JPS63290368A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS63290368A
JPS63290368A JP62124308A JP12430887A JPS63290368A JP S63290368 A JPS63290368 A JP S63290368A JP 62124308 A JP62124308 A JP 62124308A JP 12430887 A JP12430887 A JP 12430887A JP S63290368 A JPS63290368 A JP S63290368A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
electric expansion
expansion valve
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124308A
Other languages
Japanese (ja)
Inventor
八田 博司
岩本 哲正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP62124308A priority Critical patent/JPS63290368A/en
Publication of JPS63290368A publication Critical patent/JPS63290368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷媒流量制御装置として、電動膨張弁を採用
し、室内外の空気温度が低下する冷房低外気温時に、室
内熱交換器への着霜を防止する機能を備えたヒートポン
プ式空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention employs an electric expansion valve as a refrigerant flow rate control device, and controls the connection to an indoor heat exchanger when the air temperature inside and outside the room is low. Related to a heat pump air conditioner with a frost prevention function.

従来の技術 近年、ヒートポンプ式空気調和機は、運転状態に合った
最適な冷媒流量を決定するために冷凍サイクルの冷媒制
御装置として、電動膨張弁が採用されている。
BACKGROUND OF THE INVENTION In recent years, heat pump air conditioners have adopted an electric expansion valve as a refrigerant control device for a refrigeration cycle in order to determine the optimum flow rate of refrigerant for the operating conditions.

以下図面を参照しながら従来のヒートポンプ式空気調和
機の冷媒制御装置の一例について説明する。第4図は冷
媒制御装置として、電動膨張弁を用いた従来のヒートポ
ンプ式空気調和機の冷却システム図を示すもので、1は
圧縮機、2は冷房時凝縮器として作用する室外熱交換器
、3は、暖房運転時に減圧装置として働く電動膨張弁、
4は、冷房運転時に減圧装置として働く電動膨張弁、5
は冷房時蒸発器として作用する室内熱交換器で、これら
を環状に接続して、冷凍サイクルを構成している。8は
暖房運転時に、室外熱交換器2の中間部の配管温度セン
サー22が検出する温度と出口部の配管温度センサー2
1が検出する温度の差を演算して、電動膨張弁3の開度
変更動作を出力する制御器である。同様に、3oは、冷
房運転時に、室内熱交換器6の中間部の配管温度センサ
ー24が検出する温度と出口部の配管温度センサー23
が検出する温度の差を演算して、電動膨張弁4の開度変
更動作を出力する制御器である。10は液バイパス回路
用冷媒管で、冷房時、凝縮器となる室外熱交換器2より
導出する冷媒管16と蒸発器となる室内熱交換器6より
導出する冷媒管170間を電磁弁11、キャピラリーチ
ューブ12を介して接続している。13は吐出ガスバイ
パス回路用冷媒管であり、圧縮機より導出する冷媒管1
8と、アキュムレーター20に導入する冷媒管19の間
を電磁弁14、キャピラリー16を介して接続している
。6は高圧圧カスイソチで吐出圧力が一定値以上になる
と、圧縮機1の運転を停止させる。7は四方弁で冷房サ
イクル、暖房サイクルを切り換える。
An example of a conventional refrigerant control device for a heat pump air conditioner will be described below with reference to the drawings. Fig. 4 shows a cooling system diagram of a conventional heat pump air conditioner using an electric expansion valve as a refrigerant control device, in which 1 is a compressor, 2 is an outdoor heat exchanger that acts as a condenser during cooling, 3 is an electric expansion valve that functions as a pressure reducing device during heating operation;
4 is an electric expansion valve that functions as a pressure reducing device during cooling operation; 5
is an indoor heat exchanger that acts as an evaporator during cooling, and these are connected in a ring to form a refrigeration cycle. 8 indicates the temperature detected by the pipe temperature sensor 22 at the intermediate part of the outdoor heat exchanger 2 and the pipe temperature sensor 2 at the outlet part during heating operation.
1 is a controller that calculates the difference in detected temperatures and outputs an operation for changing the opening degree of the electric expansion valve 3. Similarly, 3o represents the temperature detected by the piping temperature sensor 24 at the intermediate portion of the indoor heat exchanger 6 and the piping temperature sensor 23 at the outlet portion during cooling operation.
This is a controller that calculates the difference in temperature detected by the controller and outputs an operation for changing the opening degree of the electric expansion valve 4. Reference numeral 10 denotes a refrigerant pipe for a liquid bypass circuit, and during cooling, a solenoid valve 11 is connected between a refrigerant pipe 16 led out from the outdoor heat exchanger 2 serving as a condenser and a refrigerant pipe 170 led out from the indoor heat exchanger 6 serving as an evaporator. They are connected via a capillary tube 12. 13 is a refrigerant pipe for the discharge gas bypass circuit, and the refrigerant pipe 1 leads out from the compressor.
8 and a refrigerant pipe 19 introduced into the accumulator 20 are connected via a solenoid valve 14 and a capillary 16. Reference numeral 6 indicates a high-pressure filter which stops the operation of the compressor 1 when the discharge pressure exceeds a certain value. 7 is a four-way valve that switches between cooling and heating cycles.

