直列に配管接続し、前記室内側熱交換器に流れる冷媒の減圧及び流量の調整を行う流量調整手段と、
前記室内側熱交換器及び前記流量調整手段と並列に配管接続し、空調負荷に対して余剰な冷媒を流すためのバイパス配管と、
該バイパス配管に流す冷媒の流量を調整するためのバイパス流量調整手段と
を備えることを特徴とする室内機。
An indoor heat exchanger for exchanging heat between the refrigerant and the air in the air-conditioned space;
A flow rate adjusting means for connecting a pipe in series with the indoor side heat exchanger, and performing pressure reduction and flow rate adjustment of the refrigerant flowing through the indoor side heat exchanger;
A bypass pipe for connecting a pipe in parallel with the indoor heat exchanger and the flow rate adjusting means, and flowing an excess refrigerant with respect to an air conditioning load;
An indoor unit comprising: a bypass flow rate adjusting means for adjusting a flow rate of the refrigerant flowing through the bypass pipe.
前記室内側熱交換器及び前記流量調整手段と配管接続して冷媒回路を構成する圧縮機の目標運転周波数と実際の運転周波数とに基づいて、前記空調負荷に対して余剰な冷媒の流量を判断し、前記バイパス流量調整手段に前記バイパス配管に流す冷媒の流量を調整させることを特徴とする請求項1記載の室内機。   Based on the target operating frequency and the actual operating frequency of the compressor that constitutes the refrigerant circuit by pipe connection with the indoor heat exchanger and the flow rate adjusting means, the flow rate of the surplus refrigerant with respect to the air conditioning load is determined. The indoor unit according to claim 1, wherein the flow rate of the refrigerant flowing through the bypass pipe is adjusted by the bypass flow rate adjusting means. 前記圧縮機への液バック防止のため、前記室内側熱交換器及び前記流量調整手段と並列に配管接続する液バック用バイパス配管と、
該液バック用バイパス配管に冷媒を流すか否かを制御するためのバイパス開閉手段と
をさらに備えることを特徴とする請求項1又は2記載の室内機。
In order to prevent liquid back to the compressor, a liquid back bypass pipe connected in parallel with the indoor heat exchanger and the flow rate adjusting means,
The indoor unit according to claim 1 or 2, further comprising bypass opening and closing means for controlling whether or not the refrigerant flows through the liquid back bypass pipe.
前記圧縮機の吐出温度と前記冷媒の凝縮に係る凝縮温度とに基づいてバイパス開閉手段を開閉させることを特徴とする請求項3記載の室内機。   The indoor unit according to claim 3, wherein the bypass opening / closing means is opened and closed based on a discharge temperature of the compressor and a condensation temperature related to the condensation of the refrigerant. 請求項1〜4のいずれかに記載の室内機と、
吸入した冷媒を圧縮して吐出する圧縮機及び空気調和の対象空間外の空気と冷媒との熱交換を行う室外側熱交換器を備える室外機と
の間を配管接続して冷媒回路を構成することを特徴とする空気調和装置。
The indoor unit according to any one of claims 1 to 4,
A refrigerant circuit is configured by pipe-connecting a compressor that compresses and discharges the sucked refrigerant and an outdoor unit that includes an outdoor heat exchanger that performs heat exchange between the air outside the air conditioning target space and the refrigerant. An air conditioner characterized by that.
JP2011073268A 2011-03-29 2011-03-29 Indoor unit and air conditioner Expired - Fee Related JP5765990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073268A JP5765990B2 (en) 2011-03-29 2011-03-29 Indoor unit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073268A JP5765990B2 (en) 2011-03-29 2011-03-29 Indoor unit and air conditioner

Publications (2)

Publication Number Publication Date
JP2012207841A true JP2012207841A (en) 2012-10-25
JP5765990B2 JP5765990B2 (en) 2015-08-19

Family

ID=47187736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073268A Expired - Fee Related JP5765990B2 (en) 2011-03-29 2011-03-29 Indoor unit and air conditioner

Country Status (1)

Country Link
JP (1) JP5765990B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109906A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air conditioner
EP3225938A1 (en) * 2016-03-28 2017-10-04 LG Electronics Inc. Air conditioner
JPWO2017022076A1 (en) * 2015-08-04 2018-02-22 三菱電機株式会社 Refrigeration apparatus and method of operating refrigeration apparatus
JP2019066068A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration system
WO2021214816A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device, air conditioner, and cooling device