以上のように構成された空気調和機について、以下その
動作について説明する。
The operation of the air conditioner configured as above will be described below.

冷房運転時、圧縮機1で圧縮された高温・高圧の冷媒ガ
スは、冷媒管18、四方弁7を通り、室外熱交換器2で
液化する。冷房時、電動膨張弁3は全開とし、ここでは
減圧しないため、室内機には、高圧液冷媒が入る。更に
室内機の電動膨張弁4にて、断熱膨張して、低温低圧の
気液二相の冷媒となり、室内熱交換器5にて、蒸発・ガ
ス化して、アキュムレーター20に至り、圧縮機1に戻
るサイクルを繰り返す。
During cooling operation, high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the refrigerant pipe 18 and the four-way valve 7, and is liquefied in the outdoor heat exchanger 2. During cooling, the electric expansion valve 3 is fully opened and the pressure is not reduced at this time, so high-pressure liquid refrigerant enters the indoor unit. Furthermore, it is adiabatically expanded in the electric expansion valve 4 of the indoor unit to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which is evaporated and gasified in the indoor heat exchanger 5, reaches the accumulator 20, and is transferred to the compressor 1. Return to repeat the cycle.

次に電動膨張弁4による冷媒流量制御方法について説明
する。室内熱交換器6の中間部と出口部に設けられた温
度センサー24.23から、差温計測手段30 aによ
り差温を求め、その差温に基づき電動膨張弁開度決定手
段30bにより弁開度を決定し、それに基づき電動膨張
弁制御手段30cにて電動膨張弁4を制御し、弁開度を
調節、設定。
Next, a method of controlling the refrigerant flow rate using the electric expansion valve 4 will be explained. The temperature difference measuring means 30a determines the temperature difference from the temperature sensors 24.23 provided at the intermediate part and the outlet part of the indoor heat exchanger 6, and based on the temperature difference, the electric expansion valve opening determining means 30b opens the valve. Based on the determination, the electric expansion valve control means 30c controls the electric expansion valve 4 to adjust and set the valve opening degree.

制御する。Control.

次に暖房時について説明する。暖房運転時、圧縮機1で
圧縮された高温・高圧の冷媒ガスは、冷媒管18、四方
弁7を通シ、室内熱交換器5で液化する。暖房時、電動
膨張弁4は全開とし、冷媒管16を経て、室外機には、
高圧液冷媒が入る。
Next, heating will be explained. During heating operation, high-temperature, high-pressure refrigerant gas compressed by the compressor 1 passes through the refrigerant pipe 18 and the four-way valve 7, and is liquefied in the indoor heat exchanger 5. During heating, the electric expansion valve 4 is fully opened, and the refrigerant is supplied to the outdoor unit through the refrigerant pipe 16.
High pressure liquid refrigerant enters.

更に室外機側の電動膨張弁3にて、断熱膨張して、低温
低圧の気液二相の冷媒となシ、室外熱交換器2で蒸発・
ガス化してアキュムレーター20に至り、圧縮機1に戻
るサイクルを繰り返す。
Furthermore, it is adiabatically expanded in the electric expansion valve 3 on the outdoor unit side to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, which is then evaporated and evaporated in the outdoor heat exchanger 2.
The cycle of gasification, reaching the accumulator 20, and returning to the compressor 1 is repeated.

次に電動膨張弁3による冷媒流量制御方法について説明
する。室外熱交換器2の中間部と出口部の配管温度を温
度センサー21.22によって検知することにより、そ
の差温に応じて、室内機の制御器30と同様の制御を行
ない電動膨張弁3を制御する。次に室内側、室外側の空
気温度が低下する冷房低外気温時について第6図を参照
しながら説明する。室内側、室外側の空気温度が低下す
る冷房低外気温時には、室内熱交換器5に着霜が生じ、
着霜が進むと室内熱交換器6の出口の圧力が低下し、室
内熱交換器6の出口の配管温度が次第に低下する。(0
<t<T1)この温度が設定値に達すると、電磁弁14
が開き圧縮機1から冷媒管18に流れ出す吐出ガスの一
部が吐出ガスバイパス回路用冷媒管13に導入し、キャ
ピラリーチューブ16を経てアキュムレーター2oの入
口の冷媒管19にバイパスさせると共に、電磁弁11も
開き、室外熱交換器2より流出する液冷媒の一部を、液
バイパス回路用冷媒管10に導入し、キャピラリーチュ
ーブ12を経て、同様にアキュムレーター2oの入口の
冷媒管19にバイパスし、吸入ガスの過熱度を一定に保
つ。(T1〈t<T2)なお、室内熱交換器5の出口の
配管温度が、通常の状態に戻ると電磁弁11及び電磁弁
14を閉じ、元の標準時の運転に戻る。(T3<t)発
明が解決しようとする問題点 しかしながら上記のような構成では、冷房低外気温時に
、ホットガス及び少量の液冷媒を電磁弁14、キャピラ
リーチューブ16を通して、直接、アキュムレーター2
oの入口の冷媒管に戻すために、戻したホットガス及び
液冷媒介だけ能力が低下するうえにホットガス及び液バ
イパス回路13用に電磁弁14及びキャピラリーチュー
ブ16を設置しなければならず、コストが高くつくとい
う問題点も有していた。
Next, a method of controlling the refrigerant flow rate using the electric expansion valve 3 will be explained. By detecting the pipe temperatures between the intermediate section and the outlet section of the outdoor heat exchanger 2 using the temperature sensors 21 and 22, the electric expansion valve 3 is controlled according to the difference in temperature in the same manner as the controller 30 of the indoor unit. Control. Next, referring to FIG. 6, a description will be given of a low outside temperature for cooling when the air temperature on the indoor side and the outdoor side decreases. When the air temperature on the indoor side and the outdoor side decreases, and the outside air temperature is low, frost forms on the indoor heat exchanger 5.
As frosting progresses, the pressure at the outlet of the indoor heat exchanger 6 decreases, and the pipe temperature at the outlet of the indoor heat exchanger 6 gradually decreases. (0
<t<T1) When this temperature reaches the set value, the solenoid valve 14
opens and a part of the discharge gas flowing from the compressor 1 into the refrigerant pipe 18 is introduced into the refrigerant pipe 13 for the discharge gas bypass circuit, passes through the capillary tube 16, and is bypassed to the refrigerant pipe 19 at the inlet of the accumulator 2o. 11 is also opened, and a part of the liquid refrigerant flowing out from the outdoor heat exchanger 2 is introduced into the liquid bypass circuit refrigerant pipe 10, passes through the capillary tube 12, and is similarly bypassed to the refrigerant pipe 19 at the inlet of the accumulator 2o. , keeping the degree of superheat of the suction gas constant. (T1<t<T2) When the pipe temperature at the outlet of the indoor heat exchanger 5 returns to the normal state, the solenoid valves 11 and 14 are closed, and the operation returns to the original standard time. (T3<t) Problem to be Solved by the Invention However, in the above configuration, when the outside temperature is low for cooling, hot gas and a small amount of liquid refrigerant are directly supplied to the accumulator 2 through the solenoid valve 14 and the capillary tube 16.
In order to return the refrigerant to the refrigerant pipe at the inlet of the refrigerant, the capacity of the returned hot gas and liquid cooling medium is reduced, and a solenoid valve 14 and a capillary tube 16 must be installed for the hot gas and liquid bypass circuit 13. Another problem was that the cost was high.

本発明は上記問題点に鑑み、冷房低外気温時に電動膨張
弁のみを有効に使うことにより、室内熱交換器への着霜
を防止する機能を備えたヒートポンプ式空気調和機を提
供するものである。
In view of the above-mentioned problems, the present invention provides a heat pump type air conditioner having a function of preventing frost formation on an indoor heat exchanger by effectively using only an electric expansion valve when the outside temperature is low. be.

問題点を解決するだめの手段 上記問題点を解決するために本発明のヒートポンプ式空
気調和機は、室内側、室外側の空気温度が低下する冷房
低外気温時に、電動膨張弁の開度を大きく設定するとい
う構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the heat pump type air conditioner of the present invention reduces the opening degree of the electric expansion valve when the outside air temperature is low and the indoor and outdoor air temperatures drop. It has a configuration in which it can be set to a large value.

作  用 本発明は上記した構成によって、室内側、室外側の空気
温度が低下する冷房低外気温時に電動膨張弁の開度を大
きく設定することにより、室内熱交換器の温度が上昇す
るために、室内熱交換器への着霜を防止することができ
る。
Effect of the Invention With the above-described configuration, the present invention is capable of increasing the temperature of the indoor heat exchanger by setting the opening degree of the electric expansion valve to a large value when the outside temperature is low for cooling and the air temperature on the indoor side and the outdoor side decreases. , frost formation on the indoor heat exchanger can be prevented.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて、第1図、第2図及び第3図を参照しながら説明す
る。第1図において、第4図と同一部分は同一符号で示
すものとする。第1図は本発明の実施例におけるヒート
ポンプ式空気調和機の冷却システム図を示すもので、第
2図は本発明の実施例における制御器のブロック図、第
3図は、特に室内側、室外側の空気温度が低下する冷房
低外気温時の電動膨張弁制御方法について示したも・の
である。9は、室内側の制御器である。
EXAMPLE Hereinafter, a heat pump air conditioner according to an example of the present invention will be described with reference to FIGS. 1, 2, and 3. In FIG. 1, the same parts as in FIG. 4 are indicated by the same symbols. Fig. 1 shows a cooling system diagram of a heat pump type air conditioner according to an embodiment of the present invention, Fig. 2 is a block diagram of a controller in an embodiment of the present invention, and Fig. 3 shows a cooling system diagram of a heat pump type air conditioner according to an embodiment of the present invention. This paper describes a method for controlling an electric expansion valve when the outside air temperature is low for cooling and the outside air temperature is low. 9 is a controller on the indoor side.

まず第2図より、冷房時の室内側の電動膨張弁4の制御
について説明する。冷房時は、室内熱交換器6の中間部
と出口部に設けられた温度センサー24.23から差温
計測手段9aにより差温を求めると共に温度センサー2
3より得られる温度を、室内熱交換器出口温度計測手段
9bにより求め、室内熱交換器出口温度がo”c以上の
場合、電動膨張弁開度決定手段9Cは、差温に基づいて
、弁開度を決定し、それに基づき電動膨張弁制御手段9
dにて電動膨張弁4を制御し、弁開度を調節。
First, referring to FIG. 2, control of the electric expansion valve 4 on the indoor side during cooling will be explained. During cooling, the temperature difference is determined by the temperature difference measuring means 9a from the temperature sensors 24 and 23 provided at the intermediate part and the outlet part of the indoor heat exchanger 6, and the temperature difference is also measured by the temperature sensor 2.
The temperature obtained from step 3 is determined by the indoor heat exchanger outlet temperature measuring means 9b, and when the indoor heat exchanger outlet temperature is equal to or higher than o''c, the electric expansion valve opening degree determining means 9C determines the valve opening degree based on the temperature difference. The electric expansion valve control means 9 determines the opening degree and based on the opening degree.
d controls the electric expansion valve 4 and adjusts the valve opening degree.

設定、制御する。室内熱交換器出口温度が0℃以下の場
合、電動膨張弁開度決定手段9Cは、弁開度を全開に決
定し、電動膨張弁制御手段9dにて電動膨張弁4を制御
し、弁開度を調節、設定、制御する。暖房時の電動膨張
弁制御方式については従来と同様であるので説明は省略
する。
Set and control. When the indoor heat exchanger outlet temperature is 0° C. or lower, the electric expansion valve opening determination means 9C determines the valve opening to be fully open, and the electric expansion valve control means 9d controls the electric expansion valve 4 to open the valve. Adjust, set, and control degrees. The electric expansion valve control method during heating is the same as the conventional one, so a description thereof will be omitted.

第3図は、特に、室内側、室外側の空気温度が低下する
冷房低外気温時の挙動を、電動膨張弁4の制御とからめ
て示したものである。
FIG. 3 particularly shows the behavior when the outside air temperature is low for cooling, in which the air temperature on the indoor side and the outdoor side decreases, in conjunction with the control of the electric expansion valve 4.

冷房低外気温時には、蒸発圧力が下がり、それに伴って
室内熱交換器出口温度が低下する。
When the outside air temperature is low for cooling, the evaporation pressure decreases, and the indoor heat exchanger outlet temperature decreases accordingly.

(0<t<T1)そして、室内熱交換器出口温度がO’
Cまで低下すると、電動膨張弁4を全開として、蒸発圧
力を上昇させ、室内熱交換器5が着霜するのを防止する
。したがって本実施例では、冷房低外気温時、電動膨張
弁4を全開とするためにアキュムレーター20に冷媒が
たまった状態でサイクルがバランスすることとなる。(
T、<t<T2)尚、室内熱交換器出口温度が2°Cま
で上昇すると、差温に基づいて電動膨張弁4を制御する
(0<t<T1) and the indoor heat exchanger outlet temperature is O'
When the temperature drops to C, the electric expansion valve 4 is fully opened to increase the evaporation pressure and prevent the indoor heat exchanger 5 from forming frost. Therefore, in this embodiment, when the outside air temperature is low for cooling, the cycle is balanced with refrigerant accumulated in the accumulator 20 in order to fully open the electric expansion valve 4. (
T, <t<T2) When the indoor heat exchanger outlet temperature rises to 2°C, the electric expansion valve 4 is controlled based on the temperature difference.

(T2<t) 以上のように本実施例によれば、室内側、室外側の空気
温度が低下する冷房低外気温時に、電動膨張弁の開度を
大きく設定することにより、室内熱交換器の温度が上昇
するため、室内熱交換器への着霜を防止することができ
る。
(T2<t) As described above, according to this embodiment, by setting the opening degree of the electric expansion valve to a large value when the air temperature on the indoor side and the outdoor side is low and the outside air temperature is low, the indoor heat exchanger As the temperature of the indoor heat exchanger increases, frost formation on the indoor heat exchanger can be prevented.

発明の効果 以上のように本発明は、室内側、室外側の空気温度が低
下する冷房低外気温時に電動膨張弁開度を大きく設定す
る制御機能を備えることにより、室内熱交換器への着霜
を防止することができるので、ホットガス及び液バイパ
ス回路用の電磁弁、キャピラリーチューブが不要となり
、コストの合理化が可能となる。
Effects of the Invention As described above, the present invention has a control function that sets the electric expansion valve opening degree to a large value when the outside temperature is low for cooling, when the air temperature on the indoor side and the outdoor side decreases. Since frost can be prevented, solenoid valves and capillary tubes for hot gas and liquid bypass circuits are not required, and costs can be rationalized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷却システム図、第2図は、上記空気調和機に
おける制御器のブロック図、第3図は、その冷房低外気
温時の挙動と制御の説明図、第4図は従来のヒートポン
プ式空気調和機の冷却システム図、第5図は同制御器の
ブロック図、第6図は同冷房低外気温時の挙動と制御の
説明図である。 1・・・・・・圧縮機、4・・・・・・電動膨張弁、6
・・・・・・室内熱交換器、9・・・・・・制御器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1−
−一三砲 遭 4−−−室上り彰張寿 第2図       4−寵4驚張弁 ■−−1− 第3図 箔 4 図 第5図 灼 第6図
Figure 1 is a diagram of the cooling system of a heat pump air conditioner according to an embodiment of the present invention, Figure 2 is a block diagram of the controller in the air conditioner, and Figure 3 is the behavior of the cooling system at low outside temperatures. Fig. 4 is a diagram of the cooling system of a conventional heat pump air conditioner, Fig. 5 is a block diagram of the controller, and Fig. 6 is an explanatory diagram of the cooling behavior and control at low outside temperatures. It is. 1...Compressor, 4...Electric expansion valve, 6
...Indoor heat exchanger, 9...Controller. Name of agent: Patent attorney Toshio Nakao and 1 other person1-
-13 guns encounter 4--Muro-ariaki Akichoju Fig. 2 4-Kyo 4 Kikariben ■--1- Fig. 3 Haku 4 Fig. 5 Burning Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、室内熱交換器、室外熱交換器等を環状に接続し
て構成されるヒートポンプ式空気調和機の冷媒回路中に
あって、室内熱交換器と室外熱交換器との間に電動膨張
弁を設け、室内側、室外側の空気温度が低下する冷房低
外気温時に、前記電動膨張弁開度を大きく設定する制御
手段を備えたことを特徴とするヒートポンプ式空気調和
機。
It is located in the refrigerant circuit of a heat pump air conditioner, which consists of a compressor, an indoor heat exchanger, an outdoor heat exchanger, etc. connected in a ring, and an electrically operated expansion device is installed between the indoor heat exchanger and the outdoor heat exchanger. 1. A heat pump type air conditioner, comprising a valve, and a control means for setting the electric expansion valve opening degree to a large value when the outside air temperature is low and the air temperature on the indoor side and the outdoor side decreases.
JP62124308A 1987-05-21 1987-05-21 Heat pump type air conditioner Pending JPS63290368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124308A JPS63290368A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124308A JPS63290368A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS63290368A true JPS63290368A (en) 1988-11-28

Family

ID=14882117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124308A Pending JPS63290368A (en) 1987-05-21 1987-05-21 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS63290368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331643A (en) * 1989-06-29 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JPH0539942A (en) * 1991-08-01 1993-02-19 Sharp Corp Air conditioner
JP2009243847A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Multiple air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331643A (en) * 1989-06-29 1991-02-12 Mitsubishi Electric Corp Air conditioning apparatus
JPH0539942A (en) * 1991-08-01 1993-02-19 Sharp Corp Air conditioner
JP2009243847A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Multiple air conditioner

Similar Documents

Publication Publication Date Title
JPH0226155B2 (en)
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP3334222B2 (en) Air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPS63290354A (en) Heat pump type air conditioner
JPH0733095Y2 (en) Accumulator oil return device
JP2904354B2 (en) Air conditioner
JP2508842B2 (en) Air conditioner
JPS63286664A (en) Heat pump type air conditioner
JP3619533B2 (en) Refrigeration equipment
JPH01302072A (en) Heat pump type air conditioner
JPH04214153A (en) Refrigerating cycle device
JPH03164661A (en) Air conditioner
JPS63290355A (en) Method of controlling refrigerant for heat pump type air conditioner
JPH0285647A (en) Air conditioner
CN111609479B (en) Air conditioner
JP3134388B2 (en) Air conditioner
JPS5969663A (en) Refrigeration cycle
JPS611963A (en) Method of controlling refrigerant for heat pump type air conditioner
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPS61243263A (en) Oil-return control mechanism of oil separator
JPS60111851A (en) Heat pump type refrigerator
JPS6345030B2 (en)
JPS63290357A (en) Method of controlling refrigerant for heat pump type air conditioner
CN116972562A (en) Oil return control method of refrigerating system, refrigerating system and environment box