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161359A (en) * 1986-12-23 1988-07-05 株式会社日立製作所 Refrigerator
JPS63153071U (en) * 1987-03-30 1988-10-07
JPH0296564U (en) * 1989-01-20 1990-08-01
JPH04251163A (en) * 1990-12-06 1992-09-07 Nippondenso Co Ltd Car air conditioner
JPH04340046A (en) * 1991-02-12 1992-11-26 Daikin Ind Ltd Operation control device of air conditioner
JPH05172427A (en) * 1991-09-30 1993-07-09 Aisin Seiki Co Ltd Engine-driven air conditioning apparatus
JPH06207761A (en) * 1993-01-08 1994-07-26 Toshiba Corp Multi air conditioner
JPH0914778A (en) * 1995-06-30 1997-01-17 Yamaha Motor Co Ltd Air conditioner
JPH10197077A (en) * 1997-01-06 1998-07-31 Daikin Ind Ltd Refrigerating apparatus
JPH11142016A (en) * 1997-11-06 1999-05-28 Fujitsu General Ltd Multi-chamber type air conditioning apparatus
JP2000205664A (en) * 1999-01-14 2000-07-28 Denso Corp Refrigerating cycle system
JP2004156858A (en) * 2002-11-07 2004-06-03 Mitsubishi Electric Corp Refrigerating cycle device and control method thereof
JP2006505763A (en) * 2002-11-11 2006-02-16 ボルテックス エアコン Cooling system with bypass subcooling and component size deoptimization
JP2006214602A (en) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2008209105A (en) * 2007-02-02 2008-09-11 Daikin Ind Ltd Air conditioner
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device
JP2010281492A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Air conditioner

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161359A (en) * 1986-12-23 1988-07-05 株式会社日立製作所 Refrigerator
JPS63153071U (en) * 1987-03-30 1988-10-07
JPH0296564U (en) * 1989-01-20 1990-08-01
JPH04251163A (en) * 1990-12-06 1992-09-07 Nippondenso Co Ltd Car air conditioner
JPH04340046A (en) * 1991-02-12 1992-11-26 Daikin Ind Ltd Operation control device of air conditioner
JPH05172427A (en) * 1991-09-30 1993-07-09 Aisin Seiki Co Ltd Engine-driven air conditioning apparatus
JPH06207761A (en) * 1993-01-08 1994-07-26 Toshiba Corp Multi air conditioner
JPH0914778A (en) * 1995-06-30 1997-01-17 Yamaha Motor Co Ltd Air conditioner
JPH10197077A (en) * 1997-01-06 1998-07-31 Daikin Ind Ltd Refrigerating apparatus
JPH11142016A (en) * 1997-11-06 1999-05-28 Fujitsu General Ltd Multi-chamber type air conditioning apparatus
JP2000205664A (en) * 1999-01-14 2000-07-28 Denso Corp Refrigerating cycle system
JP2004156858A (en) * 2002-11-07 2004-06-03 Mitsubishi Electric Corp Refrigerating cycle device and control method thereof
JP2006505763A (en) * 2002-11-11 2006-02-16 ボルテックス エアコン Cooling system with bypass subcooling and component size deoptimization
JP2006214602A (en) * 2005-02-01 2006-08-17 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2008209105A (en) * 2007-02-02 2008-09-11 Daikin Ind Ltd Air conditioner
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
JP2010281492A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Air conditioner
JP2010261715A (en) * 2010-08-27 2010-11-18 Mitsubishi Electric Corp Air conditioning device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017022076A1 (en) * 2015-08-04 2018-02-22 三菱電機株式会社 Refrigeration apparatus and method of operating refrigeration apparatus
US10571159B2 (en) 2015-08-04 2020-02-25 Mitsubishi Electric Corporation Refrigeration apparatus and method for operating refrigeration apparatus
WO2017109906A1 (en) * 2015-12-24 2017-06-29 三菱電機株式会社 Air conditioner
JPWO2017109906A1 (en) * 2015-12-24 2018-08-16 三菱電機株式会社 Air conditioner
GB2561096A (en) * 2015-12-24 2018-10-03 Mitsubishi Electric Corp Air conditioner
GB2561096B (en) * 2015-12-24 2020-09-23 Mitsubishi Electric Corp Air-conditioning apparatus
EP3225938A1 (en) * 2016-03-28 2017-10-04 LG Electronics Inc. Air conditioner
JP2019066068A (en) * 2017-09-29 2019-04-25 パナソニックIpマネジメント株式会社 Refrigeration system
WO2021214816A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Refrigeration cycle device, air conditioner, and cooling device

Also Published As

Publication number Publication date
JP5765990B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
US9958171B2 (en) Air-conditioning apparatus
US9709304B2 (en) Air-conditioning apparatus
US9683768B2 (en) Air-conditioning apparatus
JP2020073838A (en) Refrigerant amount detection device
JP4767199B2 (en) Air conditioning system operation control method and air conditioning system
JP6033297B2 (en) Air conditioner
JP5908183B1 (en) Air conditioner
WO2016194098A1 (en) Air-conditioning device and operation control device
GB2561756A (en) Air conditioning device
JP5765990B2 (en) Indoor unit and air conditioner
JPWO2011089652A1 (en) Air conditioning and hot water supply complex system
WO2014129361A1 (en) Air conditioner
JP2008039233A (en) Refrigerating device
JP6758506B2 (en) Air conditioner
JP6400223B2 (en) Air conditioner and control method of air conditioner
KR102390900B1 (en) Multi-type air conditioner and control method for the same
JP6081283B2 (en) Air conditioner
JP2015087020A (en) Refrigeration cycle device
CN114151935A (en) Air conditioning system
GB2567332A (en) Air conditioning device
WO2017094172A1 (en) Air conditioning device
JPWO2016207992A1 (en) Air conditioner
JP2014070829A (en) Refrigerator
WO2015140950A1 (en) Air conditioner
JP6840992B2 (en) Freezing system and freezing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5765990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees